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ABSTRACT 

Evaluation of statement coverage is the problem of identifying the statements of a program that execute 
in one or more runs of a program. The traditional approach for statement coverage tools is to use static 
code instrumentation. In this paper we present a new approach to dynamically insert and remove instru-
mentation code to reduce the runtime overhead of statement coverage measurement. We also explore the 
use of dominator tree information to reduce the number of instrumentation points needed. Our experi-
ments show that our approach reduces runtime overhead by 38-90% compared with purecov, a commer-
cial statement coverage tool. Our tool is fully automated and available for download from the Internet. 

1. INTRODUCTION 

Evaluation of statement coverage is the problem of identifying the statements of a program that exe-
cute in one or more runs of a program. Developers and testers use statement coverage to ensure that all 
or substantially all statements in a program have been executed at least once during the testing process. 
Measuring statement coverage is important for testing and validating code during both development and 
porting to new platforms. Traditionally statement coverage measurement tools have been built using 
static code instrumentation. During program compilation or linking, these tools insert instrumentation 
code into the source code, object code or binary executable. The inserted instrumentation provides 
counters to record which statements are executed. The code inserted into the executable remains in the 
executable throughout the execution even though once a statement has been executed, the instrumenta-
tion code produces no additional coverage information. Moreover, these tools conservatively instrument 
all functions prior to the program execution even though some of them may never be executed. Leaving 
useless instrumentation in place increases the execution time of the software being tested especially if the 
program is long running and has many frequently executed paths (as most server programs due). For ex-
ample, the perl benchmark from SPEC95(SPEC, 1995) suite runs almost 20 times slower under a com-
mercial statement coverage tool, purecov(Rational-PureCover, 2002), when the instrumentation code for 
statement coverage is left in the executable during execution. Statically inserting all possibly needed in-
strumentation code increases the instrumentation overhead for large programs that execute only small 
portion of execution paths (common for the applications built from libraries). 

In this paper we present a new approach to dynamically insert code and remove it when it does not 
produce any additional coverage information. To our knowledge, this approach has not been used in pre-
vious statement coverage tools. Our goal in this paper is to show that deletion of instrumentation code 
used for statement coverage produces coverage results faster for long running programs. We believe that 
by making statement coverage testing cheaper it potentially could be included in production code. This 
would allow feedback to developers about the behavior of the software once deployed. For rarely exe-
cuted code, such as error cases, this type of feedback could be especially valuable.  By significantly re-
ducing the overhead of instrumentation code execution, our technique makes residual test coverage moni-
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toring(Pavlopoulou and Young, 1999) more efficient. Our fast statement coverage techniques also could 
be modified to sample the frequency of execution of program segments to provide additional information 
to a feedback-directed dynamic code optimization system. 

Besides dynamic deletion of instrumentation code, we explore the use of more sophisticated binary 
analysis techniques to reduce the number of places instrumentation code needs to be inserted. Most exist-
ing statement coverage tools insert instrumentation code at the beginning of each basic block. However, 
by automatically generating and using the dominator tree of a control flow graph, we can reduce the 
number of instrumentation points required. 

We also explore the use of incremental function instrumentation to insert the necessary instrumenta-
tion code when a function is called for the first time during program execution. Existing statement cover-
age tools conservatively insert all possibly needed instrumentation code even though it may never be exe-
cuted in future runs. However, such conservative instrumentation not only increases the code size, but 
more importantly, the overhead of preprocessing and instrumentation is significant for large programs 
containing a few frequently executed paths. For example, due to instrumentation overhead, the cc1 
benchmark from SPEC95 suite runs 12.1% slower when all functions are conservatively instrumented 
compared to when only called functions are instrumented. Thus, using incremental instrumentation of 
functions during program execution, we eliminate the instrumentation time and code growth for uncalled 
functions. 

Even though we explore the use of more sophisticated binary analysis techniques to reduce the num-
ber of places instrumentation code needs to be inserted, our goal is not to find the optimal number of in-
strumentation points. Unlike previous research to find the optimal number of instrumentation points, we 
instead try to minimize the sum of the analysis and instrumentation overhead, thus reduce the runtime 
coverage testing overhead. In this paper, in addition to our published work(Tikir and Hollingsworth, 
2002), we also compare our dynamic statement coverage approach to one of the research on finding the 
optimal number of instrumentation points for coverage testing. We chose to compare our approach to 
Agrawal’s(Agrawal, 1994) approach in terms of the reduction in the number of instrumentation points 
needed and execution performance of the applications. 

In this paper, we also explore the use of saturation counters to record limited information about the 
frequency of execution of statements. However, saturation counters can have a significant affect on the 
overall overhead due to the fact that leaving instrumentation code in executable increases the coverage 
overhead. If the instrumentation code is inserted along frequently executed paths, then re-executions of 
instrumentation code will increase coverage overhead. 

Besides statement coverage testing, our techniques can also be easily applied to other coverage test-
ing problems, such as edge coverage testing and definition-use coverage testing. In this paper, we also 
explore how we apply our techniques to edge coverage testing. We chose to apply our techniques to im-
plement and evaluate statement coverage testing, as we believe it is the most widely used coverage test-
ing method during the development and testing phases. 

The rest of the paper is organized as follows: Section 2 describes the extensions made to dyninstAPI, 
a runtime code patching system, to implement our dynamic statement coverage tool, Section 3 explains 
how dominator tree information is used to reduce the number of instrumentation points needed, Section 4 
explains the steps of our algorithm for statement coverage, Section 5 presents the results of a series of 
experiments conducted to evaluate our approach, Section 6 compares our approach with an algorithm 
that finds the optimal number of instrumentation points for coverage testing. Section 7 presents the re-
sults of experiments conducted using different saturation counters for dynamic code deletion. Section 8 
explains how we apply our techniques to edge coverage testing. Section 9 explains the graphical user in-
terface of our statement coverage testing tools. Section 10 presents the related work and Section 11 
summarizes our results and describes where to download the software. 
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2. OVERVIEW OF dyninst API 

DyninstAPI is an Application Program Interface to a library that permits the insertion of code into a 
running program. This library provides a machine independent interface to permit the creation of tools 
and applications that use runtime code patching. The unique feature of this interface is that it makes it 
possible to insert and change instrumentation in a running program(Hollingsworth et al., 1997; Buck and 
Hollingsworth, 2000; Hollingsworth and Buck, 2000). Implementations of dyninst are currently available 
for Alpha, Sparc, Power, Mips, IA-64 and x86 architectures. 

Figure 1(a) shows the structure of dyninstAPI. A mutator process generates machine code from the 
high-level instrumentation code and transfers it to an application process. To insert new code, dynamic 
code patches, called trampolines, are placed at the point where the new code is to be inserted (shown in 
Figure 1(b)). 
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(a) Structure of DyninstAPI (b) Instrumentation Code Inser tion 

 
Figure 1. Dyninst Instrumentation Process 

A base trampoline contains the relocated instruction(s) from the application address space and has 
slots for calling mini-trampolines both before and after the relocated instructions. Mini-trampolines store 
the machine code for high-level instrumentation code. 

The library also allows instrumentation code to be deleted. Instrumentation code deletion is a two-
phase process that first removes the branch into the instrumentation code and then later deletes the tram-
poline to ensure that the instrumentation code being deleted is not executing.  

To implement a statement coverage tool using dyninst, we extended the API to provide information 
about control flow graphs, basic blocks, and the ability to map source code line numbers to machine in-
structions. To create the control flow graph of a function we use a variation on the two-pass algorithm 
presented in (Aho et al., 1986). We then create the dominator tree and control dependence regions of a 
control flow graph using the algorithm in (Lengauer and Tarjan, 1979) and (Muchnick, 1997). In addition 
we extended the system to allow per instruction instrumentation. 

Originally, dyninst only supported function level instrumentation. That is, the points to which instru-
mentation code can be inserted were function entry, function exit and call sites. For a statement coverage 
tool, however, we need finer grained instrumentation at the level of basic blocks. We added the capability 
to the library to create arbitrary instrumentation points and instrument them. Arbitrary instrumentation 
points in the dyninst library are created for a given address. At arbitrary instrumentation points, we need 
to preserve the machine’s condition codes that are not live (and thus not saved) in function level instru-
mentation. We changed the base trampoline structure to save the processor state before the execution of 
instrumentation code, and then restore it after the instrumentation code but before executing any other 
user instructions. 
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Another enhancement to the dyninst API involves its memory allocator. Dyninst performs a number 
of optimizations when the memory is allocated for base trampolines and instrumentation code. One of 
these optimizations tries to allocate memory for code snippets close to the instrumentation point itself. By 
keeping the displacement to instrumentation code small, single word branch instructions can be used. 
Since the reachable displacement using one-word branch instructions is limited, when dyninst de-allocates 
memory, it compacts the free blocks. However, this optimization causes a significant instrumentation 
overhead when a large amount of instrumentation code insertion repeatedly triggers the compaction algo-
rithm. Thus, we refined memory compaction to trigger only when memory for snippets runs low to im-
prove overall performance. 

3. USING DOMINATOR TREES 

In this section, we explain our techniques to reduce the number of instrumentation points needed for 
our dynamic statement coverage tools. We use properties of the immediate dominator tree and control 
dependence regions of a control flow graph for instrumentation point selection. 

3.1 Leaf Node Instrumentation 

The control flow graph (CFG) of a function is the graph of basic blocks describing possible orders of 
the execution of the statements in the function. A basic block d of a CFG dominates basic block n, d dom 
n, if every path from the entry basic block of the flow graph to n goes through d. Each basic block n has a 
unique immediate dominator m that is the last dominator of n on any path from the entry basic block to n. 
A dominator tree(Aho et al., 1986) is a tree in which the root node is the entry basic block, and each ba-
sic block d dominates only its descendants in the tree.  

A basic block m of a CFG is control dependent on basic block n of the CFG, if basic block n can di-
rectly affect whether basic block m is executed or not. The control dependence regions(Aho et al., 1986) 
of a CFG partition basic blocks such that all basic blocks in a region execute under certain control condi-
tions. Control dependence regions of a CFG are created using dominator or post-dominator relation. 
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Figure 2. A simple CFG and I ts Dominator Information 

The key property of the dominator trees for our work is that for each basic block n in a dominator 
tree if n is executed, all the basic blocks along the path from root node to n in dominator tree are also 
executed. Similarly, if a basic block in control dependence region is executed all other basic block(s) in 
the same control dependence region is (are) also executed. Figure 2 gives an example of a control flow 
graph and its dominator tree information. 

Using the fact that coverage of a basic block might be inferred by coverage of other basic block(s), 
we can increase the coverage information obtained per instrumentation point by omitting the instrumenta-
tion code from an internal node of the dominator tree. That is, the instrumentation of the leaf nodes in the 



 

 

5 

dominator tree will produce enough information to compute the coverage of internal nodes in the domi-
nator tree. 

3.2 Non-Leaf Node Instrumentation 

Leaf node instrumentation is necessary but not sufficient to produce correct statement coverage re-
sults. This is because the flow of control does not have to follow a path in the dominator tree. That is we 
cannot guarantee that execution of basic block n is always followed by the execution of another basic 
block that is dominated by n. Assume flow of control includes such an edge from basic block n to basic 
block m, denoted (n,m), where n does not dominate m. That is, m is not a descendant of n in the domina-
tor tree. If the basic block n is one of the leaf level basic blocks in the dominator tree, leaf level instru-
mentation is sufficient. However if the basic block n is an internal node, the execution path may not in-
clude any leaf level basic blocks of the sub-tree rooted at n. That is, leaf level instrumentation is not suffi-
cient since any of the leaf level basic blocks of the sub-tree rooted at n may not be reached, thus coverage 
information can not be produced for basic blocks n and some of its ancestors. 

The reason that each edge in a CFG whose source does not dominate its target and whose source is 
one of the internal nodes of the dominator tree needs to be handled specially is that each such edge identi-
fies a control dependence region in the CFG. That is, for each edge of CFG, from basic block n to basic 
block m where n does not dominate m, a new control dependence region is created. The corresponding 
control dependence region includes the basic blocks along the path in dominator tree from n to the lowest 
common ancestor, p, of m and n in the dominator tree, excluding p. 

0

3

4

2

1

CFG
Entry

Exit

Control Flow Edges

Execution Path

Information Propagation

Instrumented Basic
Blocks

0

4

2

Dominator Tree

1

3

 

Figure 3. Why leaf level instrumentation is not sufficient 

Figure 3 gives an example for an execution path that includes an edge originating from internal node 
in the dominator tree and whose source does not dominate its target. For this control flow graph, leaf 
level basic block instrumentation is not sufficient for correct statement coverage results. For example, if 
we only instrument leaf level basic blocks 3 and 4 in the dominator tree, when the flow of control leaves 
at the exit node of control flow graph, only basic block 4 will be marked as executed. When we propa-
gate the information obtained from the execution of leaf node towards the root, we infer that basic blocks 
2 and 0 also executed. However no information about basic block 1 will be given, thus it is assumed to be 
unexecuted. Since the flow of control did not enter basic block 3, the leaf level instrumentation did not 
give any information to us about the basic blocks that dominate 3, which are 1 and 0. 

To correctly capture this case, we also instrument internal basic block n if n has at least one outgoing 
edge to a basic block m that n does not dominate. That is, we instrument internal basic block n if it is in a 
different control dependence region than any of its children or ancestor in the dominator tree. In this ex-
ample basic block 1 has an outgoing edge to 2 and 1 does not dominate 2. Basic block 1 is in different 
control dependence region than basic blocks 0 and 3. The control dependence regions for this example 
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are as { 0,2,4} , { 1} , and { 3} . Thus, we choose basic block 1 to be instrumented besides basic blocks 3 
and 4.  

Alternatively, a combination of dominator and post-dominator tree information could be used to re-
duce the number of instrumentation points needed compared to using only dominator tree information. 
That is, the execution of a basic block can also be deduced by execution of another basic block that is 
post-dominated by the former. However, unlike (Probert, 1982; Agrawal, 1994), our goal is not to find 
the optimal number of instrumentation points, but to minimize the sum of the analysis and instrumentation 
overhead. Although we use Langauer-Tarjan (Lengauer and Tarjan, 1979) algorithm that is linear in 
number of edges in a control flow graph, our experiments have shown that the additional post-dominator 
tree construction and necessary graph processing to correctly use both dominator and post-dominator 
information is an expensive computation relative to the limited benefit we can expect. That is, additional 
post-dominator information increased our binary analysis time without a significant reduction in instru-
mentation overhead. Thus we chose to use only dominator tree information. In Section 6, we compare 
using both dominator and post dominator information in terms of the reduction in the number of instru-
mentation points and performance improvement compared to using only dominator information. 

4. STATEMENT COVERAGE ALGORITHM 

We implemented two slightly different versions of our dynamic statement coverage algorithm: state-
ment coverage with pre-instrumentation and statement coverage with on-demand instrumentation. These 
algorithms differ in what functions are instrumented and when the instrumentation code is inserted. The 
selection of points to be instrumented is based on the same criteria in both implementations. For both al-
gorithms, during the execution of the program being tested we determine if instrumentation code can be 
deleted, and remove it. At program termination, we record the results of statement coverage by propagat-
ing line coverage information towards the root of dominator tree. 

The first step of our algorithm with pre-instrumentation is to create the control flow graph and domi-
nator tree for each function in the application. Next, for each control flow graph we choose basic blocks 
to be instrumented using the criteria explained in Section 3. For each basic block to be instrumented we 
create a Boolean variable which is initialized to false indicating that the block has not yet executed. We 
insert code at the beginning of the basic block that sets the corresponding Boolean variable to true. Our 
statement coverage tool automatically creates the control flow graph, generates the dominator tree and 
inserts the instrumentation code. 

With on-demand instrumentation only breakpoints are inserted at the beginning of each function in the 
application prior to the execution. During the execution of the program, when a breakpoint is reached, 
the control flow graph of that function is generated and the necessary instrumentation code is inserted. 
Thus, if the function is not called during the execution, neither the control flow graph nor the instrumen-
tation code is generated for it.  

For better performance for long running programs with many hot basic blocks and paths, we delete 
instrumentation code during the execution of the program.  Deletion of instrumentation code includes 
restoring original instructions and de-allocating base trampoline and min-trampoline space. However, 
there is a tradeoff in instrumentation code deletion. Sometimes deletion may introduce more overhead 
than the resulting performance improvement. This is due to the fact that it takes time to check what is 
already executed and thus what can be deleted. For example, if there is a lot of instrumentation code that 
never execute, the checks will mostly introduce overhead instead of improvement. 

Instrumentation code can be deleted using different policies. One simple method is to delete instru-
mentation code at fixed time intervals. Another possibility is to delete the instrumentation code automati-
cally just after the first time it is executed. In our current implementation, instrumentation code is deleted 
at fixed time intervals. It is a simple approach, easy to implement and improves the execution time of the 
program being tested significantly. The deletion interval is a tunable parameter to our tool. 
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At program termination we record the results of statement coverage. For our statement coverage al-
gorithms that use dominator tree information for instrumentation, we simply read the values of variables 
assigned to basic blocks instrumented and propagate the information along the path in the dominator tree 
towards the root. If the variable for a basic block is set we mark all dominators as executed. Our state-
ment coverage tool then either generates a binary file that contains information about which lines were 
executed or displays the coverage information through its user interface.  

Relative to static instrumentation that can completely re-structure a binary, our approach uses a base 
trampoline and a mini-trampoline for each instrumentation code inserted. Therefore the cost of each in-
strumentation point also includes the execution of branch/call instructions from executable address space 
to the base trampoline and from the base trampoline to the mini-trampolines. However, the fact that we 
can remove instrumentation code at runtime more than offsets this penalty. 

5. EXPERIMENTS AND RESULTS 

To evaluate the effectiveness of our approach, we ran a workload of test programs with and without 
using dominator information and varying the dynamic code deletion interval. As a comparison, we also 
ran the applications through purecov (version 4.1 Solaris 2.6), commercial statement coverage tool that 
uses static code editing. We measured the execution time of programs instrumented by our dynamic 
statement coverage tools including the setup time for control flow graph generation, dominator tree con-
struction, and instrumentation code insertion. We tested statement coverage for PostgreSQL, an object-
relational DBMS, using the Wisconsin(Bitton et al., 1983) and crashme(MySQL-Crashme, 2002) bench-
marks, all C programs (go, m88ksim, gcc, compress, li, ijpeg, perl, vortex) from the SPEC95(SPEC, 
1995) benchmarks and two of the Fortran programs (tomcatv, hydro2d) from SPEC95 benchmarks, using 
the standard reference input data. Experiments were conducted on a SUN-SPARC ULTRA 10 with 
500MB of main memory, and compiled with gcc version 2.95.1 with debug option enabled. We enabled 
the debug option to gather line information from the debug records in the executable. We also measured 
the total number of basic blocks in the program being tested and the number of instrumentation points 
needed when dominator tree information is used. We ran the same set of experiments for both statement 
coverage with pre-instrumentation, and statement coverage with on-demand instrumentation. 

5.1 Reduction in Instrumentation Points 

To quantify the benefits of using dominator tree information, we calculated the number of instru-
mented basic blocks with and without using dominator tree information. We repeated the experiments 
using our on-demand instrumentation algorithm. 

Figure 4 summarizes the ratio of the number of instrumented basic blocks to the total number of basic 
blocks in the application for the programs we tested1. For each program, there are four bars. The bars la-
beled all blocks correspond to the statement coverage tools with all basic blocks instrumentation and the 
ones labeled dominator indicate use of dominator tree information. The OD suffix indicates our statement 
coverage algorithms with on-demand instrumentation. 

Figure 4 shows that using dominator tree information with pre-instrumentation reduced the number of 
instrumentation points needed by 34% to 49% compared to all basic blocks instrumentation. Similarly, it 
shows that using dominator tree information with on-demand instrumentation, we reduced the number of 
instrumentation points needed from 33% to 49%, which corresponds to 42% to 79% reduction in the to-
tal number of basic blocks instrumented when all blocks instrumentation and dominator tree is used. 

                                                
1 Details about the statement coverage instrumentation statistics for all programs are given in Appendix A. 
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Figure 4. Ratio of Instrumented Basic Blocks to the Total Number of Basic Blocks 

Figure 4 shows that the gain using dominator tree information is less for gcc, perl, and vortex than the 
other programs tested. These programs have lexical analyzers and parser functions in them. These types 
of functions have complex control flow graphs containing many basic blocks with few instructions and 
many control flow edges. These properties result in a large number of leaf level basic blocks in the domi-
nator trees and also a large number of internal basic blocks that require instrumentation (as described in 
Section 3.2) 

Figure 4 also shows that using on-demand instrumentation, our statement coverage algorithm reduces 
the amount of instrumentation code inserted compared to static instrumentation. Combining on-demand 
instrumentation with dominator trees consistently results in the fewest number of instrumented basic 
blocks among all versions of our statement coverage algorithm. However, the number of instrumentation 
points needed in tomcatv is not reduced by on-demand instrumentation, as tomcatv has no un-called func-
tions in its execution (tomcatv is fully covered in terms of basic blocks). Overall we were able to elimi-
nate instrumentation from 42% to 79% of the basic blocks in the executables. 

5.2 Execution Times 

In this section, we present the impact of dynamic code deletion and dominator information usage in 
the execution times of various applications. However, to show how rapidly they reach certain levels of 
coverage, we first present the source code line coverage percentage curves for the applications. To meas-
ure the source code line coverage percentage of applications, we stopped the running process every 1 
second and calculated the percentage of source lines executed. We chose to present the results for com-
press and PostgreSQL with Wisconsin benchmark queries in detail as they exhibit interesting perspectives 
in terms of coverage for our approach. The results for the rest of the applications are presented in Ap-
pendix B. 

Figure 5 shows the source line coverage percentage versus time for compress from SPEC95 bench-
mark suite. The coverage percentage in Figure 5 steeply increases to 76% in the first 18% of the execu-
tion time and stays at this level through the rest of the execution. 
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Figure 5. Source Line Coverage Percentage for compress 

Figure 6 shows the source code line coverage percentage for PostgreSQL using Wisconsin bench-
mark queries. The Wisconsin benchmark queries are designed to measure the query optimization per-
formance of database systems using selection, join, projection, aggregate, and simple update queries. We 
conducted the experiments using a single-user version of PostgreSQL. The fact that the database was in 
single user mode partially explains the relatively low coverage percentage in Figure 6. 

Unlike Figure 5, the source code line coverage percentage for PostgreSQL using the Wisconsin 
benchmark increases gradually to 19% through the whole execution, staying around 10% in the first half. 
However, the source code line coverage percentage mostly remains steady for several intervals during the 
execution indicating the existence of many frequently executed paths and re-execution of many basic 
blocks during these intervals. 

Figure 6 also shows that, unlike compress, the time spent executing instrumentation code is distrib-
uted among these intervals rather than being at the beginning of the program execution. 
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Figure 6. Source Line Coverage Percentage for PostgreSQL with Wisconsin Benchmark 

We next look at the impact of dynamic code deletion and dominator information usage for the appli-
cations. We present the execution times using our techniques and compare it to the commercial statement 
coverage tool purecov. 

Figure 7 shows the slowdown ratios of compress with respect to original execution time. It has five 
kinds of bars. The bar labeled PC shows the execution time slowdown ratio for compress instrumented 
using purecov. The rest of the bars are divided into four categories; each category corresponds to slow-
down ratios of compress instrumented using one of our dynamic statement coverage algorithms. Catego-
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ries labeled dominator use dominator tree information for instrumentation where the ones labeled all 
blocks indicate our dynamic statement coverage tools with all basic blocks instrumentation. The suffix 
OD indicates use of on-demand function instrumentation. In each category, the bars are labeled with 
numbers to represent different instrumentation code deletion intervals (in seconds). Bars labeled 0 indi-
cate that instrumentation code is not deleted at all. Each bar is composed of two or three segments. 

Slowdown for  SPEC/compress 

0
1
2
3
4
5
6
7
8
9

10

0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50 0 1 2 5 10 15 25 50

PC all blocks all blocks OD dominator dominator OD

Ratio

 

Figure 7. Execution Time Slowdown Ratios for compress 

Figure 7 shows that all of our statement coverage tools significantly outperform purecov execution 
for all deletion intervals studied. It also shows that there is a significant decrease in execution time when 
dynamic instrumentation code deletion is enabled. This is due to two reasons; 1) Most of the instrumenta-
tion code is executed at the beginning and deleted shortly after it is executed, and 2) There are few basic 
blocks in compress and the overhead of checking whether instrumentation code is executed or not during 
the deletion intervals is not significant. Even if we instrument all basic blocks, after a couple deletion in-
tervals most of the instrumentation code is deleted. This explains the relatively insignificant gain when 
using dominator tree information despite the fact that dominators were able to eliminate instrumentation 
points for over 55% of the basic blocks (as shown in Figure 4). Likewise on-demand instrumentation 
provides little benefit. Figure 7 also shows that the execution times increase slightly for larger deletion 
intervals for all of our statement coverage tools due to re-execution of some instrumentation code in the 
first couple deletion intervals. 

Figure 7 also shows that without dynamic code deletion, our dynamic statement coverage tools using 
dominator tree information outperform the ones using all basic blocks instrumentation. Surprisingly, our 
techniques outperform purecov execution even without code deletion when all basic blocks instrumenta-
tion is used. This is due to the fact that purecov sometimes inserts additional unnecessary instrumentation 
code around the pseudo-instruction that implements integer division of the SPARC. 

Figure 7 also shows that, for compress, our dynamic statement coverage tools with on-demand func-
tion instrumentation slightly outperform the ones with pre-instrumentation. This is due to the fact that 
89.1% of the total basic blocks in compress are executed during the program execution and the setup 
time for compress is not significant compared to the total execution time. 

For compress instrumented by our dynamic statement coverage tools, the best execution time occurs 
using a 2-second deletion interval and is 90% better than purecov execution time. The slowdown ratio for 
our best execution time with respect to original execution is 1.003. That is, our dynamic statement cover-
age tool introduces only a 0.3% run time overhead compared to the original execution of compress. 
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Figure 8. Execution Time Slowdown Ratios for PostgreSQL with Wisconsin Benchmark 

Figure 8 presents the execution time slowdown ratios, with respect to original execution time, of 
PostgreSQL for the Wisconsin benchmark instrumented by purecov and our dynamic statement coverage 
tools. The gray segment in each bar represents the setup time for each tool where the bottom light col-
ored segment is execution time of the program. For our dynamic statement coverage tools with on-
demand instrumentation, the gray segment represents the control flow graph generation and instrumenta-
tion time, which is distributed throughout the execution. The dark top segment represents the time spent 
during instrumentation of breakpoints at function entry points. (Although setup times were shown in 
Figure 7, they were so insignificant for compress that they were not visible). 

Figure 8 shows that setup times for our statement coverage tools with pre-instrumentation is signifi-
cant due to the existence of many complex control flow graphs and the large number of basic blocks in 
PostgreSQL. That is, the control flow generation and instrumentation code insertion for all functions in 
PostgreSQL introduces a significant overhead. The setup time for our statement coverage tools with on-
demand instrumentation is not significant since it only requires inserting breakpoints at the beginning of 
the functions. Figure 8 also shows that control flow graph generation and instrumentation of functions for 
our dynamic statement coverage tools with on-demand instrumentation takes significantly less time com-
pared to our tools with pre-instrumentation. 

Figure 8 shows that purecov outperforms our statement coverage tool with pre-instrumentation and 
all basic blocks instrumentation. This is due to two reasons. First, even though only 36% of the basic 
blocks are executed, pre-instrumentation creates control flow graphs for un-called functions and inserts 
instrumentation code for all basic blocks. Unlike our statement coverage algorithms, purecov does not 
incur overhead due to control flow graph generation and instrumentation code insertion during execution. 
Second, the deletion interval overhead, for checking whether instrumentation code is executed or not, is 
significant when many basic blocks are never executed. That is, most of the checks during the deletion 
intervals are not profitable but introduce overhead. 

Figure 8 shows that our statement coverage tool with pre-instrumentation and dominator tree infor-
mation usage performs slightly better than purecov since it introduces fewer instrumentation points com-
pared to all block instrumentation. 

Figure 8 also shows that our statement coverage tools with on-demand instrumentation outperform 
our statement coverage tools with pre-instrumentation since they do not generate control flow graphs for 
un-called functions nor insert instrumentation code for basic blocks that are not executed. Our on-
demand instrumentation technique also reduces the deletion interval overhead by introducing instrumen-
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tation code incrementally that eliminates the checks that would otherwise be done in previous deletion 
intervals. 

Like in Figure 7, the results in Figure 8 indicate that using dynamic code deletion produces faster 
statement coverage results. Unlike Figure 7, every-second deletion performs slightly worse than no dy-
namic code deletion for pre-instrumentation case, since the more instrumentation code must be checked. 

Figure 8 shows that combining on-demand instrumentation and dominator tree information usage is 
complementary. While using dominator tree information reduces the number of instrumentation points 
needed, using on-demand instrumentation reduces the setup time and deletion interval overhead of check-
ing whether the instrumentation code can be deleted or not. Using both dominator tree information and 
on-demand instrumentation, we reduced the amount of instrumentation code inserted by 78.2% compared 
to the total number of basic blocks in the program. 

For this application, the best execution time occurs when a 15-second deletion interval is used. The 
slowdown ratio for our best execution time with respect to original execution is 1.31 and it is 44% better 
than purecov execution time. 

We present execution time slowdown ratios for the rest of the programs in Appendix B for the inter-
ested reader. The format of the rest of the graphs is exactly same with the ones in this section. 

5.2.1 Instrumentation Code Execution Frequency 

Based on the data presented in Section 5.2, we suspected that the overhead for our dynamic state-
ment coverage system would be bursty throughout a program’s execution. To investigate this hypothesis, 
we added meta-instrumentation code to each basic block to record the number of times instrumentation 
code is executed. This section presents the instrumentation code execution frequencies for PostgreSQL 
using the Wisconsin benchmark queries when all basic blocks are instrumented and instrumentation code 
is deleted every second. 
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Figure 9. Instrumentation Code Execution Frequency and Source Code Line Coverage Percentage 
for PostgreSQL with Wisconsin Benchmark 

Figure 9 shows the distribution of instrumentation code executions using bars and source code line 
coverage percentage using lines for PostgreSQL running the Wisconsin benchmark. For the bars, the left 
y-axis gives instrumentation code execution frequencies (log10 scale). The right y-axis for the continuous 
curve shows the source code line coverage percentage of the program. Figure 9 shows that whenever the 
source code line coverage percentage increases, there are executions of instrumentation code. 

Figure 9 also shows that during the intervals that source code line coverage percentage remains 
steady, there is no instrumentation code executed (Due to size and resolution of the graph, slight in-
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creases in coverage percentage in Figure 9 is not noticeable even though there are executions of instru-
mentation code at the same interval. Thus, Figure 9 may mislead as if there are instrumentation code exe-
cutions when the coverage curve remains steady.) When the program enters a new phase, instrumentation 
code is executed for the first time. Shortly after the instrumentation code is executed, it is deleted and 
never executed during the rest of that phase. 

5.3 Overall Slowdown 

We also calculated the slowdown ratio with respect to the original execution time for programs in-
strumented using purecov and our dynamic statement coverage tool. We took the results for 2-second 
deletion interval for our dynamic statement coverage tools. We decided to present the results for 2-
second deletion interval as representative of our techniques rather than using the best deletion interval for 
each application. We chose 2-second deletion as representative of our techniques due two reasons. First, 
using 2-second intervals did not increase the runtime overhead significantly, unlike using 1-second inter-
val. Secondly, 2 seconds is short enough to prevent many re-executions of a given instrumentation point. 

Slowdown Using 
Dominator Tree 

Information 

Slowdown Using  
All Basic Blocks 
Instrumentation  

Original  
Execution 

Time 
(sec) Pre-Inst. 

On-Demand 
Inst. 

Pre-Inst. 
On-Demand 

Inst. 

Slowdown 
using 

purecov 

tomcatv 77.9 1.003 1.002 1.003 1.002 1.83 
postgres(crashme) 254.4 1.80 1.43 2.16 1.56 2.09 
postgres(Wisconsin) 90.5 2.30 1.34 2.99 1.71 2.35 
hydro2d 764.4 1.01 1.01 1.01 1.01 2.73 
ijpeg 223.9 1.07 1.08 1.13 1.14 4.74 
go 118.3 1.08 1.06 1.23 1.20 5.23 
vortex 50.3 1.69 1.48 1.90 1.66 7.27 
gcc 50.9 3.90 2.58 4.96 3.26 8.97 
m88ksim 133.5 1.11 1.06 1.14 1.06 9.43 
li 373.4 1.02 1.01 1.03 1.02 9.45 
compress 219.4 1.03 1.003 1.04 1.02 9.88 
perl 67.1 2.53 2.37 2.70 2.56 19.78 

Table 1.  Comparison of slowdown ratios with respect to original execution times for our dynamic 
statement coverage tools with on-demand and pre- instrumentation, and purecov. 

Table 1 presents the execution time slowdown ratios (computed as the ratio of instrumented execu-
tion time to un-instrumented execution time) for the programs we tested. In the second column we give 
the original execution times in seconds. The next four columns give the slowdown ratios of the programs 
instrumented by our dynamic statement coverage tools using dominator tree information and all basic 
blocks instrumentation for both pre-instrumentation and on-demand instrumentation. The results pre-
sented in Table 1 for our statement coverage tools include setup time for control flow graph generation, 
dominator tree construction and instrumentation. The last column of the table gives the slowdown ratios 
of the programs instrumented using purecov. 

Table 1 shows that purecov slows down the execution from 1.8 for tomcatv to 19.8 times for perl. 
However our dynamic statement coverage tool with on-demand instrumentation slows down the execu-
tion only a factor of 1.002 to 2.6 using dominator tree information. Our statement coverage tools with 
on-demand instrumentation frequently outperform the ones with pre-instrumentation. 
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Table 1 shows that the difference between the slowdown ratios using our tools with on-demand in-
strumentation and pre-instrumentation is higher for gcc, postgres, vortex, and perl compared to the other 
programs we tested. This is due to the fact that these programs have many basic blocks and control flow 
edges and a significant portion of these basic blocks are not executed. Hence, our statement coverage al-
gorithm with pre-instrumentation spends a significant amount of time to create control flow graphs and 
insert instrumentation code for un-called functions, and thus introduces a significant amount of instru-
mentation code that is not executed but must be checked during each deletion interval. 

6. COMPARING WITH AN OPTIMAL INSTRUMENTATION PLACEMENT APPROACH 

In addition to demonstrating the effectiveness of our dynamic statement coverage approach, we be-
lieve it is also necessary to compare our approach to previous research on finding the optimal number of 
instrumentation points for coverage testing. Recall that even though our approach reduces the number of 
instrumentation points needed for coverage testing, our goal is not to find the optimal number of instru-
mentation points. We instead try to minimize the sum of the analysis and instrumentation overhead such 
that the runtime overhead of statement coverage testing is reduced. 

For comparison of our approach to one of the previous researches on finding the optimal number of 
instrumentation points for coverage testing, we chose the work described in Agrawal(Agrawal, 1994). 
Unlike our approach where we only use dominator tree information, Agrawal uses both dominator and 
post-dominator tree information of a CFG to find the optimal number of instrumentation points for the 
CFG to gather statement coverage information. 

To find the optimal number of instrumentation points in a CFG, Agrawal first constructs both domi-
nator and post-dominator tree of the CFG. Next, the algorithm merges both dominator trees as the union 
of both graphs, called basic block dominator graph, and calculates the strongly connected components, 
called super blocks, of the union graph. Then, a directed acyclic graph (DAG) is constructed from the 
super nodes, called super block dominator graph. Lastly, leaf nodes in the super block dominator graph 
and internal nodes whose coverage does not imply the coverage of its children are selected for instrumen-
tation. Please refer to (Agrawal, 1994) for more details on Agrawal's approach on finding the optimal 
number of instrumentation points. 

To compare our approach to Agrawal’s approach, we implemented instrumentation point selection 
algorithms described in (Agrawal, 1994) and integrated it into our statement coverage tool to select the 
instrumentation points in the applications. In addition, we modified our statement coverage tool to be 
able propagate coverage information from the execution of the instrumented basic blocks to the un-
instrumented basic blocks. For a fair comparison, we ran experiments using Agrawal’s approach for both 
pre-instrumentation and on-demand instrumentation and recorded the number of instrumentation points 
needed and performance improvement in execution times for all applications we tested. 

Table 2 presents the number of instrumentation points needed for the programs we tested for both 
our approach and Agrawal’s. In the second column we give the total number of basic blocks in the appli-
cations. The group of next three columns presents the results when all functions are pre-instrumented at 
start of the applications, where group of last three columns presents the results when on-demand instru-
mentation is used. In each group, the column labeled Dom gives the number of instrumentation points 
needed when our approach is used, where the column labeled Dom&Post-Dom gives the number of in-
strumentation points needed when we use Agrawal’s algorithms. Lastly, the last column in each group 
gives the reduction percentage in the number of instrumentation points needed for Agrawal’s approach 
compared to our approach. 

Table 2 shows that for all applications, for both using pre-instrumentation and on-demand instrumen-
tation, Agrawal’s approach requires fewer instrumentation points compared to our approach. Table 2 also 
shows that for pre-instrumentation, using only dominator information reduces the number of instrumenta-
tions needed by 34.0-48.7% (Average is 42.0%) compared to the total number of basic blocks in the ap-
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plications. However, adding post-dominator information only reduces the number of instrumentation 
points by 3.2-16.3% (Average is 8.7%) more. Similarly, for on-demand instrumentation, using only 
dominator information reduces the number of instrumentation points by 41.5-79.1% (Average is 61.5%) 
and additional use of post-dominator information only reduces the number of instrumentation points by 
3.2-14.4% more (Average is 7.9%). That is, Table 2 shows that even though Agrawal's approach is more 
effective in reducing the number of instrumentation points needed compared to ours, using additional 
post-dominator information is not as effective as using only dominator information in terms of reduction 
percentages. 

Using Pre-Instrumentation 
Using On-Demand 
Instrumentation 

 
Total 
Basic 
Blocks Dom 

Dom&  
Post-Dom 

Reduc-
tion % 

Dom 
Dom&  

Post-Dom 
Reduc-
tion % 

tomcatv 53 31 30 3.2 31 30 3.2 
compress 269 138 116 16.3 120 103 14.4 
hydro2d 740 384 345 10.1 360 326 9.6 
li 2,532 1,452 1,265 12.9 984 859 12.7 
m88ksim 5,742 3,404 3,171 6.8 1,202 1,127 6.2 
ijpeg 5,946 3,117 2,748 11.9 1,390 1,242 10.7 
go 11,233 6,487 6,121 5.6 6,338 5,989 5.5 
perl 13,181 8,127 7,744 4.7 5,647 5,390 4.5 
vortex 19,047 12,579 11,682 7.1 9,286 8,743 5.9 
postgres(Wisconsin) 45,140 26,364 23,605 10.5 9,841 8,879 9.8 
postgres(crashme) 45,140 26,364 23,605 10.5 12,376 11,313 8.6 
gcc 68,458 42,781 40,842 4.5 20,676 19,940 3.6 

Table 2. Comparison of the number of instrumentation points needed when only dominator tree 
information is used to when both dominator tree and post-dominator tree information is used for 

both using pre-instrumentation and on-demand instrumentation. 

Even though reduction in the number of instrumentation points is important for statement coverage 
testing, what really matters is the runtime overhead due to the statement coverage testing. Thus we also 
recorded the execution times of the applications we tested for both our approach and Agrawal’s approach 
to investigate the tradeoffs between finding the optimal number of instrumentation points and its impact 
on the runtime overhead of statement coverage. 

Figure 10 compares Agrawal’s approach to our approach in terms of execution times when on-
demand instrumentation is used (We do not present the results with pre-instrumentation since they are 
similar to the results with on-demand instrumentation). For each application, two bars give the slowdown 
for the application when Agrawal’s approach is used compared to using our approach (Negative values 
indicate speedup). The first bar gives the slowdown for the application when instrumentation code dele-
tion is enabled where the second bar gives the slowdown for the application. 

Figure 10 shows that, when instrumentation code is not deleted, Agrawal’s approach outperforms our 
approach by 1-14% for all applications except gcc and tomcatv. This is due to the fact that Agrawal’s ap-
proach reduces the number of instrumentation points needed compared to our approach, thus results in 
less instrumentation that stays in the application throughout the execution. However for gcc and tomcatv, 
our approach outperforms Agrawal’s approach even though latter reduces the number of instrumentation 
points around 3% for both applications. This is mainly due to the fact that the saved time due to less in-
strumentation does not overcome the additional binary analysis time spent by Agrawal’s approach. 
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Figure 10. Comparison of Agrawal’s approach to our approach for all applications in terms of 
their execution performance when on-demand instrumentation is used.  

The results presented in Section 5.2 shows that the effectiveness of our approach comes mainly from 
dynamic instrumentation code deletion. Recall that the applications run 38-90% faster when instrumenta-
tion code is deleted compared to keeping all instrumentation in place throughout the execution. Figure 10 
shows that when dynamic instrumentation code deletion is enabled, our approach outperforms Agrawal’s 
approach for almost all of the applications and the improvement goes as high as 13.5% compared to 
Agrawal’s approach. For applications m88ksim, tomcatv and ijpeg our approach performs slightly worse 
compared to Agrawal’s approach. More importantly, Figure 10 shows that for the applications with high 
number of basic blocks (gcc, perl and postgres), our approach performs significantly better compared to 
Agrawal’s approach. 

7. USING SATURATION COUNTERS 

In this section, we present the results of our experiments in which we used saturation counters. Satu-
ration counters are counters with a fixed number of bits and they do not reset after they overflow but in-
stead store the maximum value they can count. We used saturation counters to give some coarse informa-
tion about the execution frequency of statements besides identifying if a statement is executed. Using 
saturation counters, the deletion of the instrumentation code is delayed until the counter reaches satura-
tion.  

In the experiments presented in Section 5, we used a Boolean flag to mark whether an instrumenta-
tion code is executed or not. In these experiments, the instrumentation code is deleted during the first de-
letion interval after the flag is set and the flag is never read again during the rest of the deletion intervals. 

To clearly present the impact of different saturation counters and deletion interval values on the exe-
cution times of the applications, we divided the total execution time of an application into four segments; 
1) Time spent to execute original and instrumentation code, 2) CFG creation and instrumentation time, 3) 
Time spent during deletion intervals excluding time spent to remove the instrumentation code, 4) Time 
spent to remove instrumentation code. 

Figure 11 shows the results of our experiments using saturation counters for the SPEC/cc1 applica-
tion using our coverage tool with dominator tree information and on-demand instrumentation. The graphs 
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in Figure 11(a-d) present the execution time slowdown ratios due to different parts of the program execu-
tion. Figure 11(e) shows the total execution slowdown ratios. For each graph in Figure 11, the x-axis 
shows different deletion interval values. We conducted our experiments with deletion interval values 
ranging from 0 to 50, where 0 indicates no dynamic code deletion. The y-axis shows the number of bits 
used for saturation counters that ranges from 1 to 15. A value of 1 for the number of bits in saturation 
counters indicates that the instrumentation code is deleted during the first deletion interval after its first 
execution. 

Figure 11(a) shows the overhead of creating the CFGs for the called-functions, inserting instrumenta-
tion code and dyninst initialization. Figure 11 (a) shows that, for all runs, the slowdown ratios are almost 
the same. This is due to the fact that the CFG creation and instrumentation code insertion are the same 
regardless of the number of bits in the saturation counter. However, for some runs there are minor varia-
tions. We observed that the dyninst library allocated different chunks of memory that is required by the 
instrumentation code among different runs. These variations occur due to the differences in the internal 
dynamic memory allocator in the dyninst library. The dyninst library sometimes performs memory com-
paction if the de-allocated memory can be re-used. Since our approach deletes instrumentation code dur-
ing deletion intervals, memory compaction is often triggered. Moreover, the memory compaction pattern 
changes with the dynamic state of the allocated and de-allocated pages by the dyninst library in the appli-
cation. 

Figure 11(b) shows the slowdown ratio for the execution of the original instructions and the instru-
mentation code inserted in the executable. Figure 11(b) shows that when there is no dynamic code dele-
tion, the overhead of executing instrumentation code is significant. It also shows that a deletion interval 
of one second introduces the lowest overhead. Figure 11(b) also shows that the overhead of executing 
instrumentation code increases when the deletion interval value increases as mentioned in Section 5.2. 
Figure 11(b) shows that using more bits in the saturation counters, the overhead of instrumentation code 
execution slightly increases. The increase in the overhead is due to the fact that the number of instrumen-
tation points with repeated execution increases as the instrumentation code deletion is delayed until the 
saturation counters overflow. 

Figure 11(c) shows the slowdown ratio for the overhead of the iterations in the deletion intervals due 
to reading the values of the saturation counters for all instrumentation code that is still in the executable. 
That is, for each instrumentation snippet that has not been deleted yet, we read its saturation counter and 
check whether it has saturated. Figure 11(c) shows that this overhead decreases when the deletion inter-
val increases. It is due to the fact that for the higher values of deletion interval, we perform fewer reads 
and checks. Figure 11(c) also shows that this overhead significantly increases when the number of bits in 
saturation counters increases for the more frequent deletion intervals. Thus, most of the checks per-
formed on the values of saturation counters are not profitable. 

Figure 11(d) shows the slowdown ratios for the overhead of dynamic code deletions. This overhead is 
the time spent only to remove instrumentation code. It does not include time spent to check whether the 
instrumentation code has executed enough times. Figure 11(d) shows that time spent for instrumentation 
code deletion significantly decreases when the number of bits used for saturation counters increases. This 
is due to the fact that, using more bits in the saturation counters, results in the instrumentation code exe-
cuting more times before it is deleted. Thus, some of the instrumentation code is never deleted since their 
counters never saturate. 
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Figure 11. Execution Times for Different Saturation Values and Deletion Intervals for SPEC/cc1 

Figure 11(e) shows the total execution slowdown ratio for different saturation values and deletion in-
terval values. This graph shows that the execution slowdown ratios change the same by the deletion in-
terval for all saturation values. Figure 11(e) shows that if the instrumentation code is deleted frequently, 
increasing number of bits in saturation counters introduces significant overhead. 
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More importantly, Figure 11(e) also shows that for higher deletion interval values, the number of bits 
in saturation counters has a slight impact on the execution time slowdown ratios. Thus, using our cover-
age tools, it is possible to give some coarse information about the instrumentation code execution fre-
quencies without introducing a significant overhead. In summary, at the recommended deletion interval 
(50 sec), adding saturation counters is nearly free. 

8. APPLICATION OF OUR TECHNIQUES TO EDGE COVERAGE TESTING 

Besides statement coverage testing, our techniques can also be easily applied to other coverage test-
ing problems, such as branch coverage testing, edge coverage testing, or definition-use coverage testing. 
In this section we explain how our instrumentation technique and dynamic code deletion can be applied to 
edge coverage testing. In this section, we will only briefly explain the transformations needed to evaluate 
edge coverage testing using our techniques. We will not present any experimental results since we did not 
implement the tools for edge coverage testing. This is due to the fact that currently the dyninst library is 
not capable of efficiently inserting code along edges in a CFG. 

To apply our instrumentation point selection technique to edge coverage testing, we first transform 
each CFG to another flow graph, G’. In the new graph, the nodes represent the original edges in the CFG 
and the edges represent possible execution ordering constraints over the edges of the CFG. 

To transform the original CFG to the new graph, G’, first we add two new edges to the original CFG 
to represent entry to the CFG and exit from the CFG. That is, we add an incoming edge to the entry basic 
block and an outgoing edge from the exit basic block of the original CFG. Second, we create a node, ni, 
in G’ for each edge, ei, in the original CFG. Third, if the execution of an edge, ej, in the original CFG may 
immediately follow the execution of edge ei, we create an edge in G’ from node representing ei to the 
node ej. To correctly capture the execution ordering constraints over the edges of the original CFG, we 
process each basic block in turn. For each basic block in the original CFG, for each possible pair of in-
coming edge, ei, and outgoing edge, ej, we insert an edge in G’ from node representing ei to node ej. 
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Figure 12. Transformation of a CFG for Edge Coverage Testing 

Figure 12 shows the transformation of the CFG in Section 3.2 for edge coverage testing. Figure 12(a) 
shows the CFG with two additional edges e0 and e7. Figure 12(b) shows the transformed flow graph 
where there is a node for each edge in Figure 12(a) and the edges represent ordering constraints over the 
edges of Figure 12(a). 

After the transformation of each CFG to the new flow graph, we apply our instrumentation point se-
lection techniques to the new graph. That is, we create the dominator tree for the new graph and use its 
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control dependence regions as explained in Section 3. Figure 12(c) shows the dominator tree for the new 
graph shown in Figure 12(b). 

9. GRAPHICAL USER INTERFACE  

Figure 13 shows a snapshot from the graphical user interface (GUI) of our statement coverage tools. 
Our GUI contains panels to run the application for statement coverage testing and to get online informa-
tion about the statement coverage of the application. Using our GUI, it is possible to navigate the source 
files and the functions in the executable. Moreover, our GUI also displays statistics on the number of lines 
covered for the files and functions. It also displays statistics on the instrumentation code deletions. 

 

 

Figure 13. Graphical User Interface of Our Statement Coverage Tools 

The top list on the right section of Figure 13 is used to navigate the source files executable program. 
Next to each source file entry, our GUI displays the number of lines that have currently executed and to-
tal number of lines in that file. These numbers are dynamically updated every time the dynamic code dele-
tion occurs and statement coverage information is collected.  Similarly, the bottom list on the right sec-
tion of Figure 13 is used to navigate the functions in the selected source file. For each function, the inter-
face also displays the number of executed source lines and total number of source lines in that function. 
These numbers are also updated every time the dynamic code deletion occurs. 

The large sub window on the left section of Figure 13, displays the source file that is being navigated. 
The lines that have executed are highlighted. Every time the application is stopped and dynamic code de-
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letion occurs, the display is updated to highlight the new source code lines that executed. The two small 
text boxes above and below the source file sub window display the summary about the source file, such 
as percentage of lines covered, and the execution status of the application, respectively. 

The two plots on the bottom right of Figure 13 display statistics about the statement coverage execu-
tion and instrumentation deletion versus execution time. The graph on the left displays the number of dis-
tinct source code lines that have executed at least once. Similarly, the graph on the right displays the 
number of basic blocks de-instrumented for each deletion interval. These plots are updated when dynamic 
code deletion occurs. We believe these plots provide additional insight to the users about the application 
being tested. For example a programmer can tell if any new source lines are being executed, and how the 
source code line coverage curve changes during program execution. 

10. RELATED WORK 

The two systems most closely related to our dynamic statement coverage tool are the commercial 
statement coverage tools, PureCoverage(Rational-PureCover, 2002) and C-Cover(Bullseye-CCover, 
2002). To locate untested areas of code, PureCoverage uses Object Code Insertion technology to insert 
usage tracking instructions into the object code for each function and block of code during a post compi-
lation, pre-link pass. Additionally PureCoverage also counts the number of function calls for the functions 
and execution counts of each source line executed. However, since they use a small number of bits for 
each counter, only an approximate count is returned. Similarly, C-Cover automatically adds probes to C 
and C++ source code by intercepting calls to the compiler(Bullseye-CCover, 2002). C-Cover also dis-
plays condition/decision coverage and function coverage results. Unlike our dynamic statement coverage 
tool, these tools statically edit the source code or executable and the code inserted remains inside the ex-
ecutable during the executions. Moreover, these tools conservatively insert all instrumentation code for 
each function in the application. Our dynamic statement coverage tool also uses dominator tree informa-
tion to reduce the number instrumentation points and incremental function instrumentation to reduce the 
overhead of instrumentation for un-called functions. 

Pavlopoulou and Young(Pavlopoulou and Young, 1999) present a prototype system that implements 
residual test coverage monitoring for Java applications. The purpose of residual test coverage monitoring 
is to provide feedback from actual use of deployed software to developers, helping developers to validate 
and refine the models they have relied upon in quality assurance. However, it is unlikely to be accepted by 
users unless monitoring performance impact is very small. To reduce the cost of continued monitoring, 
the prototype presented selectively re-instruments the program under test to monitor only the coverage 
obligations that remain unmet. However, our technique can be used to reduce monitoring overhead by 
deleting instrumentation code during the program execution, which will make residual test coverage 
monitoring more efficient. 

Agrawal(Agrawal, 1994) also uses properties of dominator trees as part of software testing. Agrawal 
presents techniques to find small subsets of nodes in a control flow graph with the property that if the 
subset is covered by a test case, the remaining nodes are automatically covered. The technique finds the 
strongly connected components of the union of pre- and post dominator trees of a control flow graph. 
Unlike our work, this approach spends a significant amount of time to find the nodes to be instrumented 
by running two algorithms for dominator tree construction and one to find strongly connected compo-
nents. Agrawal uses properties of dominator trees to provide programmers guidance about how to create 
test cases to provide significant statement coverage for each case. 

Path Profiles(Ball and Larus, 1996) can be used to compute the statement coverage via a multi-phase 
algorithm. The key idea behind the path-profiling algorithm is to identify the potential paths with states 
that are represented as integers. A minimal number of edges in a DAG are labeled with integer values 
such that each path from entry to the exit of the DAG produces a unique sum of the edge values along 
that path. At the exit node of a DAG, the unique sum is used to identify the executed path and increment 
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the counter assigned to it. At program termination, the non-zero counter values of the paths can be used 
to identify covered lines in the executable after regeneration of the executed paths. However, with com-
plex control flow graphs and many executed paths, the path-profiling algorithm requires many counters. 
Also the path regeneration phase may introduce significant overhead before the execution terminates. 
Unlike our statement coverage algorithm, deletion of instrumentation code is not possible as the labels 
assigned to edges are required throughout the execution to identify acyclic paths that will possibly be 
executed. The results presented for path profiling in (Ball and Larus, 1996) include only the run-time 
overhead of the instrumentation code during the execution. That is, they do not include the time spent for 
minimal edge labeling of DAGs, insertion of instrumentation code and path regeneration from the unique 
identifiers of executed paths. In contrast, the overhead of our statement coverage tools presented in this 
paper includes the analysis, setup and instrumentation time. 

Digital Continuous Profiling Infrastructure (DCPI)(Dean et al., 1997; Weihl, 1997) is a suite of soft-
ware profiling tools that provide transparent, low-overhead profiling of complete systems. DCPI uses 
hardware performance counters on the Alpha processors to sample the program counter periodically, and 
can be setup to produce basic block flow graphs annotated with approximate execution counts. 

Whole Program Paths (WPP)(Larus, 1999) can also be used to extract statement coverage results 
that give the dynamic behavior of a program. WPP produces a trace of the acyclic paths from the execu-
tion of a program and turns the sequence of acyclic paths into a context-free grammar. The outcome of 
WPP, program paths or traces -sequences of consecutively executed basic blocks, offer a clear window 
into program’s dynamic behavior. However, in existence many frequently executed paths, WPP intro-
duces a significant runtime overhead to compute the context free grammar.  

11. CONCLUSIONS 

Using dominator tree information for our dynamic statement coverage with pre-instrumentation and 
on-demand instrumentation reduces the number of instrumentation points needed by 34-49% compared 
to all basic blocks instrumentation. Moreover, combining our dynamic statement coverage with on-
demand instrumentation using dominator tree information reduces by 42-79% the total number of basic 
blocks that must be instrumented. However, the most significant gains come from removing instrumenta-
tion code once a block is covered rather than from binary analysis algorithms to optimize instrumentation 
placement. 

Our dynamic statement coverage always outperforms purecov execution for the programs we tested. 
Even if all basic blocks are instrumented, for most deletion intervals our dynamic statement coverage al-
gorithm outperforms purecov execution. That is, dynamic deletion of instrumentation code reduces the 
overhead for programs with many infrequently executed (or even unexecuted) paths as well as for those 
with many frequently executed paths. Using a combination of dominator tree information and on-demand 
function instrumentation, we reduce not only the setup time but also the overhead during deletion inter-
vals by eliminating the instrumentation code insertion for un-called procedures. By combining on-demand 
instrumentation and dominator tree information usage, we reduce the runtime overhead by 38-90% com-
pared to purecov execution. 

Our dynamic statement coverage approach outperforms previous approach, namely 
Agrawal(Agrawal, 1994), for most of the applications we tested. This advantage is most significant for 
applications with many basic blocks where the additional binary analysis time to compute the optimal 
number of instrumentation points increases the runtime overhead without a significant reduction in in-
strumentation overhead. 

More importantly, for many applications, statement coverage overhead is reduced to tens of percent 
of the original execution time rather than several times the execution time. By reducing statement cover-
age costs, it is now possible to consider including it as part of production code. Such an approach would 
greatly increase information about the execution of extremely infrequent error cases and could provide 
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additional useful feedback to developers. Moreover, our fast statement coverage techniques could be 
modified to sample the frequency of execution of basic blocks to provide additional information to a 
feedback-directed dynamic optimization system. 

Our statement coverage tools are fully automated and available for download from the Internet. The 
binary distribution of dyninst library and our dynamic statement coverage tools can be obtained from 
http://www.dyninst.org. 
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APPENDIX A 
In this appendix, we present details of the instrumentation statistics for our statement coverage algo-

rithms for all programs we tested. We also present percentage reduction in number of instrumentation 
points needed when dominator information is used.  

 

Instrumented Basic Blocks 
 

Total Basic 
Blocks Leaf Non-Leaf Total 

Reduction 

tomcatv 53 27 4 31 41.5 % 
compress 269 126 12 138 48.7 % 
hydro2d 740 356 28 384 48.1 % 
li 2,532 1,229 223 1,452 42.7 % 
m88ksim 5,742 2,844 560 3,404 40.7 % 
ijpeg 5,946 2,756 361 3,117 47.6 % 
go 11,233 4,571 1,916 6,487 42.3 % 
perl 13,181 6,695 1,432 8,127 38.3 % 
vortex 19,047 8,137 4,442 12,579 34.0 % 
gcc 68,458 28,915 13,866 42,781 37.5 % 
postgres 45,140 23,011 3,353 26,364 41.6 % 

Table 3. Pre-Instrumentation Points using All Basic Blocks vs. Dominator Information 

Table 3 presents the results for the statement coverage tool with pre-instrumentation. The first col-
umn contains the programs we used for experiments. In the second column we give the total number of 
basic blocks in the executable. For instrumentation using dominator tree information, we divide the num-
ber of instrumented basic blocks in to two parts: Leaf node instrumentation and non-leaf node instrumen-
tation count. The last column of the table gives the percentage reduction in the number of instrumentation 
points needed for our dynamic statement coverage with pre-instrumentation using dominator tree infor-
mation. Table 3 shows that using dominator tree information reduced the number of instrumentation 
points needed by 34% to 49% compared to all basic blocks instrumentation. 

 
Instrumented 
Basic Blocks  

Total 
Basic 
Blocks 

Basic Blocks in  
Executed Functions 

Leaf Non-Leaf Total 

Reduc-
tion 

tomcatv 53 53(100%) 27 4 31 41.5 % 
compress 269 237 (88%) 108 12 120 49.4 % 
hydro2d 740 692 (94%) 332 28 360 48.0 % 
li 2,532 1,700 (67%) 808 176 984 42.1 % 
m88ksim 5,742 1,984 (35%) 959 243 1,202 39.4 % 
ijpeg 5,946 2,665 (45%) 1,202 188 1,390 47.8 % 
go 11,233 10,981 (98%) 4,466 1,872 6,338 42.3 % 
perl 13,181 8,942 (68%) 4,582 1,065 5,647 36.8 % 
vortex 19,047 13,993 (73%) 5,789 3,497 9,286 33.6 % 
gcc 68,458 32,779 (48%) 13,998 6,678 20,676 36.9 % 
postgres(Wisconsin) 45,140 16,417 (36%) 8,587 1,254 9,841 40.1 % 
postgres(crashme) 45,140 20,860 (46%) 10,775 1,601 12,376 40.7 % 

Table 4. On-demand Instrumentation Points using All Basic Blocks vs. Dominator Information 
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Similarly, Table 4 presents the results for combining dominator tree information with on-demand in-
strumentation. In the third column, we give the total number of basic blocks in the executed functions for 
the workload we used. 

Unlike Table 3, Table 4 contains two entries for postgres since the number of instrumented basic 
blocks changes based on the workload. Similarly, the last column of the table gives the percentage reduc-
tion in the number of instrumentation points needed compared with instrumenting all basic blocks in the 
set of functions executed. 

 
APPENDIX B 

In this appendix, we present execution time slowdown ratios for the rest of the programs we tested. 
The format of the graphs presented here is exactly same with the ones presented in experiments section. 
Figure 14-Figure 23 present the execution time slowdown ratios for the rest of the programs. The source 
code line coverage percentage for these programs also steeply increases at the beginning of their execu-
tion and stays steady during the rest of the execution. 

For all programs except tomcatv, hydro2d and ijpeg, the best execution time occurs when instru-
mented by our statement coverage tool using on-demand instrumentation and dominator tree information. 
For tomcatv, hydro2d and ijpeg, however, the best execution times for our dynamic statement coverage 
tool with on-demand instrumentation and dominator tree information usage differ from the best execution 
time among all by less than 1%. We suspect this difference is caused by the slight variations in the work-
load while we were conducting our experiments. 
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Figure 14. Execution Time Slowdown Ratios for 
m88ksim 

Slowdown for SPEC/li 
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Figure 15. Execution Time Slowdown Ratios for 
li 

Slowdown for SPEC/tomcatv 
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Figure 16. Execution Time Slowdown Ratios 
for tomcatv 

Slowdown for SPEC/hydro2d 
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Figure 17. Execution Time Slowdown Ratios 
for hydro2d 
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Slowdown for  SPEC/ijpeg 
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Figure 18. Execution Time Slowdown Ratios for 
ijpeg 

Slowdown for  SPEC/perl 
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Figure 19. Execution Time Slowdown Ratios for 
perl 

Slowdown for  SPEC/vortex 
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Figure 20. Execution Time Slowdown Ratios for 
vortex 

Slowdown for  SPEC/go 
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Figure 21. Execution Time Slowdown Ratios 
for go 

Slowdown for  SPEC/gcc 
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Figure 22. Execution Time Slowdown Ratios 
for gcc 

Slowdown for  PostgreSQL with Crashme 
Benchmark 
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Figure 23. Execution Time Slowdown for Post-
greSQL with Crashme Benchmark 

 
 


