PSINS: An Open Source Event Tracer and Execution
Simulator for MPI Applications

Mustafa M Tikir, Michael A Laurenzano, Laura Cagtan, Allan Snavely

Performance Modeling and Characterization Lab
San Diego Supercomputer Center
9500 Gilman Drive, La Jolla, CA
{mtikir, michaell, Icarring, allans}@sdsc.edu

Abstract. The size of supercomputers in humbers of processogrowing
exponentially. Today’s largest supercomputers hapwards of a hundred
thousand processors and tomorrow's may have omwrder one million. The
applications that run on these systems commonlydicete their parallel
activities via MPI; a trace of these MPI communimatevents is an important
input for tools that visualize, simulate, or enatuleing of parallel applications.
We introduce an efficient, accurate and flexiblac&-driven performance
modeling and prediction tool, PMaC's Open Sour¢ertonnect and Network
Simulator (PSINS), for MPI applications. A principeature of PSINS is its
usability for applications that scale up to largegessor counts. PSINS
generates compact and tractable event traces sbafal efficient simulations
while producing accurate performance predictiongldo allows researchers to
easily plug in different event trace formats andmownication models,
allowing it to interface gracefully with other t@ol This provides a flexible
framework for collaboratively exploring the implidans of constantly growing
supercomputers on application scaling, in the carté network architectures
and topologies of state-of-the-art and future piahiarge-scale systems.

Keywords. High Performance Computing, Message Passing Apjaits
Performance Prediction, Trace-Driven Simulatior] Sapercomputers.

1 Introduction

Performance models are calculable expressionsdbsdribe the interaction of an
application with the computer hardware providinduable information for tuning of
both applications and systems [1]. An ongoing trendligh Performance Computing
(HPC) is the increase in the total system core tdhis in turn has enabled scaling to
tens and even hundreds of thousands of cores émtrgears enabled by performance
models that are used to guide application tuning][2Application performance is a
complex function of many factors such as algorithingplementation, compilers,
underlying processor architecture and communicatioterconnect) technology and
topology. However as applications scale to largec@ssor counts, the interconnect
becomes a more prevalent factor in their performareqjuiring improved tools to
measure and model it.



We present an efficient, accurate and flexibleardgven performance modeling
tool, PMaC's Open Source Interconnect and Netwanku&tor (PSINS), for MPI
applications. PSINS includes two major componeoit®, for collecting event traces
during an application’s runPSINS Tracer), and the other for the replay and
simulation of these event traceBINS Smulator) for the modeling of current and
future HPC systems. The key design goals for PSANS1) scalability 2) speed 3)
extensibility. To meet the first goal PSINS Tracens with very low overhead to
generate compact traces that do not use more Hats are needed for a complete
record of events; to meet the second goal PSINSIIStor enables replay of events
faster than real-time (a replay does not normaliget as long as the original
application run) while still producing accurate fgemance predictions. To meet the
third goal, both PSINS components, Tracer and Sitoul are provided freely as
open-source, and have, in addition to its builtsace formats, format conversion
modules, and communication models, a graceful ARBIghed such that anyone can
easily extend these tools via plug-in virtual fuoas. PSINS interacts gracefully with
other popular tracers and modeling and visualipatamls such as that presented by
Ratn et al. [5], MPIDtrace [6], Dimemas [7], TAU][&hd VAMPIR [9]. Figure 1
below shows the high-level design of PSINS as wasglthe flow of information that
occurs for performance prediction.

1.1 Tracer for Cdlecting Event Traces

PSINS provides a tracer library based on MPI'sifingfinterface (PMPI) [10]. PMPI
provides the means to replace MPI routines at tlimie allowing tool developers to
include additional instrumentation code aroundabtial MPI calls. In addition, the
PMPI interface enables gathering detailed inforamatibout the arguments to each
MPI call by sharing the same signature as the hirtuacation.

Event Trac
Convertor

_____ | P ———— ] —_———p——— ————
| PsiNS Trac J | MPIDtrace Tracel | Other Format | Simple I
—_———— -

_____ Y |

Model | Model |

J——

|

r——n"
| Other

Model
L_—_1

Communication
Model

PSINS Simulator

Statistics Module]

Figure 1. The high-level design of PSINS as well asthe flow of information.



The tracer library provides wrappers that servergglacements for the MPI
routines in the code (i.e. communication or synalmation events). For each MPI
routine replacement, it uses additional code thejatietailed information about the
called MPI function and its arguments. The tradeo gathers the time in between
individual communication events or the computatione, labeled a€PUBuUrst. To
gather CPUBurst events, the library uses timetdeaend and the beginning of each
MPI routine replacement so that when an MPI fumcttocalled, the time spent since
the end of the last MPI call to the current calldsorded in the trace.

Since HPC applications typically run for long dimatand tend to execute millions
of MPI function calls, recording each event toacér file as it occurs is not practical
due to the many small, latency-bound file I/O asesshat would induce. Like other
efficient tracing tools [11,28-29], PSINS Traceesiper-task local memory buffers to
temporarily store event information and only duntips events when the buffer for
the task is full. Moreover, to eliminate the needdny additional communication due
to tracing, PSINS Tracer initially generates a sajgaevent trace file for each MPI
task in the application.

In a post-trace phase, to combine these sepaeate fites in to a single compact
trace file, PSINS includes a trace consolidatioilityt mpi2psins. This is done
serially after the execution of the traced applaat This mpi2psins utility uses an
encoding mechanism similar to general UTF encod[g$ in order to reduce the
size of the final trace. It uses the most significkit in each byte to determine the
number of bytes that will be used to represent mbar and the other seven bits to
store the actual value. Using this technique ipdssible to represent2possible
values with n bytes. An event trace is made up Ijno$tsmall integers that represent
processor IDs, larger integers that represent rgess&es, and real numbers that
represent times. On average our encoding saves @0%e size that would be
required if these values were kept as normal 4 byt® byte values. The trace thus
serves as a minimal complete representation oftevenwhich further compression
techniques such as those that detect and encodrexpressions can be applied
[26]. More importantly, as described in the resskstion, when carrying out strong
scaling studies, the size of communication traceso@ed by this method grows
linearly as function of processor cousien though the global communications may
grow exponentially [27]. This is because the time becomes shorterle@it for
scalable codes) and the message sizes tend toasecmith increasing processor
count, and thus the UTF encodings become smallidr iwcreasing processor count
even though the total number of communications g@yp.

Besides tracing functionality, PSINS tracer prosidevo additional libraries for
performance measurement and analysis that cancheléd in the event trace run or
collected independent from the trace. The firstledaPSNS Light, is a library to
measure overall execution time of the applicatiod gather some event counts from
the performance monitoring hardware (using PAP])[ibthe underlying processors
such as FLOP rate and cache miss counts. The secalhed PSINS Count, is a
library to measure the execution times and freqigsnof each MPI function in the
application in addition to those values collectgdRASINS Light. PSINS Count is
similar to IPM [14] and provides only a subset mbrmation IPM provides. PSINS
Tracer library is already ported for several HPGstegpns and is available at
http://www.sdsc.edu/pmac/projects/psins.html.



1.2 Adding aNew Input Trace Parser

In PSINS, the trace parser module is included agpmarate module to allow the
simulator to use different input trace formats gasrhis allows users to easily add
another trace format such as TAU in addition to #fready included parsers for
PSINS and the MPIDtrace trace formats. A traceistssf a sequence of events that
occur for each task and to use another trace forthetnew parser needs only to
convert events to the PSINS internal representatidrace events.

In PSINS a new trace parser is added via use tfaliiC++ functions. PSINS
provides a base clafBarser, with a few virtual methods (see technical repp8] for
the list of these virtual methods and more detdihese virtual methods provide
minimal functionality to access and consume thettgace.

Even though adding new parsers to PSINS requiresescoding knowledge,
PSINS hides most of the complexity of this prodesgroviding most of the common
infrastructure that is used by all parsers, reggironly the implementation of a few
virtual methods. For example the parser for PSINIB-in trace format requires only
384 lines and the parser for MPIDtrace format rezgib47 lines of C++ code.

1.3 Simulator for Performance Prediction

PSINS Simulator takes the communication event tfacan application and a set of
modeling parameters for the target system and thplays the event trace for the
target system, essentially simulating the executibthe parallel application on the
target system. To simulate an MPI application ¢arget system, PSINS models both
computation and communication times for each taské application.

To simulate the execution of a target system, timelator needs details about the
configuration and construction of the system. Themeleling parameters consist of
configurable components of a parallel HPC system.

To begin with, PSINS assumes that the target arctite is a parallel computer
composed of multiple computation nodes connected canfigurable number of
global busses (as shown in Figure 2). Each compatabde contains a configurable
number of processing units (processors or coregd)irrroming and outgoing links to
the global busses. It provides the flexibility fesch compute node to have different
numbers of incoming and outgoing links to the gldlaeses and different number of
processing units in the node. In addition, the @ssing units within a compute node
can be specified to have different speeds. By imjpthe restrictions on the target
system architecture, PSINS provides the capabibtysimulate varying types of
systems ranging from computational grids to shanedhory multiprocessor systems.

All of these configurable modeling parameters arem to simulator in a small
ASCII configuration file. The configuration file atains parameters for the system as
a whole, for each compute node and for the MPI-taglrocessor mapping. For the
system, required parameters include the number awhpate nodes, the best
achievable bandwidth and latency for each buswWorrtodes to communicate, and the
number of busses. For each compute node, requaredaneters include the number of
processing units, the number of incoming and ouigdinks from/to busses, the best
achievable local bandwidth and latency within tlogley a mapping of MPI tasks to



processors, and CPU ratios which describe relatpeeds (ratios) for the
computational work of the target with respect te ttase system. This CPU ratio is
used by PSINS to model the computation time. T$idane by simply projecting the
time spent for each CPUBuUrst event to the targstesy using the multiplicative
factor of how much faster or slower the processinig in the target system is relative
to the base system. This approach is shown tofbetiet in previous research [1,6].

By separating the parameters for the target syftem the communication model
used for the simulation (as shown in Figure 1),N®5hllows even more flexibility
toward investigating the impact of different comrmation models. The PSINS built-
in communication models are described in detaiéntion 2.1.

Global Busses

N 7/
Outgoing Incoming Outgoing Incoming
Links \, Links Links \, Links

' CPU/Core '
CPU/Core :

CPUICore | CPUICore N

Compute Node Compute Node

l CPU/Core |
CPU/Core :

Figure 2. Target architecture for ssimulation

PSINS Simulator consumes events from the inputetriac the order of their
execution within the simulator rather than consuwgrtinem on a per-task basis. The
simulator uses an event queue based on priorityepito replay the input trace.

When an event is read, it is tagged with the esirliane it will be ready for
execution as its priority. This time is the valuletlve per-task timer at the time of
insertion for the task that event belongs to. leaent is not ready for execution such
as a blocking receive, or global communications ite-inserted into the event queue
for later processing with its priority reduced. Awent is deleted from queue when its
execution is over. When an event is executed, ntasked with its execution time as
well as its wait time. The wait time is a recordtiohe the event had to wait for its
execution as in imbalanced parallel applicationthviilocking communications or
barriers. After its execution, the execution timfar its task is incremented
accordingly and global timer is updated for synclos simulation.

The execution of an event during simulation depesrd¢he type of the event and
the state of the system at each event execution.sTdte of a system at any given
time is a combination of the best achievable badtvsi and latencies, the bus load,
contention, traffic in the network and the undertyinetwork topology. If it is a CPU
burst event, it is completed by calculation oftitae on the target system using the
CPU ratio described above. For blocking communicatvents, it is kept in the
queue until its mate is posted. If the event isodd@ communication, it is kept in the
queue until all participating tasks post the samene When all participating tasks
post the event for the communication, communicatimdel is asked to calculate the
bandwidth and latency at the time of its executioid the event is executed. Each
event type can have a different model based onamnkter system configuration.



PSINS Simulator includes a statistics module téecbldetailed information about
the simulation of an event trace on the targetesgstsimilar to IPM. The statistics
module collects information about the event ex@tufrequencies, computation and
communication times for each task as well as tlee@tion time for each event type
on the target system. It also collects the waitinge for each event type to provide
information on load balancing during the executidoreover, it generates
histograms on message sizes and on the rangesndfvioths calculated by the
communication model for the communication events.

Such information provides valuable feedback to siseid developers to help them
understand the interaction of applications with tdrget system, and can be valuable
to guiding optimization efforts for the applicatiddore importantly, this information
is useful for verifying simulation accuracy by caanjmg it to the same information
measured during an actual run on the target syst&ing performance monitoring
tools such as IPM, TAU or PSINS Count.

2 Communication Modds

PSINS isolates the modeling parameters and commiioic models from the
simulator to enable users to easily investigate nemmunication models. From the
perspective of the PSINS Simulator, the commurscathodel is a black box.

The communication model takes an event, the pasmméiom the configuration
file, and the current state of the simulated systeralculate the sustained latency
and bandwidth for the messages that are assoamthdthat event. The model is
responsible for determining when an event will Recaited, which might be at some
point in the future due to the unavailability osoeirces or some other measure of
contention. The model also determines which ressuic will require and for how
long the resources are required, which in turn daange the state of the simulated
system based on the needs of the event. The coroatiam model then calculates the
time to complete the event including the time &ngmit a message as well as the
time that the message must wait for resources (wa).

Each event can have its own model. These modeldeasimple (i.e. based on
bandwidth and latency) or more complex functionshef systems state, the number
of processors involved in the event, and the sdijabf the event on the network.

2.1 Built-in Models

PSINS includes several built-in communication medkht can be used to investigate
a target system. These models areshgple model, theresource contention models,
and thePMaC model. Our experience [16] indicates that thesdetsocan accurately
be used to model application performance for a ritgjof today's HPC systems.

The simple model uses the best sustainable baruvedt latency from the
configuration file and assumes the resources alail® the system are infinite. That
is, when a message is ready to be sent, it asdinaesesources along the path of the
message are available and calculates the timantbtee message as a simple addition
of latency to the time spent to transfer the messdgdy. For collective



communications, this model uses a simple descrigto each communication event
that indicates whether that event scales in linkgrarithmic or constant time with
respect to the number of participating tasks. Tihgole model is designed to model
the lower bound for the communication time for aplecation.

As an extension to the simple model, PSINS provitlese resource contention
models based on the number of global busses, imgpnaind outgoing links from
compute nodes. These are calbed-only, incoming-link-only, andoutgoing-link-only
models. Unlike the simple model, these models assilait the number of a certain
type of resource that is available for communicai® limited and use a scheduling
algorithm to schedule each message based on resavadability. These models are
designed to investigate the impact of resourceertitn on the performance of an
application. For instance, by predicting the perfance of an application for an
increasing number of busses, users can get adeéloiv sensitive the application's
performance is to number of busses available, windhrn can identify whether the
application posts multiple messages at aroundah® gime.

In addition to simplistic models, PSINS also indada more complex
communication model, called the PMaC model. Thiglehis more complex than the
previous models in order to increase the accurddyhe simulations. For point-to-
point communications, this model takes the numifesubstanding messages at the
time of a message delivery and, based on the ¢uoad on the busses and input and
output links, scales the maximum bandwidth accagigin

For collective communications, alternative to ussigple description of each MPI
collective communication routine, the PMaC modsbgbrovides the means to use a
more complex and realistic bandwidth calculatioasdnl on message sizes. This is
done via measuring the bandwidth for each colleci@mmunication routine for an
increasing size of messages using the synthetichinesrk, PSSINSBench, included in
PSINS package (see technical report [13] for metaits). Then using a curve-fitting
algorithm the measured bandwidths are fit to ainaous function and the function is
later used by the model to calculate the bandwfdtha given message size. The
PSINS Simulator is available at http://www.sdsa/pthac/projects/psins.html.

2.2 Adding aNew Mode

In addition to the built-in models, PSINS allowserss to easily plug-in new
communication models. Like trace parsers, new comecation models are added via
use of virtual C++ functions. PSINS provides a belass,Model, with some virtual
methods (see [13] for the list of virtual functign$hese virtual methods provide the
functionality to schedule events on resources dlsasdo calculate the time it takes to
execute an event. Then, to create a new commuoicatiodel, the user needs to
define a class that extends the Model class ant&immgnt its virtual functions.

Much of the burden of the model developer therdessin the areas that are almost
completely model-specific, which leaves only a fewtual functions for the
developer to implement. Among the built-in modeisASINS, the simplest model
requires 228 lines of C++ code. A collection ofaese contention models requires
158 lines of C++ code and the most complex modglires 433 lines of C++ code.



3 Experimental Results

To demonstrate the usability, efficiency and accyiet PSINS Tracer and Simulator,
we have conducted several experiments where we RSE&dS Tracer to collect MPI
event traces for three scientific applications: AY{17], HYCOM [18] and ICEPIC
[19] from the TI-09 Benchmark Suite [20]. The traeeere then simulated for a set of
target HPC systems and the results of these siimngatvere compared to the actual
measurements gathered on the target systems.

All the traces were collected on a base systemV®4 IBM Cluster 1600 (3072
cores connected with IBM's High Performance Switda)ledBabbage. We ran the
scientific applications with two input data setgmely standard and large, and
processor counts ranging from 59 to 1280. The actudimes for the applications
range from 0.5 to 2.5 hours where each applicatios for around half an hour at the
highest processor count and was scaled to that csimg the same input data set (i.e.
strong scaling). For replay and simulation of tb#ected traces, we ran the simulator
on a Linux box with two dual-core processors. Imdiidn to simulating the base
system Babbage, we also simulated the MHPCC's Cleliter, calledJaws (5120
cores connected with Infiniband) and ERDC's Cray3Xdlystem, calledapphire
(8320 cores connected with Cray SeaStar engine). pvésent results of these
experiments in terms of event trace sizes, simuriaimes, and prediction accuracy.

3.1 PSINSTrace Sizesand Simulation Times

The sizes of traces collected for each applicainod processor count is given in
Figure 3. The figure illustrates that the size 81RS event traces grows linearly as
the processor count grows. The sizes range from &GB2GB and are more than 4
times smaller than the event trace sizes genelateal similar state-of-the-art MPI

event tracer [6].

Event Trace Size using PSINS Tracer

40
| ©avus Ohycom icepic|

30 £
g P —
8 7 .
N
(%]

10

0

0 200 400 600 800 1000 1200 1400

CPU Count
Figure 3. PSINS event trace size vs. CPU count for 3 applications.

The results suggest that one could practicallyestotcompressed traces for 10
thousand processors in about 300GB and would neiB ~for 100 thousand



processor jobs. Some compression techniques sutioss used in [26] would be
useful at large scale though we note some resepmips already devotes multiple
TBs to keeping memory traces of strategic applicegi[25] so that same amount of
storage devoted to communications traces is nobfdie question.

These collected event traces were then fed thrahghPSINS Simulator, the
simulation times are presented in Figure 4. Theréghows that PSINS Simulator is
able to replay these collected traces for a tasystem in under 1 hour for all
applications. On average the replay takes 7x {gse than running the program
initially did, however the replay time also growmdarly with processor count
suggesting that in the future the replay procedivauld itself be parallelized using
natural synchronization points at global commundret (planned future work) for
tractable replay at tens of thousands cores. Tiseselation times are however
already an order-of-magnitude faster than a simitwork simulator [6].

Simulation Time of Traces using PSINS Simulator

3000
‘ $Oavus Ohycom Alicepic ‘
02000
8
£
i= 1000 /
o ¢
0 200 400 600 800 1000 1200 1400

CPU Count
Figure4. PSINS Smulator smulation timevs. CPU count for 3 applications.

Overall, Figure 3 and Figure 4 show that for eapbpliaation, there is a linear
correlation between the input trace size and tie it takes to replay the trace for a
target system in PSINS. They also demonstrateR8#S Tracer collects MPI event
traces of manageable and tractable sizes and PSilN®ator replays these traces in
a tractable time for a target system. This indedlat as applications scale to even
larger processors counts, PSINS is likely to cargito be usable and effective.

In addition to trace size and simulation time,sitalso important to quantify the
overhead introduced by the PSINS Tracer itselfrdutrace collection. During our
experiments, we observed that the overhead of PSltdSer ranges from 0.2% to
14.8% compared to the original execution times h&f aipplications. The average
overhead for all applications and processor coust$.9% meaning it can be
efficiently used for large processor counts eveproduction runs.

3.2 Simulation Accuracy

Even though the usability of PSINS in terms of déveace sizes and simulation
efficiency and tracing overhead is important, wimatters most is the accuracy of the
predictions produced by the models. To investiga®iracy at a finer granularity, we



simulated an event trace collected using PSINS efrdor HYCOM with 124
processors for the base system and compared thewoication times simulated to
the measured times for each task. We further bdoken the communication time per
MPI event and compared those simulated times \Withmieasured times. We used the
built-in simple communication model in PSINS foetsimulation of this application.
Figure 5 presents the communication times measamddpredicted for each task.
The red vertical bars are used to represent thesumed times whereas the green
horizontal line is used to represent the simuldbews. Figure 5 shows that PSINS
Simulator is quite accurate in predicting the comioation time for each task. The
average absolute error in predicting the commuitoatimes for all tasks is 17%
whereas the error in predicting the total commuinca time is 14%. More
importantly, Figure 5 shows that despite the imhe¢ain communication times
among tasks, the results of PSINS simulation cjoseitch the observed behavior.

HYCOM Commumication Time Predictions
2588

T
eeeeeee o
simulated

z@08 [
zsea [

zmaa NU

15aa [ J

Time (sec)

1888

=] EL:) 4@ -] =8 168 128
MPI Task

Figure5. Measured and ssimulated communication timesfor all tasks.

Figure 5 also shows that PSINS Simulator tendedlightly under-predict the
communication times for majority of the tasks conepato the actual communication
times measured. This is due to the fact that wel tise built-in simple model that
assumes no contention just to show its effectiveniéslesired, for lower error, users
can use one of the other more sophisticated buiitedels.

In addition to comparing communication times fockedask, we further broke
down the communication time into the time speneach MPI routine. Figure 6 (a)
presents the measured values for the percentaggmespent in each MPI routine
over the total communication time whereas Figu®)6presents the percentages for
the PSINS simulation. Figure 6 shows that the peege of time spent in MPI
routines from the simulation closely matches thecgmtages from the actual run,
indicating the accuracy of PSINS at a finer grarityla

Table 1 presents the comparison between the totahwnication times measured
during an actual run and times simulated by PSINSuBtor for two HPC systems.
We used the more detailed PMaC model for the siiomis listed in this table; it
shows the ability to predict the communication sneé applications within 15% error



for all cases except AVUS running with 64 processorsSapphire. The absolute
average error among all cases is only 9.0%. In AVUS @é4tlprocessors on Sapphire,
the communication time is only 7% of overall execution tit®eerall, Table 1
demonstrates that PSINS is effective in modeling and pregitiia performance of
applications for target HPC systems.

% time spent in each MPI call {measured) % time spent in each MPI call {simulated)
mMPI_lsend ® MPI_lsend
m MPI_Startall ® MPI_Startall
= MPI_Recv ® MPI_Recv
m MPI_Waitall m MPI_Waitall
m MPI_Allreduce u MPI_Allreduce
u MPI_Barrier H MPI_Barrier

MPI_Bcast MPI_Bcast

MPI_Send MPI_Send

@ (b)
Figure 6. Communication time spent in MPI callsfor HY COM.

CPU Jaws Sapphire

Count Simul. Predict. | % Error | Simul. | Predict. | % Error
HYCOM 124 121,476 128,285 5% 161,055 167,620 A%
HYCOM 504 449,646 519,335 -13% 573,35 621,793 18%
AVUS 64 27,764 26,194 6% 30,680 22,561 36%
AVUS 1280 | 1,333,414 1,193,967 12%0
ICEPIC 64 72,144 71,073 2% 89,930 88,708 1%
ICEPIC 1280 | 1,178,914 1,142,970 3%

Table 1. Tatal time (in seconds) spent in communication events.

4 Related Work

Early work on performance prediction of HPC applicatiores done in the Proteus
simulator [21], an execution-driven simulator which metny of the design goals
that have been laid out for PSINS at the time. Protessdesigned modularly so that
it could be customized for the target system and tfésleould be made between
accuracy and efficiency by using a different implementatiba certain simulation
component. Unfortunately Proteus introduces a slowdofa2-35x for each process
in the target application, which renders it cumbersome fmptirpose of simulating
long-running large-scale applications at thousand of peugs.

Later work, such as Parallel Proteus [21], LAPSE [22RI-SIM [23] and the
Wisconsin Wind Tunnel [24] improved the efficiency oethimulation required to
make predictions by executing simulations in parallel. Tatpicthese tools are
execution-driven and perform parallel discrete event lsitimn and tend to be full
machine simulators that address many aspects of a taagtecture other than the



network. This causes them to be slower and moreplmaand less modular than
PSINS for the purpose of MPI scaling investigations
The Dimemas project [7] uses the concept of Igrdelorcing network prediction

from the prediction of serial computation portiaofsthe code. Like PSINS, the user
supplies Dimemas with a speedup ratio for a tasystem. Dimemas uses this
speedup ratio along with the MPI event trace (girthase called an MPIDTrace) to
perform a discrete event simulation of the appilicaton a target system. Unlike
PSINS, Dimemas is not open source, hence thoudhliisis not quite satisfactory as
a medium for community development in this arenamédnas currently stores their
MPI event traces as an ASCII text file resultindarge event traces files.

5 Conclusions

Performance models can provide valuable informaitiotuning of both applications
and systems, enable application-driven architectdesign and extrapolate the
performance of applications on future systems. He tonstantly changing and
growing field of HPC, it is important to have a natidg tool that is flexible enough
to adapt to architectural changes and is scalaiegh to grow with the constantly
increasing system sizes. PSINS has this flexibiitgd scalability along with specific
features that make it practical to use for modelegation. PSINS tracer allows event
traces to be captured with low overhead and recoedemanageable sizes even for
large processor counts of MPI applications. PSIN&iktor is capable of simulating
different HPC networks with a high degree of accyrmn a reasonable amount of
time. This makes PSINS is a multifunctional tooldfich flexibility, scalability, and
accuracy allow its utilization in collaborative dtas involving modeling large scale
HPC applications.

6 References

1. D.H. Bailey and A. Snavely, “Performance Modelitgnderstanding the Present and
Predicting the Future”, EuroPar, 2005.

2. J. Michalakes, J. Hacker, R. Loft, M. McCracken,Skavely, N. Wright, T. Spelce, B.
Gorda and R. Walkup. "WRF Nature Run," Superconmgut2007.

3. G. Alvarez, M. Summers, D. Maxwell, M. EisenbachiMéredith, J. Larkin, J. Levesque,
T. Maier, P. Kent, E. D'Azevedo and T. Schulthéd&ew algorithm to Enable 400+
TFlop/s Sustained Performance in Simulations of oblier Effects in High-Tc
Superconductors," Gordon Bell Prize Winner, Supenmating, 2007.

4. L. Carrington, D. Komatitsch, M. Tikir, M. Laurenza, A. Snavely, D. Michea, J. Tromp
and N. Le Goff. "High-frequency Simulations of Giblseismic Wave Propogation Using
SPECFEM3D_GLOBE on 62K Cores," Supercomputing, 2008

5. P. Ratn, F. Mueller, B. de Supinski and M. SchiRreserving Time in Large-scale
Communication Traces," Supercomputing, 2008.

6. R. Badia, J. Labarta, J. Giménez and F. Escalénébias: Predicting MPI Applications
Behavior in Grid environments," Workshop on Grid pAipations and Programming
Tools, 2003.



7.

10.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29

S. Girona, J. Labarta and R. Badia. "ValidatiorDafnemas Communication Model for

MPI Collective Operations," Proceedings of the BPpean Users' Group Meeting on

Recent Advances in Parallel Virtual Machine and $4ge Passing Interface, 2000.

S. Shende and A. Maloney. "The TAU Parallel Perfotoe System," International

Journal of High Performance Computing Applicatid2@06.

W. Nagel, A. Arnold, M. Weber, H. Hoppe and K. S@obach. "VAMPIR: Visualization

and Analysis of MPI Resources," Supercomputer 1@9180, 1996.

MPI Profiling Interface, http://iwww.mpi-forum.orgdds/mpi-11-html/node152.html.

. M Tikir, M Laurenzano, L Carrington and A Snavel{PMaC Binary Instrumentation

Library for PowerPC/AIX," Workshop on Binary Instnentation and Applications, 2006.

Wikipedia contributors. UTF-8, http://en.wikipedieg/wiki/UTF-8, accessed 2009.

PSINS: An Open Source Event Tracer and Executiomuitor for MPI Applications,

Extended Version, http://www.sdsc.edu/pmac/projpstes.html

Integrated Performance Monitoring, http:/ipm-hpciseforge.net/, 2008.

. P. Mucci, S. Browne, C. Deane and G. Ho. "PAPI: ét&ble Interface to Hardware

Performance Counters," Department of Defense HPCsH?s Group Conference, 1999.

M. Tikir, L. Carrington, E. Strohmaier and A. Sniwe'A Genetic Algorithms Approach

to Modeling the Performance of Memory-bound Comfoits,” Proceedings of the

ACMI/IEEE International Conference on Supercompyt2@Q7.

W. Strang, R. Tomaro and M. Grismer. "The DefinMgthods of Cobalt60: A Parallel

Implicit, Unstructured Euler/Navier-Stokes Flow &ml," Institute of Aeronautics and

Astronautics Paper 99-0786, 1999.

R. Bleck. "An Oceanic General Circulation ModelRed in Hybrid Isopycnic—Cartesian

Coordinates," Ocean Modelling, 4, 55-88, 2002.

G. Sasser, J. Blahovec, L. Bowers, S. Colella, ugjinsland and J. Watrous. "Current

Emission, Resistive Losses, and Other Challengnagpl®ms in the Simulation of High

Power Microwave Components," Inst. of Aeronautieg Astronautics Paper, 1999.

Department of Defense, High Performance Computingddinization Program.

"Technology Insertion," http://iwww.hpcmo.hpc.milbdics/TI/, 2009.

E. Brewer, C. Dellarocas, A. Colbrook and W. WeitProteus: A High-Performance

Parallel Architecture Simulator,” MIT Technical RepMIT/LCS/TR-516, 1991.

P. Dickens, P. Heidelberger and D. Nicol. "A Distitied Memory LAPSE: Parallel

Simulation of Message-Passing Programs," Procegdifghe 8th Workshop on Parallel

and Distributed Simulation, 1994.

S. Prakash and R. Bagrodia. "MPI-SIM: Using Parafienulation to Evaluate MPI

Programs," Proceedings of the Winter Simulationf€ance, 1998.

S. Reinhardt, M. Hill, J. Larus, A. Lebeck, J. Levaind D. Wood. "The Wisconsin Wind

Tunnel: Virtual Prototyping of Parallel ComputersProceedings of the ACM

SIGMETRICS Conference on Measurement and Modelirgooputer Systems, 1993.

A. Snavely, L. Carrington, N., Wolter, J. LabarR, Badia and A. Purkayastha. "A

Framework for Performance Modeling and Predicti@ypercomputing, 2002.

M. Noetha, P. Ratna, F. Mueller, M. Schul, andRBde Supinski “ScalaTrace: Scalable

compression and replay of communication traces High-performance computing”,

Journal of Parallel and Distributed Computing, 2008

JS Kim, DJ Lilja, “Characterization of Communicatid’atterns in Message-Passing

Parallel Scientific Applications”, Proceedings &ietSecond International Workshop on

Network-Based Parallel Computing, 1998.

X. Gao, B. Simon, A. Snavely, “ALITER: An Asynchmums Lightweight Instrumentation

Tool for Event Recording”, Workshop on Binary Instrentation and Applications (held

in conjunction with PACT2005)

. X. Gao, M. Laurenzano, B. Simon, A. Snavely, “ReadgcOverheads for Acquiring
Dynamic Traces”, International Symposium on Workl@haracterization (ISWCO05)



