
PSINS: An Open Source Event Tracer and Execution
Simulator for MPI Applications

Mustafa M Tikir, Michael A Laurenzano, Laura Carrington, Allan Snavely

Performance Modeling and Characterization Lab
San Diego Supercomputer Center
9500 Gilman Drive, La Jolla, CA

{mtikir, michaell, lcarring, allans}@sdsc.edu

Abstract. The size of supercomputers in numbers of processors is growing
exponentially. Today’s largest supercomputers have upwards of a hundred
thousand processors and tomorrow’s may have on the order one million. The
applications that run on these systems commonly coordinate their parallel
activities via MPI; a trace of these MPI communication events is an important
input for tools that visualize, simulate, or enable tuning of parallel applications.
We introduce an efficient, accurate and flexible trace-driven performance
modeling and prediction tool, PMaC's Open Source Interconnect and Network
Simulator (PSINS), for MPI applications. A principal feature of PSINS is its
usability for applications that scale up to large processor counts. PSINS
generates compact and tractable event traces for fast and efficient simulations
while producing accurate performance predictions. It also allows researchers to
easily plug in different event trace formats and communication models,
allowing it to interface gracefully with other tools. This provides a flexible
framework for collaboratively exploring the implications of constantly growing
supercomputers on application scaling, in the context of network architectures
and topologies of state-of-the-art and future planned large-scale systems.

Keywords: High Performance Computing, Message Passing Applications,
Performance Prediction, Trace-Driven Simulation, and Supercomputers.

1 Introduction

Performance models are calculable expressions that describe the interaction of an
application with the computer hardware providing valuable information for tuning of
both applications and systems [1]. An ongoing trend in High Performance Computing
(HPC) is the increase in the total system core count; this in turn has enabled scaling to
tens and even hundreds of thousands of cores in recent years enabled by performance
models that are used to guide application tuning [2-4]. Application performance is a
complex function of many factors such as algorithms, implementation, compilers,
underlying processor architecture and communication (interconnect) technology and
topology. However as applications scale to larger processor counts, the interconnect
becomes a more prevalent factor in their performance requiring improved tools to
measure and model it.

We present an efficient, accurate and flexible trace-driven performance modeling
tool, PMaC's Open Source Interconnect and Network Simulator (PSINS), for MPI
applications. PSINS includes two major components, one for collecting event traces
during an application’s run (PSINS Tracer), and the other for the replay and
simulation of these event traces (PSINS Simulator) for the modeling of current and
future HPC systems. The key design goals for PSINS are 1) scalability 2) speed 3)
extensibility. To meet the first goal PSINS Tracer runs with very low overhead to
generate compact traces that do not use more bits than are needed for a complete
record of events; to meet the second goal PSINS Simulator enables replay of events
faster than real-time (a replay does not normally take as long as the original
application run) while still producing accurate performance predictions. To meet the
third goal, both PSINS components, Tracer and Simulator, are provided freely as
open-source, and have, in addition to its built-in trace formats, format conversion
modules, and communication models, a graceful API designed such that anyone can
easily extend these tools via plug-in virtual functions. PSINS interacts gracefully with
other popular tracers and modeling and visualization tools such as that presented by
Ratn et al. [5], MPIDtrace [6], Dimemas [7], TAU [8] and VAMPIR [9]. Figure 1
below shows the high-level design of PSINS as well as the flow of information that
occurs for performance prediction.

1.1 Tracer for Collecting Event Traces

PSINS provides a tracer library based on MPI's profiling interface (PMPI) [10]. PMPI
provides the means to replace MPI routines at link time allowing tool developers to
include additional instrumentation code around the actual MPI calls. In addition, the
PMPI interface enables gathering detailed information about the arguments to each
MPI call by sharing the same signature as the actual invocation.

Figure 1. The high-level design of PSINS as well as the flow of information.

PSINS Simulator

Communication

Model

Trace Parser

MPIDtrace Trace Other Format

Machine Configuration

Event Trace
Convertor

PMaC
Model

Simple
Model

Other
Model

Statistics Module

Predicted Time, Detailed Results, Statistics

PSINS Trace

PSINS Tracer

Resource
Model

Application

The tracer library provides wrappers that serve as replacements for the MPI
routines in the code (i.e. communication or synchronization events). For each MPI
routine replacement, it uses additional code to gather detailed information about the
called MPI function and its arguments. The tracer also gathers the time in between
individual communication events or the computation time, labeled as CPUBurst. To
gather CPUBurst events, the library uses timers at the end and the beginning of each
MPI routine replacement so that when an MPI function is called, the time spent since
the end of the last MPI call to the current call is recorded in the trace.

Since HPC applications typically run for long duration and tend to execute millions
of MPI function calls, recording each event to a trace file as it occurs is not practical
due to the many small, latency-bound file I/O accesses that would induce. Like other
efficient tracing tools [11,28-29], PSINS Tracer uses per-task local memory buffers to
temporarily store event information and only dumps the events when the buffer for
the task is full. Moreover, to eliminate the need for any additional communication due
to tracing, PSINS Tracer initially generates a separate event trace file for each MPI
task in the application.

In a post-trace phase, to combine these separate trace files in to a single compact
trace file, PSINS includes a trace consolidation utility, mpi2psins. This is done
serially after the execution of the traced application. This mpi2psins utility uses an
encoding mechanism similar to general UTF encodings [12] in order to reduce the
size of the final trace. It uses the most significant bit in each byte to determine the
number of bytes that will be used to represent a number and the other seven bits to
store the actual value. Using this technique it is possible to represent 27n possible
values with n bytes. An event trace is made up mostly of small integers that represent
processor IDs, larger integers that represent message sizes, and real numbers that
represent times. On average our encoding saves 60% of the size that would be
required if these values were kept as normal 4 byte or 8 byte values. The trace thus
serves as a minimal complete representation of events to which further compression
techniques such as those that detect and encode regular expressions can be applied
[26]. More importantly, as described in the results section, when carrying out strong
scaling studies, the size of communication traces encoded by this method grows
linearly as function of processor count even though the global communications may
grow exponentially [27]. This is because the time becomes shorter (at least for
scalable codes) and the message sizes tend to decrease, with increasing processor
count, and thus the UTF encodings become smaller with increasing processor count
even though the total number of communications may go up.

Besides tracing functionality, PSINS tracer provides two additional libraries for
performance measurement and analysis that can be included in the event trace run or
collected independent from the trace. The first, called PSINS Light, is a library to
measure overall execution time of the application and gather some event counts from
the performance monitoring hardware (using PAPI [15]) in the underlying processors
such as FLOP rate and cache miss counts. The second, called PSINS Count, is a
library to measure the execution times and frequencies of each MPI function in the
application in addition to those values collected by PSINS Light. PSINS Count is
similar to IPM [14] and provides only a subset of information IPM provides. PSINS
Tracer library is already ported for several HPC systems and is available at
http://www.sdsc.edu/pmac/projects/psins.html.

1.2 Adding a New Input Trace Parser

In PSINS, the trace parser module is included as a separate module to allow the
simulator to use different input trace formats easily. This allows users to easily add
another trace format such as TAU in addition to the already included parsers for
PSINS and the MPIDtrace trace formats. A trace consists of a sequence of events that
occur for each task and to use another trace format, the new parser needs only to
convert events to the PSINS internal representation of trace events.

In PSINS a new trace parser is added via use of virtual C++ functions. PSINS
provides a base class, Parser, with a few virtual methods (see technical report [13] for
the list of these virtual methods and more detail). These virtual methods provide
minimal functionality to access and consume the input trace.

Even though adding new parsers to PSINS requires some coding knowledge,
PSINS hides most of the complexity of this process by providing most of the common
infrastructure that is used by all parsers, requiring only the implementation of a few
virtual methods. For example the parser for PSINS built-in trace format requires only
384 lines and the parser for MPIDtrace format requires 647 lines of C++ code.

1.3 Simulator for Performance Prediction

PSINS Simulator takes the communication event trace for an application and a set of
modeling parameters for the target system and then replays the event trace for the
target system, essentially simulating the execution of the parallel application on the
target system. To simulate an MPI application on a target system, PSINS models both
computation and communication times for each task in the application.

To simulate the execution of a target system, the simulator needs details about the
configuration and construction of the system. These modeling parameters consist of
configurable components of a parallel HPC system.

To begin with, PSINS assumes that the target architecture is a parallel computer
composed of multiple computation nodes connected via configurable number of
global busses (as shown in Figure 2). Each computation node contains a configurable
number of processing units (processors or cores) and incoming and outgoing links to
the global busses. It provides the flexibility for each compute node to have different
numbers of incoming and outgoing links to the global busses and different number of
processing units in the node. In addition, the processing units within a compute node
can be specified to have different speeds. By relaxing the restrictions on the target
system architecture, PSINS provides the capability to simulate varying types of
systems ranging from computational grids to shared memory multiprocessor systems.

All of these configurable modeling parameters are given to simulator in a small
ASCII configuration file. The configuration file contains parameters for the system as
a whole, for each compute node and for the MPI task-to-processor mapping. For the
system, required parameters include the number of compute nodes, the best
achievable bandwidth and latency for each bus for two nodes to communicate, and the
number of busses. For each compute node, required parameters include the number of
processing units, the number of incoming and outgoing links from/to busses, the best
achievable local bandwidth and latency within the node, a mapping of MPI tasks to

processors, and CPU ratios which describe relative speeds (ratios) for the
computational work of the target with respect to the base system. This CPU ratio is
used by PSINS to model the computation time. This is done by simply projecting the
time spent for each CPUBurst event to the target system using the multiplicative
factor of how much faster or slower the processing unit in the target system is relative
to the base system. This approach is shown to be effective in previous research [1,6].

By separating the parameters for the target system from the communication model
used for the simulation (as shown in Figure 1), PSINS allows even more flexibility
toward investigating the impact of different communication models. The PSINS built-
in communication models are described in detail in Section 2.1.

Figure 2. Target architecture for simulation

PSINS Simulator consumes events from the input trace in the order of their
execution within the simulator rather than consuming them on a per-task basis. The
simulator uses an event queue based on priority queues to replay the input trace.

When an event is read, it is tagged with the earliest time it will be ready for
execution as its priority. This time is the value of the per-task timer at the time of
insertion for the task that event belongs to. If an event is not ready for execution such
as a blocking receive, or global communication, it is re-inserted into the event queue
for later processing with its priority reduced. An event is deleted from queue when its
execution is over. When an event is executed, it is marked with its execution time as
well as its wait time. The wait time is a record of time the event had to wait for its
execution as in imbalanced parallel applications with blocking communications or
barriers. After its execution, the execution timer for its task is incremented
accordingly and global timer is updated for synchronous simulation.

The execution of an event during simulation depends on the type of the event and
the state of the system at each event execution. The state of a system at any given
time is a combination of the best achievable bandwidths and latencies, the bus load,
contention, traffic in the network and the underlying network topology. If it is a CPU
burst event, it is completed by calculation of its time on the target system using the
CPU ratio described above. For blocking communication events, it is kept in the
queue until its mate is posted. If the event is a global communication, it is kept in the
queue until all participating tasks post the same event. When all participating tasks
post the event for the communication, communication model is asked to calculate the
bandwidth and latency at the time of its execution and the event is executed. Each
event type can have a different model based on network or system configuration.

Global Busses

Compute Node 1

Incoming
Links

CPU/Core 1

Outgoing
Links

CPU/Core 2

CPU/Core P

Compute Node N

Incoming
Links

CPU/Core 1

Outgoing
Links

CPU/Core 2

CPU/Core M

PSINS Simulator includes a statistics module to collect detailed information about
the simulation of an event trace on the target system, similar to IPM. The statistics
module collects information about the event execution frequencies, computation and
communication times for each task as well as the execution time for each event type
on the target system. It also collects the waiting time for each event type to provide
information on load balancing during the execution. Moreover, it generates
histograms on message sizes and on the ranges of bandwidths calculated by the
communication model for the communication events.

Such information provides valuable feedback to users and developers to help them
understand the interaction of applications with the target system, and can be valuable
to guiding optimization efforts for the application. More importantly, this information
is useful for verifying simulation accuracy by comparing it to the same information
measured during an actual run on the target system using performance monitoring
tools such as IPM, TAU or PSINS Count.

2 Communication Models

PSINS isolates the modeling parameters and communication models from the
simulator to enable users to easily investigate new communication models. From the
perspective of the PSINS Simulator, the communication model is a black box.

The communication model takes an event, the parameters from the configuration
file, and the current state of the simulated system to calculate the sustained latency
and bandwidth for the messages that are associated with that event. The model is
responsible for determining when an event will be executed, which might be at some
point in the future due to the unavailability of resources or some other measure of
contention. The model also determines which resources it will require and for how
long the resources are required, which in turn can change the state of the simulated
system based on the needs of the event. The communication model then calculates the
time to complete the event including the time to transmit a message as well as the
time that the message must wait for resources (wait time).

Each event can have its own model. These models can be simple (i.e. based on
bandwidth and latency) or more complex functions of the systems state, the number
of processors involved in the event, and the scalability of the event on the network.

2.1 Built-in Models

PSINS includes several built-in communication models that can be used to investigate
a target system. These models are the simple model, the resource contention models,
and the PMaC model. Our experience [16] indicates that these models can accurately
be used to model application performance for a majority of today’s HPC systems.

The simple model uses the best sustainable bandwidth and latency from the
configuration file and assumes the resources available to the system are infinite. That
is, when a message is ready to be sent, it assumes that resources along the path of the
message are available and calculates the time to send the message as a simple addition
of latency to the time spent to transfer the message body. For collective

communications, this model uses a simple description for each communication event
that indicates whether that event scales in linear, logarithmic or constant time with
respect to the number of participating tasks. The simple model is designed to model
the lower bound for the communication time for an application.

As an extension to the simple model, PSINS provides three resource contention
models based on the number of global busses, incoming, and outgoing links from
compute nodes. These are called bus-only, incoming-link-only, and outgoing-link-only
models. Unlike the simple model, these models assume that the number of a certain
type of resource that is available for communication is limited and use a scheduling
algorithm to schedule each message based on resource availability. These models are
designed to investigate the impact of resource contention on the performance of an
application. For instance, by predicting the performance of an application for an
increasing number of busses, users can get a feel for how sensitive the application's
performance is to number of busses available, which in turn can identify whether the
application posts multiple messages at around the same time.

In addition to simplistic models, PSINS also includes a more complex
communication model, called the PMaC model. This model is more complex than the
previous models in order to increase the accuracy of the simulations. For point-to-
point communications, this model takes the number of outstanding messages at the
time of a message delivery and, based on the current load on the busses and input and
output links, scales the maximum bandwidth accordingly.

For collective communications, alternative to using simple description of each MPI
collective communication routine, the PMaC model also provides the means to use a
more complex and realistic bandwidth calculations based on message sizes. This is
done via measuring the bandwidth for each collective communication routine for an
increasing size of messages using the synthetic benchmark, PSINSBench, included in
PSINS package (see technical report [13] for more details). Then using a curve-fitting
algorithm the measured bandwidths are fit to a continuous function and the function is
later used by the model to calculate the bandwidth for a given message size. The
PSINS Simulator is available at http://www.sdsc.edu/pmac/projects/psins.html.

2.2 Adding a New Model

In addition to the built-in models, PSINS allows users to easily plug-in new
communication models. Like trace parsers, new communication models are added via
use of virtual C++ functions. PSINS provides a base class, Model, with some virtual
methods (see [13] for the list of virtual functions). These virtual methods provide the
functionality to schedule events on resources as well as to calculate the time it takes to
execute an event. Then, to create a new communication model, the user needs to
define a class that extends the Model class and implement its virtual functions.

Much of the burden of the model developer then resides in the areas that are almost
completely model-specific, which leaves only a few virtual functions for the
developer to implement. Among the built-in models in PSINS, the simplest model
requires 228 lines of C++ code. A collection of resource contention models requires
158 lines of C++ code and the most complex model requires 433 lines of C++ code.

3 Experimental Results

To demonstrate the usability, efficiency and accuracy of PSINS Tracer and Simulator,
we have conducted several experiments where we used PSINS Tracer to collect MPI
event traces for three scientific applications: AVUS [17], HYCOM [18] and ICEPIC
[19] from the TI-09 Benchmark Suite [20]. The traces were then simulated for a set of
target HPC systems and the results of these simulations were compared to the actual
measurements gathered on the target systems.

All the traces were collected on a base system, NAVO's IBM Cluster 1600 (3072
cores connected with IBM's High Performance Switch), called Babbage. We ran the
scientific applications with two input data sets, namely standard and large, and
processor counts ranging from 59 to 1280. The actual runtimes for the applications
range from 0.5 to 2.5 hours where each application runs for around half an hour at the
highest processor count and was scaled to that count using the same input data set (i.e.
strong scaling). For replay and simulation of the collected traces, we ran the simulator
on a Linux box with two dual-core processors. In addition to simulating the base
system Babbage, we also simulated the MHPCC's Dell Cluster, called Jaws (5120
cores connected with Infiniband) and ERDC's Cray XT3 system, called Sapphire
(8320 cores connected with Cray SeaStar engine). We present results of these
experiments in terms of event trace sizes, simulation times, and prediction accuracy.

3.1 PSINS Trace Sizes and Simulation Times

The sizes of traces collected for each application and processor count is given in
Figure 3. The figure illustrates that the size of PSINS event traces grows linearly as
the processor count grows. The sizes range from 4GB to 32GB and are more than 4
times smaller than the event trace sizes generated by a similar state-of-the-art MPI
event tracer [6].

Figure 3. PSINS event trace size vs. CPU count for 3 applications.

The results suggest that one could practically store uncompressed traces for 10
thousand processors in about 300GB and would need ~3TB for 100 thousand

01 02 03 04 0
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0Si ze(GB)

C P U C o u n t

E v e n t T r a c e S i z e u s i n g P S I N S T r a c e ra v u s h y c o m i c e p i c

processor jobs. Some compression techniques such as those used in [26] would be
useful at large scale though we note some research groups already devotes multiple
TBs to keeping memory traces of strategic applications [25] so that same amount of
storage devoted to communications traces is not out of the question.

These collected event traces were then fed through the PSINS Simulator, the
simulation times are presented in Figure 4. The figure shows that PSINS Simulator is
able to replay these collected traces for a target system in under 1 hour for all
applications. On average the replay takes 7x less time than running the program
initially did, however the replay time also grows linearly with processor count
suggesting that in the future the replay procedure should itself be parallelized using
natural synchronization points at global communications (planned future work) for
tractable replay at tens of thousands cores. These simulation times are however
already an order-of-magnitude faster than a similar network simulator [6].

Figure 4. PSINS Simulator simulation time vs. CPU count for 3 applications.

Overall, Figure 3 and Figure 4 show that for each application, there is a linear
correlation between the input trace size and the time it takes to replay the trace for a
target system in PSINS. They also demonstrate that PSINS Tracer collects MPI event
traces of manageable and tractable sizes and PSINS Simulator replays these traces in
a tractable time for a target system. This indicates that as applications scale to even
larger processors counts, PSINS is likely to continue to be usable and effective.

In addition to trace size and simulation time, it is also important to quantify the
overhead introduced by the PSINS Tracer itself during trace collection. During our
experiments, we observed that the overhead of PSINS Tracer ranges from 0.2% to
14.8% compared to the original execution times of the applications. The average
overhead for all applications and processor counts is 5.9% meaning it can be
efficiently used for large processor counts even in production runs.

3.2 Simulation Accuracy

Even though the usability of PSINS in terms of event trace sizes and simulation
efficiency and tracing overhead is important, what matters most is the accuracy of the
predictions produced by the models. To investigate accuracy at a finer granularity, we

01 0 0 02 0 0 03 0 0 0
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0Ti me(sec)

C P U C o u n t

S i m u l a t i o n T i m e o f T r a c e s u s i n g P S I N S S i m u l a t o ra v u s h y c o m i c e p i c

simulated an event trace collected using PSINS Tracer for HYCOM with 124
processors for the base system and compared the communication times simulated to
the measured times for each task. We further broke down the communication time per
MPI event and compared those simulated times with the measured times. We used the
built-in simple communication model in PSINS for the simulation of this application.

Figure 5 presents the communication times measured and predicted for each task.
The red vertical bars are used to represent the measured times whereas the green
horizontal line is used to represent the simulated times. Figure 5 shows that PSINS
Simulator is quite accurate in predicting the communication time for each task. The
average absolute error in predicting the communication times for all tasks is 17%
whereas the error in predicting the total communication time is 14%. More
importantly, Figure 5 shows that despite the imbalance in communication times
among tasks, the results of PSINS simulation closely match the observed behavior.

Figure 5. Measured and simulated communication times for all tasks.

Figure 5 also shows that PSINS Simulator tended to slightly under-predict the
communication times for majority of the tasks compared to the actual communication
times measured. This is due to the fact that we used the built-in simple model that
assumes no contention just to show its effectiveness. If desired, for lower error, users
can use one of the other more sophisticated built-in models.

In addition to comparing communication times for each task, we further broke
down the communication time into the time spent in each MPI routine. Figure 6 (a)
presents the measured values for the percentages of time spent in each MPI routine
over the total communication time whereas Figure 6 (b) presents the percentages for
the PSINS simulation. Figure 6 shows that the percentage of time spent in MPI
routines from the simulation closely matches the percentages from the actual run,
indicating the accuracy of PSINS at a finer granularity.

Table 1 presents the comparison between the total communication times measured
during an actual run and times simulated by PSINS Simulator for two HPC systems.
We used the more detailed PMaC model for the simulations listed in this table; it
shows the ability to predict the communication times of applications within 15% error

for all cases except AVUS running with 64 processors on Sapphire. The absolute
average error among all cases is only 9.0%. In AVUS with 64 processors on Sapphire,
the communication time is only 7% of overall execution time. Overall, Table 1
demonstrates that PSINS is effective in modeling and predicting the performance of
applications for target HPC systems.

(a) (b)

Figure 6. Communication time spent in MPI calls for HYCOM.

CPU

Count
Jaws Sapphire

Simul. Predict. % Error Simul. Predict. % Error
HYCOM 124 121,476 128,285 -5% 161,055 167,620 -4%
HYCOM 504 449,646 519,335 -13% 573,365 621,793 -8%
AVUS 64 27,764 26,194 6% 30,680 22,561 36%
AVUS 1280 1,333,414 1,193,967 12%

ICEPIC 64 72,144 71,073 2% 89,950 88,708 1%
ICEPIC 1280 1,178,914 1,142,970 3%

Table 1. Total time (in seconds) spent in communication events.

4 Related Work

Early work on performance prediction of HPC applications was done in the Proteus
simulator [21], an execution-driven simulator which met many of the design goals
that have been laid out for PSINS at the time. Proteus was designed modularly so that
it could be customized for the target system and tradeoffs could be made between
accuracy and efficiency by using a different implementation of a certain simulation
component. Unfortunately Proteus introduces a slowdown of 2-35x for each process
in the target application, which renders it cumbersome for the purpose of simulating
long-running large-scale applications at thousand of processors.

Later work, such as Parallel Proteus [21], LAPSE [22], MPI-SIM [23] and the
Wisconsin Wind Tunnel [24] improved the efficiency of the simulation required to
make predictions by executing simulations in parallel. Typically these tools are
execution-driven and perform parallel discrete event simulation and tend to be full
machine simulators that address many aspects of a target architecture other than the

network. This causes them to be slower and more complex and less modular than
PSINS for the purpose of MPI scaling investigations.

 The Dimemas project [7] uses the concept of largely divorcing network prediction
from the prediction of serial computation portions of the code. Like PSINS, the user
supplies Dimemas with a speedup ratio for a target system. Dimemas uses this
speedup ratio along with the MPI event trace (in their case called an MPIDTrace) to
perform a discrete event simulation of the application on a target system. Unlike
PSINS, Dimemas is not open source, hence though useful it is not quite satisfactory as
a medium for community development in this arena. Dimemas currently stores their
MPI event traces as an ASCII text file resulting in large event traces files.

5 Conclusions

Performance models can provide valuable information in tuning of both applications
and systems, enable application-driven architecture design and extrapolate the
performance of applications on future systems. In the constantly changing and
growing field of HPC, it is important to have a modeling tool that is flexible enough
to adapt to architectural changes and is scalable enough to grow with the constantly
increasing system sizes. PSINS has this flexibility and scalability along with specific
features that make it practical to use for model generation. PSINS tracer allows event
traces to be captured with low overhead and recorded at manageable sizes even for
large processor counts of MPI applications. PSINS simulator is capable of simulating
different HPC networks with a high degree of accuracy in a reasonable amount of
time. This makes PSINS is a multifunctional tool of which flexibility, scalability, and
accuracy allow its utilization in collaborative studies involving modeling large scale
HPC applications.

6 References

1. D.H. Bailey and A. Snavely, “Performance Modeling: Understanding the Present and
Predicting the Future”, EuroPar, 2005.

2. J. Michalakes, J. Hacker, R. Loft, M. McCracken, A. Snavely, N. Wright, T. Spelce, B.
Gorda and R. Walkup. "WRF Nature Run," Supercomputing, 2007.

3. G. Alvarez, M. Summers, D. Maxwell, M. Eisenbach, J. Meredith, J. Larkin, J. Levesque,
T. Maier, P. Kent, E. D'Azevedo and T. Schulthess. "New algorithm to Enable 400+
TFlop/s Sustained Performance in Simulations of Disorder Effects in High-Tc
Superconductors," Gordon Bell Prize Winner, Supercomputing, 2007.

4. L. Carrington, D. Komatitsch, M. Tikir, M. Laurenzano, A. Snavely, D. Michea, J. Tromp
and N. Le Goff. "High-frequency Simulations of Global Seismic Wave Propogation Using
SPECFEM3D_GLOBE on 62K Cores," Supercomputing, 2008.

5. P. Ratn, F. Mueller, B. de Supinski and M. Schulz. "Preserving Time in Large-scale
Communication Traces," Supercomputing, 2008.

6. R. Badia, J. Labarta, J. Giménez and F. Escalé. "Dimemas: Predicting MPI Applications
Behavior in Grid environments," Workshop on Grid Applications and Programming
Tools, 2003.

7. S. Girona, J. Labarta and R. Badia. "Validation of Dimemas Communication Model for
MPI Collective Operations," Proceedings of the European Users' Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing Interface, 2000.

8. S. Shende and A. Maloney. "The TAU Parallel Performance System," International
Journal of High Performance Computing Applications, 2006.

9. W. Nagel, A. Arnold, M. Weber, H. Hoppe and K. Solchenbach. "VAMPIR: Visualization
and Analysis of MPI Resources," Supercomputer 12(1):69–80, 1996.

10. MPI Profiling Interface, http://www.mpi-forum.org/docs/mpi-11-html/node152.html.
11. M Tikir, M Laurenzano, L Carrington and A Snavely. "PMaC Binary Instrumentation

Library for PowerPC/AIX," Workshop on Binary Instrumentation and Applications, 2006.
12. Wikipedia contributors. UTF-8, http://en.wikipedia.org/wiki/UTF-8, accessed 2009.
13. PSINS: An Open Source Event Tracer and Execution Simulator for MPI Applications,

Extended Version, http://www.sdsc.edu/pmac/projects/psins.html
14. Integrated Performance Monitoring, http://ipm-hpc.sourceforge.net/, 2008.
15. P. Mucci, S. Browne, C. Deane and G. Ho. "PAPI: A Portable Interface to Hardware

Performance Counters," Department of Defense HPCMP Users Group Conference, 1999.
16. M. Tikir, L. Carrington, E. Strohmaier and A. Snavely. "A Genetic Algorithms Approach

to Modeling the Performance of Memory-bound Computations," Proceedings of the
ACM/IEEE International Conference on Supercomputing, 2007.

17. W. Strang, R. Tomaro and M. Grismer. "The Defining Methods of Cobalt60: A Parallel
Implicit, Unstructured Euler/Navier-Stokes Flow Solver," Institute of Aeronautics and
Astronautics Paper 99-0786, 1999.

18. R. Bleck. "An Oceanic General Circulation Model Framed in Hybrid Isopycnic–Cartesian
Coordinates," Ocean Modelling, 4, 55–88, 2002.

19. G. Sasser, J. Blahovec, L. Bowers, S. Colella, J. Luginsland and J. Watrous. "Current
Emission, Resistive Losses, and Other Challenging Problems in the Simulation of High
Power Microwave Components," Inst. of Aeronautics and Astronautics Paper, 1999.

20. Department of Defense, High Performance Computing Modernization Program.
"Technology Insertion," http://www.hpcmo.hpc.mil/Htdocs/TI/, 2009.

21. E. Brewer, C. Dellarocas, A. Colbrook and W. Weihl. "Proteus: A High-Performance
Parallel Architecture Simulator," MIT Technical Report MIT/LCS/TR-516, 1991.

22. P. Dickens, P. Heidelberger and D. Nicol. "A Distributed Memory LAPSE: Parallel
Simulation of Message-Passing Programs," Proceedings of the 8th Workshop on Parallel
and Distributed Simulation, 1994.

23. S. Prakash and R. Bagrodia. "MPI-SIM: Using Parallel Simulation to Evaluate MPI
Programs," Proceedings of the Winter Simulation Conference, 1998.

24. S. Reinhardt, M. Hill, J. Larus, A. Lebeck, J. Lewis and D. Wood. "The Wisconsin Wind
Tunnel: Virtual Prototyping of Parallel Computers," Proceedings of the ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems, 1993.

25. A. Snavely, L. Carrington, N., Wolter, J. Labarta, R. Badia and A. Purkayastha. "A
Framework for Performance Modeling and Prediction," Supercomputing, 2002.

26. M. Noetha, P. Ratna, F. Mueller, M. Schul, and B. R. de Supinski “ScalaTrace: Scalable
compression and replay of communication traces for high-performance computing”,
Journal of Parallel and Distributed Computing, 2008.

27. JS Kim, DJ Lilja, “Characterization of Communication Patterns in Message-Passing
Parallel Scientific Applications”, Proceedings of the Second International Workshop on
Network-Based Parallel Computing, 1998.

28. X. Gao, B. Simon, A. Snavely, “ALITER: An Asynchronous Lightweight Instrumentation
Tool for Event Recording”, Workshop on Binary Instrumentation and Applications (held
in conjunction with PACT2005)

29. X. Gao, M. Laurenzano, B. Simon, A. Snavely, “Reducing Overheads for Acquiring
Dynamic Traces”, International Symposium on Workload Characterization (ISWC05)

