
Modeling Interactive Web Sources for

Information Mediation

Bertram Lud�ascher and Amarnath Gupta

San Diego Supercomputer Center, UCSD, La Jolla, CA 92093-0505, USA
fludaesch,guptag@sdsc.edu

Abstract. We propose a method for modeling complex Web sources
that have active user interaction requirements. Here \active" refers to the
fact that certain information in these sources is only reachable through
interactions like �lling out forms or clicking on image maps. Typically,
the former interaction can be automated by wrapper software (e.g., us-
ing parameterized urls or post commands) while the latter cannot and
thus requires explicit user interaction. We propose a modeling technique
for such interactive Web sources and the information they export, based
on so-called interaction diagrams. The nodes of an interaction diagram
model sources and their exported information, whereas edges model tran-
sitions and their interactions. The paths of a diagram correspond to se-
quences of interactions and allow to derive the various query capabilities
of the source. Based on these, one can determine which queries are sup-
ported by a source and derive query plans with minimal user interaction.
This technique can be used o�ine to support design and implementa-
tion of wrappers, or at runtime when the mediator generates query plans
against such sources.

1 Introduction

The mediator framework [Wie92] has become a standard architecture for in-
formation integration systems. Whenever the integration involves large or fre-
quently changing data, like e.g. Web sources,1 a virtual integration approach
(as opposed to a warehousing approach) is advantageous [FLM98]: at runtime,
the user query against a mediated view is decomposed at the mediator and cor-
responding subqueries are sent to the source wrappers. The answers from the
sources are collected back at the mediator which, after some post-processing, re-
turns the integrated results to the user. When implementing such a framework,
one has to deal with the di�erent capabilities of mediators and wrappers: Media-
tors are the main query engines of the architecture and thus are usually capable
to answer arbitrary queries in the view de�nition language at hand. In contrast,
wrappers often provide only limited query capabilities, due to the inherent query
restrictions induced by the sources. For example, when a book-shopping medi-
ator generates query plans, it has to incorporate the limited query capabilities

1 Since we are focusing on Web sources, we often use the terms source and Web
page/site interchangeably.

Fig. 1. An interactive Web source (ATM locator)

of wrappers say for amazon.com or barnesandnoble.com in order to send only
feasible queries that these wrappers can process. As shown in [GMLY99] query
processing on Web sources can greatly bene�t from \capability-aware" media-
tors.

In order to model source capabilities, various mechanisms like query tem-
plates, capability records, and capability description grammars have been de-
vised and incorporated into mediator systems. An implicit assumption of cur-
rent mediator systems is that once the sources have exported their capabilities
to the mediator, all user queries can be processed in a completely automated
way. In particular, there is no interaction necessary between the user and the
source while processing a query. Speci�cally for Web sources, there is a related
assumption that the Web page which holds the desired source data is reachable,
e.g., by traversing a link, composing a url, or �lling in a form.

While it is clearly desirable to relieve the user from interacting with the
source directly, it is our observation that for certain sources and queries, these
assumptions break down and explicit user interaction is inevitable in order to
process these queries.

Example 1 (ATM Locator). Assume we want to wrap an ATM locator ser-
vice like the one of visa.com into a meditor system. There are di�erent means

to locate ATMs in the vicinity of a location: Starting from the entry page, the
user may either select a region (say North America) from a menu or click on
the corresponding area on a world map (Fig. 1, left). At the next stage the user
�lls in a form with the address of the desired location. The source returns a
map with the nearby ATM locations and a table with their addresses (Fig. 1,
right). Thus, for given attributes like region, street, and city, one can implement
a wrapper which automatically retrieves the corresponding ATM addresses.

However, if the task is to select one or more speci�c ATMs based on properties
visible from the map only (e.g., select ATMs which are close to a hotel), or if the
selection criterion is imprecise and user-dependent (\I know what I want when
I see it"), then an explicit user interaction is required and the source interface
has to be exposed directly to the user. 2

In this paper we explore the problem of bringing such sources, i.e., which may
require explicit user interactions, into the scope of mediated information inte-
gration. To simplify the presentation, we use a relational attribute-speci�cation
model for modeling query capabilities. The outline and contributions of the pa-
per are as follows:

� In Section 2 we show how the capabilities and interactions of Web sources
can be modeled in a concise and intuitive way using interaction diagrams. To
the best of our knowledge, this is the �rst approach which allows to model
complex Web sources with explicit user interactions and brings them into
the realm of the information mediation framework.

� In Section 3 we show how to derive the combined capabilities of the modeled
sources given the capabilities of individual interactions. This allows us to
distinguish between automatable (wrappable) queries and queries which can
only be supported with explicit user interaction. Based on this, a \diagram-
enabled" wrapper can suggest alternative queries to the mediator, in case
the requested ones are not directly supported.

� In Section 4 we sketch how interaction diagrams can be embedded into the
standard mediator architecture and discuss the bene�ts of such a \diagram-
enabled" system. We give some conclusions and future directions in Section 5.

Related Work. Incorporating capabilities into query evaluation has recently
gained a lot of interest, and several formalisms have been proposed for describ-
ing and employing query capabilities [PGGMU95,LRO96,PGH98,YLGMU99].
Especially, in the context of Web sources, query processing can bene�t from a
capability-sensitive architecture as noted in [GMLY99]. Their work focuses on
e�cient generation of feasible query plans at the mediator, i.e., plans which the
source wrappers can support. Target queries are of the form �b(� (a)(R)) where
 (a) is a selection condition over the input attributes a, and b are the output
attributes. Their capability description language SSDL deals with the di�erent
forms of selection conditions (a) that a source may support. In contrast, we ad-
dress the problem of \chaining together" queries like �b(� (a)(R)) which allows
us to model complex sequences of interactions.

Several formalisms for modeling Web sites have been proposed which more or
less resemble interaction diagrams: For example, the Web skeleton described in
[LHL+98] is a very simple special case of diagrams where the only interaction ele-
ments are hyperlinks. Other much more versatile models have been proposed like
the Web schemes of the Araneus system [AMM97,MAM+98], which use a page-
oriented ODMG-like data model, extended with Web-speci�c features like forms.
Another related formalism are the navigation maps described in [DFKR99]. The
problem of deriving the capabilities and interaction requirements of sequences
of interactions (i.e., paths in the diagram) is related to the problem of propa-
gating binding patterns through views as described in [YLGMU99]. There, an
in-depth treatment on how to propagate various kinds of binding patterns (or
adornments) through the di�erent relational operators is provided.

However, the approaches mentioned above do not address the problem of
modeling sources with explicit user interactions and how to incorporate such
sources into a mediator architecture.

2 Modeling Interactive Sources

As illustrated above, there are user interactions with Web sources which can be
wrapped (e.g., link traversal, selections from menus, �lling of forms), and others
which require explicit user interaction (e.g., selections from image maps, GUI's
based on Java, VRML, etc.). Before we present our main formalism for modeling
such sources, interaction diagrams, let us consider how the typical interaction
mechanisms found in Web sources relate to database queries.

Modeling Input Elements

Below, for an attribute a, we denote by $a the actual parameter value for a as
supplied by the corresponding input element. In �rst-order logic parlance, we
may think of a as a variable which is bound to the value $a. Hence, we often
use the terms attribute and variable interchangeably. We denote vectors and
sequences in boldface. For example a stands for some attributes a1; : : : ; an.

We can associate the following general query scheme with the input elements
discussed below:

�b(� (a)(R)):

Here, a are the input parameters to the source, b are the desired output param-
eters to be extracted from the source, and a; b 2 atts(R), i.e., the relation R
being modeled has attributes a; b. The �rst-order predicate over a is used to
select the desired tuples from R. With every input element we will associate a
default semantics, according to their standard use.

Hyperlinks are the \classical" way to provide user input. We can view the
traversal of a link href(a) as providing a value $a for the single input attribute
a. The value $a is given by the label of the link. For example, by clicking on

a speci�c airport code, we can bind apc (airport-code) to the label of the link.
Assume we want to extract the zip code from the resulting page. We can model
this according to the above scheme as �zip(�apc=$apc(R)): Since equality is the
most common selection condition for links, we de�ne it as the default semantics
for href(a):

 (a) := (a = $a):

Other meanings are possible. For example, a Web source my contain a list of
maximal prices for items such that by clicking on a maximal value $price, only
items for which price � $price are returned. Thus, (price) := (price � $price):
Note that the domain of a is �nite, since the source page can have only �nitely
many (static) links.

Forms can be conceived as dynamic links since the target of \traversing" such
a link depends on the form's parameters. In contrast to hyperlinks, forms gener-
ally involve multiple input attributes, ranging over an in�nite domain (think of
a form-based tax calculator). For example, given a street and a city name, the
extraction of zip codes from the result page can be modeled by the input ele-
ment form(street; city) and the query �zip(�street=$street^city=$city(R)): Similar
to href, the most common use and thus our default semantics is to view forms
as conjunctions of equalities:

 (a) := (a1 = $a1 ^ : : : ^ an = $an):

In contrast, by setting (low; high) := ($low � price � $high) we can model
a range query which retrieves tuples from R whose price is within the speci�ed
interval.Optional parameters can be modeled as well: let (a; b) := ((a = $a^b =
$b) _ a = $a). This models the situation that b is optional: if b is unde�ned (set
to null), the �rst disjunct will be unde�ned while the second can still be true.

Menus are used to select a subset of values from a prede�ned, �nite do-
main. For example, the selection of one or more US states from a menu is
denoted by menu(state). When modeling a menu attribute, it can be useful
to include the attribute's domain. For example, we may set dom(state) :=
falabama; : : : ;wyomingg. In contrast to href(a) and form(a), multiple values
$a1; : : : ; $an can be speci�ed for the single attribute a. The default semantics
for menus is

 (a) := (a = $a1 _ : : : _ a = $an):

Non-Wrappable Elements. Conceptually, the elements considered above are
all wrappable in the sense that the user interaction can be automated by wrap-
pers, which have to �ll in forms (via http's post), traverse links (get), possibly
after constructing a parameterized url2, etc. We call an interaction non-wrappable

2 E.g., search.yahoo.com/bin/search?p=a+OR+b �nds documents containing a or b.
Other elements like radio buttons and check boxes can be modeled similarly.

if, using a reasonable conceptual model of the source, an explicit user interaction
is inevitable to perform that interaction (cf. Section 3). Note that technically,
selections on clickable image maps could also be wrapped, say using a url which
is parameterized with the xy-coordinates of the clicked area. However, this is
usually not an adequate conceptual model of the query, since the xy-coordinates
do not provide any hint on the semantics of the query being modeled. Thus, for
sources where automated wrapping is impractical or inadequate from a modeling
perspective, we \bite the bullet" and ask the user for explicit interaction with
the source. To model such a user interaction, we use the notation

!ui(a1; : : : ; an)

where a1; : : : ; an are input parameters on which the user interaction depends.
Consider, e.g., an image map on which the user clicks to change the focus or pan
the image. We can regard this as an operation with some input parameter loc,
representing the current location, and some otherwise unspeci�ed, implicit input
parameter x which models the performed user interaction.3 In this case, we can
model the interaction as �loc0(�loc=$loc;x=$x(R)) where R has input attributes
loc and x and an output attribute loc0.

Modeling Complex Sources with Interaction Diagrams

To describe the query capabilities of and dependencies within complex interactive
sources, we propose a formalism in the spirit of state-transition diagrams, called
interaction diagrams, or diagrams for short. Conceptually, a node of a diagram
is viewed as an individual source. A source can be a single Web page or comprise
several pages which exhibit the same input/output behavior. With every node
we associate an export schema, representing the information provided by that
source. The possible transitions between (the states of) sources are modeled by
labeled edges. The edge label speci�es the type of interaction (form, menu, !ui,
etc.) which is required to perform the transition and determines the capabilities
of the source wrt. this transition.

Diagrams. More precisely, an interaction diagram d for a source is de�ned
over a set of attributes atts (=atts(d)) and consists of labeled nodes and labeled
directed edges. Attributes are used to describe the modeled entities of the source
and thus are the basic building blocks of the source description. In the sequel,
let a; a1; a2; : : : 2 atts(d).

Sources. The nodes of d are called sources and model identi�able units within
the complex source, most notably Web pages. Sources have an identi�er (node
id), typically a url and an output schema of exported attributes a1; : : : ; ak. These
attributes model all relevant information exported by the source.

3 E.g., x could be an encoding of xy-coordinates. However, we do not provide or need
a way to dissect x since it acts merely as an identi�er.

We distinguish di�erent ways in which attributes can be exported in an
output schema:

� (a1; : : : ; an): the source exports these attributes tuple-at-a-time,
� f(a1; : : : ; an)g: the source exports a set of such tuples,
� [(a1; : : : ; an)]: the source exports an ordered list such tuples.

This structural information can be used to derive additional query properties of
sources like (non-)uniqueness of results and availability of order, thereby sup-
porting the wrapper design.

Internal Attributes. Sometimes, attribute values are not explicitly provided
by the source (e.g., the location corresponding to the center of the image in Fig. 1,
or the attribute loc in Example 2). Although such a source may be \stateful" and
remember the current value of loc, this value is implicit and cannot be directly
extracted by a wrapper. Nevertheless, the output of subsequent interactions may
very well depend on the value of the latent loc attribute, so we cannot ignore it.
We say that an attribute a is internal, denoted by &a, if the actual value of a is
not directly extractable.

Transitions. Labeled edges are used to model possible transitions between
(states of) sources. Each transition t is labeled with one or more interactions
i = i1; : : : ; in, where each interaction ij 2 fhref; form;menu; !uig has input pa-
rameters from atts(d). Transitions can be further constrained by attaching con-
ditions as follows. The transition

t : x
i[';unv]
�! y

means that one can move from source x to y using the interaction(s) i only if
the �rst-order condition ' holds. This allows modeling of additional semantic
constraints which are enforced by a source (e.g., a source having form(low; high)
may enforce ' := $low < $high). Note that by default, the input parameters of
t are the attributes occurring in x or i. In order to indicate that the outcome of
t also depends on the attributes u but not on v, the expression u n v is used.

Example 2 (Going to the Bank). The diagram in Fig. 2 de�nes the following
model of a complex source: The source at the start node n0 does not export
information relevant to the application. By �lling in form1 with a street and
city name and selecting a state from menu, we can move to source n1, which
provides an internal attribute &loc for the requested location (t1). As long as
we apply user interactions !ui1, we remain at source n1, possibly updating its
internal location attribute (t2). We can move to n2 by �lling in another form
form2 with a positive radius, or by executing some user interaction !ui2 (say
marking a rectangular region). Source n2 exports a list of bank identi�ers (say
as hyperlinks), and a set of internal bank locations (e.g., as a clickable image
map). There are two ways to move to n3: We may either traverse a link which

�
fg (&loc)

n0 n1

n3 n2

(bname; bstreet; bcity)
[(bankid)]

f(&bankloc)g

t1: form1(street; city);menu(state)

t3: form2(radius)[0<radius]

t4: !ui2(&loc)

t2: !ui1(&loc)

t5: href(bankid)[fgnf&banklocg]

t6: !ui3(&bankloc)

Fig. 2. A diagram for an interactive source (for retrieving addresses of nearby banks)

is labeled with the bank id (t5), or we use another user interaction !ui3 (again
by clicking on an image map). Note that we can ignore the &bankloc attribute
in t5 (as speci�ed in brackets), since the bankid is su�cient to execute t5. 2

3 Deriving Source Capabilities

While interaction diagrams are a useful modeling tool in itself, their main pur-
pose is to support the automatic derivation of capabilities of complex interaction
patterns of the modeled source.

Single Transitions. The capabilities and interaction requirements of a single
transition

t : x y
i[';unv]

are modeled as follows:

� in(t) := (atts(x) [atts(i) [u) n v are the required input attributes,
� out(t) := atts(y) are the output attributes which are exported by t, and
� act(t) := i ^ ' are the interaction (execution) requirements of t.

Here, atts(: : :) is the set of all attributes occurring in the corresponding expres-
sion. For each user interaction !uik, we also add a new internal attribute &xk
representing the user interaction, so

atts(!uik(a1; : : : ; an)) := fa1; : : : ; an;&xkg:

Transition Paths. Based on the above notions, we can derive the query ca-
pabilities along paths, i.e., sequences of transitions. A path of a diagram d is a
sequence t1:t2: � � � :tn of connected transitions, i.e., where the target of ti meets

the source of ti+1. Let t = t3: � � � :tn and t1:t2:t be paths of d (here, t may be
empty). The capabilities and interaction requirements along paths are induc-
tively de�ned as follows:

� in(t1:t2:t) := in(t1) [(in(t2:t) n propagate('con(t1; t2))) are the input at-
tributes,

� out(t1:t2:t) := out(t2:t) are the output attributes, and
� act(t1:t2:t) := act(t1)
 'con(t1; t2)
 act(t2:t) is the execution plan (inter-

action requirement).

Here, we have assumed that

� 'con(t1; t2) is a �rst-order predicate over out(t1) [in(t2) which \connects"
the output of t1 with the input of t2. By default, 'con(t1; t2) is de�ned as the
natural join over the common attributes of out(t1) and in(t2). This default
can be overridden by attaching an explict condition at the node connecting
t1 and t2,

� propagate('con(t1; t2)) are those attributes of in(t2) whose bindings are
propagated from out(t1) using 'con(t1; t2). Thus, in the default case with
natural joins:

propagate('con(t1; t2)) := out(t1) \ in(t2)

� \
" is a binary, right-associative connective denoting serial conjunction.4

Thus, an execution plan has two readings, both of which have to be obeyed:
(i) as a logic formula where the �rst-order conditions ' and 'con of the
plan are viewed as conjunctively connected, and (ii) as a linear sequence of
required interactions i.

The query capabilities along a non-empty path t = t1: � � � :tn is then denoted by
the binding pattern

qt(in(t); out(t)):

Below, we \sign" an attribute a to indicate whether it is input (+a), output
(�a), or both (�a).

Example 3 (Banks Revisited). Consider the diagram in Fig. 2. It is easy to
derive the binding patterns

� qt1(+street;+city;+state;�&loc), and
� qt3(+&loc;+radius;�bankid;�&bankloc).

We can connect t1 and t3 via n1 by a �rst-order predicate 'con(t1; t3) which, by
default, is set to the natural join over the common attributes, so 'con(t1; t3) =

qt1 (+street;+city;+state;�&loc) 1&loc qt3(+&loc;+radius;�bankid;�&bankloc);

from which we derive the binding pattern

qt1:t3 = (+street;+city;+state;+radius;�bankid;�&bankloc):

4 This notation and terminology is borrowed from Transaction Logic [BK94].

Now consider t5. Since t5's only input attribute, bankid, is exported by the
target node of t1:t3, we can connect t1:t3 and t5 via n2 without the need to
supply additional input parameters. From this we obtain

qt1:t3:t5(+street;+city;+state;+radius;�bname;�bstreet;�bcity) :

The execution plan necessary to implement qt1:t3:t5 is

act(t1:t3:t5) = form1(street; city);menu1(state)

 'con(t1; t3)

 form2(radius) ^ radius > 0

 'con(t3; t5)

 href(bankid)

where 'con(t3; t5) is the natural join qt3(: : :) 1bankid qt5(: : :). 2

By modeling complex interactive sources using diagrams, we can derive the
di�erent query capabilities and associated interaction requirements which are
necessary to implement these queries at the sources. Indeed, from the above
de�nitions one can easily derive an algorithm which, given a diagram d and a
non-empty transition path t of d, computes the unique binding pattern qt: This
is an important prerequisite for enabling capability-sensitive query processing in
a mediator framework (cf. Section 4) and allows us to determine the supported
(or feasible) queries of a source:

We say that a binding pattern q(in; out) subsumes a pattern q0(in0; out0), if
in � in0 and out � out0 (since we can answer q0 by resorting to q); q and q0 are
called equivalent, if they subsume each other.

A query q(in; out) is supported by a source if there is a path t in the cor-
responding diagram such that qt subsumes q. Finally, q is called wrappable (or
automatable), if it is supported by some path t such that act(t) does not contain
any user interaction !ui.

Example 4 (Properties of Transition Paths). Assume the mediator sends
a request of the form q(+street;+city;�bname) to the source modeled in Fig. 2.
This query is not feasible since there is no path in the diagram which supports
it. However, a \diagram-enabled" wrapper can determine close matches to this
request and suggest qt1:t3:t5 which yields the desired output if the mediator can
come up with a plan that provides the inputs +state and +radius.

Another close match is qt1:t3:t6 which does not need an input value for radius.
However, this path is not automatable since it involves an explicit user inter-
action !ui3. Thus, the �rst alternative is usually preferable (unless the meditor
cannot provide the additional input parameters). 2

Note that when modeling a site with interaction diagrams, the designer of the
diagram has to ensure that the binding patterns derivable from the diagrams
correctly re
ect what is being computed by the sources, i.e., their semantics.
For example, a binding pattern q(+a;+t;�b) could mean \�nd books b where

author=a or title=t", but it could also mean \... where author=a and title=t",
or even \... where author 6= a if title=t", etc. Dealing with these di�erent possible
semantics is beyond the scope of this paper and we just assume that attribute
names and transitions between sources have been modeled accordingly.

4 Using Interactive Sources in the Mediator Framework

In the previous section we have de�ned formal properties of interaction diagrams
and shown how they can be used to model complex sources involving multiple
pages and sites. In this model, the capabilities of a source, i.e., the supported
queries and interaction requirements, are characterized by the paths in the di-
agram. In the following, we explore how a wrapper using interaction diagrams
can participate in the query evaluation process controlled by the mediator. We
present di�erent scenarios of interplay between the mediator and the wrapper,
with increasingly complex dependence on the properties of the diagram.

Schema Only. First consider a scenario where the mediator is unaware of
the binding patterns derivable from the interaction diagram. The mediator only
keeps an account of the attribute names from a wrapper and passes a complete
query to the wrapper. The wrapper uses the graph to determine if the query
is supported. If the query is not feasible, the wrapper returns with an error,
and the mediator tries to send a di�erent rewrite of the query. In this case, the
mediator does not have any knowledge of why the query failed, and hence cannot
make any intelligent choice for the next rewrite. Although this approach makes
the mediator-wrapper interactions very simple, this is potentially a very costly
solution, and does not utilize any bene�t of the interaction diagram.

Summary Table. In this scenario the mediator knows the role each attribute
can play (input, output, both), but has no knowledge of the combination of
attribute-role pairs that are permitted by the source. In this case the mediator
maintains a summary table of the form

[�a;+b;�c;�d;+e; : : :]

which approximates the capabilities of the source. The query q(+a;+b;�c;�d) is
supported according to this table and thus should have a set of equivalent paths
by which the pattern should be satis�ed. However, the source may actually sup-
port only the binding patterns q1(+a;+b;�c) and q2(+c;�d) and the mediator
has to compute q1 1c q2. To keep track of such situtations, [YLGMU99] precom-
pute and maintain all possible binding patterns for the source at the mediator.
Clearly, all such patterns can be automatically generated from the diagram,
and registered with the mediator when the wrapper is �rst initiated. However,
for a complex Web source this may be too large (in the worst case 3n for n
attributes), and hence the solution does not scale well. We could reduce this
number by eliminating subsumed binding patterns as in [YLGMU99]. In this

case, one has to ensure that wrappable paths are prefered over non-wrappable
ones. If the reduction by subsumption restricts the space of binding patterns
to a manageable degree, then this is an acceptable solution. Since the mediator
has complete knowledge of the wrapper's capabilities, it can be guaranteed to
produce only feasible plans.

Active Wrapper. In case the previous solution still creates an unacceptable
number of binding patterns at the mediator, the wrapper needs to take a more
active part in query evaluation. Now, since the mediator does not have all the
binding patterns, the wrapper has to evaluate the query by further decomposing
it into subqueries. We sketch a method to accomplish this at the wrapper in the
following way. Given a binding pattern q:

� The diagram-aware wrapper traverses the interaction diagram to �nd all
paths that subsume the query. A path here corresponds to the execution
plan de�ned in Section 3.

� If there is only one such path, the wrapper can immediately execute the
query, since the mediator has no decisions to make in that query.

� If however there is more than one path, the wrapper has the choice to either
send all of them to the mediator, or prune them by some local heuristic to
reduce the number of viable execution plans. We have found the following
pruning heuristic to be e�ective:
{ If there is a single path with no user interaction !ui, choose that path.
{ If there are multiple paths without !ui's, rank the paths by path length.
{ If all paths have one or more !ui's, rank the paths �rst by the length
of the path, and then by the number of !ui's. The intuitive idea is �rst
to reduce the number of pages to visit, and then reduce the number of
forms or menus to �ll in.

� Send the ranked list of paths to the mediator. The ranked list acts as a
qualitative cost estimator for the execution plan.5

Touting Wrapper. Finally, consider a variant of the above scenario where
the wrapper aids the mediator by providing additional hints (cf. Example 4).
Again assume that the query is q(+a;+b;�c;�d), but suppose the binding pat-
terns supported by the source are q1(+a;+b;�c) and q2(+c;+e;�d). The query
will obviously fail, but the mediator does not know that the query would have
succeeded if attribute e had been provided.

There are two possible outcomes if the wrapper sends back this hint to the
mediator. First, the mediator may already have a constraint on e, but this con-
straint was never passed to the wrapper, because the mediator found a second
source that also uses e, and hence cleanly separated the attributes between
sources. In this case, the mediator needs to rewrite the query by reusing the
attribute e for the �rst source also. In the second case, the original query is

5 The mediator may also cache the alternatives returned to reduce the number of
interactions with the wrapper in subsequent queries.

under-speci�ed and the mediator returns to the user with a list of missing at-
tributes, thus making the query evaluation more cooperative. To implement this
solution we can modify the above method with a parameter k, such that only
paths with up to k missing attributes will be searched.

5 Conclusion and Outlook

We have proposed a method for modeling the capabilities of complex interactive
Web sources using interaction diagrams and have shown how the standard input
elements of Web sources (forms, menus, etc.) can be modeled as restricted rela-
tional queries with a certain input/output pattern. These elements are the basis
for our formal model of interaction diagrams, where they are used to specify the
interaction requirements of transitions between sources (=Web pages having the
same input/output schema). A \diagram-enabled" wrapper can chain together
transitions, thereby supporting more complex queries than those provided by
the individual subsources. This is possible because the query capabilities and
interaction requirements (i.e., plans for executing the query) of paths of transi-
tions can be automatically derived from a diagram.6 In particular, this allows
to examine alternative execution paths and determine those with minimal user
interaction.

The last two scenarios discussed in the previous section demonstrate the ad-
ditional value of the diagram-based representation of wrapper capbilities in the
mediator framework. It also shows a departure from the more commonly used
thin-wrapper heavy-mediator model to a more negotiation-oriented interopera-
tion between the two components. Such a negotiation will be useful as we move
from modeling simple Web sources whose capabilities can be manually modeled
to more complex, dynamic Web sources, for which creating a static exhaustive
set of capabilities is impractical.

We plan to integrate our approach into the MIX7 mediator system, which
employs a virtual integration approach where queries are decomposed at runtime
and sent to the source wrappers. Additionally, query evaluation in the MIX
mediator system is lazy (or on-demand), i.e., driven by the clients navigation into
the virtual answer view [LPV99]. Interestingly, by incorporating the proposed
diagrams into this mediator architecture, user interactions and query evaluation
become mutually dependent: When the user issues a query or navigates into a
view, the mediator decomposes the request and send subqueries to the sources.
Some of these queries may be infeasible without additional user interaction. In
these cases, the source \calls back" the user and requests additional input before
query evaluation can proceed.

Acknowledgments. The �rst author thanks Birgitta K�onig-Ries for numerous
and detailed comments on the paper.

6 A �rst prototype for analysing transition paths has been implemented.
7
Mediation of Information using XML [MIX99,BGL+99]

References

[AMM97] P. Atzeni, G. Mecca, and P. Merialdo. To Weave the Web. In Intl.
Conference on Very Large Data Bases (VLDB), 1997.

[BGL+99] C. Baru, A. Gupta, B. Lud�ascher, R. Marciano, Y. Papakonstantinou,
and P. Velikhov. XML-Based Information Mediation with MIX. In ACM
Intl. Conference on Management of Data (SIGMOD), Philadelphia, 1999.
(exhibition program).

[BK94] A. J. Bonner and M. Kifer. An Overview of Transaction Logic. Theoretical
Computer Science, 133(2):205{265, 1994.

[DFKR99] H. Davulcu, J. Freire, M. Kifer, and I. Ramakrishnan. A Layered Archi-
tecture for Querying Dynamic Web Content. In ACM Intl. Conference
on Management of Data (SIGMOD), Philadelphia, 1999.

[FLM98] D. Florescu, A. Levy, and A. Mendelzon. Database Techniques for the
World-Wide Web: A Survey. SIGMOD Record, 27(3), September 1998.

[GMLY99] H. Garcia-Molina, W. Labio, and R. Yerneni. Capability-Sensitive Query
Processing on Internet Sources. In Intl. Conference on Data Engineering
(ICDE), pp. 50{59, 1999.

[LHL+98] B. Lud�ascher, R. Himmer�oder, G. Lausen, W. May, and C. Schlepphorst.
Managing Semistructured Data with FLORID: A Deductive Object-
Oriented Perspective. Information Systems, 23(8):589{613, 1998.

[LPV99] B. Lud�ascher, Y. Papakonstantinou, and P. Velikhov. A Framework for
Navigation-Driven Lazy Mediators. In ACM SIGMOD Workshop on the
Web and Databases (WebDB), Philadelphia, 1999.

[LRO96] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying Heterogeneous
Information Sources Using Source Descriptions. In Intl. Conference on
Very Large Data Bases (VLDB), pp. 251{262, 1996.

[MAM+98] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni. The Araneus
Web-Base Management System. In ACM Intl. Conference on Manage-
ment of Data (SIGMOD), pp. 544{546, 1998. (exhibition program).

[MIX99] Mediation of Information using XML (MIX). www.npaci.edu/DICE/MIX/
and www.db.ucsd.edu/Projects/MIX/, 1999.

[PGGMU95] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. D. Ullman.
A Query Translation Scheme for Rapid Implementation of Wrappers. In
Intl. Conference on Deductive and Object-Oriented Databases (DOOD),
pp. 161{186, 1995.

[PGH98] Y. Papakonstantinou, A. Gupta, and L. M. Haas. Capabilities-Based
Query Rewriting in Mediator Systems.Distributed and Parallel Databases,
6(1):73{110, 1998.

[Wie92] G. Wiederhold. Mediators in the Architecture of Future Information Sys-
tems. IEEE Computer, 25(3):38{49, 1992.

[YLGMU99] R. Yerneni, C. Li, H. Garcia-Molina, and J. Ullman. Computing Capa-
bilities of Mediators. In ACM Intl. Conference on Management of Data
(SIGMOD), Philadelphia, PA, 1999.

