
Understanding the Global Semantics of
Referential Actions using Logic Rules

WOLFGANG MAY
Institut für Informatik, Universität Freiburg, Germany
and
BERTRAM LUDÄSCHER
San Diego Supercomputer Center, University of California San Diego, USA

Referential actions are specialized triggers for automatically maintaining referential integrity in
databases. While the local effects of referential actions can be grasped easily, it is far from obvious
what the global semantics of a set of interacting referential actions should be. In particular, when
using procedural execution models, ambiguities due to the execution ordering can occur. No global,
declarative semantics of referential actions has yet been defined.

We show that the well-known logic programming semantics provide a natural global semantics
of referential actions that is based on their local characterization: To capture the global meaning
of a set RA of referential actions, we first define their abstract (but non-constructive) intended
semantics. Next, we formalize RA as a logic program PRA. The declarative, logic programming
semantics of PRA then provide the constructive, global semantics of the referential actions. So,
we do not define a semantics for referential actions, but we show that there exists a unique natu-
ral semantics if one is ready to accept (i) the intuitive local semantics of local referential actions,
(ii) the formalization of those and of the local “effect-propagating” rules, and (iii) the well-founded
or stable model semantics from logic programming as “reasonable” global semantics for local
rules.

We first focus on the subset of referential actions for deletions only. We prove the equivalence of
the logic programming semantics and the abstract semantics via a game-theoretic characterization,
which provides additional insight into the meaning of interacting referential actions. In this case
a unique maximal admissible solution exists, computable by a PTIME algorithm.

Second, we investigate the general case—including modifications. We show that in this case
there can be multiple maximal admissible subsets and that all maximal admissible subsets can
be characterized as 3-valued stable models of PRA. We show that for a given set of user re-
quests, in the presence of referential actions of the form ON UPDATE CASCADE, the admissibility
check and the computation of the subsequent database state, and (for non-admissible updates) the
derivation of debugging hints all are in PTIME. Thus, full referential actions can be implemented
efficiently.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—
Data Models; H.2.4 [Database Management]: Systems—Relational Databases; F.4.1 [Math-
ematical Logic and Formal Languages]: Mathematical Logic—Logic and Constraint
Programming

Authors’ addresses: W. May, Institut für Informatik, Universität Freiburg, D-79110 Freiburg,
Germany; email: may@informatik.uni-freiburg.de; B. Ludäscher, San Diego Supercomputer Cen-
ter, UCSD, La Jolla, CA 92093-0505; email: ludaesch@sdsc.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 0362-5915/02/1200-0343 $5.00

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002, Pages 343–397.

344 • W. May and B. Ludäscher

General Terms: Theory, Algorithms

Additional Key Words and Phrases: Database theory, game theory, logic programming, referential
integrity, referential actions, relational databases

1. INTRODUCTION

The notion of integrity constraints and their automated maintenance has been
an important research issue since the early days of relational databases [Codd
1970; Hammer and McLeod 1975; Eswaran 1976]. Integrity constraints in gen-
eral, and referential integrity constraints (rics) in particular, are central con-
cepts of database models and they are frequently used in real world applica-
tions. Many approaches use ECA (event-condition-action)-rules for monitoring
and enforcing integrity constraints: if some event (here, an update) occurs, a
set of actions is executed internally. Rules for integrity maintenance [Ceri and
Widom 1990] have been a starting point for the area of active databases and
their impact is documented by a recent 10-Year Paper Award [Ceri et al. 2000].
Triggers, a special kind of ECA-rules, have been part of database systems from
the beginning [Eswaran 1976] and are included in the SQL2 and SQL3 stan-
dards [ANSI/ISO 1992a, 1999]. However, even today, researchers still complain
about the difficulties in understanding the “subtle behavior” of multiple trig-
gers acting together [Ceri et al. 2000] and the limited progress that has been
made [Cochrane et al. 1996].

For enforcing referential integrity, each referential integrity constraint can
be associated with referential actions (racs) that provide a declarative, local
specification of how to automatically enforce referential integrity, thereby re-
lieving the user from the burden of enumerating all induced updates that arise
from an initial user request UB. While ECA-rules and triggers are procedu-
ral means to enforce integrity by locally reacting on an event, the idea be-
hind referential integrity and referential actions is a global one: the seman-
tics of referential actions is given declaratively in terms of local actions, but
with a global notion of “original state” (before the update) and “final state”
(after the update and all induced changes) in mind.

Date and Darwen [1994] and Date [1990] report the problem of unpredictable
behavior when realizing racs based on SQL triggers, that is, ambiguities in de-
termining the set of updates on the database and the final database state in
certain situations. The solution of the SQL2 standard [ANSI/ISO 1992a] (for
a more complete overview of related work, see Section 6) described a proce-
dural semantics that was subject to anomalies: since referential actions were
executed at the same time as the parent was updated, the outcome depends
on the order in which rows are modified or constraints are applied [Cochrane
et al. 1996]. Markowitz [1994] presents safeness conditions that aim at avoid-
ing ambiguities at the schema level. However, as shown in Reinert [1996], it is
in general undecidable whether a database schema with racs is ambiguous.

Horowitz [1992] proposes a marking algorithm in the style of a fixpoint
computation to define a global semantics that avoids these anomalies. An
extension of this semantics was later incorporated into the SQL3 standard

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 345

[ANSI/ISO 1999]. Nevertheless, the global semantics is still—about 30 years
after the definition of the idea of referential integrity—given by a complex, not
very intuitive procedural algorithm, and only few commercial database systems
support referential actions in their full extent.

In contrast to the majority of the work on this topic, we present a framework
for maintenance of referential integrity based on logic rules. The user’s origi-
nal updates, together with the induced updates, yield a set of updates to the
database that must be applied instead of (only) the original updates. Thus, the
notions of “before” or “after” should be understood in a global, all-or-nothing
manner without considering intermediate states for defining the meaning of
updates.

The logic programming characterization given here demonstrates that the
problem of racs can be solved by specifying local behavior in manageable parts,
and exploiting the fact that the well-known logic programming semantics de-
fine an unambiguous, reasonable1 global semantics of the “puzzle” that re-
sults from the interaction of multiple rics and racs. Moreover, this semantics
can be computed efficiently and thus can be implemented in actual database
systems. In contrast, the process of developing a procedural characterization
as has been done in ANSI/ISO [1992a]; Horowitz [1992]; Markowitz [1994];
Cochrane et al. [1996] and finally ANSI/ISO [1999] required about 20 years, in-
cluding intermediate solutions that have been proven to be incomplete and/or
incorrect.

The Problem. We consider the following problem: Given a database instance
D, a set of user-defined update requests UB, and a set RA of racs, find the set
of updates 1 that (i) is complete with respect to UB, (ii) preserves referential
integrity in the new database state D′, and (iii) reflects the intended meaning
of RA, that is, how referential integrity should be enforced.

UB can be given as a single (set-oriented) statement, or as a sequence of
statements (including activated triggers) if such behavior is supported by the
underlying transaction model. In some examples we construct specific sets UB
in order to illustrate certain interferences. Sometimes, the updates in UB could
be induced via cascading from a single statement, sometimes not. Our investi-
gations not only provide the solution to a practically relevant problem, but also
address the basic research problem of interacting rics and racs—the search for
the above set 1.

In case that no such 1 exists and UB is rejected, we investigate maximal
admissible subsets of UB, and derive hints as to where the problems are located
and how they can possibly be solved. Assume that UB has been collected by
several statements (e.g., a subtransaction) that are intended to do a certain
amount of work. In case that it is rejected, something in the database (or its
specification) is obviously inconsistent with the intended behavior. This points
to problems in the design either of the database schema with its rics and racs,
or in the programming of the subtransaction, or the contents of the database in
the current situation is not as intended. Here, the additional information from

1Dix [1995] formally defines this notion using very general principles.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

346 • W. May and B. Ludäscher

the analysis of the rics and racs can be helpful for identifying the problem:

—the schema may be flawed, that is, there are missing racs (e.g., a forgotten
CASCADE, or a RESTRICT where a NO ACTION would have been correct),

—the definition of the subtransaction is incomplete (e.g., it should generate
some more update requests),

—the schema and the subtransaction are correct, but the database state is
incorrect due to an incomplete definition of an earlier transaction.

Our semantics can give useful hints about where exactly the problem is located,
that is, which rics are violated, and which tuples cause the problem.

Contributions. From a theoretical perspective, we aim at providing a better
understanding of referential actions: We formalize the semantics of referential
integrity constraints and referential actions as a logic program PRA where

(1) the local behavior of an individual rac ra ∈RA is precisely specified, and
can be understood by solely looking at the corresponding rules Pra⊆ PRA,

(2) the (local) interaction between different update requests is precisely defined
by certain other rules,

(3) the global behavior is precisely specified and understandable from the
declarative logic programming semantics. So, we do not define a seman-
tics for racs, but we show that there exists a unique natural semantics if
one is ready to accept the local semantics (1) and (2), and the logic pro-
gramming semantics, that is, the well-founded model and the stable model
as “reasonable” semantics.

The logic-based characterization not only provides a natural semantics for ref-
erential actions, but also leads to efficient procedures for handling referential
actions in actual database systems.

From a practical perspective, we give polynomial time constructive charac-
terizations for the following tasks:

—checking if the set UB is admissible, and
—in case that it is, computing the set of updates to be accomplished (implying

that ON UPDATE CASCADEwhich is currently not supported in most commercial
database systems can be implemented efficiently), and

—in case that it is not, giving hints what updates, rics, racs, and tuples caused
the problem.

The (complex) rule systems are not intended to be used by the designers of
the rics and racs; they encode the local semantic conditions that are naturally
induced by the application domain, and that the application designer has (cor-
rectly) in mind during the development process—so he implicitly relies on a
“correct” global semantics that is ensured by our characterization. The use of
the logic programming characterization in our approach is (i) in case of dele-
tions for deriving a procedural algorithm and proving its correctness, and (ii)
in case of modifications it can serve as a declarative internal implementation
of referential actions (we do not derive a procedural algorithm for this case

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 347

as it would be excessively complex without providing any insight beyond the
logic programming semantics). In both cases, if UB is admissible, the database
silently executes it. Otherwise the problems are presented to the application
developer or the user in terms of tuples and foreign key constraints. Thus, the
user is not bothered with the actual formalization, presented here as a “black
box”—in the same way as he is not required to know about the details of the
algorithm given in Horowitz [1992] and ANSI/ISO [1999].

Audience. Thus, the audience is not the typical SQL application program-
mer from whose point of view the local effects of racs should be enough to
design an application, provided that the underlying DBMS assigns the cor-
rect global semantics to his specification. The relevance of our results for him
is the formal characterization of the “built-in” correctness of lifting his local
specification to the global behavior of the database system: A database that
acts according to the described global semantics implements the application
programmer’s intensions to the largest extent possible, based on his database
schema and referential actions. Then, the programmer can rely on the cor-
rect interaction of referential actions. In case that an application raises non-
admissible updates, something in this specification must be wrong, and the
database system—supported by the semantics—can give hints as to where the
problems come from. Thus, from the point of view of application programmers,
the possible features of an implementation (especially, the conclusions that are
drawn in case of rejected updates) based on our approach can be useful for
improving their database design.

For implementors of database systems, the presented algorithms and meth-
ods for computing the induced set 1 of internal updates could be of interest.
Moreover, the possibility of reacting on rejected updates by deriving hints for
the application designer as to how to cure the problems can be useful for pro-
viding enhanced error reporting messages to the user (see Sections 3.7 and 5).
The logical basis provided by three-valued logic and stable models facilitates
more flexible investigations than the procedural fixed-point algorithms that
are given in the SQL standards (and still only incompletely implemented by
database systems).

The theoretical body of the paper—the details of the logic-based specifica-
tions and the game-theoretic analysis that lead to a declarative, model-theoretic
characterization of the global semantics of referential actions—is directed at
researchers studying database fundamentals and theory. For this audience, the
paper provides (i) an elegant formal and “natural” (i.e., declarative) semantics
of referential actions, and (ii) an application of theoretical concepts to a prac-
tically relevant problem that exhibits several levels of complexity that have to
be handled by appropriate theoretical means.

Scope. Although our models and terminology are based on the relational
model, the underlying issues of a “justification-based,” declarative semantics
as proposed in this paper, are independent of the particular database model
chosen. For example, extensions to the (very limited) notion of referential in-
tegrity in XML (ID/IDREF) have been proposed [Fan and Siméon 2000], or are

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

348 • W. May and B. Ludäscher

included as integral parts of new XML standards, like XML SCHEMA [2000]. It
should be clear that rule-based maintenance of referential integrity in XML
will face the same fundamental issues that are explained and resolved by our
global semantics.

Relationship with earlier publications. We provide a comprehensive and
uniform treatment of our previous work on declarative semantics for referen-
tial actions [Ludäscher et al. 1997; Ludäscher and May 1998]. First prelim-
inary results have been reported in Ludäscher et al. [1996b]. In Ludäscher
et al. [1997], it is shown that for referential actions (racs) with modifications,
it may be intractable to compute all maximal admissible solutions (since the
interactions may lead to an exponential blow up in the number of solutions).
In Ludäscher and May [1998], we restricted the investigation to racs without
modifications—deletions only. This guarantees the existence of a unique op-
timal solution, which can be efficiently computed. The present paper not only
provides a complete and uniform treatment of our previous results, but extends
them in various ways: We present a novel game-theoretic characterization of
racs that gives a more abstract account of referential actions for modifications
and shows that important aspects of this problem (admissibility of UB, com-
putation the actual set of update operations, and deriving debugging hints)
are also in PTIME. Additionally, we explore the practical implications for actual
relational DBMS that result from the theoretical investigations.

Structure of the paper. The paper is organized as follows: In Section 2, we
introduce the basics of referential integrity. Then, we illustrate the problem
of ambiguity that arises from the local specification of referential actions, and
describe the disambiguation strategies of the SQL standard.

In Section 3, we investigate the class of racs without modifications (i.e., dele-
tions only). In Section 3.1, we identify and formalize desirable abstract prop-
erties of updates which lead to the intended (albeit non-constructive) global
semantics of racs. A constructive definition of this global semantics is ob-
tained by formalizing a set of referential actions RA as a logic program PRA
(Section 3.2). The correctness of this characterization is proven via an equiv-
alent game-theoretic characterization (Section 3.3) which allows intelligible
proofs on a less technical level (Section 3.4). An algorithm for computing the
maximal admissible solution is derived from the logic programming charac-
terization (Section 3.5). So far, Section 3 is based on and extends the previous
work [Ludäscher and May 1998]. The correctness of our characterization(s) and
of the derived algorithm with respect to the “intended” ECA-style semantics,
and the relationship with the SQL3 semantics is shown in Section 3.6. There,
we can completely rely on the correctness of the logic programming seman-
tics. The practical consequences of how to debug an application in case a set of
updates is rejected are described in Section 3.7.

In Section 4, we extend the investigations to include modifications. We again
start by giving an abstract characterization (Section 4.1). In Section 4.2 we
associate with every set RA of racs a logic program PRA whose rules capture
the local semantics of modifications with referential actions, and show that the
global declarative semantics of PRA captures the abstract semantics, and thus

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 349

solves the problem in an unambiguous and comprehensive way. In contrast to
the restricted deletions-only case, the characterization cannot be reformulated
in an efficient algorithm since stable model semantics is required for the logi-
cal characterization. Sections 4.1 and 4.2 provide a comprehensive treatment
of the results of the extended abstract [Ludäscher et al. 1997]. An equivalent
game-theoretic characterization that abstracts from some details of the log-
ical characterization is described in Section 4.3. Its details and the proof of
the equivalence of all three characterizations can be found in Section B of the
electronic appendix.

Further results showing the practicability of our approach are developed
in Section 5: we show that the following tasks are computable in PTIME and
derivable from the well-founded model: (i) a check on whether a user request is
admissible, (ii) if so, the computation of the subsequent database state, and (iii)
for non-admissible user requests, an approximation of a maximal admissible
subset, together with debugging hints. Section 6 reviews related work in the
area and concluding remarks can be found in Section 7.

2. REFERENTIAL INTEGRITY

2.1 Notation and Preliminaries

In the following, we introduce the necessary notions of the relational model and
calculus, which provide the basic formalism of our paper. We use a positional
and unnamed relational calculus/Datalog-style notation—unlike the relational
model with named attributes [Abiteboul et al. 1995]. In the unnamed Datalog-
style notation, each argument position of a predicate is (implicitely) associated
with an attribute. We follow this convention and regard attributes to be ordered
according to their argument positions. This is used when correlating foreign
keys with candidate keys.

Definition 2.1 Relational Schema, Keys. A relation schema R(EA) consists
of a relation name R and a sequence of attributes EA= (A1, . . . , An). We iden-
tify attribute names Ai of R with the integers 1, . . . , n. Given EA, a (possibly
reordered) subsequence of EA (e.g., a key) is a vector EK = (Ai1 , . . . , Aik) such that
k≤n and i j1 6= i j2 for j1 6= j2. Note that we have to allow that the attributes in
EK may have a different order than in EA.

A relation R consists of tuples: Tuples of R are denoted by first-order atoms
R(X̄) with an n-ary relation symbol R, and a vector X̄ of variables or constants
from the underlying domain. To emphasize that such a vector is ground, that is,
comprises only constants, we write x̄ instead of X̄ . The projection of tuples X̄ to
an attribute vector EA is denoted by X̄ [EA]: for example, if x̄= (a, b, c), EA= (1, 3),
then x̄[EA]= (a, c).

For a relation schema R with attributes EA, a minimal subset EK of EA whose
values uniquely identify each tuple in R is a candidate key. In general, the
database schema specifies which attribute vectors are keys. A candidate key
R. EK has to satisfy the first-order formula ϕkey for every database instance D:

∀X̄ 1, X̄ 2 (R(X̄ 1) ∧ R(X̄ 2) ∧ X̄ 1[EK]= X̄ 2[EK]→ X̄ 1= X̄ 2). (ϕkey)

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

350 • W. May and B. Ludäscher

Usually, in database design, for every relation one candidate key is selected
to be the primary key of the relation. Since the key values uniquely identify
a tuple of the corresponding parent relation, they can be used in other child
relations for referring to the parent tuple. The respective attributes of the child
relation are then called a foreign key of the child relation.

In this work, we assume that candidate and foreign keys do not contain null
values (considering null values would add much technical effort and problems
that are specific to null values, without giving additional insight).

Example 1 Primary Keys and Foreign Keys. Consider a database that de-
scribes countries and cities as depicted below. There, Name and Code are can-
didate keys of country (we chose Code to be the primary key). The attribute
tuple City(Name, Country) is the primary key of City; the attribute City.Country
references the key Country.Code and thus is a foreign key in City. Similar, Coun-
try(Capital, Code) references a city (identified by City(Name, Country)), thus the
attribute tuple (Capital, Code) is a foreign key of Country (note the change
of the order in the foreign key with respect to the original attribute list of
Country).

Country
1:Name 2:Code 3:Capital 4:Area
Germany D Berlin 356910
Austria A Vienna 83850
Utd. Kingdom GB London 244820
...

...
...

...

City

1:Name 2:Country 3:Pop.
Berlin D 3472009
Munich D 1244676
Vienna A 1583000
London GB 6967500
...

...
...

Definition 2.2 Referential Integrity Constraints. A referential integrity
constraint (ric) is an expression of the form

RC. EF→RP . EK ,

where EF is a foreign key of the child relation RC, referencing a candidate key EK
of the parent relation RP . A ric RC. EF→RP . EK is satisfied by a given database
D, if for every child tuple RC(x̄) with foreign key values x̄[EF], there exists a
tuple RP (ȳ) with matching key value, that is, x̄[EF]= ȳ[EK]. Thus, for a database
instance D, a ric is satisfied if D |=ϕric:

∀X̄ (RC(X̄)→∃Ȳ (RP (Ȳ) ∧ X̄ [EF]= Ȳ [EK])). (ϕric)

A ric is violated by D if it is not satisfied by D.

Example 2 Primary Keys and Foreign Keys (Cont’d). Consider again Ex-
ample 1. There, we have the rics City.Country → Country.Code and Coun-
try.(Capital,Code) → City.(Name,Country) or, in the numerical encoding, City.2
→ Country.2 and Country.(3,2)→ City.(1,2).

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 351

Table I. Operations and Possible Repairs

RP RC

ins del mod ins del mod
propagate ok • • – ok –

restrict ok • • • ok •
wait ok • • • ok •

ok = ric remains satisfied
• = ric may be violated, rac applicable
– = ric may be violated, rac not applicable

For example, changing the code GB into UK in Country would violate both
rics; this can be remedied by propagating the change, that is, applying the
same renaming in City. Changing the capital of Germany to Munich would be
allowed; changing it to Hamburg would violate the second ric (assuming that
Hamburg is not stored in the City table). This could be fixed by either insert-
ing a tuple for (Hamburg, Germany) into City, or by renaming, for example,
Berlin to Hamburg. This shows that propagation of a modification is not always
desired.

Definition 2.3 Updates. Update requests (updates) to a relation R are rep-
resented by auxiliary relations ins R(X̄), del R(X̄), and mod R(M , X̄). Here,
M is a set of pairs i/c meaning that the i-th attribute of R(X̄) should be set to
the constant c. We say that a modification mod R(M1, X̄) subsumes a modifica-
tion mod R(M2, X̄) if M1⊇M2. As a shorthand for mod R([1/d , 3/e], (a, b, c)),
we sometimes write mod R(a/d , b, c/e).

2.2 Referential Actions

Rule-based approaches to referential integrity maintenance are attractive since
they describe how rics should be enforced using “local repairs”: Given a ric
RC. EF→ RP . EK and an update operation on RP or RC, a referential action (rac)
defines a local operation to be applied to RC or RP , respectively. We call this
the locality principle. The problem with the locality principle is that the intu-
itive local repairs can lead to complex, “subtle behavior” [Ceri et al. 2000] with
different, more or less “reasonable” outcome. Thus, an unambiguous global
semantics for these local specifications is needed. As mentioned in the intro-
duction, such semantics have been developed in the history of SQL [ANSI/ISO
1992a; Horowitz 1992; Markowitz 1994; Cochrane et al. 1996] over the years,
including incomplete and incorrect intermediate solutions, now being specified
by a procedural, fixpoint-style algorithm in ANSI/ISO [1999]. In the sequel, we
start with a generic, abstract version of racs which is then related to the SQL
version in Section 2.4.

The updates insert, delete, and modify can be applied to RP or RC, leading to
six basic cases. It is easy to see from the logical implication in (ϕric) above that
insert RP and delete RC cannot introduce a referential integrity violation, while
the other four operations can. There are in general three possible strategies as
to how problems may be resolved; not all of them are applicable for all operations
(cf. Table I):

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

352 • W. May and B. Ludäscher

—propagate: propagate (“cascade”) the update along the current ric by exe-
cuting actions on the other tuple. This means, to propagate an update at
the parent to all children (with respect to the current database state), or to
propagate an update at the child to the parent.

— restrict: reject an update if it may cause a problem: (i) reject an update on
the parent if there exists a child referencing the parent in the current (that
means, at the moment when the update is executed) database state, and (ii)
reject an update on the child if the referenced parent does not exist in the
current state.

—wait: no local action is executed. Instead, the referential integrity constraints
are checked—together with the other integrity constraints—after the end of
a certain unit of work (note that in contrast to propagate and restrict, this can
be seen as a kind of deferred restrict which is already a global strategy).

Each rac consists of the ric which should be maintained, the triggering up-
date on either the parent RP or the child RC, and the “local repair.” We use the
following notation, which should be self-explanatory:2

RC. EF→ RP . EK on {del | ins |mod} {parent | child} {propagate | restrict | wait}

2.3 The Problem of Ambiguity

With this local specification of behavior where each rac triggers an action on
every child tuple (with respect to the respective ric) when an update to a parent
tuple is executed (see, e.g., Dayal [1988]; Eswaran [1976]), some nondetermin-
ism with respect to the outcome of a user operation may occur. If there are
different possible final states of a database instance D (depending on the exe-
cution order of referential actions), D is called ambiguous with respect to the
given referential actions.

There are several types of ambiguities leading to potentially different final
states that are described in the following. In Section 4.2.6, we show that these
ambiguities have a very natural and elegant representation in our framework:
“controversial” updates are undefined in the well-founded model; the different
possible results are characterized by certain stable models.

Example 3 Diamond. Consider the database with racs as depicted in
Figure 1. Solid arcs point from RC to RP , racs are denoted by dashed (propagate)
or double (restrict) arcs. Let UB={Bdel R1(a)} be a user request to delete the
tuple R1(a). Depending on the order of execution of racs, one of two different
final states may be reached:

(1) If execution follows the path R1ÃR3ÃR4, the tuple R3(a, c) cannot be
deleted: Since R4(a, b, c) references R3(a, c), the rac for R4 restricts the
deletion of R3(a, c). This in turn also blocks the deletion of R1(a). The user
request Bdel R1(a) is rejected, and the database state remains unchanged,
that is, D′ = D.

2As can be seen from Table I, not all combinations are meaningful: e.g., it is perfectly reasonable
to propagate (cascade) a modification from the parent to the referencing child, but not vice versa.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 353

Fig. 1. Database with referential actions.

(2) If execution follows the path R1ÃR2ÃR4, the tuples R2(a, b) and R4(a, b, c)
are requested for deletion. Hence, the rac for R4.(1, 3)→ R3.(1, 2) can
assume that R4(a, b, c) is deleted, thus no referencing tuple exists in R4.
Therefore, all deletions can be executed, resulting in a new database state
D′ 6= D.

In the above “diamond”, when choosing the “right” order of execution, the
update is possible, whereas when going the “wrong” way, it is impossible. The
reason is that the restrict action looks at the “current” database, and this de-
pends on the order of execution.

This type of ambiguity can be eliminated by specifying that restrictions are
always evaluated with respect to the original database state instead of the cur-
rent one (as it is done in SQL, see the following section). However, the situation
is more complex for racs of the type wait which have to look at the final database
state. As it turns out, in the presence of modifications, in general, there are still
several “equally justified” final states, each of which has to be considered:

Example 4 Mutex. Consider modifications Bmod R(a/b) and Bmod R
(a/c).3 They are mutually exclusive, since they cannot be executed simulta-
neously. In our logical formalization, both will be undefined in the well-founded
model. Moreover, there will be two stable models, each of which makes one
modify request true, and the other false.

Another type of ambiguity may arise due to “self-attacking” requests:

Example 5 Self-Attack. Assume a database with racs (again a “diamond”
as in Example 3) such thatBmod R([1/b, 2/c](a, a)) triggers mod R1([1/b], (a))
and mod R2([1/c], (a)); mod R1([1/b], (a)) triggers mod R3([1/b], (a)), and
mod R2([1/c], (a)) triggers mod R3([1/c], (a)). Since the original request
Bmod R([1/b, 2/c], (a, a)) causes a conflict at R3, it cannot be executed. On
the other hand, no other request is in conflict with it, so there is no independent

3Here, (as the “B” shows) the modifications come directly from an (already contradictory) user re-
quest. However, the Mutex scenario can also occur indirectly from a non-contradictory user request.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

354 • W. May and B. Ludäscher

justification not to execute it. Thus, the original request “attacks” itself. In our
formalization, there is no total stable model.

Example 6 Virgin Birth. This example shows that not every update which
does not violate any ric is also reasonable with respect to the intended
semantics:

Consider the following database schema: RP (1) and RC(1, 2) with a ric
RC.1→ RP .1 on del parent wait and a database instance RP (a, b), RP (d , e),
RC(a, h). Suppose the user requests UB={Bdel RP (a, b),Bmod RP ([1/a],
(d , e))}. Then, deletion of RP (a, b) is blocked due to the tuple RC(a, h).

On the other hand, one can argue that deleting RP (a, b) is possible, since
after modifying RP (d , e) to RP (a, e), the child tuple RC(a, h) gets a new parent,
so the ric RC.1→ RP .1 remains satisfied.

Here, the semantical connection which is encoded in RC.1→ RP .1 would be
broken: The child tuple RC(a, h) gets a new parent although it is not modified,
and the new parent tuple RP (a, e) “finds” a new child.

In this situation, UB={Bdel RP (a, b),Bmod RP ([1/a], (d , e))} is not feasible
according to our abstract semantics.

The underlying idea for treating this (and related) cases is based on the in-
tended semantics of a database and referential integrity: Each database can
be seen as a reference network (akin to the network database model), inducing
a reference graph. Thus, each set of updates also defines a mapping between
reference graphs. From the semantical point of view, references should only be
created when a child tuple is inserted or modified. Changes on parent tuples are
intended to either preserve references (by updating the child tuple accordingly)
or delete references.

The above examples showed that the local ECA-style characterization con-
sidered in Section 2.2 is ambiguous. This ambiguity is caused by considering the
current database state for applying referential actions. In the following section,
we describe the SQL specification of referential actions that solves this problem
on the specification level, but whose implementation aspects still suffered from
these problems as long as SQL’s trigger functionality was used.

2.4 Referential Actions in SQL and Global Disambiguation Strategies

In SQL [ANSI/ISO 1992a, 1999], referential actions for a referential integrity
constraint RC. EF→ RP . EK are specified with the definition of the child table.
SQL allows referential actions only for modifications at the parent tuple:

{CREATE | ALTER} TABLE RC
· · ·
FOREIGN KEY EF REFERENCES RP EK
[ON UPDATE {CASCADE | RESTRICT | SET NULL | SET DEFAULT | NO ACTION}]
[ON DELETE {CASCADE | RESTRICT | SET NULL | SET DEFAULT | NO ACTION}]
· · ·

Insertions and modifications on child tuples are handled in a straightfor-
ward way by rejecting updates which aim to generate a child tuple whose

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 355

corresponding parent does not exist. In our work, we deliberately exclude
SET NULL/DEFAULT actions, since they are a special case of modifications.

In their abstract specification in SQL, these strategies correspond to the
abstract local strategies described in Section 2.2, solving the problems that
are caused by considering the current database state in our localized ECA-like
characterization:

—CASCADE is the same as our propagate and propagates the update from the
parent to the referencing tuples (evaluation is with respect to the original
database state).

—RESTRICT is similar to restrict, but refers to the database state before the
beginning of evaluation (instead of the current database state at the time
when the update actually occurs): reject an update on the parent if there
exists a child referencing it in the original database state,

—NO ACTION is the same as wait: no local action is executed. Instead, the ref-
erential integrity constraints are checked—together with the other integrity
constraints—after the end of a certain unit of work, thus, referring to the
database state after completing the updates.

Although this semantics is easy to understand on first sight, it is not a direct,
local semantics that can be implemented straightforwardly by ECA-rules or
triggers in the style of Dayal [1988] and Eswaran [1976]. Thus, its detailed
specification in the SQL standard and even more, its realization in actual data-
base systems has proven to be problematic.

Since the final state depends on the updates to be executed, and these may
in turn depend on the final state via NO ACTION, there is a (negative) cyclic
dependency in the global strategy. Thus, any straightforward implementation
via ECA-rules/triggers is bound to fail. On the other hand, logic programming
semantics provide a natural solution to this kind of problem and will be used
in Sections 3 and 4 for an unambiguous, elegant characterization of the global
semantics of racs.

The SQL2 standard [ANSI/ISO 1992a]—where RESTRICT did not yet exist—
used the “localized,” immediate specification for cascading updates: the for-
eign key values in all referencing tuples were immediately updated when
the parent was updated. Date and Darwen [1994] and Date [1990] already
report the problem of unpredictable behavior, that is, that the outcome de-
pends on the order in which tuples are updated. The same characterization
was given in the upcoming SQL3 drafts (e.g., the 1991 version [ANSI/ISO
1991] cited by Horowitz [1992] and ANSI/ISO [1994]). Concerning these spec-
ifications, Horowitz [1992] and Cochrane et al. [1996] complain about un-
predictable behavior since the outcome depends on the order in which rows
are modified or constraints are applied [Cochrane et al. 1996]. In Horowitz
[1992], a marking algorithm for a runtime execution model for referential in-
tegrity maintenance is presented for unary keys that does not exhibit these
problems.

Markowitz [1994] presents safeness conditions which aim at avoiding ambi-
guities at the schema level. However, as shown in Reinert [1996], it is in general

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

356 • W. May and B. Ludäscher

undecidable whether a database schema with racs is ambiguous (if D and UB
are given, the problem becomes decidable).

This was the state-of-the-art when we started to investigate a logic-based
specification of referential actions in order to provide an unambiguous, natural,
and “correct” semantics that mirrors the SQL intension described above for
CASCADE, RESTRICT, and NO ACTION.

In the meantime, the SQL3 standard [ANSI/ISO 1999] solved the problem
of ambiguous semantics of racs by fixing an operational semantics using a
marking algorithm based on Horowitz [1992]:

—effectively perform integrity checking at the end of the statement [includes
NO ACTION],

—effectively determine and fix matching rows [concerning keys/foreign keys]
at the beginning of the statement [(“static matching”)],

—effectively determine update values at the beginning of the statement (in-
cludes marking tuples that will be deleted),

—rollback any attempt to update the same data item [in Horowitz [1992], single
attributes] to representationally different values in the same statement,

—perform an update referential action iff the referenced column [Horowitz
[1992] was restricted to single-column keys] is updated to a representation-
ally different value,

—effectively perform all deletes at the end of the statement,
—perform a delete referential action if and only if the referenced row has not

already been marked for deletion.

Here, “effectively” means that this description specifies the intended semantics;
nevertheless, actual implementations can perform actions “on the fly”—if it is
guaranteed that this does not violate the above semantics. The actual specifi-
cation is given in terms of a complex encoding into BEFORE triggers whose inter-
actions are hard to understand. The algorithm associates a global semantics
with referential actions that will be shown to be equivalent to ours. Horowitz
[1992] proves correctness and termination of the algorithm.

Such a procedural specification in form of an algorithm deviates far from the
localized, ECA-style specification “ON event action” above, and gives no declar-
ative, easily accessible, semantics of referential actions. Our work shows that
the ECA-style specification has an immediate, declarative, “natural” global se-
mantics that is given by the logic programming meta-semantics of rule-based
specifications—and that the procedural semantics (developed over about 20
years) coincides with that semantics.

Moreover, in case a set of updates causes referential problems, the trans-
action is simply aborted. Often in these cases, most of the requested updates
are unproblematic, and only one or two are not allowed. Thus, it can be useful
to return hints on how to prepare a revised request that realizes the intended
changes and is accepted by the system, or for debugging the application. We
show how to derive such hints from our semantics, and we also sketch how it can
be used for deriving suggestions how to correct the behavior of an application
in that case.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 357

In Sections 3 (Deletions) and 4 (Modifications), we show how to characterize
and qualify the induced semantic problems using different (logical and game-
theoretic) characterizations of racs.

3. SEMANTICS OF REFERENTIAL ACTIONS WITH DELETIONS

We have shown that in order to avoid ambiguities and nondeterminism as in
Example 3, it is necessary to specify the intended global semantics of racs. In
this section, we investigate rics RC. EF→ RP . EK with corresponding racs of the
form

RC. EF→ RP . EK ON DELETE {CASCADE | RESTRICT | NO ACTION}
according to the above global strategies in the SQL sense. For these we present
an efficient (PTIME) algorithm that computes the unique solution.

First, we define an abstract, non-constructive semantics that formalizes the
SQL notions described in Section 2.4. This semantics then serves as the basis for
a notion of correctness. Next, we show how to translate a set of racs into a logic
program, whose declarative semantics then provides a constructive definition.
An equivalent game-theoretic characterization is developed which will be used
to prove the correctness of the logic programming semantics with respect to the
abstract semantics.

3.1 Abstract Semantics

Let D be a database represented as a set of ground atoms, RA a set of racs,
and UB={Bdel R1(x̄1), . . . ,Bdel Rn(x̄n)} a set of (external) user delete requests
which are passed to the system. D and RA define three graphs DC (ON DELETE
CASCADE), DR (ON DELETE RESTRICT), and DN (ON DELETE NO ACTION) corre-
sponding to the different types of references:

DC := {(RC(x̄), RP (ȳ)) ∈ D × D |
RC. EF→ RP . EK ON DELETE CASCADE ∈ RA and x̄[EF]= ȳ[EK]},

DR and DN are defined analogously. DC∗ denotes the reflexive transitive clo-
sure of DC. Note that the graphs describe potential interactions due to racs,
independent of the given user requests UB.

Definition 3.1 Abstract Properties. Given RA, D, and UB as above, a set
1={del R1(x̄1), . . . , del Rn(x̄n)} of delete requests is called

— founded, if for all del R(x̄)∈1, there is a Bdel R ′(x̄ ′)∈UB s.t. (R(x̄),
R ′(x̄ ′))∈DC∗ (note that here, we need reflexivity for covering R ′(x̄ ′) itself),

—complete, if del RP (ȳ)∈1 and (RC(x̄), RP (ȳ))∈DC implies del RC(x̄)∈1,
— feasible, if (i) (RC(x̄), RP (ȳ))∈DR implies del RP (ȳ) /∈ 1, and

(ii) del RP (ȳ)∈1 and (RC(x̄), RP (ȳ))∈DN implies del RC(x̄)∈1,
—admissible, if it is founded, complete, and feasible.

(for individual updates, we also write “ del R(x̄) is admissible” instead of
“{del R(x̄)} is admissible”; analogous for “founded.”)

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

358 • W. May and B. Ludäscher

Foundedness guarantees that all deletions are “justified” by some user request,
completeness guarantees that no cascading deletions are “forgotten” (see the
next lemma), and feasibility ensures that RESTRICT/NO ACTION racs are “obeyed.”

For given external updates, the induced internal updates are characterized
by the transitive closure of DC:

Definition 3.2 Induced Updates. For given RA, D, UB, and U ⊆UB

1(U) := {del R(x̄) | there is a Bdel R ′(ȳ)∈U s.t. (R(x̄), R ′(ȳ))∈DC∗}
is called the set of induced updates of U .

LEMMA 3.3 INDUCED UPDATES. For given RA, D, UB, and U ⊆UB,1(U) is the
least set4 1 which contains the updates given by U and is complete.

PROOF. DC∗ is the reflexive, transitive closure ofDC. Hence1(U) contains all
user requested updates and all cascaded updates (completeness) and nothing
else (least set).

Definition 3.4 Admissibility and Application of UB. Let RA, D, and UB be
given. U ⊆UB is admissible if 1(U) is admissible, and maximal admissible if
there is no other admissible U ′, such that U (U ′ ⊆UB. For a set 1 of user
requests, D′ = D±1 denotes the database obtained by applying 1 to D.

This definition provides a precise and elegant characterization of the intended
semantics. However, it is non-constructive in the sense that it does not lend
itself to a computation of the intended semantics.
From the above fundamental definitions, we derive the following:

PROPOSITION 3.5 CORRECTNESS.

a) If U ⊆UB, then 1(U) is founded and complete.
b) If 1 is complete and feasible, then D′ := D±1(U) satisfies all rics.

PROOF. a) 1(U) is defined as the least complete set. Since U ⊆UB, 1(U) is
founded.
b) Completeness guarantees that all rics labeled with ON DELETE CASCADE
in RA are satisfied, feasibility guarantees that all rics labeled with
ON DELETE RESTRICT/NO ACTION are satisfied.

PROPOSITION 3.6 UNIQUENESS. For given RA, D, and UB,

(i) if U1, U2⊆UB are admissible, then U1 ∪U2 is also admissible,
(ii) thus, there is exactly one maximal admissible Umax⊆UB.

PROOF. (i) is obvious. (ii) follows from (i) together with the fact that ∅ is al-
ways admissible. Thus, the union of all admissible subsets of UB yields Umax.

Note that for an admissible set U , not necessarily each subset is also admissible
(there can be updates that “need” each other to be feasible).

4i.e., there is no proper subset that satiesfies the required properties, and it is the only minimal
set.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 359

3.2 Logic Programming Characterization

We show how a set RA of racs can be translated into a logic program PRA whose
rules specify their local behavior. The advantage of this logical formalization is
that the declarative semantics of PRA defines a precise global semantics. More-
over, by choosing an appropriate evaluation strategy, this logical specification
can be executed as well, yielding the desired constructive semantics.

Unblocked requests. The following rule derives for every user request
Bdel R(x̄)∈UB an internal delete request req del R(x̄), provided there is no
blocking blk del R(x̄).

req del R(X̄) ← Bdel R(X̄), R(X̄), ¬ blk del R(X̄). (I)

Referential actions. Each referential action is specified by an appropriate
rule:

— RC. EF→ RP . EK ON DELETE CASCADE is encoded into two rules: the first one
propagates internal delete requests downwards from the parent to the child:

req del RC(X̄)← req del RP (Ȳ), RC(X̄), X̄ [EF]= Ȳ [EK]. (DC1)

Additionally, blockings are propagated upwards, that is, when the deletion
of a child is blocked, the deletion of the referenced parent is also blocked:

blk del RP (Ȳ)← RP (Ȳ), blk del RC(X̄), X̄ [EF]= Ȳ [EK]. (DC2)

Note that the atom RP (Ȳ) can be added to the body of (DC1), and RC(X̄) can
be added to the body of (DC2), but are redundant since delete requests and
blockings are only derived for tuples that actually exist.

— RC. EF→ RP . EK ON DELETE RESTRICT blocks the deletion of a parent tuple if
there is a corresponding child tuple:

blk del RP (Ȳ)← RP (Ȳ), RC(X̄), X̄ [EF]= Ȳ [EK]. (DR)

— RC. EF→ RP . EK ON DELETE NO ACTION blocks the deletion of a parent tuple if
there is a corresponding child tuple that is not requested for deletion:

blk del RP (Ȳ)← RP (Ȳ), RC(X̄), ¬ req del RC(X̄), X̄ [EF]= Ȳ [EK]. (DN)

Note that (i) the local semantics of each individual rac is precisely specified by
one or two logic rules, and (ii) PRA is in general not stratified due to the negative
cyclic dependency req del ¬Ã blk del ¬Ã req del. Therefore, the global semantics
is not necessarily unique. We first consider a “skeptical” global semantics: the
unique well-founded model of the generated logic program. The more “brave”
stable models are considered in Section 3.4.2.

First, we add two rules that define an auxiliary relation pot del, which con-
tains all tuples that are potentially deleted when executing UB and cascading
deletions. This relation is not used for checking the admissibility of UB, but,
as shown in Section 3.7, is useful to locate the problems in case UB is not
admissible:

pot del R(X̄)←Bdel R(X̄), R(X̄).
for each RC. EF→ RP . EK ON DELETE CASCADE (analogous to (DC1)):
pot del RC(X̄)← pot del RP (Ȳ), RC(X̄), X̄ [EF]= Ȳ [EK].

(P)

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

360 • W. May and B. Ludäscher

(note that the atom pot del RP (Ȳ) can be added to the body of (DC2), (DR), and
(DN) as an optimization.)
We have the following simple lemma:

LEMMA 3.7. Given a database D and a set of user requests UB, for the mini-
mal modelM :=M({P}, D, UB) of rule (P) alone,

Upot :={del R(x̄) |M(pot del R(x̄))= true}
= {del R(x̄) | there is a Bdel R ′(x̄ ′)∈UB and (R(x̄), R ′(x̄ ′))∈DC∗}=1(UB)

contains exactly the deletions that are obtained when cascading all deletions
in UB.

Well-Founded Semantics. The well-founded model [Van Gelder et al. 1991]
is widely accepted as a (skeptical) declarative semantics for logic programs
containing negation. Given a database D and a set of user requests UB, the
well-founded modelW :=W(PRA, D, UB) assigns truth-values true and false to
all uncontroversial update requests—those that are true or false under any rea-
sonable semantics of PRA [Dix 1995]. W assigns a third truth value undefined
to atoms whose truth cannot be determined using a “well-founded” argumen-
tation. The atoms that are undefined inW are controversial due to some kind
of ambiguity (cf. Section 2.3). In Section 3.4.1, we will prove the following:

THEOREM 3.8 CORRECTNESS.
The logic programming characterization is correct with respect to the abstract
semantics (for an atom at, Let W(at) denote the value of at in the model W :=
W(PRA, D, UB)):

—Ut := {Bdel R(x̄)∈UB |W(req del R(x̄))= true} and
Ut,u := {Bdel R(x̄)∈UB |W(req del R(x̄))∈ {true, undef }} are admissible,

—Ut,u=Umax, and
—1(Umax)=1(Ut,u)={ del R(x̄) |W(req del R(x̄))∈ {true, undef }}.

COROLLARY 3.9. In case that UB is admissible, we have UB=Umax and
Upot =1(UB).

Often, even if not all requested updates can be accomplished, a subset of them
is admissible. Thus, the information as to which tuple or update really causes
problems is valuable for preparing a refined update that realizes the intended
changes and is acceptable. In Section 3.7, we will systematically investigate
the information that is available in case UB is not admissible.

Example 7. Consider the database depicted in Figure 2 (ignoring R0 for
now) and the user request UB={Bdel R1(a),Bdel R1(b)}. Here, del R1(b) is
not admissible since it is blocked by R5(b). The other request, del R1(a), can
be executed without violating any ric by deleting R1(a), R2(a, x), R3(a, y), and
R4(a, x, y).

The well-founded semantics reflects the different status of the single updates:
Given the user request UBa ={Bdel R1(a)}, the delete requests req del for

R1(a), R2(a, x), R3(a, y), R4(a, x, y), as well as the blockings blk del for R1(a)
and R3(a, y) will be undefined in the well-founded model.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 361

Fig. 2. Extended database with modified racs.

For the user request UBb ={Bdel R1(b)}, blk del is true for R1(b) due to the
referencing tuple R5(b). Thus, req del R1(b) is false, and del R1(b) is not ad-
missible; hence there are no cascaded delete requests. Due to the referencing
tuple R4(b, x, y), which cannot be deleted in this case, blk del R3(b, y) is also
true.

Note that the extended set U ′B={Bdel R1(a),Bdel R1(b),Bdel R5(b)} is a
candidate for a refined request which accomplishes the deletion of R1(a) and
R1(b).

W contains some ambiguities that can be interpreted constructively as de-
grees of freedom: The blockings and deletions induced by UB={Bdel R1(a)}
in Example 7 are undefined due to the dependency req del ¬Ã blk del ¬Ã req del.
This may be used to define different global policies by giving priority either to
deletions or blockings, as will be done in Section 3.4.2.

3.3 Game-Theoretic Characterization

The following game-theoretic formalization provides an elegant characteriza-
tion of racs which yields additional insight into the well-founded model of PRA
and the intuitive meaning of racs.

The game is played with a pebble by two players, I (the “Deleter”) and II
(the “Spoiler”), who argue whether a tuple may be deleted. The players move
alternately in rounds; each round consists of two moves. A player who cannot
move loses. The set of positions of the game is D ∪UB∪{restricted}. The possible
moves of I and II are defined below. Note that I moves from D to UB, while II
moves from UB to D∪{restricted}. Initially, the pebble is placed on some tuple in
D (or UB) and I (or II) starts to move. If II begins, the first round only consists
of the move by II.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

362 • W. May and B. Ludäscher

Fig. 3. Possible moves.

The possible moves are illustrated in Figure 3: By moving the pebble from
R(x̄)∈ D to some Bdel R ′(x̄ ′)∈UB, which cascades down to R(x̄), I claims that
the deletion of R(x̄) is “justified” (i.e., founded) by Bdel R ′(x̄ ′). Conversely, II
claims by her moves that del R ′(x̄ ′) is not feasible. II can use two different
arguments: Assume that the deletion of R ′(x̄ ′) cascades down to some tuple
RP (x̄P). First, if the deletion of RP (x̄P) is restricted by a referencing child tuple
RC(x̄C), then II may force I into a lost position by moving to restricted (since I
cannot move from there). Second, assume that the deletion of R ′(x̄ ′) cascades
down to some other tuple R ′P (x̄ ′P). Then, II can move to a child tuple R ′C(x̄ ′C),
which references R ′P (x̄ ′P) with a NO ACTION rac. With this move, II claims that
this reference to R ′P (x̄ ′P) will remain in the database, so R ′P (x̄ ′P) and, as a con-
sequence, R ′(x̄ ′) cannot be deleted. In this case, I may start a new round of
the game by finding a justification to delete the referencing child R ′C(x̄ ′C). More
precisely:
Player I can move from R(x̄) to Bdel R ′(x̄ ′)∈UB if (R(x̄), R ′(x̄ ′))∈DC∗.
Player II can move from Bdel R ′(x̄ ′)r to restricted if there are RP (x̄P) and RC(x̄C) such that (RP (x̄P), R ′(x̄ ′))∈DC∗

and (RC(x̄C), RP (x̄P))∈DR.r to R ′C(x̄ ′C), if (R ′P (x̄ ′P), R ′(x̄ ′))∈DC∗ and (R ′C(x̄ ′C), R ′P (x̄ ′P))∈DN .

LEMMA 3.10 CLAIMS OF I AND II.

(1) If I can move from R(x̄) to Bdel R ′(x̄ ′), then deletion of R ′(x̄ ′) is founded by
UB and induces the deletion of R(x̄).

(2) If II can move from Bdel R(x̄) to restricted, then deletion of R(x̄) is not
feasible due to the existence of a referencing tuple.

(3) If II can move from Bdel R(x̄) to R ′(x̄ ′), then deletion of R(x̄) is admissible
only if R ′(x̄ ′) is also deleted.

PROOF. (1) The move of I implies that (R(x̄), R ′(x̄ ′))∈DC∗.
The move of II means that either

(2) there are RP (x̄P), RC(x̄C) such that (RP (x̄P), R(x̄))∈DC∗ and (RC(x̄C),
RP (x̄P))∈DR. Then, deletion of R(x̄) induces the deletion of RP (x̄P), but
the deletion of RP (x̄P) is restricted by RC(x̄C), or

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 363

(3) (R ′C(x̄ ′C), R(x̄))∈DN ◦DC∗, that is, there is a R ′P (x̄ ′P) such that (R ′P (x̄ ′P),
R(x̄))∈DC∗ and (R ′C(x̄ ′C), R ′P (x̄ ′P))∈DN . Hence, by (1), deletion of R(x̄) in-
duces deletion of R ′P (x̄ ′P), which is only allowed if R ′C(x̄ ′C) is also deleted.5

LEMMA 3.11. The moves are correlated with the logical specification as
follows:

—The moves of I correspond to rule (DC1): I can move from R(x̄) to Bdel R ′(x̄ ′)
if, given the fact req del R ′(x̄ ′), req del R(x̄) can be derived using (DC1).

—The moves by II are reflected by the rules (DC2) and (DR)/(DN):
—II can move from Bdel R(x̄) to restricted if blk del R(x̄) is derivable using

(DR) and (DC2) only, or
—II can move fromBdel R(x̄) to R ′C(x̄ ′C) if blk del R(x̄) is derivable using (DC2)

and an instance of (DN) if req del R ′C(x̄ ′C) is assumed to be false.
—The negative dependencies in (I), req delÃ ¬blk del, and (DN), blk delÃ
¬req del, mirror the alternation of moves between I and II, respectively.

Definition 3.12. A position R(x̄)∈ D is won (for I), if I can win the game
starting from R(x̄) no matter how II moves. If p is won (lost) for a player, p is
lost (won) for the opponent. A position which is neither lost nor won is drawn. In
the sequel, “is won/lost” stands for “is won/lost for I.” An updateBdel R(x̄)∈UB
is won if R(x̄)∈ D is won.

Drawn positions can be viewed as ambiguous situations. For the game above,
this means that neither can I prove in finitely many moves that R(x̄) has to be
deleted, nor can II prove that it is infeasible to delete R(x̄).

Example 8. Consider again Figure 2 with UB={Bdel R1(a),Bdel R1(b)}.
From each of the “a”-tuples R1(a), R2(a, x), R3(a, y), R4(a, x, y), I can move
to Bdel R1(a), while II can move from Bdel R1(a) to R4(a, x, y). Thus, after I
has started the game moving to Bdel R1(a), II will answer with the move to
R4(a, x, y), so I moves back to Bdel R1(a) again, and so forth. Hence the game
is drawn for each of the “a”-tuples.

In contrast, for the “b”-tuples, there is an additional move from Bdel R1(b)
to R5(b) for II, who now has a winning strategy: by moving to R5(b), there is no
possible answer for I, so I loses.

THEOREM 3.13 GAME SEMANTICS. For every tuple R(x̄)∈ D:

—R(x̄) is lost ⇔ it is not possible with the given set of user delete requests to
delete R(x̄) without violating a ric.

—R(x̄) is won or drawn ⇔ simultaneous execution of all user delete requests
Bdel R ′(x̄ ′) that are won or drawn does not violate any ric and deletes R(x̄).

PROOF. Note that if R(x̄) is won or drawn, then there is no RC(x̄C)∈ D such
that (RC(x̄C), R(x̄))∈DR (otherwise, if I moves from R(x̄) to some Bdel Rd (x̄d),
II moves to restricted since (RC(x̄C), Rd (x̄d))∈DR ◦DC∗ and wins). Thus, no ric
of the form ON DELETE RESTRICT is violated when deleting a won or drawn tuple.

5DN ◦DC∗ := {(x, y) | ∃z : (x, z)∈DN and (z, y)∈DC∗}.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

364 • W. May and B. Ludäscher

“⇒”: A tuple R(x̄) is lost in n rounds if either

—(n= 0) there is no user request Bdel Rd (x̄d) such that (R(x̄), Rd (x̄d))∈DC∗,
i.e., the deletion of R(x̄) is unfounded, or

—(n> 0) for every user request Bdel Rd (x̄d) such that (R(x̄), Rd (x̄d))∈DC∗,
Bdel Rd (x̄d) is lost in ≤n rounds, that is, either II can move fromBdel Rd (x̄d)
to restricted (in this case, by Lemma 3.10(2), Bdel Rd (x̄d) is not feasible), or
there is some tuple R ′(x̄ ′) such as II can move fromBdel Rd (x̄d) to R ′(x̄ ′) and
which is lost in ≤ n − 1 rounds. By induction hypothesis, R ′(x̄ ′) cannot be
deleted, but by Lemma 3.10(3), it must be deleted if R(x̄) is deleted. Thus,
R(x̄) cannot be deleted.

“⇐”: If R(x̄) cannot be deleted without violating a ric, then either,

—deletion of R(x̄) is unfounded—therefore it is lost immediately since I cannot
move,

—or deletion of R(x̄) is founded, but none of its founding user delete requests
Bdel R ′(x̄ ′) is executable. This can be either due to aDC∗ ◦DR chain to a tuple
R ′C(x̄ ′C)—then Bdel R ′(x̄ ′) is lost in one round since II moves to restricted—
or due to a DC∗ ◦ DN chain to a tuple R ′C(x̄ ′C) that must be deleted, but
cannot. Then, II can move there and will win (the detailed proof would argue
with induction over the length of the proof why Bdel R ′(x̄ ′) is not executable,
analogous to the proof of “⇒”).

—The second statement follows from the first by contraposition.

The correspondence between the game semantics and the abstract semantics
yields the following:

COROLLARY 3.14 CORRECTNESS. The game-theoretic characterization is cor-
rect with respect to the abstract semantics:

—Uw := {u∈UB | u is won} and Uw,d := {u∈UB | u is won or drawn} are ad-
missible,

—Uw,d =Umax,
—1(Uw)={del R(x̄) | R(x̄) is won} and 1(Umax)=1(Uw,d)={del R(x̄) | R(x̄) is

won or drawn}.

3.4 Equivalence and Correctness

We show that the logical characterization is equivalent to the game-theoretic
one. Thus, the correctness of the logical characterization reduces to the correct-
ness of the game-theoretic one proven above.

3.4.1 Well-Founded Semantics. The alternating fixpoint computation
(AFP) is a method for computing the well-founded model based on successive
rounds [Van Gelder 1993]. This characterization finally leads to an algorithm for
determining the maximal admissible subset of a given set UB of user requests.
We introduce the AFP by using Statelog, a state-oriented extension of Datalog
which allows the integration of active and deductive rules [Ludäscher et al.
1996a; Ludäscher 1998]. It can be seen as a restricted class of logic programs

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 365

where every intensional predicate contains an additional distinguished argu-
ment for state terms of the form [S+ k]. EDB predicates and built-in predicates
are state-independent. Here, S is the distinguished state variable ranging over
IN0. Statelog rules are of the form

[S + k0] H(X̄) ← [S + k1] B1(X̄ 1), . . . , [S + kn] Bn(X̄ n),

where the head H(X̄) is an atom, Bi(X̄ i) are atoms or negated atoms, and
k0 ≥ ki, for all i ∈ {1, . . . , n}. A rule is local if k0= ki for all i ∈ {1, . . . , n}.

In Statelog, the AFP is obtained by attaching state terms to the program P
such that all positive IDB literals refer to [S+ 1] and all negative IDB literals
refer to [S]. The resulting program PAFP computes the alternating fixpoint of
P :

[S+ 1] req del R(X̄)← Bdel R(X̄), R(X̄), [S] ¬ blk del R(X̄). (I A)

% RC. EF→ RP . EK ON DELETE CASCADE :
[S+ 1] req del RC(X̄) ← RC(X̄), X̄ [EF]= Ȳ [EK], [S+ 1] req del RP (Ȳ). (DCA

1)
[S+ 1] blk del RP (Ȳ)← RP (Ȳ), X̄ [EF]= Ȳ [EK], [S+ 1] blk del RC(X̄). (DCA

2)

% RC. EF→ RP . EK ON DELETE RESTRICT :
[S+ 1] blk del RP (Ȳ)← RP (Ȳ), RC(X̄), X̄ [EF]= Ȳ [EK]. (DR A)

% RC. EF→ RP . EK ON DELETE NOACTION : (DN A)
[S+ 1] blk del RP (Ȳ)← RP (Ȳ), RC(X̄), X̄ [EF]= Ȳ [EK], [S] ¬req del RC(X̄).

PAFP is locally stratified, thus there is a unique perfect model [Przymusinski
1988] MAFP of PAFP ∪ D ∪ UB. MAFP mimics the alternating fixpoint compu-
tation ofW: even-numbered states [2n] correspond to the increasing sequence
of underestimates of true atoms, while odd-numbered states [2n+ 1] represent
the decreasing sequence of overestimates of true or undefined atoms. The final
state n f of the computation is reached ifM[2n f]=M[2n f + 2]. Then, the truth
value of atoms A inW can be determined fromMAFP as follows:

W(A) =
 true ifMAFP |= [2n f] A,

undef ifMAFP |= [2n f] ¬A ∧ [2n f + 1] A,
false ifMAFP |= [2n f + 1] ¬A .

THEOREM 3.15 EQUIVALENCE. The well-founded model is equivalent to the
game-theoretic characterization:

—R(x̄) is won ⇔ W(req del R(x̄))= true.
—R(x̄) is lost ⇔ W(req del R(x̄))= false.
—R(x̄) is drawn ⇔ W(req del R(x̄))=undef.

PROOF. The proof is based on a lemma which follows from the corre-
spondence between moves and reference chains that has been established in
Lemma 3.11 (using the same argumentation as in the proof of Theorem 3.13):

LEMMA 3.16.

— R(x̄) is won (for I) within ≤n rounds iffMAF P |= [2n] req del R(x̄).
— R(x̄) is lost within ≤n rounds iffMAF P |= [2n+ 1] ¬ req del R(x̄).

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

366 • W. May and B. Ludäscher

From this, Theorem 3.15 follows immediately: The nth overestimate excludes
deletions provably non-admissible in n rounds, whereas the nth underestimate
contains all deletions which can be proven in n rounds. Thus, there is an n such
thatMAFP |= [2n] req del R(x̄) iff WRA(req del R(x̄))= true, and there is an n
such thatMAFP |= [2n+ 1] ¬req del R(x̄) iffW(req del R(x̄))= false.

A position R(x̄) is drawn if for every user request Bdel R ′(x̄ ′) that I uses for
deleting it, II can find a witness against Bdel R ′(x̄ ′), and conversely, I claims to
be able to delete the witness. Thus, no player has a “well-founded” proof for or
against deleting those tuples (caused by NO ACTION links that introduce cycles
into the argumentation).

From Corollary 3.14 and Theorem 3.15, the correctness of the logic program-
ming formalization (and thus the proof of Theorem 3.8) follows. In the fol-
lowing section, it is shown that the maximal admissible subset Umax⊆UB (by
Theorem 3.8, Umax=Ut,u) also corresponds to a total (i.e., not involving atoms
with an undefined truth value) semantics of P .

3.4.2 Stable Models. The undefined atoms in the well-founded model leave
some scope for further interpretation. This “freedom of choice” can often be used
to obtain alternative solutions, given by stable models:

Definition 3.17 Stable Model [Gelfond and Lifschitz 1988]. Let MP denote
the minimal model of a positive program P . Given a ground-instantiated pro-
gram P and an interpretation I of the atoms of P , P/I denotes the reduction of
P with respect to I—the program obtained by replacing every negative literal
of P by its truth-value with respect to I . An interpretation I is a stable model
if MP/I = I .

Every stable model S extends the well-founded model W with respect to true
and false atoms: S true⊇W true, S false⊇W false. However, not every program has a
two-valued stable model (e.g., the “self attack” in Example 5).

THEOREM 3.18. Let SRA be defined by

SRA := D ∪UB ∪ {req del R(x̄) |W(req del R(x̄))∈ {true, undef }}
∪ {blk del R(x̄) |W(blk del R(x̄))= true} .

Then, SRA is a total stable model of PRA ∪ D ∪UB.

SRA is the “maximal” stable model in the sense that it contains all delete re-
quests that are true in some stable model. Consequently, deletions have priority
over blockings (cf. Example 7). For the diamond example, there are two stable
models:

Example 9 Diamond—Stable Models. Consider Example 3 and the “dia-
mond” in Figure 1. Assume the rac R4.(1, 3)→ R3.(1, 2) ON DELETE RESTRICT
to be replaced by R4.(1, 3)→ R3.(1, 2) ON DELETE NO ACTION. From the rules of
PRA it can be derived that the deletion of R1(a) is blocked (via R4Ã R3Ã R1)
if R4(a, b, c) cannot be deleted. R4(a, b, c) can be deleted (via R1Ã R2Ã R4) if
the deletion of R1(a) is not blocked. Hence there is a negative cycle of the form

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 367

{block ← ¬exec, exec ← ¬block}. Setting all requests in the diamond to true
(as done in SRA) or all to false results each in a stable model.

THEOREM 3.19 CORRECTNESS.

—Let S be a stable model of PRA ∪ D ∪ UB. Then US := {Bdel R(x̄)∈
UB | S |= req del R(x̄)} is admissible and 1(US)=1S :={del R(x̄) | S |=
req del R(x̄)}.

—Umax=USRA and 1(Umax)=1SRA.

PROOF. Foundedness: follows directly from the fact that S is stable (an un-
founded req del R(x̄) would not be stable).

Completeness: For every ric RC. EF→ RP . EK ON DELETE CASCADE, if S |= RC(x̄) ∧
req del RP (ȳ) ∧ x̄[EF]= ȳ[EK], then, due to (DC1), S =MP/S |= req del RC(x̄).

Feasibility: Suppose a ric RC. EF→ RP . EK ON DELETE RESTRICT or RC. EF→
RP . EK ON DELETE NO ACTION would be violated. Then, S |= req del RP (ȳ)
∧ RC(x̄)∧ x̄[EF]= ȳ[EK] (for NO ACTION also S |=¬req del RC(x̄)), and thus be-
cause of (DR) or (DN), respectively, S =MP/S |= blk del RP (ȳ). Thus, by
(DC2), for the founding delete request del R(z̄), S |= blk del R(z̄), and by (I),
S |=¬req del R(z̄), which is a contradiction to the assumption that del R(z̄)
is the founding delete request. 1S ⊆1(US) follows from foundedness, and
1S ⊇1(US) follows from completeness.

3.5 A Procedural Translation

The declarative semantics of the well-founded model is translated into a more
“algorithmic” implementation in Statelog by “cutting” the cyclic dependency at
one of the possible points—at the rules (I) and (DN) (cf. the AFP characteriza-
tion). From Theorem 3.15 and Corollary 3.14, the undefined deletions (which
are drawn in the game-theoretic characterization) are also admissible (Theo-
rem 3.19). Cutting in (DN) implements the definition of SRA (giving priority
to deletions over blockings), corresponding to the observation that SRA takes
exactly the blockings from the underestimate and the internal delete requests
from the overestimate.
The rules (DC1), (DC2), and (DR) are already local rules:

[S] req del RC(X̄)← RC(X̄), X̄ [EF]= Ȳ [EK], [S] req del RP (Ȳ). (DCS
1)

[S] blk del RP (Ȳ)← RP (Ȳ), X̄ [EF]= Ȳ [EK], [S] blk del RC(X̄). (DCS
2)

[S] blk del RP (Ȳ)← RP (Ȳ), RC(X̄), X̄ [EF]= Ȳ [EK]. (DRS)

The rule (I) is also translated into a local rule:

[S] req del R(X̄)← Bdel R(X̄), R(X̄), [S]¬ blk del R(X̄). (I S)

(DN) incorporates the state leap and is augmented to a progressive rule (DNS):

[S+ 1] blk del RP (Ȳ)← RP (Ȳ), RC(X̄), X̄ [EF]= Ȳ [EK], [S] ¬req del RC(X̄).

In the following, we refer to this program as PS .
PS is state-stratified, which implies that it is locally stratified, so there

is a unique perfect model MS of PS ∪ D ∪ UB. The state-stratification

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

368 • W. May and B. Ludäscher

{blk del R} ≺ {req del R}, mirrors the stages of the algorithm: First, only block-
ings resulting from ON DELETE RESTRICT racs are considered (local rules (DRS)
and (DCS

2)). Based on these, the first maximal overestimate of internal delete
requests is computed by (I S) and (DCS

1). Then, the blockings resulting from ON

DELETE NO ACTION racs whose child nodes are not deleted (by (DNS), the only
progressive rule; it does not derive anything for the initial state) are derived in
the step to the subsequent state. (DRS) contributes the blockings resulting from
ON DELETE RESTRICT racs. Again, the induced blockings are derived by (DCS

2).
The second stratum, consisting of (I S) and (DCS

1) determines the remaining
non-blocked user delete requests and its induced delete requests. Then, the
next iteration is started, calculating a decreasing sequence of overestimates
which leads to SRA.

LEMMA 3.20. MAFP corresponds toMS as follows:

1. MAFP |= [2n] blk del R(x̄) ⇔ MS |= [n] blk del R(x̄).
2. MAFP |= [2n+1] req del R(x̄) ⇔ MS |= [n] req del R(x̄).

PROOF. PS and PAFP differ in the rules (I S) and (I A): In every iteration, PS
takes the blockings from the latest underestimate, and the delete request from
the latest overestimate, resulting in SRA.

THEOREM 3.21 TERMINATION. For every database D and every set UB of user
delete requests, the program reaches a fixpoint, that is, there is a least n f ≤ |UB|,
such thatMS[n f]=MS[n f + 1].

PROOF. A fixpoint is reached if the set of blocked user delete requests
becomes stationary. Since this set is nondecreasing, there are at most |UB|
iterations.

The correctness of PS follows from Lemma 3.20 and Theorem 3.18:

THEOREM 3.22 CORRECTNESS. The final state ofMS,MS[n f], represents Umax
and 1(Umax):

—MS[n f]=SRA,
—Umax={Bdel R(x̄)∈UB |MS[n f] |= req del R(x̄)}, and
—1(Umax)={del R(x̄) |MS[n f] |= req del R(x̄)}.

3.5.1 Implementation in a Procedural Programming Language. The
Statelog formalization PS above is translated into the algorithm given in
Figure 4. Initially, it is assumed that there are only those blockings which re-
sult directly from ON DELETE RESTRICT racs. Then, blockings are propagated up-
wards along the ON DELETE CASCADE chains, finally blocking the triggering user
requests. For the remaining unblocked user requests, the cascaded requests
are recomputed. Thus, some more tuples will remain in the database, which
can block other requests. In the next step, all blockings are computed that are
caused by ON DELETE NO ACTION racs from tuples that are not reachable via cas-
caded deletions. These steps are repeated until a fixpoint is reached. Observe
that each iteration corresponds to the evaluation of a query with PTIME data

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 369

Fig. 4. Algorithm for executing all admissible deletions.

complexity. Since the fixpoint is reached after at most |UB| iterations (Theorem
3.21), the overall algorithm also has polynomial data complexity.

THEOREM 3.23. The algorithm in Figure 4 is correct:

—Umax={Bdel R(x̄)∈UB | req del R(x̄)∈U ∗}, and 1(Umax)=U ∗.

PROOF. In the nth iteration, B∗ = {blk del R(x̄) |MS |= [n] blk del R(x̄)},
and U ∗ = {del R(x̄) |MS |= [n] req del R(x̄)}.
For given D, UB, and RA, the algorithm in Figure 4 computes the maximal
subset Umax of UB that can be executed without violating any ric, and the set
1(Umax) of “internal deletions” that are induced by it. For cases when UB is not
admissible, troubleshooting is described in Section 3.7.

3.6 Relationship with the SQL Semantics

The SQL semantics as presented in Horowitz [1992] and specified in the SQL3
standard [ANSI/ISO 1999] (see also Section 2.4) coincides with ours:

—matching rows (i.e., RC. EF (x̄) and RP . EK (ȳ)) are selected with respect to the
original database state,

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

370 • W. May and B. Ludäscher

—the tuples to be deleted are fixed with respect to the original state, RESTRICT
is also evaluated with respect to the original state,

—NOACTION is evaluated against the (prospective) result.
—an update referential action is executed whenever the parent is updated.
—effectively, 1 is applied after the computation is completed.

In the logic programming characterization, these “correctness” requirements
are directly encoded into the rules (each individual rule corresponding to a
single ric with rac), thus the application of the logic programming seman-
tics cannot destroy them (provided one accepts the declarative logic pro-
gramming semantics). Thus, a correctness proof with respect to the intended
semantics—except that the specification of the individual rules is correct—is
redundant.

Moreover, if a set of updates causes referential problems, the SQL semantics
simply rejects the updates. Roughly speaking, it corresponds to the (P) rules
and a simple RESTRICT test, and then checks the NO ACTION rics. In case of a
rejection, it is hard to find which update caused the problem. Since the SQL
semantics has no notion of the semantics of the racs, it cannot return useful
details to the user as to how to prepare a revised request, or for debugging the
application. Next, we show how the logic-based semantics directly incorporates
this information, and how it can be used.

3.7 Troubleshooting in Case of Rejected Deletions

IfBdel Rd (x̄d)∈UB is not admissible, there are local “situations” that cause the
problem. Each such situation consists of a parent tuple that should be deleted,
and a child tuple that references it. Thus, the problem is caused by

—a parent tuple RP (ȳ) that is reachable by a chain of ON DELETE CASCADE
references from Rd (x̄d). Correctly, RP (ȳ) is potentially deleted (and must be
deleted when Rd (x̄d) is deleted),

—a child tuple RC(x̄) that references RP (ȳ),
—a ric that concerns the reference from RC(x̄) to RP (ȳ), associated with a rac

(either RESTRICT or NO ACTION, and the child is not requested for deletion).

In a correct application—where the database schema, containing the rics and
racs is correct with respect to the semantics of the application domain, and
where the program itself that computes UB are correct—such a situation must
not occur. Thus, there is a design problem that shows up in this situation:

—the definition of the rac is wrong: if it were ON DELETE CASCADE, the child would
be deleted. Why did the programmer not specify ON DELETE CASCADE (did he
forget it, since the default is ON DELETE NO ACTION)?

—the program is wrong: the blocked Bdel Rd (x̄d) should not be derived. Some
object of the application must not be deleted as long as there are objects that
need it, and the program did not check this correctly. Possibly, the whole
transaction should not be executed.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 371

—In case that the rac from RP (ȳ) to RC(x̄) is ON DELETE NO ACTION, it is implicitly
assumed that RC(x̄) is deleted by some other delete request in UB (possibly
via another cascading chain). Thus, there can be two reasons:
1. the program is wrong: it should derive Bdel RC(x̄) or it should derive a
Bdel R ′(x̄ ′) such that deleting R ′(x̄ ′) cascades to deletion of RC(x̄), or

2. another ric or rac is wrong: The program derives such an Bdel R ′(x̄ ′), but
it does not cascade to RC(x̄).

—the original database state is wrong: RC(x̄) should not be there. A previous
transaction did not execute in the intended way.

In all cases, the detailed information about the problem can provide useful
hints as to how to fix the application program. For this, two conclusions must
be drawn:

—where the above situation occurs, and
—for what reason(s).

Locating the Problem. The location of the problem can be found by analyzing
the well-founded model: starting with the blocked deletion Bdel Rd (x̄d)∈UB,
there is a chain of blocked deletions downwards through a series of cascading
references. The “lowest” blocked deletion concerns the above tuple RP (ȳ), and
the blocking is caused by a child RC(x̄) via a ric that is associated to the above
rac:

Definition 3.24. Given a database D and a set UB andW :=W(PRA, D, UB)
as above, a quadruple (Bdel Rd (x̄d), RP (ȳ), rac, RC(x̄)) is a problem situa-
tion if

—there is an Bdel Rd (x̄d)∈UB such that (RP (ȳ), Rd (x̄d))∈DC∗ and
W(blk del Rd (x̄d))= true and for all R ′(x̄ ′) on this chain, W(blk del R ′(x̄ ′))=
true and
(i) (RC(x̄), RP (ȳ))∈DR (then, rac= RESTRICT) or

(ii) (RC(x̄), RP (ȳ))∈DN (then, rac= NO ACTION) and W(req del RC(x̄))
= false (i.e., RC(x̄) is not deleted), andW(pot del RC(x̄))= false.

Note that in case (ii), ifW(pot del RC(x̄))= true, this situation is not a problem
since RC(x̄) would be deleted by UB, but the updateBdel R ′(x̄ ′)∈UB that should
do this is itself blocked (it can be found by checking pot del upwards, following
the references).

Example 10. Consider again Example 7 where UB={Bdel R1(a),
Bdel R1(b)} has been rejected. In a real database environment, the rejec-
tion can be augmented by a problem description: Here, (Bdel R1(b), R1(b),
NO ACTION, R5(b)) is the problem situation since the deletion of R1(b) must be
rejected due to the existence of the tuple R5(b) (even not potentially deleted)
and the corresponding rac. Possible interpretations are:

—the definition of the rac is wrong (should be ON DELETE CASCADE to align the
requested actions for R1(b) and R5(b)), or

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

372 • W. May and B. Ludäscher

—the definition of the transaction is wrong. It should yield U ′B (delete R5(b)
too, explicitly). Thus add a program line DELETE . . . FROM R5.

—both are correct, but R5(b) should not be there. Another transaction had a
wrong effect (e.g., by not deleting it).

Consider now the complete database in Figure 2 with U ′′B ={Bdel R0(a),
Bdel R0(b)}. It induces the update UB above and is again rejected. A possi-
ble conclusion from the detailed description of which tuples cause the problems
could be

—there should be a rac R5.(1)→ R0.(1) ON DELETE CASCADE that would then
induce the updates given in U ′B.

Detecting problems during computation. The above problem analysis is
based on the outcome of computing the well-founded model. However, the prob-
lem could easily be located during the computation of the well-founded model:
the first blocking blk del RP (ȳ) that is derived for a requested (internal) up-
date in an underestimate (even-numbered states) locates the problem. The rule
that is applied for deriving it identifies the referencing child tuple RC(x̄) and
the reference. Then, the above scenario of “indirect” blockings can be avoided:
the detected problem is a problem.

If the procedural algorithm given in Section 3.5 is applied, the same applies:
the first blocking that is found identifies the problem situation.

Concerning the game, the problem situations correspond directly to the “final
moves” of II, either, to restricted, or viaDC∗ ◦DN to a tuple whose deletion is not
founded (if its deletion is founded, but also “lost,” the above indirect situation
applies, and the game goes on, leading to another final move of II).

Solving the Problem. Still, if a problem is located, it is not clear how it must
be solved. As described above, there can be several reasons and solutions. For
example, a sophisticated reasoning component could be added that investigates
the well-founded model in order to analyze the possible causes of the problem:

—try the same UB for different arguments (e.g., checking what happens for
Bdel R1(c) in the above example) to check if there is a general problem, or
if the problem exists only for a special value (output: a set of problematic
values).

—try extensions of UB, and check how they are related to the original update,
(output: a set of additional external updates; cf. Example 7).

—try possible modifications of the racs (e.g., turn NO ACTION into CASCADE), and
—try to extend PRA with additional rics and racs.

In all cases, this information should be returned to the user. Due to the nature
of the well-founded model as a stable (and reproducing) model, it is sufficient
to adapt the rules or facts (immediately when a problem is detected during the
computation) and to continue the evaluation starting withW. The same holds
for the presented procedural algorithm (which is a “hard-coded” version of the
computation of the well-founded model for the given rule schemata).

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 373

4. SEMANTICS OF REFERENTIAL ACTIONS WITH MODIFICATIONS

In this section, we extend our approach to include modifications of tuples, re-
sulting in a more involved translation and semantics. Interferences between
cascaded modifications can occur especially in the presence of overlapping for-
eign keys. In contrast to deletions, modifications can create new foreign key
values where the existence of an appropriate parent tuple has to be checked.
Thus, instead of the SQL syntax, we use the more detailed syntax

ON UPDATE OF {PARENT|CHILD} {CASCADE|RESTRICT|NO ACTION} .
Recall that all updates to a relation R are represented by auxiliary relations
ins R(X̄), del R(X̄), and mod R(M , X̄). M is a list of pairs i/c meaning that
the i-th attribute of R(X̄) should be set to the constant c. As a shorthand for
mod R([1/d , 3/e], (a, b, c)), we may write mod R(a/d , b, c/e). The restriction of
a modification M to a key EA is denoted by M [EA]; the result of applying a modifi-
cation M to X̄ is denoted by M (X̄). For example if M = [1/d , 3/e], X̄ = (a, b, c),
then M [(2, 3)]= [3/e], and M (X̄)= (d , b, e). The union of two modifications is
the union of the lists: [1/a, 2/b, 3/d]∪ [1/e, 2/b, 4/ f]= [1/a, 1/b, 2/b, 3/d , 4/ f].
A modification is consistent if is does not assign two different values to a position
(the above union is inconsistent).

4.1 Abstract Semantics

Let D be a database instance, UB a set of user requests, and RA a set of racs.
We define abstract properties that a set of updates 1 may have with respect to
D, UB, and RA. These allow us to define the intended meaning of a set of racs
in an abstract (and non-constructive) way. Recall that D′ = D±1 denotes the
database obtained by applying1 to D. In contrast to deletions, we cannot simply
base our considerations on the transitive closure of references. Every step has
to be analyzed individually, taking into consideration possible interferences due
to overlapping keys.

Definition 4.1 Abstract Properties. An individual update instruction is
called founded with respect to UB, 1, D, and RA if it can be justified by the
user requests and propagations:

—A delete instruction del R(x̄) is founded in n steps with respect to UB, 1,
D, and RA if either n= 0 and Bdel R(x̄)∈UB, or there is a delete instruction
del Ri(x̄i)∈1 that is founded in< n steps, and a rac R. EF i,→ Ri. EK i ON DELETE
OF PARENT CASCADE such that x̄[EF i]= x̄i[EK i].

—A modify instruction mod R(M , x̄) is founded in n steps with respect to UB,
1, D, and RA if there is a set M1, . . . , Mn of modifications s.t. M = ⋃i=1..n Mi
(not necessarily disjoint) and for every i either Bmod R(Mi, x̄)∈UB or there
is a modify instruction mod Ri(M ′

i , x̄i)∈1 that is founded in< n steps, and a
rac R. EF i,→ Ri. EK i ON UPDATE OF PARENT CASCADE such that x̄i[EK i] 6=M ′

i(x̄i)[EK i]
and x̄[EF i]= x̄i[EK i] and Mi = EF i/M ′

i(x̄i)[EK i].
—An insert instruction ins R(x̄) is founded with respect to UB, if
Bins R(x̄)∈UB.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

374 • W. May and B. Ludäscher

For given D, UB, and RA, a set 1 of updates is called:

— founded with respect to UB, D, and RA if every update instruction del R(x̄)
or mod R(M , x̄)∈1 is founded.

—complete with respect to D and RA if it is closed with respect to propagations,
that is, satisfies the following conditions:
1. if del RP (ȳ)∈1, RC(x̄)∈ D, RC. EF ,→ RP . EK ON DELETE OF PARENT

CASCADE∈RA, and x̄[EF]= ȳ[EK] then del RC(x̄)∈1.
2. if mod RP (M , ȳ)∈1, RC(x̄)∈ D, RC. EF ,→ RP . EK ON UPDATE OF PARENT

CASCADE ∈RA, ȳ[EK] 6=M (ȳ)[EK] and x̄[EF]= ȳ[EK] then there is an M ′ such
that mod RC(M ′, x̄)∈1 and M ′ ⊇ EF/M (ȳ)[EK].

— feasible with respect to D and RA if all racs specified as no action and restrict
are satisfied:
1. a) 1 contains no delete instruction del RP (ȳ) such that there is a

rac RC. EF ,→ RP . EK ON DELETE OF PARENT RESTRICT∈RA and a tuple
RC(x̄)∈ D with x̄[EF]= ȳ[EK].

b) 1 contains no modify instruction mod RP (M , ȳ) such that there
is a rac RC. EF ,→ RP . EK ON UPDATE OF PARENT RESTRICT∈RA,
ȳ[EK] 6=M (ȳ)[EK] and a tuple RC(x̄)∈ D with x̄[EF]= ȳ[EK].

2. for every rac RC. EF ,→ RP . EK ON DELETE OF PARENT NO ACTION or
RC. EF ,→ RP . EK ON UPDATE OF PARENT NO ACTION∈RA, every delete in-
struction del RP (ȳ) or modify instruction mod RP (M , ȳ) such that
ȳ[EK] 6=M (ȳ)[EK] that is contained in 1, and every tuple RC(x̄)∈ D such
that x̄[EF]= ȳ[EK], 1 contains either a delete instruction del RC(x̄) or a
modify instruction mod RC(M , x̄) succh that M (x̄)[EF] 6= ȳ[EK].

3. for every rac RC. EF , ,→ RP . EK ON . . . OF CHILD RESTRICT ∈RA and every tu-
ple RC(x̄)∈ D that either results from an insertion ins RC(x̄)∈1 or a mod-
ification mod RC(M , x̄ ′)∈1 (i.e., x̄=M (x̄ ′)) such that x̄ ′[EF] 6=M (x̄ ′)[EF],
D contains a tuple RP (ȳ) such that ȳ[EK]= x̄[EF] and 1 contains neither
del RP (ȳ) nor any mod RP (M , ȳ) such that M (ȳ)[EK] 6= x̄[EF].

4. for every rac RC. EF ,→ RP . EK ON . . . OF CHILD NO ACTION∈RA and every tuple
RC(x̄)∈ D that either results from an insertion ins RC(x̄)∈1 or a modifi-
cation mod RC(M , x̄ ′)∈1 (i.e., x̄=M (x̄ ′)) such that x̄ ′[EF] 6=M (x̄ ′)[EF], one
of the following conditions hold:
a) D contains a tuple RP (ȳ) such that ȳ[EK]= x̄[EF] and 1 contains nei-

ther del RP (ȳ) nor any mod RP (M , ȳ) such that M (ȳ)[EK] 6= x̄[EF],
or

b) there is an ins RP (ȳ)∈1 such that ȳ[EK]= x̄[EF], or
c) there is a mod RP (M , ȳ)∈1 such that RP (ȳ)∈ D and M (ȳ)[EK]=

x̄[EF].
—coherent if no contradicting updates are issued on the same tuple—if

upd = del R(x̄)∈1, then ins R(x̄) /∈ 1 and there is no M such that
mod R(M , x̄)∈1; similar for other updates upd . Note that if 1 is coherent,
D′ = D±1 is well-defined.

—key-preserving if in D′ = D±1 all key dependencies are satisfied.
—admissible if 1 is founded, complete, feasible, coherent, and key-preserving.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 375

Again, these abstract properties are used to formalize our intended semantics:

Definition 4.2 Induced Updates, Application of UB. Let UB, RA, and D be
given.

—The set of induced updates 1(U) of a set of user requests U ⊆UB is the least
set 1 which contains U and is complete.
(analogously to the case of deletion, 1(U) there is a unique least such set by
construction).

—A set of user requests U ⊆UB is admissible if 1(U) is admissible, and maxi-
mal admissible if there is no other admissible U ′, such that U (U ′ ⊆UB.

—For a set 1 of user requests, D′ = D±1 denotes the database obtained by
applying 1 to D.

Note that1(U) does not contain any subsumed updates. This semantics reflects
the intended behavior of the database system—it neither “invents” nor “forgets”
updates and guarantees referential integrity:

THEOREM 4.3 ADEQUACY.

(1) If U ⊆UB, then 1(U) is founded and complete.
(2) If a coherent 1 is complete and feasible, then D′ = D±1(U) satisfies all

racs.

PROOF.

(1) 1(U) is defined as the least complete set, thus it is founded.
(2) Since 1 is complete, all updates propagated by RA are contained in 1.

Feasibility of 1 guarantees that no upd ∈1 is restricted, and all NO ACTION
racs are satisfied in D′.

The abstract semantics specifies the notions of maximal admissible sets U and
induced updates 1(U), but provides no method as to how to compute them. In
contrast to the case of deletions, where the union of admissible sets of updates
was again admissible (cf. Proposition 3.6), this does not hold in general due to
conflicting updates. Given a set of n user requests, there can be an exponential
(in n) number of maximal admissible subsets. Not suprisingly, it is not sufficient
to consider the well-founded model, but stable models will be required for the
general case.

Moreover, even if it is known that U is admissible, computing 1(U) is not
straightforward: In contrast to deletions that can be propagated in a “greedy”
way without considering parallel updates, in the presence of modifications, par-
allel updates have to be taken into account:

Example 11. Consider the database schema depicted in Figure 5. Among
others there are racs of type ON UPDATE OF PARENT CASCADE for the rics
T.(1, 2)→ R.(1, 2), T.(3, 4)→ S.(1, 2), U.(1, 2)→T.(2, 3), and a rac ON UPDATE
OF CHILD RESTRICT for T.(1, 4)→V .(1, 2). Assume the database contains
R(a, b), S(c, d), T (a, b, c, d , . . .), U (b, c, . . .), and V (a, d , . . .), V (a′, d , . . .),
V (a, d ′, . . .).

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

376 • W. May and B. Ludäscher

Fig. 5. Example scenario for modifications (see Example 11).

Given mod R(a/a′, b/b′) and mod S(c/c′, d/d ′), the racs trigger the modifi-
cations mod T (a/a′, b/b′, c, d , . . .) and mod T (a, b, c/c′, d/d ′, . . .). Since these
updates to T are coherent, they can be merged into mod T (a/a′, b/b′,
c/c′, d/d ′, . . .), which triggers mod U (b/b′, c/c′, . . .).

On the other hand, the rac T.(1, 4)→ V .(1, 2) ON UPDATE OF CHILD RESTRICT
restricts this modification since there is no tuple V (a′, d ′, . . .). So each of the
updates is admissible, but they are not admissible together, even though they
do not directly contradict each other. Note that it is completely irrelevant, what
modifications would be raised on the dotted parts of the tuples.

Example 11 illustrates some of the problems that may arise due to over-
lapping foreign keys and candidate keys, and gives an idea of the inherent
complexity of rule-based referential integrity maintenance in the presence of
modifications.

As indicated by Example 11, the propagation of updates cannot be seen
tuple-oriented (too coarse: cf. the dotted parts of T, U, V) or attribute-oriented
(too fine: mod T (a/a′, b/b′, c, d , . . .) and mod T (a, b, c/c′, d/d ′, . . .) are both al-
lowed in isolation, but their combination is forbidden), but must be handled
reference-oriented. Thus, parent keys, foreign keys, references, and overlapping
keys play an important role in our logical formalization.

4.2 Logic Programming Characterization

Problems and Solutions. The handling of updates adds several problems in
contrast to deletions since tuples (and references) are not only removed, but also
new tuples are generated that possibly contain new foreign key values. From
the point of view of updating referenced relations, updates are not more compli-
cated than deletions: propagate, wait, or restrict, as before. But from the point
of view of updating the referencing relation (where deletions were trivial), we
have to check whether there is an appropriate parent. If not, the update must be
blocked. For deletions, we could list all blocked deletions—all tuples of the data-
base that must not be deleted. In contrast, it is not possible to simply list all up-
dates that are not allowed due to the absence of an appropriate parent (there are
infinitely many). The considerations must be restricted to those updates that
potentially arise from UB. Additionally, there are overlapping keys as illustrated
above where interfering modifications must be considered. As explained above,
the solution is based on the analysis of changes of key values. Thus, the rela-
tions chg R. EA(M , X̄) (defined below in (CH1)) and prp RP . EK Ã RC. EF (MC, X̄)

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 377

(defined below in (MPC1)) are the “keys” to the solution:

—chg R. EA(M , X̄) denotes that the (candidate or foreign) key value X̄ [EA] in
relation R is modified by M , that is, changes to (M (X̄))[EA].

For candidate keys R. EA, this modification is propagated to all referencing for-
eign keys:

—prp RP . EK Ã RC. EF (MC, x̄) denotes that a modification M of RP . EK is propa-
gated along RP . EK → RC. EF to RC(x̄) resulting in the modification MC =EF/MP (ȳ)[EK] of the foreign key value.

Changes of overlapping candidate keys are computed from the incoming foreign
key changes (see rule (CH1) below).

In the logic programming characterization given for deletions in Section 3.2,
the logical rules represented the local semantics of referential actions, and all
global aspects were covered by the logic programming semantics (i.e., by the def-
inition of the well-founded model and the stable model). When modifications are
concerned, there are many more local parts in the global puzzle of the semantics
of referential actions: Logical rules do not only represent the local semantics
of referential actions, but also represent local interferences of updates. Again,
all global aspects are provided by the chosen logic programming semantics.

The meaning of a set RA of racs is formalized as a logic program PRA, con-
sisting of the sets Pra that specify the local behavior of every rac ra, and a set
of rules that specify the meaning of interacting update requests (instantiations
for a given set of rics can be found in Example 12 in the electronic appendix).

4.2.1 Initalization and Bookkeeping

User Requests. The handling of user requests incorporates the selection of
admissible updates. User requests that are not blocked, raise an update to the
database:

del R(X̄) ← Bdel R(X̄), ¬blk del R(X̄).
ins R(X̄) ← Bins R(X̄), ¬blk ins R(X̄).
mod R(M , X̄) ← Bmod R(M , X̄), ¬blk mod R(M , X̄).

(EXT1)

Auxiliary Relations. As stated above, the approach is key-based. Thus, sev-
eral auxiliary relations are maintained that contain information about refer-
enced and referenceable candidate key values:

—is refable R. EK (x̄): the (key) value R. EK (x̄) is referenceable in the original state.
—rem refable R. EK (x̄): the (key) value R. EK (x̄) remains referenceable.
—new refable R. EK (x̄): the (key) value R. EK (x̄) becomes referenceable.
—is refd RP. EK by RC. EF (Ev): in the current database, the key value R. EK (v̄) ap-

pears as foreign key value of EF in some tuple RC(x̄).
—rem refd RP. EK by RC. EF (v̄): there is a reference to the key value R. EK (v̄) as

foreign key value of EF in some tuple RC(x̄) such that x̄[EF] does not change.
— new refd RP. EK by RC. EF (v̄): a reference to the key value R. EK (v̄) as foreign

key EF in some tuple RC(x̄) is introduced by some update.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

378 • W. May and B. Ludäscher

For every candidate key EK mentioned in some ric RC. EF→ RP. EK :

is refable RP. EK (V̄) ←RP (X̄), V̄ = X̄ [EK].

rem refable RP. EK (V̄)←RP (X̄), V̄ = X̄ [EK], ¬del RP (X̄), ¬∃M :
chg RP. EK (M , X̄). (RCK)

new refable RP. EK (V̄)← ins RP (X̄), V̄ = X̄ [EK].
new refable RP. EK (V̄)← chg RP. EK (M , X̄), M (X̄)[EK]= V̄ .

For every ric RC. EF→ RP. EK :

is refd RP. EK by RC. EF (V̄) ←RC(X̄), V = X̄ [EF].

rem refd RP. EK by RC. EF (V̄)←RC(X̄), V = X̄ [EF], ¬ del RC(X̄),
¬∃M : chg RC. EF (M , X̄). (Refd)

new refd RP. EK by RC. EF (V̄)←RC(X̄), chg RC. EF (M , X̄), M (X̄)[EF] = V̄ .
new refd RP. EK by RC. EF (V̄)← ins RC(X̄), V̄ = X̄ [EF].

4.2.2 Deletions. We only have to consider racs of the form RC. EF→ RP. EK
ON DELETE OF PARENT (cf. Table I). Logic rules that again describe their local
behavior are generated for these racs as given below:

—ON DELETE OF PARENT CASCADE: Deletions of parent tuples are propagated
downwards to every child tuple by rule (DC1). Additionally, blockings are
propagated upwards: if the deletion of a child tuple is blocked, the deletion
of the parent tuple is also blocked (DC2).

—ON DELETE OF PARENT RESTRICT: The deletion of a parent tuple is blocked, if
there is a referencing child tuple (DR).

—ON DELETE OF PARENT NOACTION: The deletion of a parent tuple is blocked, if
there is a corresponding child tuple which is neither requested for deletion
nor modified away (i.e., modified such that it references another parent) (DN).

del RC(X̄) ← del RP (Ȳ), RC(X̄), X̄ [EF] = Ȳ [EK]. (DC1)
blk del RP (Ȳ)← blk del RC(X̄), X̄ [EF] = Ȳ [EK]. (DC2)
blk del RP (Ȳ)← is refd RP. EK by RC. EF (Ȳ [EK]). (DR)
blk del RP (Ȳ)← rem refd RP. EK by RC. EF (Ȳ [EK]). (DN)

Again, we add the rules for tracing potential deletions (that are only used for
analyzing problem situations if an update is rejected):

pot del R(X̄) ← Bdel R(X̄), R(X̄).
for each RC. EF ,→ RP . EK ON DELETE OF PARENT CASCADE (P)
(analogous to (DC1)):
pot del RC(X̄)← pot del RP (Ȳ), RC(X̄), X̄ [EF] = Ȳ [EK].

4.2.3 Modifications. The handling of modifications follows the same prin-
ciple as presented for deletions, but since the propagation of modifications
is handled key-oriented, the details are more involved. Here, the predicates

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 379

chg R. EA(M , X̄) and prp RP. EK Ã RC. EF (MC, x̄) are used as described above for
describing changing key values and their propagation. In case of a partially
modified parent key, the referencing foreign key in the child is regarded as
atomic: no other update may change parts of it (which would mean to cut the
reference to the original parent although it is used for cascading). Thus, with
a modification, the whole key value is propagated, even if not all parts of it
change. On the other hand, modifications on a tuple trigger a rac only if the key
referred to in the rac is actually changed.

User requests for modifications are decomposed into their effects on keys. An
external request is blocked if it causes a forbidden change to a key. For every
key (candidate and foreign keys) R. EA:

pot prp BRÃ R. EA(M , X̄)←Bmod R(M ′, X̄), X̄ [EA] 6=M ′(X̄)[EA],
M = M ′[EA].

blk mod R(M , X̄) ←Bmod R(M , X̄), blk chg R. EA(M ′, X̄), (EXT2)
M ′ = M [EA].

prp BRÃ R. EA(M , X̄) ← mod R(M ′, X̄), X̄ [EA] 6=M ′(X̄)[EA],
M = M ′[EA] .

Interaction of Modifications. Assume a modification mod RP (MP , ȳ) and
a rac RC. EF ,→ RP. EK ON UPDATE OF PARENT CASCADE such that the key value
RP. EK of RP (ȳ) changes, which is denoted by chg RP. EK (MP , ȳ) (analo-
gously, there are relations pot chg and blk chg). Then, for every referenc-
ing child RC(x̄), this modification is propagated to the corresponding for-
eign key—MC = EF/MP (ȳ)[EK]. This is stored in the propagation relation prop:
prp RP. EK Ã RC. EF (MC, x̄).

The changes of candidate and foreign key values in a (child) tuple are
collected: modifications can be founded either by external requests or by prop-
agating modifications from parent relations (e.g., consider a tuple T (a, b, c, d)
in Figure 5 where modifications come in to the primary key T [2, 3] from R[2]
and S[1]).

For a given database schema, (CH) defines a finite set of rules for computing
all the possible ways a key can change by collecting the elementary modification
requests that are propagated along references.

The only restriction in this presentation is, that for every foreign or candidate
key, only one user modify request is raised that changes the key (which is
satisfied if no parallel modifications of the same tuple are allowed; overcoming
this restriction requires no conceptual, but some technical expense).

For a given foreign or candidate key R. EA, define the set of sources of influ-
ences on R. EA, SR. EA⊆Keys(R)× (ForeignKeys(DB) ∪ {BR}) as follows:

—SR. EA contains all pairs (RPi .
EK i, R. EF i) such that there is a rac RPi .

EK i,→ R. EF i

ON UPDATE OF PARENT CASCADE and Fi overlaps EA (that is, key references whose
propagation influences the value of R. EA), and

—(R. EA,BR)∈SR. EA since external modifications of R also influence the value of
R. EA.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

380 • W. May and B. Ludäscher

For the following rule (CH1), let S range over all subsets of SR. EA
6:

pot chg R. EA(M , X̄) ← (
∧

i∈S pot prp RPi .
EK iÃ R. EF i(Mi, X̄)),

M = ⋃i∈S Mi[EA] consistent, M (X̄)[EA] 6= X̄ [EA].

chg R. EA(M , X̄) ← (
∧

i∈S prp RPi .
EK iÃ R. EF i(Mi, X̄)), (CH1)

(
∧

i∈SR. EA\S ¬∃Mi : prp RPi .
EK iÃ R. EF i(Mi, X̄)),

M = ⋃i∈S Mi[EA] consistent, M (X̄)[EA] 6= X̄ [EA].

Additionally, the interferences between blockings of changes of overlapping
keys must be considered: A change on the intersection of two overlapping keys
is allowed, if both changes coincide on the intersection. Furthermore, a change
of a key is forbidden, if its effect on the intersection with another key is not
allowed:
For every foreign key EF and foreign or candidate key EA such that EF and EA
overlap:

allow chg R. EF ∩ EA (M , X̄)← chg R. EF (M1, X̄), ¬ blk chg R. EF (M1, X̄),
M =M1[EF ∩ EA], chg R. EA(M2, X̄),
¬ blk chg R. EA(M2, X̄), M =M2[EF ∩ EA] . (CH2)

blk chg R. EF (M , X̄)← pot chg R. EF (M , X̄), ¬ allow chg R. EF ∩ EA (M ′, X̄),
M ′ =M [EF ∩ EA].

Remark 4.4. Consider a foreign or candidate key R. EA such that there is
only a single constraint RP. EK ,→ R. EF ON UPDATE OF PARENT CASCADE such that
EF and EA overlap. Then, (CH1) maps the incoming change on EF to a change of
EA:

pot chg R. EA(M , X̄) ← pot prp RP. EK Ã R. EF (M ′, X̄), M=M ′[EA],
M (X̄)[EA] 6= X̄ [EA].

chg R. EA(M , X̄) ← prp RP. EK Ã R. EF (M ′, X̄), M=M ′[EA],
M (X̄)[EA] 6= X̄ [EA].

(CH0
1)

Modifications of Parent Tuples. When a candidate key in a parent tuple
is modified, the usual local referential actions apply, yielding the rules given
below:

—ON UPDATE OF PARENT CASCADE: Changes of parent keys are propagated
downwards to foreign keys (MPC1). If a propagated modification would
change a foreign key in a forbidden way, the propagation of the modifica-
tion and the change of the parent key are also blocked (MPC2).

—ON UPDATE OF PARENT RESTRICT: The change of the parent key RP. EK is
blocked, if there is a referencing child (MPR).

6if EA is a foreign key, the possibilities can further be restricted to either (i) a propagation along its
“own” parent-reference, or (ii) only influences from other sources, see Example 12 in the electronic
appendix.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 381

—ON UPDATE OF PARENT NOACTION: The change of the parent key RP. EK is
blocked, if there is a referencing child which is neither requested for dele-
tion nor modified away (MPN).

prp RP. EK Ã RC . EF (MC , X̄) ← chg RP. EK (MP , Ȳ), RC(X̄), X̄ [EF]= Ȳ [EK],
MC = EF/MP (Ȳ)[EK].

pot prp RP. EK Ã RC . EF (MC , X̄) ← pot chg RP. EK (MP , Ȳ), RC(X̄), X̄ [EF]= Ȳ [EK],
MC = EF/MP (Ȳ)[EK].

(MPC1)

blk chg RP. EK (MP , Ȳ) ← pot chg RP. EK (MP , Ȳ), blk prop RP. EK Ã RC . EF (MC , X̄),
X̄ [EF]= Ȳ [EK], MC = EF/MP (Ȳ)[EK].

blk prop RP. EK Ã RC . EF (M , X̄) ← pot prp RP. EK Ã RC . EF (M , X̄), blk chg RC . EF (M , X̄).
(MPC2)

blk chg RP. EK (MP , Ȳ) ← pot chg RP. EK (MP , Ȳ), is refd RP. EK by RC . EF (Ȳ [EK]). (MPR)
blk chg RP. EK (MP , Ȳ) ← pot chg RP. EK (MP , Ȳ), rem refd RP. EK by RC . EF (Ȳ [EK]). (MPN)

Modifications on Child Tuples. When a foreign key in a child tuple is
changed, it must be checked whether there is a suitable parent tuple—note
that the check against the reference along which the update has been cas-
caded is redundant. Thus, we have only to check foreign keys where an
incoming cascaded update overlaps the foreign key of another reference. A
change on a foreign key value RC. EF ′ of a child tuple with respect to a ric
RC. EF ′ → R ′P . EK ′ is blocked if the change is influenced from a propagation along
another ric RC. EF→ RP. EK (i.e., RC. EF ,→ RP. EK ON UPDATE OF PARENT CASCADE
and RC. EF and RC. EF ′ overlap) or from an external modification and the re-
sulting tuple violates RC. EF ′,→ R ′P . EK ′ ON UPDATE OF CHILD By considering
only changes which are propagated along another ric, the inherent negative
cycle of “propagation allowed if result’s reference exists,” “result’s reference ex-
ists if parent is modified,” and “parent is modified if propagation is allowed” is
avoided.7

For every pair RC. EF ′,→ R ′P . EK ′ ON UPDATE OF PARENT CASCADE and
RC. EF ,→ RP. EK ON UPDATE OF CHILD RESTRICT such that RC. EF 6= RC. EF ′ or
RP. EK 6= R ′P . EK ′ and RC. EF and RC. EF ′ overlap:

blk chg RC. EF (M , X̄)← pot chg RC. EF (M , X̄), prp R ′P . EK ′Ã RC. EF ′(M ′, X̄),
M [EF ∩ EF ′]=M ′[EF ∩ EF ′],
¬ is refable RP. EK (EF [M (X̄)]). (MCR1)

blk chg RC. EF (M , X̄)← pot chg RC. EF (M , X̄), prp BÃ RC. EF (M ′, X̄),
M ′ ⊆M , ¬ is refable RP. EK (M (X̄)[EF]).

Additionally to (MCR1) which guarantees the existence of a (unique) parent
tuple to be referenced in the current database state, any modification of the at-
tributes RP. EK or deletion of this tuple is blocked: For every rac RC. EF ,→ RP. EK

7Note that it still occurs with every “diamond” (Figure 1).

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

382 • W. May and B. Ludäscher

ON UPDATE OF CHILD RESTRICT:

blk chg RP. EK (MP , Ȳ)← pot chg RP. EK (MP , Ȳ), RC(X̄),
chg RC. EF (MC, X̄), M (X̄)[EF]= Ȳ [EK]. (MCR2)

blk del RP (Ȳ) ← RC(X̄), chg RC. EF (MC, X̄), M (X̄)[EF]= Ȳ [EK].

Analogous to (MCR1) there is a rule for maintaining RC. EF ,→ RP. EK ON UPDATE
OF CHILD NO ACTION which checks if the parent is available after execution
of the updates. For every pair RC. EF ′,→ R ′P . EK ′ ON UPDATE OF PARENT CASCADE

and RC. EF ,→ RP. EK ON UPDATE OF CHILD NO ACTION such that RC. EF 6= RC. EF ′ or
RP. EK 6= R ′P . EK ′ and RC. EF and RC. EF ′ overlap:

blk chg RC. EF (M , X̄)← pot chg RC. EF (M , X̄), prp R ′P . EK ′Ã RC. EF ′(M ′, X̄),
M [EF ∩ EF ′] = M ′[EF ∩ EF ′],
¬rem refable RP. EK (M (X̄)[EF]),
¬new refable RP. EK (M (X̄)[EF]).

blk chg RC. EF (M , X̄)← pot chg RC. EF (M , X̄), prp BÃ RC. EF (M ′, X̄),
M ′ ⊆M , ¬rem refable RP. EK (M (X̄)[EF]),
¬new refable RP. EK (M (X̄)[EF]).

(MCN)

Resulting Modifications. Since modifications are handled key-oriented by
(CH1), the incoming modifications must be collected for every tuple. For a given
n-ary relation R, let SR = ForeignKeys(R) ∪ {(1, . . . , n)}.

chg R.(1, . . . , n)(M , X̄)← Bmod R(M , X̄). (CHB)

For the following rule (MOD), let S range over all subsets of SR :

mod R(M , X̄)← (
∧
EF∈S chg R. EF (M EF , X̄)), M = ⋃ EF∈S M EF consistent,

(
∧
EF∈SR\S ¬∃M ′ : chg R. EF (M ′, X̄)).

(MOD)

4.2.4 Insertions. Since insertions on parent tuples are not critical, only
insertions of child tuples have to be handled analogously to (MCR) and (MCN):

—For every ric RC. EF ,→ RP. EK ON INSERT OF CHILD RESTRICT:

blk ins RC(X̄) ← Bins RC(C̄), ¬is refable RP. EK (X̄ [EF]).
blk chg RP. EK (M , Ȳ)← pot chg RP. EK (M , Ȳ), Ȳ [EK] 6=MP (Ȳ)[EK], (ICR)

ins RC(X̄), X̄ [EK] = Ȳ [EK].
blk del RP (Ȳ) ← ins RC(X̄), X̄ [EK] = Ȳ [EK].

—For every ric RC. EF ,→ RP. EK ON INSERT OF CHILD NO ACTION:

blk ins RC(X̄)← Bins RC(X̄), ¬rem refable RP. EK (X̄ [EF]),
¬new refable RP. EK (X̄ [EF]) . (ICN)

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 383

4.2.5 Coherence and Key-Preservation. The following rule prevents re-
quests which are directly incoherent:

blk ins R(X̄) ←Bins R(X̄), del R(X̄).
blk del R(X̄) ← ins R(X̄).
blk mod R(M , X̄) ←Bmod R(M , X̄), del R(X̄).
blk del R(X̄) ←mod R(M , X̄). (C)

For every rac RP. EK ,→ RC. EF ON UPDATE OF PARENT CASCADE:
blk prop RP. EK Ã RC. EF (M , X̄)← pot prp RP. EK Ã RC. EF (M , X̄), del R(X̄).
blk del R(X̄) ← prp RP. EK Ã R. EF (M , X̄).

Since propagated modifications are handled key-oriented as foreign-key-
modifications, it is sufficient to handle contradicting modifications at this gran-
ularity: For every pair of rics RP1 .

EK 1,→ R. EF 1 ON UPDATE OF PARENT CASCADE
and RP2 .

EK 2,→ R. EF 2 ON UPDATE OF PARENT CASCADE such that R. EF 1 and R. EF 2
overlap:

blk prop RP1 .
EK 1Ã R. EF 1(M1, X̄) ← pot prp RP1 .

EK 1Ã R. EF 1(M1, X̄),
prp RP2 .

EK 2Ã R. EF 2(M2, X̄), M1 ∪ M2 inconsistent.
(C)

The uniqueness of a candidate key R. EK is guaranteed by the following rules:

blk ins R(X̄) ←Bins R(X̄), rem refable R. EK (X̄ [EK]).
blk chg R. EK (M , X̄) ← pot chg R. EK (M , X̄), rem refable R. EK (M (X̄)[EK]).
blk ins R(X̄) ←Bins R(X̄), ins R(Ȳ), X̄ [EK] = Ȳ [EK].
blk ins R(X̄) ←Bins R(X̄), chg R. EK (M , Ȳ), X̄ [EK] = M (Ȳ)[EK]. (K)
blk chg R. EK (M , Ȳ) ← pot chg R. EK (M , Ȳ), ins R(X̄), X̄ [EK] = M (Ȳ)[EK].
blk chg R. EK (M , X̄) ← pot chg R. EK (M , X̄), chg R. EK (M ′, Ȳ),

M (X̄)[EK]=M ′(Ȳ)[EK].

On Delete/Update Set Default/Set Null. The additional racs RC. EF→ RP. EK
ON UPDATE/DELETE SET DEFAULT and RC. EF→ RP. EK ON UPDATE/DELETE SET NULL can
be handled by variants of the rules (MPC), (MPR), and (MPR). Analogously,
NOT NULL conditions can be integrated into the framework.

4.2.6 Declarative Semantics and Results. The examples in Section 2.3 il-
lustrate different types of ambiguities which can occur for a set RA of racs.
These ambiguities become apparent by the declarative semantics of our logical
formalization PRA. Again, we consider well-founded and stable models:

Mutex. For two mutually exclusive operations (cf. Example 4), if one of
them is rejected, the other can be executed: setting some undefined requests
to false admits stable models where other updates are true, and the false ones
are blocked. This situation is analogous to {block1 ← exec2, block2← exec1} ∪
{execi ← ¬blocki | i= 1, 2}.

Self-Attack. For a self-attacking request (cf. Example 5), there is no other
support for rejecting it than its “internal contradiction,” thus there is no total

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

384 • W. May and B. Ludäscher

(i.e., two-valued) stable model making it true or false. This situation corre-
sponds to {exec ← ¬block, block ← exec}, where no total stable model exists.

Definition 4.5. Every 3-valued modelM :=M(PRA, D, UB) defines sets of
updates 1M and user requests UM⊆UB which are true, false, or undefined in
M. Let upd be any of ins R(x̄), del R(x̄), mod R(M , x̄), then:

1true
M :={upd |M(upd)= true}, and U true

M :={Bupd ∈UB |M(upd)= true}
(analogous for false and undef).

Again, we first examine the well-founded model W := W(PRA, D, UB), which
provides a safe, skeptical semantics that is computable in polynomial time, and
the the stable semantics of PRA. Here, overlapping and subsuming modifications
must be taken into account:

Definition 4.6. For any 3-valued model M :=M(PRA, D, UB), let 1true+
M ⊆

1true
M denote the set of non-subsumed updates: the set of all upd ∈1true

M such
that there is no M ′ which subsumes M and mod R(M ′, x̄)∈1true

M .

The result of applying a set of updates does not change when restricting to
non-subsumed updates:

LEMMA 4.7. D±1true
W = D±1true+

W .

THEOREM 4.8 CORRECTNESS: WELL-FOUNDED SEMANTICS.

(1) 1true+
W is admissible,

(2) 1true+
W =1(U true

W) is the set of updates that are induced by U true
W .

(3) U true
W is admissible; the new database after submitting U true

W is D′ = D±
1true
W .

PROOF.

(1) Foundedness, completeness, and feasibility are proven using the rules of
all racs ra ∈RA; coherence and key-preservation is guaranteed by the rules
specifying the interaction of updates.

(2) 1true
W ⊆1(U true

W) follows from foundedness, 1true
W ⊇1(U true

W) from
completeness.

(3) follows from (1) and (2).

We see that already 1true+
W abstracts from some intermediate results by consid-

ering only non-subsumed updates. The game-theoretic characterization—that
corresponds to stable models—given in Section 4.3 uses the same abstraction.

The following corollary states thatW is a skeptical approximation: (i) every
maximal admissible U ⊆UB extends U true

W , and (ii) updates classified as false
byW are definitely not admissible:

COROLLARY 4.9. For every maximal admissible U ⊆UB:
(i) U true

W ⊆U, (ii) U false
W ∩U =∅, (iii) 1

false
W ∩1(U)=∅.

PROOF. Follows from Theorem 4.8 and model-theoretic properties of the
well-founded semantics.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 385

The different types of undefined updates upd ∈U undef
W can be characterized ac-

cording to the different types of controversial atoms:

—upd ∈U for every maximal admissible U ⊆UB (“diamond”), or
—there are maximal admissible sets U, U ′ ⊆UB such that upd ∈U and upd /∈

U ′ (“mutex”), or
—upd /∈ U for any admissible U ⊆UB (“self-attack”).

As already mentioned, “diamonds”—even if they do not cause a problem—cause
a negative cycle that is undefined in the well-founded model. Such a case is
described in Example 12 in Section A of the electronic appendix: there, all actual
modifications and changes, as well as all blockings are undefined in the well-
founded model. Nevertheless, the modification is admissible.

In such cases, similar to the case of deletions only, there are two stable mod-
els: the one that executes the user request, and the one that rejects it. In this
case, taking the overestimate of an alternating fixpoint as the intended result—
similar to the case where only deletions were considered—is correct. On the
other hand, this is not correct in cases such as Mutex (cf. Example 4), or for
self-attacking requests (cf. Example 5).

Stable Models. For further investigation of these cases, we use stable mod-
els, which provide a more detailed logical semantics for normal logic programs.
Since self-attacking updates exclude the possiblity of total stable models, we
have to consider P-stable (partial stable) models:

Definition 4.10 P-, M-Stable Models. [Eiter et al. 1996] Let I =〈I true,
I false〉 be a 3-valued interpretation (I true the set ground of atoms that are true,
I false the set ground of atoms that are false, I true ∩ I false=∅) . The reduction P/I
of a ground-instantiated logic program P is obtained by replacing every nega-
tive literal in P by its truth-value with respect to I . Thus, P/I is positive and
has a unique minimal (with respect to the truth-order false <t undef <t true)
3-valued modelMP/I .

I is a P-stable model, ifMP/I = I . A P-stable model I is M-stable (maximal
stable) if there is no P-stable model J 6= I such that Jtrue⊇ I true and Jfalse⊇ I false.

In contrast to the well-founded model, which is the “most skeptical” P-stable
model, M-stable models are “more brave” and handle mutually exclusive re-
quests as expected; in particular, all admissible solutions are represented by
P-stable models. This fact, and the generalization of Theorem 4.8 is expressed
by the following theorem (proven analogously to Theorem 4.8).

THEOREM 4.11 CORRECTNESS, COMPLETENESS: STABLE SEMANTICS.

—For every P-stable model S:
(i) 1true+

S is admissible, (ii) 1true+
S =1(U true

S), (iii) U true
S is admissible.

—For every maximal admissible U ⊆UB, there is an M-stable modelMS such
that U =U true

MS and 1(U)=1true+
MS .

M-stable models of PRA almost capture the notion of “optimal” (maximal
admissible) solutions. Note that in case of mutual exclusion, there can be

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

386 • W. May and B. Ludäscher

several M-stable models which describe maximal admissible solutions. In case
of a “diamond” {block ← ¬exec, exec ← ¬block} (cf. Example 9) there are two
M-stable models. However, executing an update should be preferred to block-
ing it in order to capture the notion of maximal admissibility. Therefore, we
define a semantic ordering <a on P-stable models according to our intended
application:

S1 <a S2 :⇔ U true
S1
⊂ U true

S2
.

Among M-stable models, <a prefers those that make more updates true. This
holds as well for the user requests as for the resulting updates:

LEMMA 4.12. For two M-stable models S1 and S2, the following is equivalent:

(1) S1 <a S2,
(2) for every Bupd ∈UB, S1(Bupd) ≤t S2(Bupd),
(3) for every (internal) update upd, S1(upd) ≤t S2(upd), or upd = mod R(M , x̄)

for some R, M , x̄, and there is an M ′ which subsumes M and S1(upd) ≤t
S2(mod R(M ′, x̄)) (cf. Definition 4.6 and Theorem 4.8).

The maximal stable models with respect to <a represent exactly the maximal
admissible sets:

THEOREM 4.13 MAXIMALITY. Let D and UB be as usual. Then, the following
sets coincide:

—the set of all maximal admissible sets U ⊆UB,
—the set of all U true

AS such that AS is a <a-maximal M-stable model of PRA, D,
and UB.

4.2.7 An Upper Bound. Above, we have shown that the well-founded model
provides a lower bound of maximal admissible subsets. Analogously, an upper
bound can be derived. For deletions, Theorems 3.18 and 3.19 stated that the
set of all true and undefined user requests (i) is admissible, and (ii) corre-
sponds to a stable model. In case of modifications, this, in general, does not
hold:

LEMMA 4.14. The well-founded model induces an upper bound for the set of
admissible updates:
LetW =W(PRA, D, UB) be the well-founded model of PRA, D, and UB, and

U ub := U true∪undef
W ={Bupd ∈UB |W(upd)∈ {true, undef }}.

—If U ub is admissible, then there is a unique <a-maximal stable model ASU
of RA, D, and UB such that U true

ASU =U ub. Then 1(U ub)=1true+
ASU , and the new

database is D±1true+
ASU .

—for every upd ∈UB which is in any admissible subset of UB, upd ∈U ub.

Thus, the following necessary condition for admissiblility UB can be decided in
PTIME using the well-founded model:

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 387

COROLLARY 4.15. If U ub (UB, then UB is not admissible.

Due to the various predicates, the above ASU is not as easy to describe based
on the well-founded model as it has been for deletions (cf. Theorem 3.18). Nev-
ertheless, for the “positive” statements (updates, propagations, and changes) in
PRA, we have the following “monotonicity result”:

LEMMA 4.16. Let W := W(PRA, D, UB). If U ub is admissible, then for every
upd ∈1true∪undef

W , ASU(upd)= true, or upd = mod R(M , x̄) for some R, M , x̄,
and there is an M ′ which subsumes M and ASU(mod R(M ′, x̄))= true (cf.
Lemma 4.12). (analogously for prop and chg predicates.)

Thus, in case that U ub is admissible, it is “safe” to do all changes in the database
which are true or undefined inW :=W(PRA, D, UB). We come back to this issue
in Section 5. First, the game theoretic characterization gives more insight into
the correctness of the stable model characterization and subsumed updates.

4.3 Game-Theoretic Semantics

The maximal admissible sets of updates can also be characterized in a game-
theoretic way (the details of the game can be found in Section B of the electronic
appendix). This “update game” needs to also consider a history of the game that
was not required for the simpler game-theoretic characterization in Section 3.3
with deletions only (that was in the famous win-move-style).

For given UB, Player I claims a subset U ⊆UB to be maximal and admis-
sible. In her first move, Player II chooses to falsify either the maximality or
the admissibility. If Player II challenges the maximality, she chooses a proper
superset U ′ such that U (U ′ ⊆UB which she claims to be maximal and ad-
missible, then the roles are changed. Thus, after finitely many moves, a player
challenges the admissibility of a set U suggested by the other player by exam-
ining this set with respect to its coherence and feasibility by questions. The
other player has to defend U to be admissible by stepwise showing what up-
dates are actually executed. By doing this, he constructs 1(U) (both players
are assumed to play optimally). The game is an abstraction of the logic pro-
gramming characterization in the sense that I uses only non-subsumed up-
dates (anticipating the overall result), thus the details of interfering updates
can be ignored. This abstraction step is similar to that in Section 5 for deriv-
ing the practical results from the construction of the well-founded and stable
models.

Setting and Initialization. The positions of the game are all tuples of the
database D, and a sufficient number of empty positions for representing inser-
tions. Actually, the “board” is practically a graphical representation of the data-
base. The game is then played by putting plates that represent the update oper-
ations performed on the database: Each plate consists of a source tuple (∈ D), an
update (with additional detail information concerning the foundedness), and a
result tuple, for example, R(a, b, c)|mod R(1/x, 2/ y], (a, b, c))〈. . .〉|R(x, y , c) .
At the beginning, Player I puts all plates that describe a set U of updates that
he claims to be maximal admissible with respect to given D, RA, and UB. For

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

388 • W. May and B. Ludäscher

example, for del R(x)∈U , he puts the plate R(x̄)|del R(x̄)〈0〉|ε on the tuple
R(x̄).

The Moves. During the game, the admissibility (that is, foundedness, com-
pleteness, and feasibility; cf. Definition 4.1) of U in the given situation is chal-
lenged by II, and defended by I. II asks a question by pointing to an instance
of one of the above aspects, and I has to show how to guarantee the respective
property—if he has no answer, he loses (that is, II showed that U is actually
not admissible). In most answers, I puts a new plate to show that the database
changes in a consistent way.

Child tuples. For any plate that describes an update to a tuple RP (ȳ), II can
point to a referencing tuple, asking I what happens to it. I answers by putting
a plate on the tuple that describes an update (depending whether the refer-
ence is maintained via CASCADE, NO ACTION or RESTRICT, different restrictions
apply).

Parent tuples. For any plate that describes an update to a tuple RC(x̄) such
that a foreign key is changed, II can ask I what parent node is referenced. I
has either to show an unchanged tuple, or to show a modification or insertion
that generates a suitable parent.

Foundedness. In case of children whose references are maintained by
the NO ACTION policy, I claims in his answer that the tuples are accord-
ingly modified—but this update must be propagated from somewhere else
(cf. diamonds). Similar to the “delete game” II can ask I to prove that these
updates are founded. In contrast to the “delete game,” updates can be col-
lected from several parent tuples (cf. the (CH) rules of the logic program-
ming characterization). Thus, the problem is much more involved than in
the case of deletions. For each atomic component of the update, II asks
a separate question, and I has to show a parent tuple that cascades a
suitable modification (by putting a plate whose foundedness is then again
attacked by II).

By putting new plates, I constructs 1(U) (since II asks for all CASCADE ref-
erences), and U is admissible if and only if I wins the game; see Theorems B.2
B.4 in the electronic appendix. For challenging maximality, II is also allowed to
add another plate for upd ∈UB, upd /∈ U and to change the roles to show that
U ∪ {upd } is also admissible.

Model-theoretic aspects. Note that for given D, RA and UB—in contrast to
the case of deletions only—the question is not to win individual positions, but
to win a game for an initial setting U ⊆UB. For a given initial setting, I either
wins or loses, there is no draw. In case that I wins, the whole 1(U) is created
explicitly on the board—retaining the whole history of the game. For given D,
RA and UB, there can be several Us such that I wins the game. Each of them
is a maximal admissible subset of UB. In contrast, in the “delete game,” the set
of all won and drawn positions characterizes the unique maximal admissible
subset.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 389

5. PRACTICAL ASPECTS

5.1 Admissibility and Execution is Polynomial

In Corollary 4.15, we have given a necessary condition for admissibility of UB
that can be checked in PTIME by using only the well-founded model. In case
that this condition is satisfied, we have found in Lemma 4.14 that a certain
<a-maximal stable model AS has to be considered for the final check, and for
computing the actual set1 of updates to the database. In case UB is not admis-
sible, information is needed about maximal admissible subsets and about the
problem situations. In the general case, there is no unique maximal admissible
solution for a set of user requests, and an exponential number of stable models
may have to be considered. Thus, the computation of all maximal admissible
subsets is not feasible in practice. But, it is also not needed. For practical use,
the following tasks are relevant:

—check if UB is admissible, and
—if UB is not admissible, locate the problem situations.

These tasks are now addressed based on the well-founded model (that can be
computed in PTIME), building on the results of Section 4.2.7 where an upper
bound for the admissible updates has been characterized by the well-founded
model. Recall also that for deriving a procedural algorithm for handling dele-
tions in Section 3.5, the negative cycle in the logic programming character-
ization has been “cut” by taking some (“positive”—the requested deletions)
predicates from the overestimate, and the other (“negative”—the blockings)
predicates from the underestimate.

—The following predicates are fixed predicates: pot del, pot prop, pot chg.
—The following are positive predicates: del, prop, mod, ins, chg, allow chg.
—blockings are negative predicates: blk del, blk prop, blk mod, blk ins, blk chg.

Positive predicates represent the knowledge of Player I of what plates to play to
win the game, including that he only plays non-subsumed updates. We will con-
sider a special stable model that is induced by the fixed and positive predicates.
In contrast to guessing a stable model, or to the game-theoretic characteriza-
tion (that relies on guessing the correct plates), the following “model,”W+ can
be generated in polynomial time:

Definition 5.1. Given W := W(PRA, D, UB), let W+ be defined as follows
(note thatW+ is in general not a model of PRA):

—for fixed predicates (evaluate to true or to false inW), W+(atom) :=W(atom),
—for positive predicates, W+(atom)= true ifW(atom)∈ {true, undef } and atom

is not subsumed by another one.
—W+(atom) := false for all other atoms, including those over negative

predicates.

Then,W+ has to be checked as to whether there is a stable model that coincides
with W+ on positive and fixed predicates. We call W+ positive-stable if this

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

390 • W. May and B. Ludäscher

is the case, which corresponds to a game where Player II has no successful
attacks.

First, we give the relationship to stable models, especially to the<a-maximal
M-stable models that characterize maximal admissible sets:

THEOREM 5.2 POSITIVE-STABLE VS. STABLE MODELS. If W+ is positive-stable,
then there is a (unique) <a-maximal M-stable model AS that coincides in all
atoms over positive and fixed predicates withW+. AS is computed by applying
the computation of the well-founded model starting withW+ (instead of ∅).

PROOF. As described above,W+ corresponds to cutting negative cycles in the
rules with priority to executing updates. In a stable or positive-stable model,
these atoms reproduce themselves. The other atoms (blockings etc.) only “fill”
the gaps in the stable model. If no blockings are derived that “kill” updates in
W+, it is stable (it cannot be attacked by Player II).
W+ corresponds to the unique <a-maximal M-stable model since in Corol-

lary 4.9 and Lemma 4.14, it has been shown that updates upd ∈UB that are
false inW are not contained in any admissible U ⊂ UB.

In the following, we call the above AS the positive-stable model to W. Note
again that such a model does not always exist (e.g., if W+ contains mutually
exclusive or “self-killing” updates). With respect to the upper bound that has
been discussed in Section 4.2.7, the above theorem checks whether U ub is ad-
missible. Especially, concerning the admissiblity check for UB, the following
result shows that this task can be done in PTIME since computingW and AS is
polynomial:

COROLLARY 5.3 ADMISSIBILITY OF UB. If U ub=UB and W+ is positive-stable
(that is, there is an AS which is the positive-stable model to W), then UB is
admissible.

For computing the set of induced updates, we again consider the game-
theoretic characterization with its set of “winning plates”:

LEMMA 5.4 INTERNAL UPDATES IN AS VS. GAME. If AS is the positive-stable
model toW, then 1true+

AS =1true+
W+ =3 where 3 is as defined in Section B.3 based

on the plates that are played by I for winning the game.

Proof Sketch. The non-subsumed updates are exactly those that are rep-
resented by the plates in the corresponding game for UB (that is won by
Player I). Positive-stability means that there are no blockings and conflicts
that interfere with the assumed updates (regarding Example 11, there can be
blocked updates that are subsumed by others that are not blocked). This is
equivalent to the fact that Player II does not find any argument to win the
game.

The following corollary states that the admissibility check, and if it is suc-
cessful, the transition to the subsequent database state, can be computed in
polynomial time:

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 391

COROLLARY 5.5 MAIN RESULT. If AS is the positive-stable model to W and
U true
AS =UB, then UB is admissible and 1true+

AS =1(UB). The whole problem can
be solved in polynomial time.

Thus, the steps for executing a set UB of updates on a database D are as follows:

(1) computeW =W(PRA, D, UB),

(2) check whether U true,undef
W =UB,

(3) if not, reject, otherwise check if there is a positive-stable model AS toW,
(4) if not, reject, otherwise compute 1true+

AS and apply it to the database.

Note that if UB is accepted by the SQL semantics as presented in Horowitz
[1992] and specified in the SQL3 standard [ANSI/ISO 1999] (see also
Section 2.4), the semantics coincides with ours. Similarly to the considerations
in Section 3.6, the global correctness is implied by the correct specification of
the individual rules and the meta-correctness of the logic programming seman-
tics. Again, in contrast to the procedural semantics for SQL, the logic-based
characterization also provides information if UB is rejected.

5.2 Troubleshooting in Case of Rejected Updates

Similarly to Section 3.7, in case UB is not admissible, the information contained
in the well-founded model W and the corresponding stable model AS can be
used for deriving debugging hints. Problem situations are defined analogously
as in Definition 3.24; additionally there can be problems due to conflicts between
updates.

The above considerations also apply for the admissibility of U ub=U true,undef
W

that provides an upper bound to which subset of UB can possibly be admissible.
Thus, first problems are already identified during the computation of W. The
first time that a blocking for an upd ∈UB or for a propagation along a cascading
reference is derived in an underestimate, a problem situation is identified that
can be reported.

Later, if U ub=UB, but it is still not admissible, the check as to whetherW+
is positive-stable immediately shows where the problems are located: the first
rule in the subsequent computation of the well-founded model that derives a
blocking against an update in 1true+

W+ identifies the problem situation. The con-
clusions as to how to cure the problem are the same as described in Section 3.7.

5.3 Refined Analysis

In the above well-founded modelW, in general most updates will be undefined,
thus, the subsequent investigation of W+ is generally necessary. There are
several typical situations, where even single, admissible updates yield only
undefined updates in W, for example, diamonds or cyclic dependencies. These
can be detected by schema analysis, and then can be handled by refining the
first (MCN) rule.

Diamonds. For a given schema, it is possible to detect diamonds a-priori
by checking transitive dependencies and appropriately modifying the program

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

392 • W. May and B. Ludäscher

(similar to the use of the referential action graph in Gallagher [1986] and
Horowitz [1989]). For every diamond, the key on top of the diamond, and its
children are considered when reasoning about changes. Changes inside the dia-
mond are only checked if they are due to references that come into the diamond
from outside.

Cyclic Dependencies in a Single Update. Cyclic dependencies also lead to
undefined modifications and blockings. In fact, cyclic dependencies are a special
case of the diamond where the top relation is the same as the bottom relation.

Cyclic Dependencies between Updates. NO ACTION references can lead to
cyclic dependencies between a set of updates. In this case, the well-founded
model yields undefined updates although often all of them as a group are admis-
sible. The “second try,” based onW+ is then successful in deriving a total model.

In the above cases, undefined atoms in the well-founded model were caused
by problems of the logic programming characterization and could be eliminated
by either changing to stable models or rewriting the program according to a
given schema. Additionally, undefined atoms in the well-founded model can be
caused by mutual exclusion or “self-killing” updates.

Self-Killing Updates. An update is self-killing if it causes conflicting cas-
caded updates. In most cases this points to a severe design error. Again, poten-
tial problems can be detected by regarding the transitive closure of referential
actions.

Mutual Exclusion: Multiple Admissible Sets. Mutual exclusion is the only
case where the expressive power of the well-founded model is not sufficient (it
cannot represent the choice between alternatives in the result). It also results
in undefined updates and blockings wherever atoms are involved in mutual
exclusion. Here, stable models provide the cure to the problem.

6. RELATED WORK

Referential integrity for relational databases was first considered in Codd
[1970] with an implicit or-semantics between a foreign key and several parent
keys (in different tables). The definition has been reformulated in Date [1981];
specifying whether a parent key must be present in all, some, or exactly one of
the parent tables. Later [Date 1990], the or-semantics was cancelled and refer-
ential actions were defined for enforcing these referential integrity constraints
after the execution of updates.

In the SQL2 [ANSI/ISO 1992a] standard, referential integrity constraints
and referential actions are specified using the syntax given in Section 2.2, ac-
cording to the above all-semantics. While the syntactic specification of refer-
ential actions in SQL is in a declarative style, the given procedural seman-
tics causes ambiguities in some cases of network-like referential structures
[Hammer and McLeod 1975; Markowitz 1990, 1991b] due to different execu-
tion orderings of referential actions (see also Date [1990] and Date and Darwen
[1994]). The same characterization was also used in the early SQL3 working
drafts, for example, ANSI/ISO [1991, 1992b, 1994].

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 393

Motivated by the problem of ambiguities, several research directions have
been followed. Schema-based analysis provides conditions that are sufficient,
but more restrictive than necessary. In Markowitz [1991b], such a schema-
based strategy is presented to exclude ambiguous situations. The approach
considers only delete operations with referential actions CASCADE, SET NULL,
and RESTRICT; neither DELETE NO ACTION nor UPDATE CASCADE are allowed.
Thus, already situations similar to the “diamond” from Example 3 (which
has an intuitively clear semantics) are not considered. The approach is tuple-
oriented, and there is no “natural” extension of the solution for updates.
The approach is refined in Markowitz [1994], dropping several simplifying
assumptions.

Another schema-based approach using a relation-column-based (instead of
tuple-based) referential action graph was presented in Gallagher [1986] and
Horowitz [1989].

A “semantic” approach is followed by Markowitz [1990]: Starting from an
object-oriented or EER model of an application, criteria are given as to how
to map this model to a relational model with rics and racs, depending on the
semantics of a reference (of “blocking” or “cascading” nature). Here, the problem
of cascading modifications is solved by the introduction of surrogate attributes,
which simulate a kind of object-identity. Then, it is shown that the result does
not have the negative properties identified in Date [1990]—there cannot occur
any ambiguities.

At that time, in commercial database systems ON DELETE/UPDATE NO ACTION
was used by default, only ON DELETE CASCADE could be specified optionally.
Thus, especially cascading modifications were not supported. For an overview
of the support for referential integrity in commercial RDBMSs at that time, see
Markowitz [1991a].

Compile-time approaches that are based on triggers and schema information
only, are too restrictive, since their criteria are sufficient but not necessary to
avoid ambiguities (cf. the abovementioned undecidability of the problem). In
other words, they prohibit a schema if there is the possibility of an anomaly in
a “wrong-use-worst-case.” Reinert [1996] shows that it is undecidable whether
a given schema with referential actions can, for some database instances, lead
to ambiguous update situations under the SQL2 semantics. In contrast, the
problem becomes decidable for a given situation: when a database instance and
a set of updates is given. Such considerations have led to the investigation of
run-time approaches:

Horowitz [1992] presented a procedural execution model using a marking
algorithm based on bookkeeping about deletions and modifications under the
restriction that keys consist only of a single column. Thus, this (in practice unre-
alistic) assumption avoids the problems of overlapping keys and foreign keys.
The evaluation model has been extended and accepted for the SQL3 [ANSI/ISO
1999] standard (see also Section 2.4); also commercial DBMS implementations
conform to it (as far as they support referential actions). An integration of the
semantics of SQL triggers and declarative constraints (including referential
integrity constraints and referential actions) is investigated in Cochrane et al.
[1996]. Their model is fully compatible with the SQL2 (and also the later SQL3)

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

394 • W. May and B. Ludäscher

requirements. The internal problems of referential actions are not considered.
From the aspect of active databases, production rules have been considered
for investigating triggers and referential actions, for example, Abiteboul and
Vianu [1991], Picouet and Vianu [1995]; Ceri and Widom [1990] and Widom
et al. [1991].

SQL3 [ANSI/ISO 1999] extends the above-mentioned marking strategy given
in Horowitz [1992] for cascading referential actions (dropping the unary-key-
constraint). The actual SQL3 specification is then given in terms of a complex
characterization via BEFORE triggers. SQL3 also specifies several “levels”: For
the intermediate SQL specification (which is currently supported by commer-
cial systems), update rules are not allowed (i.e., the only ON UPDATE action is
the default ON UPDATE NO ACTION). For full SQL, all referential actions are al-
lowed. Note that the approach is not key-oriented but tuple-oriented: already
non-interfering updates on a tuple (concerning disjoint foreign keys) are ex-
plicitly forbidden. For updates that are allowed by full SQL3, our semantics
coincides with the one specified for SQL3—note that our semantics does not
use longwinded procedural or trigger-based algorithms, but only specifies the
intuitive local behavior whereas the global semantics is naturally given by the
well-known logic programming semantics.

Commercial DBMSs. For a long time, in commercial DBMSs, ON DELETE/
UPDATE NO ACTION was used by default, only ON DELETE CASCADE could be specified
optionally. Only recently, Microsoft SQL Server (since 2000) and PostgreSQL
support ON UPDATE CASCADE.

7. CONCLUSIONS

We have investigated the semantics of arbitrary sets of user-requested updates
to a database in the presence of referential integrity constraints and referential
actions. Our results contribute both to database theory, and to the practical
implementation of referential actions.

Theoretical Aspects. We have shown how a logic-based specification of refer-
ential actions can yield a better understanding of ambiguities and conflicts: the
logic programming characterization shows how to obtain a declarative global
semantics that is computable in polynomial time from a concise and intuitive
local definition of racs accessing only two tuples at a time. The game-theoretic
formalizations abstract from details and provide additional insight into the be-
havior of racs and are used to establish the correctness of the logic programming
formalization.

In contrast to the latest SQL3 standard [ANSI/ISO 1999], where the se-
mantics is specified by a complicated, procedural computation (after previous
versions that suffered from ambiguities), our results show that the well-known
semantics for general logic programs already unambiguously specify a seman-
tics of racs (that coincides with that of ANSI/ISO [1999]).

Provided one accepts the appropriateness of the well-established Logic Pro-
gramming semantics, our semantics is the “natural” semantics of referential in-
tegrity constraints and referential actions specified in SQL’s ECA-style syntax.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 395

Practical Aspects. For the restricted case of deletions only, we have shown
how this specification can be transformed into an efficient algorithm and im-
plementation in an arbitrary procedural language. For modifications in the
presence of referential actions of the form ON UPDATE CASCADE (which is still only
partly supported in commercial database systems), we have shown how the
logical characterization can be used for efficiently checking admissibility of a
set of updates, and for computing the subsequent database state. In both cases,
if the initial set of updates is not admissible, the computation can also be used
for detecting the exact location of the problems, and for giving hints as to how
to change the application specification.

case that has been sketched in Section 4.3, illustrates it by an example, and
shows its equivalence with the logic programming characterization.

ACKNOWLEDGMENTS

The authors thank Joachim Reinert and Georg Lausen for fruitful discussions
especially in the early stages of this work, and Jörg Flum for interesting discus-
sions about logic programming and game theory. We also want to thank Richard
Snodgrass and three anonymous reviewers for their constructive critique and
suggestions as to how to improve the presentation of the different aspects of
the paper.

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison Wesley.
ABITEBOUL, S. AND VIANU, V. 1991. Datalog extensions for database queries and updates. J. Comput.

Syst. Sci. 43, 1, 62–124.
ANSI/ISO. 1991. (ISO/ANSI working draft) Database Languages—SQL3 ANSI X3H2-91-254.
ANSI/ISO. 1992a. Information Technology—Database Languages—SQL2 Standard.
ANSI/ISO. 1992b. (ISO/ANSI working draft) Database Languages—SQL3 ANSI X3H2-92-154.
ANSI/ISO. 1994. (ISO/ANSI working draft) Database Languages—SQL3 ANSI X3H2-94-080.
ANSI/ISO. 1999. Information Technology—Database Languages—SQL3 Standard.
CERI, S., COCHRANE, R., AND WIDOM, J. 2000. Practical applications of triggers and constraints: Suc-

cess and lingering issues (10-year award for Ceri and Widom [1990]). In International Conference
on Very Large Data Bases (VLDB). 254–262.

CERI, S. AND WIDOM, J. 1990. Deriving production rules for constraint maintenance. In Interna-
tional Conference on Very Large Data Bases (VLDB). 566–577.

COCHRANE, R., PIRAHESH, H., AND MATTOS, N. 1996. Integrating triggers and declarative constraints
in SQL database sytems. In International Conference on Very Large Data Bases (VLDB). 567–
578.

CODD, E. 1970. A relational model for large shared data banks. Comm. ACM 13, 6, 377–387.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

It contains an example for the logic-programming characterization of refer-
ential actions in the case of update operations that has been given in Section 4.2.

Attached to the Citation Page for this article in the ACM Digital Library.

Additionally, it describes the detailed game-theoretic characterization of that

See: <http://doi.acm.org/10.1145/582410.582411> Appendicies and Supplements.

ELECTRONIC APPENDIX

http://doi.acm.org/10.1145/582410.582411

396 • W. May and B. Ludäscher

DATE, C. 1981. Referential Integrity. In International Conference on Very Large Data Bases
(VLDB). 2–12.

DATE, C. 1990. Relational Database Writings 1985–1989. Addison-Wesley.
DATE, C. AND DARWEN, H. 1994. A Guide to the SQL standard: A User’s Guide to the Standard

Relational Language SQL. Addison-Wesley.
DAYAL, U. 1988. Active database management systems. In Proceedings of the 3rd International

Conference on Data and Knowledge Bases: Improving Usability and Responsiveness. Morgan
Kaufmann, 150–169.

DIX, J. 1995. Semantics of logic programs: Their intuitions and formal properties. In Logic, Action
and Information, A. Fuhrmann and H. Rott, Eds. de Gruyter.

EITER, T., LEONE, N., AND SACCÀ, D. 1996. The expressive power of partial models for disjunctive
deductive databases. In International Workshop on Logic in Databases (LID). Springer LNCS
1154.

ESWARAN, K. P. 1976. Specification, Implementation and Interactions of a Trigger Subsystem in
an Integrated Database System. IBM Research Report RJ-1820(26414).

FAN, W. AND SIMÉON, J. 2000. Integrity constraints for XML. In ACM Symposium on Principles of
Database Systems (PODS). 23–34.

GALLAGHER, L. 1986. Referential integrity. ANSI X3H2-86-164.
GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Inter-

national Conference on Logic Programming (ICLP). 1070–1080.
HAMMER, M. AND MCLEOD, D. 1975. Semantic Integrity in a Relational Data Base System. In

International Conference on Very Large Data Bases (VLDB). 25–47.
HOROWITZ, B. 1989. Relaxing referential integrity syntax rule restrictions. ANSI X3H2-89-

260.
HOROWITZ, B. M. 1992. A run-time execution model for referential integrity maintenance. In

International Conference on Data Engineering (ICDE). 548–556.
LUDÄSCHER, B. 1998. Integration of active and deductive database rules. Ph.D. thesis, Institut für

Informatik, Universität Freiburg.
LUDÄSCHER, B. AND MAY, W. 1998. Referential actions: From logical semantics to implementation.

In 6th International Conference on Extending Database Technology (EDBT). Springer LNCS
1377, 404–418.

LUDÄSCHER, B., MAY, W., AND LAUSEN, G. 1996a. Nested transactions in a logical language for ac-
tive rules. In International Workshop on Logic in Databases (LID). Springer LNCS 1154, 196–
222.

LUDÄSCHER, B., MAY, W., AND LAUSEN, G. 1997. Referential actions as logical rules. In Proceedings
of the 16th ACM Symposium on Principles of Database Systems (PODS). 217–227.

LUDÄSCHER, B., MAY, W., AND REINERT, J. 1996b. Towards a logical semantics for referential actions
in sql. In 6th Intl. Workshop on Foundations of Models and Languages for Data and Objects
(FMLDO). 57–72.

MARKOWITZ, V. M. 1990. Referential integrity revisited: An object-oriented perspective. In Inter-
national Conference on Very Large Data Bases (VLDB). 578–589.

MARKOWITZ, V. M. 1991a. Problems underlying the use of referential integrity in relational data-
base management systems. In International Conference on Data Engineering (ICDE).

MARKOWITZ, V. M. 1991b. Safe referential integrity structures in relational databases. In Interna-
tional Conference on Very Large Data Bases (VLDB). 123–132.

MARKOWITZ, V. M. 1994. Safe referential integrity and null constraint structures in relational
databases. Information Systems 19, 4, 359–378.

PICOUET, P. AND VIANU, V. 1995. Semantics and expressiveness issues in active databases. In ACM
Symposium on Principles of Database Systems (PODS).

PRZYMUSINSKI, T. C. 1988. On the declarative semantics of deductive databases and logic pro-
grams. In Foundations of Deductive Databases and Logic Programming, J. Minker, Ed. Morgan
Kaufmann, 191–216.

REINERT, J. 1996. Ambiguity for referential integrity is undecidable. In Constraint Databases and
Applications, G. Kuper and M. Wallace, Eds. Springer LNCS 1034, 132–147.

VAN GELDER, A. 1993. The alternating fixpoint of logic programs with negation. J. Comput. Syst.
Sci. 47, 1, 185–221.

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

Understanding the Global Semantics of Referential Actions using Logic Rules • 397

VAN GELDER, A., ROSS, K., AND SCHLIPF, J. 1991. The well-founded semantics for general logic
programs. J. ACM 38, 3 (July), 620–650.

WIDOM, J., COCHRANE, R., AND LINDSAY, B. 1991. Implementing set-oriented production rules as an
extension to Starburst. In International Conference on Very Large Data Bases (VLDB). 275–285.

XML Schema 2000. XML Schema Parts 1/2: Structures/Datatypes. W3C Candidate Recommen-
dation, www.w3.org/TR/xmlschema-1,2.

Received January 2001; revised April 2002, July 2002; accepted July 2002

ACM Transactions on Database Systems, Vol. 27, No. 4, December 2002.

