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Amarnath Gupta1 Bertram Ludäscher1 Maryann E. Martone2;�

1San Diego Supercomputer Center, UCSDfgupta,ludaesch g@sdsc.edu
2Department of Neurosciences, UCSD mmartone@ucsd.edu

Abstract

The need for information integration is paramount in many
biological disciplines, because of the large heterogene-
ity in both the types of data involved and in the diver-
sity of approaches (physiological, anatomical, biochemi-
cal, etc.) taken by biologists to study the same or corre-
lated phenomena. However, the very heterogeneity makes
the task of information integration very difficult since two
approaches studying different aspects of the same phenom-
ena may not even share common attributes in their schema
description. This paper develops a wrapper-mediator ar-
chitecture which extends the conventional data- and view-
oriented information mediation approach by incorporating
additional knowledge-modules that bridge the gap between
the heterogeneous data sources. The semantic integration
of the disparate local data sources employsF-logic as a
data and knowledge representation and reasoning formal-
ism. We show that the rich object-oriented modeling fea-
tures of F-logic together with its declarative rule language
and the uniform treatment of data and metadata (schema
information) make it an ideal candidate for complex inte-
gration tasks. We substantiate this claim by elaborating on
our integration architecture and illustrating the approach
using real world examples from the neuroscience domain.
The complete integration framework is currently under de-
velopment; a first prototype establishing the viability of the
approach is operational.

1 Introduction

A grand goal in many disciplines of biological research is to
understand the workings of a biological organ like the brain
and how the interplay of different structural, chemical and
electrical signals in the biological tissues gives rise to natu-
ral and disease processes [KH96]. To achieve such a goal,
however, it is essential to develop an integrated understand-
ing of very different, but conceptually correlated studies and

�Supported by NIH grants RR04050 and DC03192.

data produced from diverse biological subdisciplines. Most
importantly:

� Biologists assess different animal models to study dif-
ferent aspects of the same biological function. Thus,
for a given research problem, they may wish to in-
tegrate information about the cytoarchitecture of sen-
sory cortex from the somatosensory cortex of the rat,
the brain areas involved in vision from the primate, the
physiology of receptive fields from the cat, the distri-
bution of key proteins involved from the rat, and the
molecular underpinnings of synaptic plasticity from
the mouse.

� Biologists study the same biological system from mul-
tiple perspectives. For example, in the study of cal-
cium regulation, researcher A may take a physiological
approach, using patch electrodes to study calcium cur-
rents; researcher B may take an anatomical approach,
mapping the distribution of different isoforms of cal-
cium regulatory proteins and the organelles that ex-
press them; a biochemist C may study signal trans-
duction cascades and levels of protein activity using
Western blots and assay systems, a pharmacologist D
may use a panel of channel blockers, agonists or antag-
onists to study the response in single cells or the whole
animal to alterations in calcium regulation.

The goal of this paper is to present an architecture to in-
tegrate different studies and analyses conducted by biolo-
gists performing different experiments, such that the inte-
grated body of information can be queried and navigated
across. Once such information is integrated, the practic-
ing biologist can use the system to discover biologically
significant correlations and use the discovery to plan fu-
ture work in the context of available data. The integration
challenge is that source data cannot be joined using simple
term-matching or comparison operators. Even more sophis-
ticated approaches which use ontologies to enumerate join-
able terms [Kas96] are often not sufficient. Instead a join
should be performed based on whether the objects satisfy
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some application-specific condition. For complex integra-
tion scenarios as our neuroscience application, a more ex-
pressive formalism is necessary to specify these “semantic
join conditions”. In particular, the formalism should have
inferencing mechanisms to reason over domain knowledge
if necessary.

The contributions of the paper are as follows: We
develop an architecture called KIND (Knowledge-based
Integration ofNeuroscienceData) that extends the conven-
tional wrapper-mediator architecture with one or more do-
mainknowledge basesthat provide the “semantic glue” be-
tween sources through facts and rules from the application
domain. Thus our mediator enhances view-based informa-
tion integration with deductive capabilities. Data manipula-
tion and restructuring operations for integration can be per-
formed not only on the base data from the sources but also
on intensional data derivable from the knowledge bases. To
this end, we employ the deductive object-oriented language
F-logic and demonstrate that it can handle the given com-
plex integration problems. An implementation of the sys-
tem is underway; first experiments with a preliminary (cen-
tralized, non-distributed) prototype have proven the viabil-
ity of the approach [KIN00].

We like to emphasize that the integration problem we ad-
dress is different from the problems addressed indatabase
federation(or multidatabases) [SL90, BE96, PS98]. There
a huge body of work has dealt with issues like schema in-
tegration, resolving conflicts and mismatches (structural,
extensional, naming, etc.), global query processing in the
presence of local autonomy etc. Those heterogeneities are
between different representations of essentially thesame(or
very similar) real world entities. In contrast, we deal with
sources containinginherently different(but related through
“expert knowledge”) information so these conflict resolu-
tion techniques are not applicable.1

The rest of the paper is organized as follows. In Section 2
we provide a brief introduction to F-logic to clarify the no-
tation and concepts used subsequently. Section 3 presents
a motivating example that illustrates the nature of the in-
formation integration task for the given problem domain. In
Section 4 we present our architecture and explain the role of
F-logic in the representation of schema, knowledge and in
the inference mechanism. Section 5 illustrates a particular
instance of our architecture, i.e., presents several elements
of INSM, theIntegratedNeuroScienceModel. In Section 6
we show in more detail how integrated views are defined
and queried in INSM using semantic information. Finally,
Section 7 contains a discussion including a comparison with
related approaches and an outlook on future improvements
and optimizations of the architecture.

1This does not preclude the possibility that our integration scenarios
alsoinvolve such problems and hence will benefit from this previous work.

2 F-Logic in a Nutshell

Since our integration approach is based on F-logic, we
briefly introduce the syntax and basic concepts of F-logic;
see [KLW95] for a full coverage of all features, in particular
details of the F-logic semantics (or [LHL+98] for a gentle
introduction with a focus on the management of semistruc-
tured data and querying the Web).

While there are other formalisms that could possibly be
used, we chose F-logic for several reasons: F-logic is a
declarative language with rich modeling capabilities (class
hierarchy, complex objects, inheritance, etc.) and a pow-
erful rule language. It has its roots in AI (frame-based
knowledge representation) and deductive object-oriented
databases. Apart from “pure” database modeling and query-
ing, it has been applied in several related (but different) ar-
eas, including schema transformation [CRD94], informa-
tion integration [GBMS99], querying the Web [LHL+98,
MHLL99, DFKR99], knowledge representation/reasoning
with ontologies [DEFS99], and management of semistruc-
tured data [LHL+98]. F-logic extends Datalog and first-
order logic (including Skolem functions). In particular,
well-known transformations can be used to map arbitrary
first-order constraints to equivalent stratified Datalog (and
thus F-logic) rules. Finally, F-logic query evaluation en-
gines such as FLORA [FLOa], FLORID [FLOb], and SILRI
[DEFS99] are readily available (and continue to be im-
proved).

F-logic Syntax and Object Model

� Symbols: The F-logic alphabet comprises setsF , P ,
andV of object constructors(i.e., function symbols),
predicate symbols(including

:
=), and variables, re-

spectively. Variables are denoted by capitalized sym-
bols (X, Name, ...), whereas constants and function
symbols (0-ary andn-ary object constructors) are de-
noted in lowercase (cerebellum, foo(bar,baz), ...) unless
quoted (’Cerebellum’). An expression isgroundif it in-
volves no variables. In addition to the usual first-order
symbols, there are special symbols2: ], [, g, f,!,!!,
),)), : , :: .

� Id-Terms/Object-Ids (Oids):

(0) First-order terms overF and V are calledid-
terms, and are used to name objects, methods,
and classes. Ground id-terms correspond tolog-
ical object identifiers(oids). In particular,con-
stantsandstrings(”cerebellum”) are oids; the lat-
ter are conceived as characterlists, i.e., nested
ground terms.

2We do not deal with inheritable methods here, so we omit the corre-
sponding symbols; cf. [KLW95].
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� Atoms: Let O;M;Ri; Xi; C;D; T be id-terms.
In addition to the usual first-order atoms like
p(X1; : : : ; Xn), there are the following basic types of
atoms:

(1) O[M!R0] (single-valued meth. app.)

(2) O[M!!fR1; ::; Rng] (multi-valued meth. app.)

(3) C[M)T ] (single-valued class signature)

(4) C[M))T ]. (multi-valued class signature)

(1) and (2) aredata atomsand specify (at the instance
level) that the application ofmethodM to the object
with oidO yields the result object with oidRi. In (1),
M is single-valued(orscalar), i.e., there is at most one
R0 such thatO[M!R0] holds. In contrast, in (2),M
is multi-valued, so there may be several result objects
Ri. Forn = 1 the braces may be omitted.
(3) and (4) denotesignature atomsand declare that the
(single/multi-valued) methodM applied to objects of
classC yields instances oftype(i.e., class)T .

The organization of objects into classes is specified by
isa-atoms:3

(5) O :C (O is an instance of classC)

(6) C ::D. (C is a subclass ofD)

� Path Expressions: F-logic supports path expressions
to simplify object navigation along single-valued and
multi-valued method applications and to avoid explicit
join conditions. The followingpath expressionsare
allowed in place of id-terms:

(7) O:M (single-valued path expression)

(8) O::M (multi-valued path expression)

The path expression (7) issingle-valuedand refers
to the unique objectR0 for whichO[M!R0] holds,
whereas (8) ismulti-valuedand refers to eachRi for
whichO[M!!fRig] holds.O andM may be id-terms
or path expressions. Although not part of the core syn-
tax, generalized path expressions4 can be defined by
means of rules [LHL+98].

� Parameters: Methods may beparameterized, so

M@(X1; : : : ; Xk)

is allowed in (1–4) and (7–8).

Example:orat[name@(scientific)!”Rattus rattus”].

3In KR parlance, foro53 : medium spiny neuron :: neuron :: cell we
say “a medium spiny neuron isa neuron isa cell” and “o53 is an in-
stance ofmedium spiny neuron”. In F-logic parlance, we say “subclass”
instead of “isa”.

4akaregular path expressionsand similar to XML’s XPath expressions
[XPa99]

� Rules: A rule is of the form

Head IF Body

where Head and Body are conjunctions of F-logic
atoms (read“if a ground instance satisfies Body then
also the Head”); aprogramis a set of rules.

F-moleculesare a concise notation for several atoms
specifying properties of the same object: for exam-
ple, instead oforat : taxon ^ orat[name@(common)!”rat”] ^
orat[order!”Rodentia”] we can simply write

orat : taxon[name@(common)!”rat”; order!”Rodentia”]

In F-logic rules “,” is shorthand for “̂”.

Object Model

An F-logic database (instance)is a set of ground F-logic
atoms. The basic relations among objects (!,!!,),)))
in this model can be represented as a labeled graph where
nodes are oids and where edges are labeled with the cor-
responding arrow and the method name. From base facts
additional facts can be derived by means of rules.

Example 1 (Fragment ofANATOM ) The following is a
fragment of ground F-logic atoms and molecules that make
up the anatomical knowledge baseANATOM (Section 4.1):

nervous system[has@(struct)!!fcns,pnsg].
cns[has@(struct)!!fbrain, spinal cordg].
brain[has@(struct)!!ftelencephalon, diencephalon,

mesencephalon,rhombencephalong].
...

cerebellar cortex[ has@(func)!!fhemisphere, vermis,
flocculus, parafloccular lobesg]

eukaryotic cell :: cell.
brain cell :: eukaryotic cell.
neuron :: brain cell.
glia :: brain cell. projection neuron :: neuron.
interneuron :: neuron.
purkinje cell :: projection neuron.

...
schwan cell :: glia.

The first two groups of facts describehas-arelationships
which are either structural or functional, the third group
specifies theis-a hierarchy of brain cells using F-logic’s
subclass connective “:: ”.

Based on such a fact base, rules are used to specify in-
tensional knowledge (which is derivable on-demand at run-
time). For example, the transitive closure ofall has-a rela-
tionships (structural, functional, ...) can be expressed by a
singlerecursive rule

X[has@(P)!!fYg] IF X..has@(P)..has@(P) = Y.

thereby illustrating the expressive power of rules using pa-
rameterized methods, path expressions, and recursion.2
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3 Integration Across Multiple Worlds: Moti-
vating Example

Consider three research groups: GroupA studies neu-
roanatomy of rodents, groupB studies calcium regulatory
proteins in vertebrates and groupC studies neurotransmis-
sion phenomena in mammals.

Group A (“Neuroanatomy”). Let us assume that group
A has a database ofstudies, where a study consists of a num-
ber ofexperiments on a specific research problem. Each ex-
periment records a number of experimental parameters in
the form of (name,value) pairs, and produces a number of
images. We focus on a specific image class calledprotein la-
beling images. For each protein label image the anatomical
parameters (i.e., which anatomical region the image repre-
sents) and the protein used are recorded. Each image is seg-
mented into a number ofsegments, based upon the amount
of protein staining. The image is also represented as a col-
lection of namedanatomical structures visible in the image.
Each anatomical structure is modeled as a collection of seg-
ments, such that aggregate features like the distribution of
stain within an anatomical structure may be computed. Very
often a single biological study involves a number of exper-
iments conducted atdifferent granularity levelsin the ani-
mal. For example, experimenters may try to localize a pro-
tein in a tissue, a cell, specific cellular compartments and
in intracellular substructures. In this case, the anatomical
parameters of an image at any level aresemanticallyre-
lated to those of an image at the next coarser level although
this relation may not be directly visible from the schemas.
We will explain how this is modeled in Section 6. In some
experiments, specific anatomical structures from a stack of
confocal images or a series of electron micrographs are re-
constructed into volumetric objects modeled as geometric
entities, and specific 3D properties such as the surface to
volume ratio are measured. The volumetric information is
stored in a separate databaseDENDREC. The 3D anatomi-
cal models are related to the images from which the recon-
struction was made. In our example,DENDRECcontains the
reconstruction of spiny dendrites in the rat neostriatum.

Group B (“Calcium-Binding Proteins”). Next, let us as-
sume groupB to have a database of calcium-binding pro-
teins5 where each protein is identified by its reference num-
ber in the PDB6 and/or the reference number in the SWISS-
PROT7 database. Otherwise it is identified by an internal
identifier. A protein has a molecular weight, anamino acid

sequence, the number of amino acids and is grouped with

5http://structbio.vanderbilt.edu/cabp_database/
6Protein Data Bank,http://www.rcsb.org/pdb/
7http://www.expasy.ch/

a number of other proteins that belong to the samefamily.
Its isoforms, mutants and the species in which the mutants
are found are also recorded. Every protein subfamily and
mutant form is also given a unique identifier. For every pro-
tein the researchers also record the interaction of the protein
with elements and ions, the evidence ofsignal transduction

pathways it participates in and thedisease processes it con-
tributes to. The database organizes the signal transduction
and disease information by thespecies where the evidence
has been found. Also grouped by species, the researchers
record the tissue and cell-levellocalization they have found
in their experiments. However this group does not conduct
any experiments at a subcellular level. Although the system
does not store the genetic code of the proteins they study,
they maintain the reference identifier for the protein form in
the GENBANK8.

Group C (“Neurotransmission”). Finally, group C

stores information about neurotransmission including neu-
rotransmitter substances, neurotransmitter receptors and
voltage-gated conductances in a databaseNTRANS9. In this
system everyneuron is modeled to be composed of a canon-
ical set of non-overlappingcompartments. For every com-
partment of each neuron studied, the experimenters record
the input receptors and their description, theintrinsic ionic cur-

rents along with their description, and the output transmit-
ters. The description contains a textual account of thefunc-

tion of the receptor or transmitter, thebrain region where they
are active. Each type of current is characterized by the ions
that generate them, theirelectrical properties, and theirfiring

characteristics. Receptors and transmitters are also organized
into families, representable by a tree structure.

When these systems are integrated, a biologist would
like to make queries such as:

� Find the cerebellar distribution of rat proteins with
more than 90% amino acid homology with the human
NCS-1 protein. Compare the distribution of this pro-
tein or its homologs in other rodents.

� Are any calcium-binding proteins found only in the
thin dendritic spines of the rat neostriatum and not
in the stubby spines? Do these proteins always co-
localize?

� Is there any experiment performed on other mammals
on the proteins involved in signal transduction in the
visual systems of primates? How similar are these pro-
teins?

A major challenge in today’s bioinformatics is to find
ways to correlate, combine and unify information from mul-

8http://www2.ncbi.nlm.nih.gov/genbank/
query-form.html

9e.g.http://ycmi.med.yale.edu/senselab/neurondb/
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tiple data sources such as described above. But even with
many online data sources and information retrieval tools, bi-
ologists have little or incomplete technological framework
to make this unification possible across disciplines, scales
of observation and diversity of viewpoints. As a result, they
perform the “integration” task manually, by physically as-
sembling data from multiple sources and putting them to-
gether by individual effort. Hence they are seldom allowed
the luxury to make “inter-database” queries although the ca-
pability to perform such queries is fundamental to the task
of the broad-based knowledge unification that they seek. An
ostensible source of difficulty arises from the semantic in-
compatibilities both within and between the data sources.
For example, consider that groupA has a number of exper-
iments on the protein distribution ofbasket cells and their
neighboringPurkinje cells without stating that they both be-
long to therat cerebellum. We need to model and use this
additional piece of knowledge in order to answer the first
query. Similarly, the fact that proteins are related because
they share amino acid homologies is never recorded because
it is “common knowledge” to the domain. However, unless
this information is explicitly available from a supplemen-
tary source, the query cannot be answered.

In addition to the need for having additional knowledge
integration of biological information also have the follow-
ing issues:

� The information representation at the mediator should
be flexible enough to accommodate a wide degree of
heterogeneity at the data sources, and at the same
time, represent the class-structure evident from the
taxonomic character of the data. To accommodate
this, we use an object-oriented formalism, but un-
like the collection-based model used by Bio-Kleisi
[DOTW97], we use F-logic that is well-equipped to
represent object-orientation, flexible enough to rep-
resent semistructured data, and has the machinery to
perform inferences and recursive computation such as
path expressions and transitive closure.

� The computation of numeric aggregates and numeric
features describing the content of 2D and 3D images
and reconstructed volumes is an essential component
of the data to be integrated. Equally important is the
need to represent complex semantic rules to model the
associations between numeric features computed from
multiple image and volume instances.

� Queries involving graph operations such as graph in-
tersection and computation of the spanning tree are im-
portant in discovering the associations between data
coming from different sources that are initially un-
connected. Meta-level reasoning with schema and at-
tributes are an important component in creating these
associations.

4 The Integration Framework

Most current approaches to integration of information from
heterogeneous sources are based on the well-knownmedi-
ator architecture[Wie92]: The problem of heterogeneous
data models of sources is solved by translating the data
into a common format usingwrappers. Thesemistructured
data model(essentiallylabeled directed graphs, [Abi97])
in general and XML [XML98b] in particular have been
shown to be suitable target data models.10 Once the data
can be accessed in a uniform way, amediator is used to
integrate between the different local views and schema el-
ements, based on the specification of an integrated view.
The definition of such an integrated view can often be a
highly complex task and requires dealing with all of the
well-known integration problems from information integra-
tion in databases likestructural, semantic, anddescriptive
conflicts11 (e.g., flat vs. nested relational vs. object-oriented
modeling, homonyms, synonyms,: : : [SL90, PS98]). Thus,
for complex integration tasks, a powerful declarative speci-
fication language is required, e.g., for querying and restruc-
turing local schemas, mapping data between models and
schemas, integrity checking, and knowledge inference.

4.1 The KIND Architecture

For our neuroscience application domain, we have devel-
oped an elaboration of the mediator architecture called
KIND (Figure 1): The main data sources are scientific
STUDIES of various types which themselves can refer to
further heterogeneous data sources likePROLAB (image
databases of protein labelings) andDENDREC (volumet-
ric reconstructions of dendrites). Other KIND sources are
CAPROT (calcium-binding protein databases) andNTRANS

(neuro-transmission database). Apart from these sources of
observational data, there are also sources with general do-
main data and knowledge likeANATOM (anatomical knowl-
edge base) andTAXON (animal taxonomy database).

Unlike other mediator approaches that solely use the
semistructured model throughout the integration, we addi-
tionally incorporate a rich object-oriented knowledge rep-
resentation formalism, i.e., F-logic [KLW95] into the ar-
chitecture. This enables a better modularization and more
adequate modeling of complex application domains like bi-
ology and neuroscience.12 In our biological integration do-

10Raw data is often given in an unstructured or semistructured format
(HTML, spreadsheets, formatted text, etc.). Also, structured data like rela-
tional, hierarchical, and object-oriented data can be easily mapped into the
semistructured model.

11Since wrappers for legacy sources are often “thin” and just hidesyn-
tactic differences and different access methods etc. from the mediator, the
latter has to deal with all of these integration problems.

12Indeed, as will be shown below, simple database view definition mech-
anisms (e.g., joins) are not sufficient to capture such rich domain seman-
tics.
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Figure 1. The KIND Mediator Architecture

main, for example, links between otherwise unrelated data
are established using expert knowledge (like anatomical,
taxonomic, or partonomic relationships [HF96]) which is
represented using F-logic rules. In some cases, ontologies
exist for modeling specific aspects or parts of a domain,
thereby providing a unique semantics for that part. While
an ontology captures the semantics of some domain, the
problem remains to mediate across different ontologies for
providing the user with an integrated view [WJ98]. Again
a powerful integration language like F-logic is needed for
mediating between the ontologies.

4.2 KIND Modules

Thesource modulesof the KIND architecture, i.e., data and
knowledge sources, have an associated XML DTD (Doc-
ument Type Definition) describing the structure of the ex-
ported data after wrapping. Here, we speak of adata source
(or data module), when the modeled information has mainly
observational character like data collected during an ex-
periment, and of aknowledge sourcewhen we model in-
formation about the application domain (“general” or “ex-

pert knowledge”), usually in rule form. Note that for some
sources wrapping may be done once and off-line. However,
often this translation has to be done online (oron-demand),
i.e., the wrapper has to translate incoming XML queries to
native queries against the actual source data. In general,
thequery capabilitiesof the underlying source are limited
in which case the wrapper can support only specific XML
queries.13

Syntactic integration with some minimal consistency at
the source level is achieved by enforcing that a source mod-
uleM exportsvalid XML, i.e., which conforms to the as-
sociatedDTD(M). Clearly, additional integrity constraints
dealing with both structural aspects and application domain
constraints should be modeled in order to guarantee consis-
tency at a higher, conceptual level [T¨ur99, CGL+98].

Exported Object and Class Structure

At the level of a source moduleM , we incorporate F-
logic by providing aclass signature�(M) of exported

13Note that the wrapping step has been omitted from Figure 1.
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classes and their objects’ structure, which constitutes a se-
mantically much richer conceptual-level specification of the
source than justDTD(M) and thereby facilitates the inte-
gration ofM at a conceptual level at the mediator. In par-
ticular,�(M) specifies

� the source’sclass hierarchy,

� whether attributes (i.e., F-logic methods) aresingle-
valuedor multi-valued,

� whether and how they areparameterized, and

� whether they areinheritableor not.

Formally, the object-oriented class structure ofM is given
by a mapping�M : DTD(M) ! �(M). Technically,
�M is straightforward to implement as it amounts to a
simple syntactic transformation from XML elements to
F-logic expressions (e.g., using an XML parser whose
output is “pretty-printed” to F-logic, or using the XML
stylesheet/transformation language XSL(T)). The difficulty
consists in choosing the most appropriate “semantically ad-
equate” representation in F-logic of the underlying, XML-
encoded, object model. Consider, for example, ageneric
mapping�gen which mapsarbitrary XML documents (i.e.,
irrespective of an object model of the encoded information)
to F-logic representations: Since an XML document is a
semistructured database (more precisely, a labeled ordered
tree) it can be represented in F-logic, for example, over the
signature

xml node[
element type)string;
attribute@(string))string;
child@(integer))xml node ] .

While�gen faithfully represents any given XML document,
the application domain structure isnotvisible at the schema
level and has to be extracted from the data. Thus, whenever
possible, it is preferable to model a source by first specify-
ing its application domain structure in F-logic, i.e., design-
ing �(M). Then a syntactic representation of�(M) using
an XML DTD is straightforward, and we can trivially go
back from that DTD to�(M). Hence we get�M essen-
tially “for free”.

In case a source module does not have an F-logic sig-
nature�(M), for example, becauseM is a new source
module being added to the system andDTD(M) is un-
known, or�M has not yet been established, then�gen can
still be useful as a first means to bring the new data into
the system. Indeed, F-logic is also suitable as a language
for managing semistructured data, i.e., extracting data us-
ing generalized path expressions, discovering schema etc.
[LHL+98, MHLL99].

Exported Integrity Constraints

In addition to�(M), a set of application specificintegrity
constraintsIC(M) can be provided. These are F-logic
rules that create “alerter objects”, i.e., instances of class
alert whenever an inconsistency (at the class or object level)
is derived. An alerter object indicates the type of incon-
sistency encountered and some hints on which objects and
classes were involved in the inconsistency (see Section 5)
which greatly simplifies debugging the data. In particu-
lar, this allows to differentiate betweenlocal inconsisten-
cies (i.e., within a moduleM ) andglobal inconsistencies
[Tür99].

Derived Knowledge

Finally, some modulesM also exportintensional knowl-
edgein the form of a set of F-logic rulesIDB(M).

Example 2 (ANATOM Fragment Cont’d) The anatomical
knowledge baseANATOM (cf. Example 1, Figure 1) in-
cludes the following rules

purkinje cell[located in!!fpurkinje cell layerg].
basket cell[located in!!fcerebellar cortexg].

X[located in !!C] IF
X : nucleus[located in !!fN : neurong],
N[compartments !!fC : cell bodyg].

X[located in!!fXg] IF X : neuro anatomic entity.

Y[located in!!fXg] IF X[has@(P)!!fYg].

X[located in!!fYg] IF X..located in..located in = Y.

defining the located in relation from base facts, specific
anatomical knowledge rules, and generic rules for defining
reflexive and transitive closure. 2

4.3 The KIND Mediator

As explained above, the structure and semantics of a source
moduleM is specified using an XMLDTD(M) (mainly
for inputing the wrapped raw data), a class signature�(M),
the correspondence mapping�M between them, integrity
constraintsIC(M) and, in the case of derived knowledge,
IDB(M). The KIND mediator module itself exports an
integrated F-logic view INSM (IntegratedNeuroScience
Model) to the user, which is defined based on the imported
source modules (STUDIES, TAXON, ... ), the facts and rules
from the imported knowledge bases (ANATOM, ICORR), and
the actual view-defining integration rules (Figure 1). The
mediator imports signatures of a moduleM using declara-
tions like

:– import study[
id)string; project)string;
experiments))experiment; ...]

from ’STUDIES’.
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In this way, a subgoal of the formS : study[id!I; project!P; ...]

induces a query against theSTUDIESsource. Note that oids
of objects from different source modulesM1 andM2 are
guaranteed to be distinct. The declarative way to achieve
this is by qualifying each oid with the URI of the mod-
ule from which it was imported (in the implementation we
can just use disjoint sets of integers as oids). The only oids
which can be shared across modules are those ofstring ob-
jects and constants occurring in the import declaration. For
example, consider two sourcesSIMPLE and DETAILED of
animal data. We can simultaneously import from both mod-
ules as follows:

:– import animal[name)string] from ’SIMPLE’.
:– import animal[common name)string; species)string;

genus)string; ...] from ’DETAILED’.

Constants appearing in the import declarations (animal,
species, : : :) and string-valued objects like”Rodentia” are dis-
tinguished and thus shared external object names. There-
fore a subgoal of the formX : animal[Attr!Val] will yield both,
instance fromSIMPLE and fromDETAILED, together with
their attribute/value pairs. As part of the integration pro-
cess, we may have to distinguish between instances ofan-

imal from SIMPLE and those fromDETAILED (note that
the way internal oids are differentiated may not be visible
to the rule programmer). This is accomplished by quali-
fying names with the module they were important from:
e.g., X : (”DETAILED”.animal)[M!R] will only range over ob-
jects fromDETAILED. Logically, this corresponds to defin-
ing for each moduleM, the methodsM.N for all distinguished
names imported fromM:

M[N!M.N] IF N : distinguished name[imported from!M] .

When importing data fromM, a distinguished (exported)
class nameC is prefixed withM and all instances ofC in
M are made instances ofM.C.

F-Logic Query Evaluation

The current prototypical implementation of the KIND sys-
tem [KIN00] uses a central mediator component with
FLORA [LYK99, FLOa], an F-logic to XSB-Prolog com-
piler, as the evaluation engine. Due to its built-in top-
down strategy14, FLORA derives facts in ademand-driven
way somewhat similar to the VXD architecture of MIXm
[LPV00]. At the current implementation stage, sources
have no independent query evaluation mechanism but sim-
ply export all data and rules to the central mediator. How-
ever, the design of the architecture allows for source mod-
ules to have their own evaluation engine in which case
source data is imported only as needed for answering
queries.

14... with tabling to ensure termination in the function-free case – this is
not guaranteed with standard Prolog.

In contrast, the FLORID system [FLOb] is an imple-
mentation of F-logic which employs a bottom-up and thus
a modelmaterializationstrategy. It has been shown that
FLORID is well-suited for management of semistructured
data [LHL+98] and as a unified framework for wrapping
and mediating Web data [MHLL99]. Therefore, we plan
to incorporate the FLORID engine into the KIND architec-
ture for modules and views where materialization is advan-
tageous.

5 Elements of the Integrated Neuroscience
Model

In this section we illustrate of the concepts described in the
previous section by examples.

XML-DTD and F-logic Representations

Each source moduleM has an associated XML DTD. The
XML data may result from wrapping of the raw data, or the
source may natively support XML. The mediator can either
import the XML DTD as is (using the generic mapping�M

to F-logic; cf. Section 4.1), in which case any application
specific structure not visible from the DTD has to be “re-
covered” at the mediator, or the mediator can import the
semantically richer F-logic signature.

The following XML DTD is used by theSTUDIES

database:15

<!ELEMENT Studies (Study)*>
<!ELEMENT Study (study_id, project_name,

project_description, animal,
experiments, experimenters)>

<!ELEMENT animal (subject_id, scientific_name,
strain, age)>

<!ELEMENT experiments (experiment)*>
<!ELEMENT experiment (description, instrument,

parameters)>
<!ELEMENT instrument (type, name)>
<!ELEMENT parameters (parameter)*>
<!ELEMENT parameter (name, value)>
<!ELEMENT experimenters (experimenter)*>
<!ELEMENT experimenter (name, affiliation)>

One of many ways to model this in F-logic is as follows:

studyDB[studies))study].
study[id)string; project name)string; description)string;

animal)animal; experiments))experiment;
experimenters))string].

animal[subject id)string; scientific name)string;
strain)string; age)string].

experiment[description)string; instrument)instrument;
parameters))exp parameter].

instrument[type)string; name)string].
exp parameter[name)string; value)string].

In general, the F-logic signature�(M) can carry much
more semantics from the application domain (due to

15We omit the PCDATA elements from the schema.
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class hierarchies, parameterized methods, single- vs. multi-
valued, etc.), in particular when accompanied by integrity
constraintsIC(M) and derived knowledgeIDB(M).

Creation of Mediated Classes

At the mediator level, the F-logic schema of the source is
modified to relate it to the knowledge sources. For ex-
ample, the type ofscientific name, which consists ofgenus

andspecies names and may optionally include asubspecies

name, is modified from a string to ataxon reference, where a
taxon is an element from the taxonomic database. The mod-
ification is made by first creating a new class calledanimal

at the mediator as the union of the classes calledanimal at
the sources. Thus, at the mediator

animal[M)R] IF S : source, S.animal[M )R].

Then a new method is added to this union class to link it to
the taxonomic database:

animal[taxon)’TAXON’.taxon].

Finally, the association between the scientic name in the
PROLAB database and the taxonomic database is created:16

X[taxon!T] IF
: ’PROLAB’.animal[scientific name!N],

words(N,[W1,W2j ]),
T : ’TAXON’.taxon[genus!W1; species !W2].

The built-in predicatewords, when given a string as first ar-
gument, returns the list of words of that string. As will be
used later, this predicate can also create a string of words
which are separated by a whitespace. Such somewhat “pro-
cedural” predicates likeword can easily be defined at the
mediator, since the whole XSB-Prolog machinery is acces-
sible from the FLORA F-logic engine.

Geometric Modeling

In modeling reconstructed volumes of dendritic spines17,
we first create a number of solid-geometric primitives called
shape3D like cylinders, spheres and hyperboloids, used by
solid modeling software.

shape3D[volume)scalar; area)scalar]
cylinder :: shape3D[radius)scalar; length)scalar].

The model of dendritic spines is composed of these primi-
tives:

spine :: shape3D[view files))url].
mushroom spine :: spine[

head)head; taper)taper; neck)neck].
head[shape)sphere]. taper[shape)hyperboloid].
neck[shape)cylinder].

16Each occurrence of theanonymous variable“ ” corresponds to a
fresh variable.

17Dendritic spines are specialized protrusions on neurons that receive
the bulk of synaptic input.

Theview files attribute yields a list of urls that represent the
images of different projections of the 3D volume. A para-
metric attribute of F-logic is used to model spines protrud-
ing out from the shaft of a dendrite at a coordinate (x,y,z):

shaft[connected spine@(x,y,z))spine; num spines)integer].

Rules for Classification and Integrity

The dendritic spines are classified intothin, stubby andmush-

room classes using F-logic rules:

S : mushroom spine IF S : spine[head! ; neck! ; taper! ].
S : stubby spine IF S : spine[head! ; undef!!fneck, taperg].
S : thin spine IF S : spine[neck! ; undef!!fhead, taperg].

The methodundef applied to an objectO yields those meth-
odsM that are declared for classC but which are not defined
for O. This is a simple example for reasoning about schema
and is specified in F-logic as follows:

O[undef!!fMg IF O : C[M)) ], not O[M!! ].

The dendritic reconstruction data source also has integrity
constraint rules, defined as a special class calledalert . For
example, the constraint that a dendritic spine cannot have
only a taper (but no head or neck) is modeled as:

ic1(S) : alert [type!”singleton taper”; object!S] IF
S : spine[taper! ; undef!!fhead,neckg].

Complex Relationships

As mentioned earlier, experimental biological information
often have complex semantic relationships. For example,
two experiments in a singlestudy in sourceA may be re-
lated in the following way. In the first experiment, the ex-
perimenters perform a protein labeling on the entire brain
and record the result as a segmentable image. In the second
experiment, they would like to investigate the protein label-
ing pattern of the heavily stained portions of thebrain region

called cerebellum. So they extract that part of the cere-
bellum (from an identical specimen) which showed heavy
staining in the previous experiment, and produce a finer
resolution image to identify the actual cells that took the
heavy stain (see Figure 2). Although these two images are
related, the relationship cannot be modeled just by linking
the second image to a segment of the first. In reality, the
second image is related toany segmentin the first specimen
that satisfies the condition of being “heavily stained” and in
the cerebellum. We model this by usingnamed predicates.
Consider a fragment on the schema of the classimage.

image[anatomical structures))anatomical structure].
anatomical structure[name)string; segments))segment].
segment[description)string; features))feature].

We consider the simple case where a feature is a sin-
gle floating point number. Let us assume that the class

9



protein label image :: image has only one feature calledpro-

tein amount. In order to express that a segment isheavily
stainedwe can specify a user-defined predicatehas prop as
follows:

has prop(I, heavily stained, S) IF
S..features.protein amount > 100 .

meaning that segmentS of imageI has the property “heav-
ily stained” if the staining intensity is greater than 100.18

We assume a relationderived with(P, I1,I2) that is instantiated
every time a researcher creates a finer resolution imageI2
based upon some propertyP on a coarser resolution image
I1. Then the rule

highlight parent segments(I2 ,S) IF
derived with(P, I1,I2), I1 : protein label image,
I1[anatomical structures..segments!!fSg],
has prop(I2,P,S).

can be used to encode the relationship between the two im-
ages. Used this way, the rule will produce all possible seg-
ments inI1 that could have produced the imageI2. We could
also use a rule with the same body to return all derived im-
ages from a given image.

Meta-Reasoning with Schema

The mediator performs meta-reasoning of the schema of
TAXON to create a class hierarchy of animals. Consider the
schema ofTAXON:

taxon[subspecies)string; species)string; genus)string;
family)string; order)string; infraclass)string; ...
... phylum)string; kingdom)string; superkingdom)string].

At the mediator, a hierarchy is defined for the taxonomic
ranks:

subspecies :: species :: genus :: ... :: kingdom :: superkingdom.

Now thedata in the TAXON database is used to infer the
taxonomicclass hierarchy:

T : TR, TR :: TR1 IF
T : ’TAXON’.taxon[Taxon Rank!TR; Taxon Rank1!TR1],
Taxon Rank :: Taxon Rank1.

The rule states that given two taxon ranks, e.g.,order and
kingdom with data valuesrodentiaandmetazoarespectively,
and given thatkingdom is a subclass ofclass, thenrodentia
is a subclass ofmetazoa. In other words, from thedataof
TAXON we infer newschema information, i.e., that all ro-
dents belong to the metazoe kingdom. As we will show in
the next section, this rule will be used in a query to deter-
mine the appropriate taxonomic ranks for computing joins
and closures.

18Instead of the equivalent bodyS[features!! [protein amount!A]],
A > 100 path expressions with “..” and “.” are used here.

Rule Export from Knowledge Bases

Knowledge bases export rules to the mediator. The anatom-
ical knowledge base, for example, contains both anis-a and
ahas hierarchy. Thus aPurkinje cell is aneuron andcerebellum

has aPurkinje cell layer. We also use the predicatelocated in as
an inverse of thehas relation. Thus the fact thatPurkinje cell

is located in Purkinje cell layer implies it is also located in the
cerebellum. This rule is used in the mediator to create a tran-
sitive closure over the locations ofneuro anatomic entity(ies)
during a query.

6 Semantic Integration from the Mediator’s
and User’s Perspective

To illustrate how an integrated query is evaluated in the In-
tegrated Neuroscience Model, we trace through the phases
of evaluating the first example query:

(1) Find the cerebellar distribution of all rat proteins with
more than 90% amino acid homology with the human
NCS-1 protein.

The broad steps for evaluating this query in theINSM mod-
ule are: (i) retrieve facts aboutshared homologieswhere
homology>90% (usesCAPROT), (ii) determine theprotein
distributionusing data fromPROLAB andANATOM, and (iii)
compute theaggregate, grouped by anatomical structure.

More precisely, let us assume that the mediator de-
fines and exports the following two views calledhomolo-

gous proteins andaggregated protein distribution.19

The first can be treated as a relation

homologous proteins(Protein1,Animal1, Protein2, Animal2,
Name type, Value)

Here the two protein-animal pairs refer to the variety of the
specified protein as found in the given animal. This relation
depicts that given two such pairs, the database stores how
similar they are in terms of their amino acid sequence as a
percentage value. The attributename type specifies whether
the common name or the scientific name of the animals have
been specified in the query20. Similarly, the second view
can be treated as the relation

aggregated protein distribution( Protein, Organism name,
Name type, Brain region, Feature name,
Anatom struct, Result)

The relation records the distribution of a feature (such as
protein amount) of proteins occurring in the brain region of
an organism, grouped by the anatomical structures in that
brain region. The user’s query is expressed in terms of these
views in the following manner.

19Note that such information can be obtained as a service from several
Web sites [PRO00].

20We make the simplifying assumption that for both animals the name
type is the same in the query.
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Figure 2. Immunofluorescent localization of potassium channel subunit Kv3.1b in the cerebellum [SMW+97]. Left : Distribution of Kv3.1b in

cerebellar cortex labeled with fluorescein and imaged on a Bio Rad 1024 MRC confocal microscope.Right: A 3D projection through the granule

cell layer (at higher magnification). A 3D network of ring-like structures are apparent. Scale bar, 10�m. The inset shows a single granule cell in the

white matter, displaying three strongly labeled emerging processes and thick as well as fine labeled rings around the soma. Inset scale bar, 5�m.

query1(Anatom struct, Result ) IF
homologous proteins(”NCS-1”, ”human”, Rat Protein,

”house rat”, common, Value),
Value > 90,
aggregated protein distribution(Rat Protein, ”house rat”,

common, ”cerebellum”, ”protein amount”,
Anatom struct, Result).

In the mediator the first viewhomologous proteins is con-
structed by importing from moduleCAPROT the class
amino acid homology. The view definition of homolo-

gous proteins based onamino acid homology is:

homologous proteins(Protein1,Animal1, Protein2, Animal2,
Name type, Value) IF

: amino acid homology[
shared@(

: protein in animal[
name!Protein1;
found in! : animal[

name@(Name type)!Animal1]],
: protein in animal[name!Protein2;

found in! : animal[
name@(Name type)!Animal2]])

! Value].

Note that since this entire view is in the scope of one source
module we do not need to qualify names by the module
name.

The definition of the second view illustrates the use
of aggregation (here: summation ofValues, grouped by
Anatom struct):

aggregated protein distribution(
Protein, Organism name, Name type, Brain region,
Feature name, Anatom struct, Result) IF

Result = sumf Value [Anatom struct] ;
protein distribution(Protein, Organism name

Name type, Brain region, Feature name,
Anatom struct, Value)g.

Here the viewprotein distribution is defined by importing the
protein label image class of modulePROLAB and the class
neuro anatomic entity class of moduleANATOM.

Finally, a semantic joinbased on theANATOM knowl-
edge base is illustrated by the following rule:

protein distribution(Protein, Organism name, Name type
Brain region, Feature name,
Anatom struct, Value) IF

I:’PROLAB’.protein label image[
proteins!!Protein;
organism@(Name type)!Organism name;
anatomical structures!!

fA : ’PROLAB’.anatomical structure[
name!Anatom name]g],

NAE : ’ANATOM’.neuro anatomic entity[
name!Anatom name;
located in!!fBrain regiong],

A..segments..features[name!Feature name; value!Value].

In this view-definition rule the last two arguments ofpro-

tein distribution are used as output variables while the rest are
used as input variables. The anatomical structure from the
PROLAB andANATOM modules are explicitly joined using
the variableAnatom name. As explained before, the recur-
sive definition oflocated in in the ANATOM module, causes
the rule to transitively traverse every substructure of the
cerebellum down to the cellular level in order to find the
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“leaf level” anatomic structures where the protein is local-
ized. This constitutes the semantic join betweenBrain region

and the anatomical structureA whose features are being ex-
tracted.

(2) Compare this with the distribution of this protein or its
homologs in other rodents.

The primary difference between this query and the previous
one is that it is executed over the set ofall rodents except
rat, and that it uses information from the moduleTAXON.
With this modification, the second query is stated as:

query2(Anatom struct, Result ) IF
homologous proteins(”NCS-1”, ”Homo sapiens”,

Rodent Protein, Rodent name, scientific, Value),
: ’TAXON’.taxon[order!”Rodentia”; genus!G; species!S ],

words(Rodent name, [G,S]),
Scientific name =n= ”Rattus rattus”,
Value > 90,
aggregated protein distribution(Rat Protein, ”house rat”,

common, ”cerebellum”, ”protein amount”,
Anatom struct, Result).

In this query we use the scientific rather than the common
names of organisms, and we explicitly use the information
that “Rodentia” is a value of theorder attribute of the class
taxon. This directly collects all known rodents in a set over
which the rest of the query is evaluated. A less straightfor-
ward (but perhaps easier for the less knowledgeable user)
way of evaluating the query could be to walk the transitive
relationship of taxonomic classes to discover that we need
all species under the order “Rodentia”. Also note that the
species “Rattus rattus” has been explicitly eliminated from
the set to compute the rest of the aggregated protein distri-
butions.

7 Discussion and Outlook

The KIND mediator system [KIN00] is being developed
in the context of the MIX21 project [MIX99a] at SDSC
and UCSD, as an enhancement to the MIX mediator sys-
tem MIXm [MIX99b]. MIXm uses XML as a common
semistructured data model and XMAS22, an XML query
language resembling XML-QL [XML98a], as the view def-
inition and integration language. Thus, like many other me-
diator approaches (e.g., [TSI98, LOR98, CDSS98]), MIXm
is basedsolely on a semistructured modelfor informa-
tion integration. While the semistructured data model and
its most prominent representative XML certainly allow the
flexible handling of source data, they do not by themselves
support a rich semantic model as is required for complex ap-
plication domains like the one we have described. Indeed,
the weaknesses of XML DTDs as a schema mechanism are

21Mediation ofInformation usingXML
22XML MatchingAnd Structuring Language

well-known and the XML Schema effort [XML99] high-
lights the necessity for richer modeling constructs.

However, in order to capture the semantics of com-
plex “multiple worlds” integration scenarios like biolog-
ical studies (Section 3), much more powerful and flexi-
ble formalisms like F-logic are needed to adequately han-
dle the semantic integration of sources. Indeed, similar
(but more restricted) logical formalisms have been used
[DK97, CL93] for information integration between hetero-
geneous databases. In our architecture, we have introduced
the concept ofsource modules(i.e., databases or knowl-
edge bases which the mediator can query) that not only
have an XML DTD for describing the syntactic structure
of exported data, but which also have a mapping to an as-
sociated object-oriented F-logic schema�(M). Moreover,
when modeling a source database, arbitrary complex in-
tegrity constraintsIC(M) can be specified forM . Finally,
sources may also express expert knowledge for “semanti-
cally gluing” together the otherwise unrelated sources. In
this case modules export a rule baseIDB(M).

While we are convinced that a formalism like F-logic can
and in fact should be used for knowledge-based information
integration, many technical issues remain to be addressed:
The current prototypical implementation of the KIND medi-
ator is based on FLORA, an F-logic to XSB-Prolog compiler
[LYK99] that evaluates rules in a top-down manner. This is
clearly desirable when integrated views are computedon-
demand, i.e., as the user queries the view. Conversely, for
certain integration tasks, a bottom-up F-logic engine like
FLORID [FLOb, LHL+98] can be advantageous, for exam-
ple when the results of complex integration steps are to be
materialized as in the case of theSTUDIES database (see
Figure 1). Apart from the adequate modeling of the in-
volved source, the technically challenging problem remains
how to efficiently evaluate rules, in particular in the dis-
tributed environment as it usually exists when integrating
information.

An obvious shortcoming of the current prototypical im-
plementation is that it consists of one central mediator, and
that sources do not support autonomous query evaluation.
Instead, in the current system, the mediator has the bur-
den of retrieving all potentially relevant objects from the
source and cannot push more specific rewritten queries to
the sources. In future work we need to investigate how
the mediator can make good use of different query capa-
bilities of sources (e.g., some data is available from rela-
tional databases) in order to optimize overall performance
and how to extend the system by user-defined functions and
data types. Finally, another challenging problem that has
not been addressed yet is the design and implementation of
an end-user friendly user interface which would allow the
domain expert to issue and refine ad-hoc queries and visu-
alize results in an intuitive way.
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