

Scientific Data Management Integrated Software

Infrastructure Center (SDM/ISIC)

Scientific Process Automation (SPA)

Report to the US Department of Energy
SciDAC Program

Grant # DE-FC02-01ER25486

August 15, 2003 – March 11, 2005

Bertram Ludaescher
Ilkay Altintas

Reagan Moore

San Diego Supercomputer Center
University of California, San Diego

&
UC DAVIS Genome Center

CONTENTS 1

Contents
1 Executive Summary 2

2 Background 4

3 Scientific Workflows 4
3.1 Example Workflows . 4

3.1.1 Promoter Identification . 4
3.1.2 Mineral Classification . 6
3.1.3 Job Scheduling . 6

3.2 Requirements and Desiderata . 7
3.3 Differences to Business Workflows . 9

4 SPA Technology Development 10
4.1 Web Service Extensions . 10
4.2 Grid and other Extensions . 11
4.3 Actor-Oriented Modeling . 12

5 Research Issues 14
5.1 Higher-Order Constructs . 14
5.2 Third Party Transfers . 15
5.3 Other Research Issues . 16
5.4 Related Work . 17

6 The Kepler Collaboration 17

7 Excerpts from the Quarterly Reports 19

8 Selected Publications and Presentations 21

9 Concluding Remarks 21

Scientific Data Management Integrated Software Infrastructure
Center (SDM/ISIC)

Scientific Process Automation (SPA)∗
Report to the US Department of Energy SciDAC Program

Grant # DE-FC02-01ER25486

Bertram Ludäscher† Ilkay Altintas‡ Reagan Moore§

August 15, 2003 – March 11, 2005

1 Executive Summary
During the first report period, from 08/2001–
08/2003, the SDSC team had worked closely with a
domain scientist and created early versions of the so-
called Promoter-Identification-Workflow (PIW). To-
wards the end of that report period, the open source
Ptolemy ii system was adopted as the basis for
a general scientific workflow system and problem-
solving environment to design and execute scientific
workflows.

Resulting from the choice of the Ptolemy ii sys-
tem as the basis for SPA, as well as the creation
of a highly active cross-project collaboration called
Kepler (of which SPA is a founding member),
the SPA team as a whole and the SDSC team in
particular made significant progress on developing
generic scientific workflow components (called actors
in Ptolemy ii/Kepler terminology).

In addition to this technology development, re-
search in scientific workflow management was con-
ducted and led to a deeper understanding of fun-
damental technical challenges in scientific workflow
design and execution. Research results have been
documented in a number of publications and pre-
sented at national and international meetings and
conferences including the Supercomputing Confer-
ence (SC’03, SC’04), the International Conference on
Scientific and Statistical Database Management (SS-

∗Report based on Ludäscher et al. [LAB+05].
†Fellow, San Diego Supercomputer Center; since 11/2004:

Associate Professor, Department of Computer Science and UC
Davis Genome Center, ludaesch@ucdavis.edu

‡Manager, Scientific Workflow Automation Technolo-
gies (SWAT) Lab, San Diego Supercomputer Center,
altintas@sdsc.edu

§Director, Data-Intensive Computing Environments
(DICE), San Diego Supercomputer Center, moore@sdsc.edu

DBM’03, SSDBM’04), the e-Science Workflow Ser-
vices Workshop [eSc03], the e-Science Grid Envi-
ronments Workshop [eSc04], the Virtual Observa-
tory Service Composition Workshop [GRI04], the
e-Science LINK-Up Workshop on Workflow Inter-
operability and Semantic Extensions [LIN04], and
the Global Grid Forum (GGF10) Scientific Workflow
Workshop [GGF04]. Theoretical results with appli-
cations in workflow design and composition have ap-
peared in the Intl. Workshop on Data Integration in
the Life Sciences [BL04], and database theory confer-
ences [NL04a, DLN05].

The success of the Kepler collaboration for scien-
tific workflow development is also documented by the
6th Biennial Ptolemy Miniconference that is featur-
ing a special track on the Kepler project [LL05].

The development efforts of our team were focused
on developing a number of generic workflow compo-
nents, called actors, e.g., ...

• ... to support rapid workflow prototyping
based on web services (web service actor, web
service harvester),

• ... to integrate legacy applications via com-
mand line and ssh actors,

• ... to support user interaction via a BrowerUI
actor,

• ... to support data-intensive workflows via
SRB (Storage Resource Broker) actors

• ... to support compute-intensive work-
flows via a generic “Grid workflow” framework
[ABB+05]

• ... to support data transformations via XSLT
actors.

2

1 EXECUTIVE SUMMARY 3

Outreach and Growth of the Kepler/SPA
Collaboration. In collaboration with other Ke-
pler participants, a number of further components
and workflows were created, e.g., a cheminformat-
ics workflow to control high-end computing work-
flows [BGS+05, BSG+05], several ecoinformatics and
geoinformatics workflows, and workflows dealing with
real-time sensor data. Dr. Ludäscher is a co-PI of
the NSF/ITR projects GEON, SEEK, and ROAD-
Net, and had actively recruited these new commu-
nities to contribute to Kepler (members from Sci-
DAC/SDM and SEEK originally founded Kepler).
With his move to the Computer Science Depart-
ment and Genome Center at UC Davis, new Ke-
pler members are now also joining from there, e.g.,
via the graduate seminar ECS-289F: Topics in Sci-
entific Data Management (just finished last quarter)
and a new course ECS-166: Scientific Data Manage-
ment for non-CS majors (starting Fall 2005). In both
courses, students are trained by Dr. Ludäscher to use
and develop new Kepler/SPA workflows. Mean-
while, at SDSC, Ilkay Altintas has very actively re-
cruited further groups and communities leading to
additional members of the collaboration. Moreover,
under guidance from Reagan Moore and Arcot Ra-
jasekar from SDSC, Storage Resource Broker (SRB)
components have been added to Kepler.

Future Plans. Short term plans are dictated by
regularly scheduled project deliverables, e.g., to

• ... finalize the actor documentation framework

• ... develop a system for automatically creating
test cases for actors

• ... create user manual and actor documentation.

Additional, medium term plans include ...

• ... improvements in support of fault tolerance
(e.g., generalized interface and improved usabil-
ity of the current “retry feature”)

• ... development of a black box component,
acting as a generalized logging/provenance facil-
ity (akin to a “flight-recorder for scientific work-
flows”)

• ... integration of SOAPLAB services as a suite
of actors in Kepler/SPA (this will be one of the
topics for Ilkay Altintas’ UK e-Science LINK-UP
project visit in May 2005 and meetings with the
Taverna/MyGrid teams there – trip funded by
UK e-Science grant)

• ... addition of WSDL-like descriptions for com-
mand line actors (ACD file), facilitating actor
discovery and reuse

• ... implementation of native support for Nimrod
and/or APST as explained in the Kepler design
document for large-scale distributed execution1

We also expect to resume our earlier tight collab-
oration with DOE scientists (e.g., from LBL, LLNL,
or Sandia), to directly guide our technology develop-
ment by specific needs of protypical DOE scientific
workflow applications.

Finally, we have long term plans and a vision for
technology development some of which goes beyond
the current duration of the SDM/SPA project. For
example, the Kepler collaboration maintains wiki
pages for its list of “hot topics” of further techni-
cal development of the system.2 Among the up-
coming developments are extensions to the workflow
exchange format to facilitate workflow maintainance
and execution by a dynamic actor plug-in mechanism.
Other extensions include further developments on a
distributed Kepler platform, and extensions tak-
ing into account data semantics (as part of the Ke-
pler/SEEK project, Dr. Ludäscher is working with
colleagues on a hybrid type system, combining con-
ventional structural data types with conceptual-level
semantic types to aid workflow modeling and design).
Long term plans also include a tight coupling of work-
flow scheduling and parallel job execution in support
of compute-intensive workflows.

Report Organization. Section 2 provides a high-
level introduction, motivating the need for scientific
workflows. In Section 3 we introduce scientific work-
flows by means of several real-world examples from
different domains. We use those examples to illus-
trate some of the characteristic features and require-
ments of scientific workflows, and compare the latter
with business workflows. In Section 4 we describe
some of the generic technology we have developed, in
particular web service extensions (Section 4.1) and
grid-related extensions (Section 4.2). We also intro-
duce the notion of actor-oriented modeling, which is
inherited from Ptolemy ii. Section 5 presents some
ongoing research issues. In Section 6 we discuss some
details of the Kepler collaboration of which SPA
has been a founding member. A more detailed list of
accomplishments is given in Section 7, derived from
the quarterly reports. Section 8 highlights a few of
the recent publications and presentations. Some con-
cluding remarks are given in Section 9.

1http://kepler-project.org/Wiki.jsp?page=KeplerGrid
2http://kepler-project.org/Wiki.jsp?page=HotTopics

http://kepler-project.org/Wiki.jsp?page=KeplerGrid
http://kepler-project.org/Wiki.jsp?page=HotTopics

3 SCIENTIFIC WORKFLOWS 4

“The diversity of the phenomena of nature is so
great, and the treasures hidden in the heavens
so rich, precisely in order that the human mind
shall never be lacking in fresh nourishment.”

— Johannes Kepler, My<erium Cosmographicum

2 Background

Information technology is revolutionizing the way
many sciences are conducted, as witnessed by new
techniques, results, and discoveries from quickly
evolving, multi-disciplinary fields such as bioin-
formatics, biomedical informatics, cheminformatics,
ecoinformatics, geoinformatics, etc. To further ad-
vance this new data- and information-driven sci-
ence through advanced IT infrastructure, large in-
vestments are made, e.g., in the UK e-Science pro-
gramme, or in the US through the NSF Cyberin-
frastructure initiative and other initiatives from NIH
(BIRN: Biomedical Informatics Research Network)
and DOE (SciDAC: Scientific Discovery through Ad-
vanced Computing, GTL: Genomes to Life), just to
mention a few. While many efforts focus on the
underlying middleware infrastructure, known as “the
Grid”, scientists are ultimately interested in tools that
bring the power of distributed databases and other
computational Grid resources to the desktop, and al-
low them to conveniently put together and run their
own scientific workflows. By these we mean process
networks that are typically used as “data analysis
pipelines” or for comparing observed and predicted
data, and that can include a wide range of compo-
nents, e.g., for querying databases, for data transfor-
mation and data mining steps, for execution of sim-
ulation codes on high performance computers, etc.
Ideally, the scientist should be able to plug-in almost
any scientific data resource and computational service
into a scientific workflow, inspect and visualize data
on the fly as it is computed, make parameter changes
when necessary and re-run only the affected “down-
stream” components, and capture sufficient metadata
in the final products such that the runs of a scientific
workflow, when considered as (computational) exper-
iments themselves, help explain the results and make
them reproducible by the computational scientist and
others. Thus, a scientific workflow system becomes a
scientific problem-solving environment, tuned to an
increasingly distributed and service-oriented Grid in-
frastructure.

However, before this grand vision can become re-
ality, a number of significant challenges have to be
addressed. For example, current Grid software is still
too complex to use for the average scientist, and fast
changing versions and evolving standards require that

these details be hidden from the user by the scientific
workflow system. Web services seem to provide a sim-
ple basis for loosely coupled, distributed systems, but
core web service standards such as WSDL [WSD03]
only provide simple solutions to simple problems,3
while harder problems such as web service orchestra-
tion, 3rd party transfer (from one service directly to
another, circumventing the transfer back to a work-
flow control engine), and transactional semantics of
service-based workflows, remain the subject of emerg-
ing or future web service standards. The complexity
of the underlying technical issues and the resulting
(sometimes overly) complex standards make it less
likely that those will be as widely adopted as the core
standards such as XML and WSDL.

Another set of challenges arises from the inherent
complexity of scientific data itself. For example, how
can we capture more of the semantics of scientific
data (beyond simple metadata meant for human con-
sumption) and thus inform the system which data
sets might be suitable input for a specific analyti-
cal pipeline? Similarly, how can we define when it is
even potentially meaningful at the conceptual level
to compose two independently designed web services,
or when an analysis pipeline might be included as a
subworkflow in another scientific workflow? Knowl-
edge representation techniques, including formal on-
tologies, and corresponding Semantic Web standards
such as the Web Ontology Language [OWL03] seem
promising directions. However, as is the case for Grid
middleware, the goal is to hide the underlying com-
plexity as much as possible from the user of a scien-
tific workflow system.

3 Scientific Workflows
In the following we first introduce scientific work-
flows by means of several examples taken from differ-
ent projects and implemented using the Ptolemy ii-
based Kepler system [KEP]. We then discuss typi-
cal features of scientific workflows and from this de-
rive general requirements and desiderata for scientific
workflow systems. We take a closer look at underly-
ing technical issues and challenges in Section 4.

3.1 Example Workflows
3.1.1 Promoter Identification

Figure 1 shows a high-level, conceptual view of a
typical scientific knowledge discovery workflow that
links genomic biology techniques such as microarrays

3E.g. WSDL mainly provides an XML notation for function
signatures, i.e., the types of inputs and outputs of web services.

3 SCIENTIFIC WORKFLOWS 5

Figure 1: Conceptual (“napkin drawing”) view of the Promoter Identification Workflow (PIW) [ABB+03]

with bioinformatics tools such as BLAST to identify
and characterize eukaryotic promoters4 – we call this
the Promoter Identification Workflow or PIW (see
also [Wer01, ABB+03, PYN+03]: Starting from mi-
croarray data, cluster analysis algorithms are used
to identify genes that share similar patterns of gene
expression profiles that are then predicted to be co-
regulated as part of an interactive biochemical path-
way. Given the gene-ids, gene sequences are retrieved
from a remote database (e.g., GenBank) and fed to
a tool (e.g., BLAST) that finds similar sequences. In
subsequent steps, transcription factor binding sites
and promoters are identified to create a promoter
model that can be iteratively refined.

While Figure 1 leaves many details open, some fea-
tures of scientific workflows can already be identified:
There are a number of existing databases (such as
GenBank) and computational tools (such as Clusfa-
vor and BLAST) that need to be combined in certain
ways to create the desired workflow. In the past, ac-
cessing remote resources often meant implementing
a wrapper that mimics a human entering the input
of interest, submitting an HTML form, and “screen-
scraping” the result from the returned page [LPH01].
Today, more and more tools and databases become
accessible via web services, greatly simplifying this
task. Another trend is web portals such as NCBI
[NCB04] that integrate many tools and databases and
sometimes provide the scientist with a “workbench”
environment.

Figure 2 depicts snapshots of an early implementa-
tion of PIW in Kepler. Kepler is an extension of
the Ptolemy ii system [PTO04] for scientific work-
flows. The topmost window includes a loop whose

4A promoter is a subsequence of a chromosome that sits
close to a gene and regulates its activity.

Figure 2: PIW implemented in Kepler [ABB+03].
Composite actors (subworkflows) expanded below.

body is expanded below and which performs several
steps on each of the given gene-ids: First, an NCBI
web service is used to access GenBank data. Subse-
quently a BLAST step is performed to identify similar
sequences to the one retrieved from GenBank. Then
a second inner loop is executed (bottom window) for
a transcription factor binding site analysis. Using
Ptolemy ii terminology, we call the individual steps
actors, since they act as independent components
which communicate with each other only through the
channels indicated in the figure. The overall execu-

3 SCIENTIFIC WORKFLOWS 6

tion of the workflow is orchestrated by a director (the
green box in Figure 2; see Section 4.3 for details).

This early PIW implementation in Kepler
[ABB+03] illustrates a number of features: Actual
“wiring” of a scientific workflow can be much more
complicated than the conceptual view (Figure 1) sug-
gests. A mechanism for collapsing details of a sub-
workflow into an abstract component (called compos-
ite actor in Ptolemy ii) is essential to tame com-
plexity: The windows in Figure 2 have well-defined
input and output ports and thus correspond to (sub)-
workflows that can be collapsed into a more abstract,
composite actor as indicated. Nevertheless, the re-
sulting workflow is fairly complex and we will need
to introduce additional mechanisms to simplify the
design in particular of loops (see Section 5.1).

3.1.2 Mineral Classification

The second example, from a geoinformatics domain,
illustrates the use of a scientific workflow system for
automation of an otherwise manual procedure, or al-
ternatively, for reengineering an existing custom tool
in a more generic and extensible environment. The
upper left window in Figure 3 shows the top-level
workflow: Some samples are selected from a database
holding experimentally determined mineral composi-
tions of igneous rocks. This data, together with a set
of classification diagrams are fed into a Classifier
subworkflow (bottom left). The manual process of
classifying samples involves determining the position
of the sample values in a series of diagrams such as
the one shown on the right in Figure 3: if the loca-
tion of a sample point in a non-terminal diagram of
order n has been determined (e.g., diorite gabbro
anorthosite, bottom right), the corresponding dia-
gram of order n+1 is consulted and the point located
therein. This process is iterated until the terminal
level of diagrams is reached (here shown in the upper
right: the classification result is anorthosite).

This traditionally manual process has been auto-
mated in commercial custom tools, or here in the
Kepler workflow shown in Figure 3. As above, work-
flows are shown in graphical form using Ptolemy ii’s
Vergil user interface [BLL+04b]. Note that in Vergil,
workflows can be annotated with user comments.
Subworkflows (e.g., bottom-left) become visible by
right-clicking on a composite actor (such as Clas-
sifier, upper-left) and selecting “Look Inside” from
the resulting pop-up menu. Vergil also features sim-
ple VCR-like control buttons to play, pause, resume,
and stop workflow execution (red icons in the top-left
toolbar; e.g., right-triangle for play).

Kepler specific features of this workflow include:

A searchable library of actors and data sources (Actor
and Data tabs close to the upper-left) with numerous
reusable Kepler actors. For example, the Browser
actor (used in the bottom-right of the Classifier
subworkflow) launches the user’s default browser and
can be used as a powerful generic input/output device
in any workflow. In this example, the classification
diagrams are generated on the client side as interac-
tive SVG displays in the browser (windows on the
right in Figure 3). Moving the mouse over the dia-
gram highlights the specific region and displays the
rock name classification(s) for that particular region.
The Browser actor has proven to be very useful in
many other workflows as well, e.g., as a device to
display results of a previous step, and as a selection
tool that passes user choices (made via HTML forms,
check-boxes, etc.) to subsequent workflow steps.

3.1.3 Job Scheduling

The final example workflow, depicted in Figure 4, is
from a cheminformatics domain and involves running
thousands of jobs of the GAMESS quantum chemical
code [SBB+93] under the control of the Nimrod/G
Grid distribution tool [AGK00]. This is an example
of a workflow employing high-performance computing
(HPC) resources in a coordinated manner to achieve
a computationally hard task, in this case a variant
of a hybrid quantum mechanics/molecular mechan-
ics (QM/MM) technique; see [GT98] and [SBA+04]
for details. Interestingly, the workflow in Figure 4 is
rather domain-neutral and illustrates some features
typical of many high-performance computational ex-
periments:

Figure 4: Workflow for scheduling HPC jobs.

3 SCIENTIFIC WORKFLOWS 7

Figure 3: Mineral Classification workflow (left) and generated interactive result displays (right).

The main window shows four composite actors,
corresponding to the four depicted subworkflows.
The first one, PrepareInputs creates a list of in-
put files for the subsequent jobs. These files are then
used to create a plan file for Nimrod/G in the Pre-
pareExperiment step. The AddExperiment sub-
workflow takes a plan file and generates experiment
run files using several CommandLine actors. The
latter is shown with a “$” icon (to indicate a com-
mand shell), and has proven to be a very useful rapid-
prototyping tool: Existing local applications can be
made part of a workflow simply by providing a suit-
able command line expression and the correspond-
ing command line arguments. The ManageRe-
sources subworkflow can create new processes (via
AddFork) to run jobs and subsequently add exper-
iments as new server processes.

This example workflow also highlights the possibil-
ity of incremental design and development: At the
time of writing, not all components of the overall
workflow are operational. Nevertheless, due to the
clearly defined input/output interfaces of all subwork-
flows (a feature inherited from Ptolemy ii), each of
them can be designed, implemented, and tested sepa-
rately. Moreover, the current version of the workflow
relies heavily on invoking external applications via
the CommandLine actor. Some of these applications
might be “promoted” to custom actors with native
Java implementations in the future. Such changes are

encapsulated by the containing subworkflow and thus
do not require changes of other parts of the workflow.

3.2 Requirements and Desiderata

In this section we summarize a number of common
requirements and desiderata of scientific workflows,
as exhibited by the examples above or by other
workflows we encountered in various application-
oriented research projects including in addition to
SDM/SPA also GEON, SEEK and several others
[GEO, SEE, SDM, BIR, ROA].

R1: Seamless access to resources and services:
This is a very common requirement (e.g., see the
example workflows in Section 3.1), and web ser-
vices provide a first, simple mechanism for re-
mote service execution and remote database ac-
cess5 via service calls. However, as mentioned
before, web services are a simple solution to a
simple problem. Harder problems, e.g., web ser-
vice orchestration, and 3rd party transfer are not
solved by “vanilla” web services alone.

R2: Service composition & reuse and workflow
design: Since web services emerge as the ba-

5We do not elaborate on the important challenges of data
integration [She98]; see, e.g., [Hal01] for a survey of query re-
writing techniques, and [NL04b] and [LGM03, BLL04a] for re-
lated issues of query capabilities and semantics, respectively.

3 SCIENTIFIC WORKFLOWS 8

sic building blocks for distributed Grid appli-
cations and workflows, the problem of service
composition, i.e., how to compose simple ser-
vices to perform complex tasks, has become a
hot research topic [ICA03]. Among the differ-
ent approaches are those that view service com-
position as an AI planning problem [BDG03],
a query planning problem [LAG03, LN04], or a
general design and programming problem. A re-
lated issue is how to design components so that
they are easily reusable and not geared to only
the specific applications that may have driven
their original development. As we will see, ser-
vice composition and reuse are addressed by em-
ploying an actor-oriented approach at the de-
sign level (Section 4.3), but also require flexible
means for data-transformations at the “plumb-
ing” level (Section 4.2).

R3: Scalability: Some workflows involve large vol-
umes of data and/or require high-end compu-
tational resources, e.g., running a large num-
ber of parallel jobs on a cluster computer (such
as workflow in Section 3.1.3). To support such
data-intensive and compute-intensive workflows,
suitable interfaces to Grid middleware com-
ponents (sometimes called Compute-Grid and
Data-Grid, respectively) are necessary.

R4: Detached execution: Long running workflows
require an execution mode that allows the work-
flow control engine to run in the background
on a remote server, without necessarily stay-
ing connected to a user’s client application that
has started and is controlling workflow execution
(such as the Vergil GUI of Kepler).

R5: Reliability and fault-tolerance: Some com-
putational environments are less reliable than
others. For example, a workflow that incorpo-
rates a new web service can easily “break”, as the
latter can often fail, change its interface, or just
become unacceptably slow (as it becomes more
popular). To make a workflow more resilient
in an inherently unreliable environment, contin-
gency actions must be specifiable, e.g., fail-over
strategies with alternate web services.

R6: User-interaction: Many scientific workflows
require user decisions and interactions at vari-
ous steps.6 For example, an improved version of
PIW (Section 3.1.1) allows the user to inspect

6In fact, when workflow management was still called “office
automation”, humans were the main processors of tasks – the
workflow system was just used for book-keeping; cf. Section 3.3.

intermediate results and select and re-rank them
before feeding them to subsequent steps. An
interesting challenge is the need for user inter-
action in a detached execution. Using a noti-
fication mechanism the user might be asked to
reconnect to the running instance and make a
decision before the paused (sub-)workflow can
resume.

R7: “Smart” re-runs: A special kind of user inter-
action is the change of a parameter of a workflow
or actor. For example, in a visualization pipeline
or a long running workflow, the user might de-
cide to change some parameters after inspecting
intermediate or even final results. A “smart” re-
run would not execute the workflow from scratch,
but only those parts that are affected by the pa-
rameter change. In dataflow-oriented systems
(e.g., visualization pipeline systems such as AVS,
OpenDX, SCIRun, or the Kepler system) this
is easier to realize than in more control-oriented
systems (e.g., business workflow systems), since
data and actor dependencies are already explicit
in the system. Another useful technique in this
context is checkpointing, which allows to back-
track (in the case of a parameter change or even
a system failure; cf. (R5)) to a previously saved
state without starting over from scratch.

R8: “Smart” (semantic) links: A scientific work-
flow system should assist workflow design and
data binding phases by suggesting which actor
components might possibly fit together (this is
also an aspect of (R2), service composition), or
by indicating which data sets might be fed to
which actors or workflows. To do so, some of
the semantics of data and actors has to be cap-
tured. However, capturing data semantics is a
hard problem in many scientific disciplines: e.g.,
measurement contexts, experimental protocols,
and assumptions made are often not adequately
represented. Even if corresponding metadata is
available, it is often not clear how to best make
it useable by the system. It seems clear though
that ontologies provide a very useful semantic
type system for scientific workflows, in addition
to the current (structural) type systems [BL04].

R9: Data provenance: Just as the results of a con-
ventional wet lab experiment should be repro-
ducible, computational experiments and runs of
scientific workflows should be reproducible and
indicate which specific data products and tools
have been used to create a derived data product.
Beyond the conventional capture of metadata,

3 SCIENTIFIC WORKFLOWS 9

a scientific workflow system should be able to
automatically log the sequence of applied steps,
parameter settings and (persistent identifiers of)
intermediate data products. A related desider-
ata is automatic report generation: The system
should allow the user to generate reports with
all relevant provenance and runtime information,
e.g., in XML format for archival and exchange
purposes and in HTML (generated from the for-
mer, e.g., via an XSLT script) for human con-
sumption.

Data provenance can be seen as a prerequisite to
(R8): In order to provide semantic information
about a derived data product, suitable prove-
nance information is needed.

While the above list of requirements and desiderata
for scientific workflow systems is by no means com-
plete, it should be sufficient to capture many of the
core characteristics. Other requirements include the
use of an intuitive GUI to allow the user to compose
a workflow visually from smaller components, or to
“drill-down” into subworkflows, to animate workflow
execution, to inspect intermediate results, etc.

A scientific workflow system should also support
the combination of different workflow granularities.
For example, coarse-grained workflows, akin to Unix
pipelines or web service-based workflows, consist
mainly of “black box” actors whose contents are un-
known to the system. Scientific workflows may also
be very fine-grained, or include fine-grained subwork-
flows. In that case, components are “white boxes”
containing, e.g., the visual programming equivalent
of an algorithm, or a system of differential equations
to be solved, in other words, a detailed specification
known to the system.

3.3 Differences to Business Workflows
The characteristics and requirements of scientific
workflows are partially overlapping those of business
workflows. Indeed, the term ‘scientific workflows’
seems to indicate a very close relationship with the
latter, while a more detailed comparison reveals a
number of significant differences. Historically, busi-
ness workflows have roots going back to office au-
tomation systems of the 1970’s and 80’s, and gained
momentum in the 90’s under different names includ-
ing business process modeling and business process
engineering ; see, e.g., [AM97, vdAvH02, zM04].

Today we see some influence of business workflow
standards in the web services arena, specifically stan-
dards for web service choreography.7 For example, the

7Despite the long history of business workflows, it is sur-

Business Process Execution Language for Web Ser-
vices (BPEL4WS) [CGK+02], a merger of two earlier
standards, IBM’s WSFL and Microsoft’s XLANG,
has received some attention recently.

When analyzing the underlying design princi-
ples and execution models of business workflow ap-
proaches, a focus on control-flow patterns and events
becomes apparent, whereas dataflow is often a sec-
ondary issue. For example, [vdAtHKB03] describe a
large number of workflow design patterns that can be
used to analyze and compare business workflow stan-
dards and products in terms of their control features
and expressiveness.

Scientific workflow systems, on the other hand,
tend to have execution models that are much more
dataflow-oriented. This is true, e.g., for academic
systems including Kepler, Taverna [TAV], and
Triana [TRI], and for commercial systems such as
Inforsense’s DiscoveryNet or Scitegic’s Pipeline-
Pilot. With respect to their modeling paradigm and
execution models, these systems seem closer to an
“AVS for scientific data and services” than to the more
control-flow and task-oriented business workflow sys-
tems, or to their early scientific workflow predecessors
[CM95, MVW96, AIL98].

The difference between dataflow-orientation and
control-flow orientation can also be observed in the
underlying formalisms. For example, visualizations
of business workflows often resemble flowcharts, state
transition diagrams, or UML activity diagrams, all
of which emphasize events and control-flow over
dataflow. Formal analysis of workflows usually in-
volves studying their control-flow patterns [Kie02],
and is often conducted using Petri nets.

Conversely, the underlying execution model of cur-
rent scientific workflow systems usually resembles or
is even directly implemented as a dataflow process
network [KM77, LP95], having traditional applica-
tion areas, e.g., in digital signal processing. Dataflow-
oriented approaches are applicable at very differ-
ent levels of granularity, from low-level CPU oper-
ations found in certain processor architectures, to
high-level programming paradigms such as flow-based
programming [Mor94]. Scientific workflow systems
and visualization pipeline systems can also be seen
as dataflow-oriented problem solving environments
[WBB96] that scientists use to analyze and visualize
their data. Last not least, there is also a close re-
lationship between dataflow-oriented approaches and
(pure) functional languages, including non-strict vari-
ants such as Haskell (cf. Section 5.1).

prising how short-lived some of the so-called standards are, as
“most of them die before becoming mature” [vdA03].

4 SPA TECHNOLOGY DEVELOPMENT 10

�

�

�

�

Figure 5: Kepler web service Harvester in action: repository access (1-2), harvesting (3), and use (4).

4 SPA Technology Development

One of the recommendations coming out of the Sci-
DAC/SDM review meeting in Napa Valley (March
2003) was to avoid working only as “consultants” to
individual scientists, automating just their particular
workflow needs. Instead, it was recommended to also
focus on the development of generic technology (al-
beit guided by specific scientific applications). As a
result of this, as well as the fact that the domain sci-
entist8 with whom we had worked intensively during
the first report period (2001-2003) has subsequently
been “adopted” by the SPA/LLNL team, we indeed
focused our efforts on the development of such generic
workflow technology.

In this section, we discuss some highlights of the
current Kepler system as well as some upcoming ex-
tensions. Many features directly address the require-
ments and desiderata from Section 3. More research-
oriented extensions are described in Section 5.

4.1 Web Service Extensions

A basic requirement for scientific workflows is seam-
less access to remote resources and services (see (R1)
in Section 3.2 and the examples in Section 3.1). Since
web services are emerging as the standard means for
remote service execution of loosely coupled systems,
we extended Kepler early on to handle web services.
Given the URL of a web service description [WSD03],
the generic WebService actor of Kepler can be in-
stantiated to any particular operation specified in the

8molecular biologist Matt Coleman, LLNL

service description. After instantiation, the Web-
Service actor can be incorporated into a scientific
workflow as if it were a local component. In partic-
ular, the WSDL-defined inputs and outputs of the
service are made explicit via the instantiated actor’s
input and output ports.

Figure 5 shows screenshots of an extended web ser-
vice harvesting feature, implemented by a special web
service Harvester component.9 As in the case of
the generic WebService actor, a URL is first pro-
vided (see (1) in Figure 5), however this time not
to an individual WSDL description of a web service,
but to a web service repository. The repository URL
might point to a UDDI repository, or simply to a
web page listing multiple WSDL URLs as shown in
(2). The Harvester then retrieves and analyzes all
WSDL files of the repository, creating instantiations
of web service actors in the user’s local actor library;
see (3). For example, one of the harvested services,
the BLAST web service, comprises five service oper-
ations which are imported into a corresponding sub-
directory. The user can then drag-and-drop any of
these service operations on the workflow canvas for
use in a scientific workflow (4). The Harvester
feature facilitates rapid prototyping and development
of web service-based applications and workflows in a
matter of minutes – that is, provided

(i) the web services are alive when needed, and

(ii) they can be wired together more or less directly
to perform the desired complex task.

9Inspiration came from a similar feature in Taverna.

4 SPA TECHNOLOGY DEVELOPMENT 11

The problem with (i) is that, while harvested web ser-
vices look like local components, their runtime failure
can easily “break” a scientific workflow, reminding the
user that the service interface has been harvested,
not the actual code.10 We are currently extending
Kepler to make workflows with web services more
reliable. One simple approach is to avoid the as-
sociation of a service operation with a fixed URL.
Instead, a list of alternate services can be provided
when the workflow is launched, and service failure
can then be compensated by invocation of one of the
alternate services. Another option is to insert spe-
cial control tokens into the data stream, indicating
to downstream actors the absence of certain results.
Long running workflows may thus more gracefully
react to web service failures and produce at least
partial results. This idea has been further devel-
oped for “collection-oriented” (in the functional pro-
gramming sense) workflows: via so-called “exception-
catching actors”, invalid (due to failures) data col-
lections can be filtered out of the data stream, while
valid subcollections pass through unaffected [McP05].
An interesting research question is how to extend
Ptolemy ii’s pause-resume model to a full-fledge
transaction model that can handle service failures.

The problem (ii) is even more fundamental and
has different aspects: At the design level the chal-
lenge is how to devise actors that can be reused eas-
ily. In Section 4.3 we give a brief introduction to
actor-oriented modeling, the underlying paradigm of
Ptolemy ii, and discuss how it facilitates component
composition and reuse. At the “plumbing” level it
is often necessary to apply data transformations be-
tween two consecutive web services (called “shims”
in Taverna). Such data transformations are sup-
ported through various actors in Kepler, e.g., XSLT
and XQuery actors to apply transformations to XML
data, or Perl and Python actors for text-based trans-
formations.

4.2 Grid and other Extensions
Figure 6 depicts a number of Kepler actors that fa-
cilitate scientific workflows, including workflows that
make use of “the Grid”. In the upper left, the previ-
ously discussed generic WebService actor and some
instantiations are shown. Note how the latter spe-
cialize their actor interface via their input/output
ports: e.g., Blast_SearchSimple has three input
ports and one output port, for the search arguments
and result, respectively. The naming scheme used is
WSN_OP, where WSN is the name of the web ser-
vice and OP is a specific web service operation.

10Which is of course the whole point of web services.

Figure 6: Grid actors and other Kepler extensions.

The upper right shows two Grid actors, called
FileFetcher and FileStager, respectively. These
actors make use of GridFTP [Pro00] to retrieve files
from, or put files to, remote locations on the Grid.
The GlobusJob actor below is another Grid actor,
in this case for running a Globus job [Glo]. At the
bottom of Figure 6 a small workflow is shown that
takes a Globus proxy and some input files, staging the
files to where the job is run, then fetching the results
from the remote location and displaying them on the
client side. The green box specifies that this workflow
is executed using an SDF (Synchronous Data-Flow)
director. This director analyzes the dataflow depen-
dencies and token consumption and production rates
of actors (here: token = file), and schedules the exe-
cution of actors accordingly.

On the right, a number of actors that use the SDSC
Storage Resource Broker [SRB] are shown, e.g., to
connect and disconnect from SRB and to get and put
files from and to SRB space, respectively. We are
currently in the process of providing all commonly
used SRB commands as actors. This will allow the
Kepler user to design and execute Grid workflows
involving a number of different tools, e.g., SRB for
data handling aspects, and Globus, Nimrod and other
tools for computational aspects and job scheduling.

In the center and left of Figure 6, various other
Kepler actors are shown: The CommandLine ac-
tor can be used to incorporate any application into a
workflow, provided it can be accessed from the com-

4 SPA TECHNOLOGY DEVELOPMENT 12

mand line.11 The “$” icon is reminiscent of a shell
prompt. The actor is parameterized with the argu-
ments of the shell command, making it easy to cre-
ate generic or specialized command line invocations.
A Browser actor is shown directly below (cf. Sec-
tion 3.1.2). It takes as input an HTML file or URL
and displays it in the user’s default browser. This
makes the actor an ideal output device for displaying
intermediate or final workflow results in ways that are
well-known to users. Another extremely useful appli-
cation of this actor is as an input device for user in-
teractions. The result file of an upstream actor might
have been transformed to an HTML file (e.g., using
the xslt actor) and augmented with HTML forms,
check boxes, or other input forms that are displayable
to the user in a standard web browser. Upon execut-
ing the desired user interaction, an http-post re-
quest is sent to a special Kepler web server, acting
as a listener, and from there the workflow is resumed.

The Email actor in the center of the figure pro-
vides a simple notification mechanism to inform the
user of specific situations in the workflow. Together,
the Email and Browser actors address core issues
of requirement (R6) in Section 3.2. The Pause ac-
tor (red down-triangle) pauses workflow execution at
specific points, allowing the user to inspect intermedi-
ate results, possibly changing parameter values, and
resuming the workflow subsequently (addressing (R7)
in Section 3.2).

Finally, actors for accessing real-time data streams
from ROADNet sensor networks [ROA] have recently
been added. These actors (e.g., OrbWaveform-
Source) can be integrated easily into Kepler, since
many of the underlying Ptolemy ii directors support
streaming execution.12

4.3 Actor-Oriented Modeling
Arguably the most unique feature of Kepler comes
from the underlying Ptolemy ii system:

“The focus [of the Ptolemy project] is on assem-
bly of concurrent components. The key underly-
ing principle ... is the use of well-defined mod-
els of computation that govern the interac-
tion between components.” 13

This focus together with the actor-oriented modeling
paradigm make Ptolemy ii an ideal starting point
for tackling the breadth of challenges in scientific
workflow design and execution. In Ptolemy, a system

11E.g., Kepler workflows can include data analysis steps via
calls to R [R].

12This should come as no surprise, since dataflow process
networks are defined on token streams in the first place.

13http://ptolemy.eecs.berkeley.edu/objectives.htm.

or model thereof (in our case, a scientific workflow) is
viewed as a composition of independent components
called actors. Communication betweem actors hap-
pens through interfaces called ports. We distinguish
between input ports and output ports. In addition
to the ports, actors have parameters, which configure
and customize the behavior.14 For example, a generic
filter actor might consume a stream of input tokens
via an input port, letting through to the output port
only those tokens that satisfy a condition specified by
a parameter.

producer
actor

consumer
actor

IO-ports

receiver

Director

Figure 7: The semantics of component interaction is
determined by a director, which controls execution
and supplies the objects (called receivers) that im-
plement communication.

Actors, or more precisely their ports, are connected
to one another via channels. Given an interconnec-
tion of actors, however, there are many possible ex-
ecution semantics that one could assign to the di-
agram. For example, actors might have their own
thread of control, or their execution might be trig-
gered by the availability of new inputs.

A key property of Ptolemy ii is that the execu-
tion semantics is specified in the diagram by an object
called a director (see Figure 7). The director defines
how actors are executed and how they communicate
with one another. Consequently, the execution model
is less an emergent side-effect of the various intercon-
nected actors and their (possibly ad-hoc) orchestra-
tion, and more a prescribed concurrent semantics as
one might find in a well-defined concurrent program-
ming language. The execution model defined by the
director is called the model of computation. Patterns
of concurrent interaction are factored out into the de-
sign of the directors, rather than being individually
constructed by the designer of the workflow. Figure 7
depicts a producer and a consumer actor whose ports
are connected by a unidirectional channel. The dia-
gram is annotated by a director, which might, for ex-
ample, execute the producer prior to the consumer so
as to respect data precedences. The communication
between the actors is mediated by an object called a

14Parameters are usually not shown in the figures.

http://ptolemy.eecs.berkeley.edu/objectives.htm

4 SPA TECHNOLOGY DEVELOPMENT 13

receiver, which is provided by the director, not by the
actors. Thus, for example, whether the communica-
tion is buffered or synchronous is determined by the
designer of the director, not by the designer of the
actor. This hugely improves the reusability of actor
designs.

Process Networks. The Process Network (PN)
director is a popular choice for designers of scien-
tific workflows. It gives a diagram the semantics of
(dataflow) process networks [KM77, LP95]. In this
semantics, actors are independent processes that ex-
ecute concurrently, each with its own thread of con-
trol, and communicate by sending tokens through
unidirectional channels with (in principle) unbounded
buffering capacity. Writing to a channel is a non-
blocking operation, while reading from a channel can
block until sufficient input data are available. This
model of computation is similar to that provided by
Unix pipes, as in the following example of a Unix
command-line composition of processes:

cat foo.txt | bar | baz

This example shows three independently executing
processes (cat, bar, and baz) that are connected
to one another through unidirectional pipes. The
stream of tokens flowing between the processes also
synchronizes them if necessary. For example if bar
and baz are filter operations working on a single
line of text at a time (e.g., grep xyz), then a Unix
process executing bar will block until a line of text
is provided by the process executing cat foo.txt.
Unlike Unix pipes, however, the PN director in
Ptolemy iitolerates feedback loops and forking and
merging of data streams. It performs deadlock detec-
tion, and manages buffers to keep memory require-
ments bounded (if possible).

The PN director is only one example of a large
number directors available in Ptolemy ii. There is
also, for example, the SDF (Synchronous Data-Flow)
director, which can be used for specialized process
networks with fixed token production and consump-
tion rates per firing (see below). The SDF director
performs static analysis on a workflow that guaran-
tees absence of deadlocks, determines required buffer
sizes, and optimizes the scheduling of actor execution.
Other directors have been constructed for modeling
Discrete Event systems (DE), Continuous-Time mod-
els (CT, which solve ordinary differential equations),
and Communication Sequential Processes (CSP), to
mention just a few [BLL+04b].

By relieving actors from the details of component
interaction, the actors themselves become much more
reusable (cf. (R2) in Section 3.2). The behavior of

an actor adapts to the execution and communication
semantics provided by the director. This feature of
actor-oriented modeling is called behavioral polymor-
phism. For example, a single Ptolemy ii actor im-
plementation of an arithmetic operation, say Plus,
can be connected to any number of input operands
and reused within different models of computation
and under the control of different directors. An SDF
director, e.g., schedules the actor invocation (or “fir-
ing”) as soon as all inputs have data, which it knows
since actors declare their fixed token consumption
and production rates in the SDF domain. In con-
trast, when the Plus actor is governed by a DE direc-
tor, additions happen when any input has data, cor-
responding to the different overall execution model
in the Discrete Event domain. In addition to be-
havioral polymorphism, the Ptolemy ii type system
also supports data polymorphism, again increasing
the reusability of actors. For example, our Plus ac-
tor can be implemented in such a way that it dynam-
ically chooses the correct numeric addition (integer,
float, double, complex), depending on the types of in-
puts it receives. Moreover, on other data types, e.g.,
strings, vectors, matrices, or user-defined types, the
Plus actor15 can execute appropriate actions, e.g.,
string concatenation, vector or matrix addition, etc.

Actor-Oriented Programming Interface.
Actor-oriented modeling addresses several challenges
in the design of complex systems [EJL+03]. We have
already mentioned improved component reusability
due to behavioral and data polymorphism. Another
aspect is hierarchical modeling. As illustrated by
the examples in Section 3.1, subworkflows can be
abstracted into (composite) actors themselves (e.g.,
see the Classifier actor/subworkflow in Figure 3)
and thus arbitrarily nested. In the following, we give
a simplified introduction on some implementation
aspects of Ptolemy ii’s actor-oriented approach.
These can be adapted to the context of scientific
workflows and distributed, service-oriented environ-
ments, leading to a more structured approach to
service composition and workflow design.

execution−→ preinitialize, type-check, run*, wrapup
run −→ initialize, iteration*
iteration −→ prefire, fire*, postfire

Figure 8: AOPI execution phases and actor methods.

The structure we propose is based on various
phases and methods in Ptolemy ii’s actor-oriented
programming interface (AOPI), see Figure 8. These

15This actor is called AddSubtract in Ptolemy ii.

5 RESEARCH ISSUES 14

AOPI methods are used by a director to orchestrate
overall execution. Symbols in boldface denote actual
methods that actor implementations have to provide;
the remaining symbols describe other phases16 of the
overall execution.

When a director starts a workflow execution, it in-
vokes the preinitialize method of all actors. Since
this method is invoked only once per lifetime of an
execution (even if there are multiple runs), and prior
to all other activities, this is a good time to put in
place the receiver components of actors, and for ac-
tors to “advertise” their supported port data types,
transport protocols, etc.

Next the director type-checks all connections and
ports. This includes checking each port’s data types,
all (previously advertised) type constraints, and the
validity of port types being connected through chan-
nels. A type inference algorithm is used to deter-
mine the most general types satisfying the given con-
straints. For scientific workflows, we can modify di-
rectors to also type-check which transport protocol
to use, or to check whether producer and consumer
actors exchange data directly or via handles:17 For
example, if an actor A declares its output port to be
of handle type “http | ftp” and a connected actor B
declares its input port to be of handle type “http”,
then type-checking can establish that the connection
is valid, provided A’s output port is subtyped to use
http handles only. Indeed such information can and
should be passed to the actor with the invocation of
the initialize method.

Other possible actions during execution of initial-
ize are: Web service actors can “ping” the web ser-
vices they represent and signal failure-to-initialize if
the corresponding service is not alive. A “fail-over-
aware” director can use this information to replace
the defective web service with an equivalent one that
is alive (see (R5) in Section 3.2). A workflow ex-
ecution will often consist only of one run, but if a
workflow is re-run, initialize is called again. A run
usually includes multiple iterations, each of which in-
cludes a call to prefire, fire (possibly called repeat-
edly by some special directors), and a call to postfire.
The main actor operation finally happens in the fire
method, e.g., a web service actor will make the actual
remote service call here.

Towards Actor-Oriented Scientific Workflows.
The idea of actor-oriented scientific workflows is to
apply the principles of actor-orientation and hierar-

16Some correspond to methods of other Ptolemy ii entities,
e.g., director methods or manager methods [BLL+04b].

17By handle we mean a unique identifier that can also be
used to retrieve data, e.g., a URL.

chical modeling, underlying the Ptolemy approach
[EJL+03, BLL+04b], to the modeling and design of
scientific workflows. In particular, web service op-
erations, which provide the building blocks of many
loosely coupled workflows, should be structured into
different parts, corresponding to the different phases
and methods used in actor-oriented modeling. For
example to implement a web service wA, the service
developer should think of specific web service opera-
tions such as wA.initialize and wA.prefire in addition
to the main “worker” method wA.fire. As in the case
of Ptolemy actors, this will lead to more generic and
reusable components and even facilitate more com-
plex extensions such as stateful web services.18

5 Research Issues

In this section we briefly discuss some technical issues
that we have begun addressing for Kepler, but that
are less mature and require some additional research.

5.1 Higher-Order Constructs

The early implementation of the Promoter Identifi-
cation Workflow (PIW) depicted in Figure 2 demon-
strated the feasibility and some advantages of im-
plementing scientific workflows in the Kepler ex-
tension of Ptolemy ii [ABB+03]. However, it also
highlighted some inherent challenges of the dataflow-
oriented programming paradigm [LA03]. We have
argued in Section 3.3 that many current scientific
workflow systems are more dataflow-oriented than
business workflow systems and approaches, which
tend to emphasize event-based control-flow rather
than dataflow. When designing real-world scientific
workflows it is necessary, however, to handle com-
plex control-flows within a dataflow-oriented setting
as well. It is well-known that control-flow constructs
require some thought in order to handle them prop-
erly. The fairly intricate network topology in Figure 2
includes backward-directed “dataflow” channels, hav-
ing the sole purpose of sending control tokens that
initiate another iteration of a subworkflow. While
such complicated structures achieve the desired effect
(here, a special kind of loop), they are hard to under-
stand, design, and maintain. Such ad-hoc construc-
tions also increase the complexity of workflow design
while diminishing the overall reusability of workflow
components (see (R2) in Section 3.2). Fortunately,
there are better ways to incorporate structured con-

18Statefulness is an established concept in actor-oriented
modeling and dataflow networks; e.g., it can be represented
explicitly via feedback loops.

5 RESEARCH ISSUES 15

��������	�
��
���������������������������� !�"
#�������{“CAGT…AATATGAC",“GGGGA…CAAAGA“}

Figure 9: PIW variant with map iterator.

trol into a dataflow-oriented system, thereby directly
supporting workflow design as required by (R2).

In [LA03] we have illustrated how higher-order
functional programming constructs can be used to
improve the design of PIW. In particular, the higher-
order function map :: (α → β) → [α] → [β] has
proven to be very useful to implement a certain type
of iteration. It takes a function f (from α to β) and
a list of elements of type α, and applies f to each list
element, returning the list of result elements (each of
type β). Thus map is defined as

map f [x1, x2, . . . , xn] = [f(x1), f(x2), . . . , f(xn)]

For example, map f [1, 2, 3] = [1, 4, 9] for f(x) = x2.
Figure 9 shows an improved version of the PIW

workflow from Section 3.1.1 and Figure 2, now using
the higher-order map function. Note how backward-
directed flows of control-tokens are avoided. Instead,
iterations are realized as nested subworkflows inside
a higher-order Map actor. For example, to imple-
ment a look-up of a list of gene sequences via a
GenBank web service that can only accept one gene
at a time, we simply create the higher-order con-
struct Map(GenBankWS) as shown in Figure 9
(the “stack” icon indicates that the contained work-
flow is applied multiple times).

Other higher-order functional programming con-
structs, e.g., foldr (for “fold right”) can be similarly
used to provide more abstract and modular iteration
and control constructs in a dataflow setting, and we
plan to add those to Kepler in the future. The
utility of declarative functional programming meth-
ods for dataflow-oriented systems is no coincidence;
see, e.g., [Ree95] for more on the close links between
dataflow, functional, and visual programming, and
[NA01] for interesting applications in implicit paral-
lel programming. Here we only give a simple illus-
tration using a core subworkflow of PIW in a Haskell
specification; see [LA03] for details:

d0= $Gid % input: some gene-id
d1= genBankG in % get its gene sequence
d2= blastP d1 % find candidates from similar seqs
d3= map genBankP d2 % get promoter sequences
d4= map promoterRegion d3 % compute regions
d5= map transfac d4 % compute transcr. factor sites
d6= zip d2 d4 % create list of (promoter-id,region) pairs
d7= map gpr2str d6 % accumulate into string list
d8= concat d7 % create a single file
d9= putStr d8 % output to subsequent steps

The input and output (ports) of this workflow are
given by d0 and d9, respectively. Note the use of
map to iterate over lists where the available services
(e.g. genBankP) can only handle one item at a time.
Also note that these ten equations establish a sim-
ple forward-only dataflow process network with the
di representing named channels, and the expressions
on the right of the equation representing processes
(i.e., actors). A merge of two parallel branches hap-
pens, e.g., through the function zip that creates a
single stream of pairs (promoter-id, promoter-region)
in channel d6 from the two streams in d2 and d4.

5.2 Third Party Transfers
Scientific workflows can involve large volumes of data
(see (R3) in Section 3.2). In a web service setting, this
creates a problem since so-called 3rd party transfers
are not currently supported by web services: Let us
consider two web services wA and wB, located at two
sites s1 and s2, respectively. wA takes some input x
and produces some data d that we would like to pass
on to wB, which produces the final output data y. We
can depict this as follows:

x→ wA@s1
d−→ wB@s2

y→

Assume that the overall execution of this workflow
WF is coordinated and controlled by a workflow en-
gine E (e.g., Kepler) running at some site s3. Cur-
rent web service implementations do not allow the
engine E to call wA@s1, telling it to route d directly
to wB@s2. Instead, web service invocations and the
input/output dataflows that go with them, all go
through E@s3. In pseudo-code this means:

WF@s3(in x,out y) = {
d@s3 := wA@s1(x@s3);
y@s3 := wB@s2(d@s3) }

How do we execute the “remote assignments” shown
here? To execute WF@s3, the workflow engine E first
sends a request message containing x to wA@s1. Upon
completion, wA replies back to E@s3 with the result d.
Now WF@s3 can proceed and E forwards d to s2 where
wB can work on it. The final result y is then sent

5 RESEARCH ISSUES 16

from s2 back to s3. This simple call/return execution
is quite desirable from a modeling and design point of
view since control-flow and dataflow go hand in hand,
and since the control engine E does not have to worry
about the status of direct (i.e., 3rd party) transfers
of data d from wA to wB. The downside, however, is
that data is moved around more often than necessary.
Let us trace the “data shipments” of x, d, and y:

1. ship x@s3;x@s1 % part of request to wA

2. @s1 execute d := wA(x) % execute wA

3. ship d@s1;d@s3 % part of reply from wA

4. ship d@s3;d@s2 % part of request to wB

5. @s2 execute y := wB(d) % execute wB

6. ship y@s2;y@s1 % part of reply from wB

If d is very large, executing both steps (3) and (4) is
wasteful: first d is sent from s1 to s3 where the work-
flow engine E runs, only to be sent to s2 in the next
step. Instead of sending d over the wire twice, the
more direct 3rd party transfer wA@s1

d
; wB@s2 moves

d only once, but as mentioned before, is not currently
supported by web services.19 The question becomes:
How can we avoid unnecessary transfers and achieve
the efficiency of 3rd party transfer, while retaining
the above simple call/return execution model?

A Handle-Oriented Approach. A simple solu-
tion to the above problem is that wA does not send
the actual data d but a handle hd to it. Such a han-
dle corresponds to a “logic pointer” and can be rep-
resented by a globally unique URI, but may also be
a URL and indicate the protocol by which d is to be
accessed, e.g., http, ftp, GridFTP00, scp, or SRB. If
we replace all data occurrences x, d, and y by handles
hx, hd, and hy, respectively, we obtain:

1. ship hx@s3;hx@s1 % request to wA

2. @s1 execute hd := wA(hx) % execute wA

3. ship hd@s1;hd@s3 % reply from wA

4. ship hd@s3;hd@s2 % request to wB

5. @s2 execute hy := wB(hd) % execute wB

6. ship hy@s2;hy@s1 % reply from wB

19And even if it were, “divorces” control-flow and dataflow,
resulting in more complex execution models.

Now, instead of sending (the possibly very large) d
over the wire twice in (3) and (4), we only do so for
the (constant size) handle hd. We cannot hope to
further reduce this since a reply message from wA to
E and a new request from E to wB are necessary for
the overall control of workflow execution.

In order to implement the above handle-solution,
we need to slightly extend our web services: in steps
(2) and (5), wA and wB need to process handles by
dereferencing them or by creating new ones. The for-
mer happens when a web service acts as a consumer
of data (wA consumes x), while the latter is needed
in the role of a data producer (wA produces d).

Consider, e.g., the case where handles are rep-
resented as URLs with http as the transport pro-
tocol. In step (2) above, wA needs to dereference
hx before it can execute its function. hx might be,
e.g., http://foobar.com/f17. When dereferenced
via http-get it yields the actual data x.20 To prop-
erly process handles as a data consumer, the op-
eration “receive x” has to be replaced by “receive
hx”, followed by a “dereference and get” operation
x := http-get(hx). All subsequent read operations
can then operate on x as before.

In the role of a data producer, we have the re-
verse situation. We want to avoid shipping of the
actual result data d and instead send a handle hd.
Thus, we need to first create this handle, e.g., by cre-
ating a new file f18 that can be accessed via hd =
http://baz.edu/f18. All subsequent write access
to d will proceed unchanged, provided the file name
f18 is used for d. Finally, we need to replace “send
d” with “send hd”.

We are currently working on extensions of Kepler
that make the system “handle-aware” [Lud04]. For
example, during the type-checking phase (Figure 8)
a handle-aware director could determine whether two
web service actors A and B that invoke the web ser-
vices wA and wB, respectively, support compatible
handle types. For this to work seamlessly, web ser-
vices themselves should offer an actor-oriented pro-
gramming interface as presented in Section 4.3.

5.3 Other Research Issues

Higher-order constructs and the handle-approach to
3rd party transfers are only two of a number of press-
ing research issues in scientific workflows.21 For ex-
ample, detached execution (R4), reliability and fault-
tolerance (R5), semantic links (R8), and data prove-
nance (R9) are all scientific workflow requirements

20Note that while the handle hx is sent from s3 to s1 in step
(1), x might actually not reside at s3.

21Addressing (R2) and (R3), respectively.

http://foobar.com/f17
http://baz.edu/f18

6 THE KEPLER COLLABORATION 17

that need further attention in the future. For exam-
ple, [BL04] presents some initial work on the use of
ontologies as semantic types to help generate data
transformation mappings between consecutive work-
flow steps. These kinds of semantic extensions can
help at both levels, at the “plumbing” level to create
data transformations as in [BL04], and at the design
level to create more reusable components (R2) and
to support “smart” links in workflows (R8).

5.4 Related Work

In Section 4 we have described some of the features of
Kepler and the underlying Ptolemy ii system on
which Kepler is based. Ptolemy ii aims at model-
ing and design of heterogeneous, concurrent systems.
In contrast, Kepler aims at the design and execution
of scientific workflows. Consequently, Kepler ex-
tensions to Ptolemy ii include numerous actors and
capabilities that facilitate scientific workflows (e.g.,
web service actors and harvester, GridFTP, SRB and
database actors, command-line and secure shell ac-
tors, etc.) Additional components are constantly
added, e.g., to support statistics packages (such as
R), GIS functionality (e.g., Grass and ArcIMS cou-
plings), and other scientific data analysis and visual-
ization capabilities [WPS+05].

The research and development on Kepler also
benefits from interactions and collaborations with
other groups. On one hand, development is driven
by application scientists, the ultimate “customers” of
scientific workflow system, on the other hand, work
in related projects also influences Kepler develop-
ments. For example, Taverna [TAV, OAF+04] is
a system that focuses on web service-based bioin-
formatics workflows. In contrast, Triana [TRI,
CGH+05] provides mechanisms for coupling work-
flows more tightly with Grid middleware tools. Cross-
fertilization between these and other projects has
happened, e.g., through e-Science LINK-UP work-
shops [LIN04], meetings and workshops at GGF
[GGF04], etc. Other scientific workflow tools in-
clude Pegasus [DBG+03], Chimera, and job schedul-
ing tools such as Condor/G [DTL04] and Nimrod/G
[AGK00]. For a taxonomy of workflow management
systems for Grid computing and a comparison of sys-
tems see [YB05]. Future work will address the various
outstanding research issues and workflows require-
ments that have not yet been (fully) met. For ex-
ample, some projects contributing to Kepler plan
to provide couplings to highly-interactive visualiza-
tion tools such as SCIRun [WPS+05] and GeoVista
[TG02].

Figure 10: A screenshot of the Kepler IRC chan-
nel. A member from Kepler/SPA (Xiaowen Xin) dis-
cussing with a Kepler/SEEK member (Matt Jones)
the technical issues surrounding the problem of a
“non-deterministic merge”.

6 The Kepler Collaboration

Some History. Towards the end of the first report
period (08/2001-08/2003) it became clear that sig-
nificant progress towards a general scientific work-
flow tool could not be made by developing such a
system from scratch. At the time, the NSF/ITR
project SEEK (Science Environment for Ecological
Knowledge) had decided to base their development
of a scientific workflow tool on the Ptolemy II system
[PTO04].

During 2003, after several months of informal col-
laborations between developers from SEEK and from
SciDAC/SDM, Dr. Ludäscher, a co-PI of both the
SEEK and the SciDAC/SDM project, together with
Matthew Jones, co-PI and project manager of SEEK,
started discussions on how the collaboration could be
organized to maximize leverage while preserving the
different projects’ individual needs. After initial dis-
cussions with Dr. Mladen Vouk from NCSU (whose
students were, in addition to Ilkay Altintas from
SDSC, the main SPA developers extending Ptolemy
for scientific workflows at the time), in November
2003 discussions between Drs. Arie Shoshani (SDM),
Terence Critchlow (SDM), Bertram Ludäscher (SDM,
SEEK), Mladen Vouk (SDM), and Matthew Jones
(SEEK) led to what can be seen as the official found-
ing event of the Kepler collaboration.

6 THE KEPLER COLLABORATION 18

Figure 11: A social network obtained on Feb 15, 2005 from discussions on the Kepler IRC channel. Here, Ilkay
Altintas (Kepler/SPA, SDSC) has been a “hub” of a number of discussions with Xiaowen Xin (Kepler/SPA,
LLNL), Shawn Bowers (Kepler/SEEK, UC Davis), and others.

Kepler Membership. Contributing members of
the Kepler collaboration are primarily developers
but also researchers. There are different ways to be-
come a member with read/write access to the shared
CVS repository. For example, an existing member
can “sponsor” a new member (thus being responsible
for the new member’s changes to the code). Once
the new member has become familiar with the work-
ings and practices of the existing team, the latter can
vote the new member in as a regular member, thus
removing the sponsorship status.

The Kepler Collaboration Today. Over time,
a number of other projects teamed up with the orig-
inal founding projects of Kepler, i.e., SEEK and
SPA: e.g., members supported under the NSF/ITR
GEON project contributed workflows such as the one
in Figure 3 and actors such as the SRB actors for
large-scale data management (cf. Figure 6). Other
examples include contributions from members of the
NSF/ITR ROADNet project, the Resurgence chem-
informatics project (SDSC and University of Zurich),
the Encylopedia of Life project (SDSC), since re-
cently also the NSF GeoStreams project (UC Davis),
and last not least the original Ptolemy II project (UC
Berkeley).

Today, Kepler is a highly active collaboration,

with regular developers meetings as well as meetings
that interlink with other projects. For example, in
addition to SDM All-Hands and PI Meetings, Super-
computing conferences, and other meetings, recent
Kepler and SPA specific meetings include:

• July 2004, SPA developers meeting (with several
other Kepler members attending), SDSC22

• October 2004, e-Science Link-Up meeting,
SDSC; this collaboration (Dr. Ludäscher is a co-
PI) is with members of the UK e-Science My-
Grid project to share experiences gained in dif-
ferent scientific workflow projects (esp. Kepler
and Taverna) 23

• January 2005, Kepler developer meeting in
Juneau, Alaska24

• February 2005, SPA software engineering meet-
ing (with several other Kepler members attend-
ing), UC Davis25

• May 2005, Ptolemy Miniconference, featuring
Kepler, UC Berkeley

22http://kbis.sdsc.edu/events/SPA-07-04/
23http://kbi.sdsc.edu/events/LINK-UP-10-04/
24http://kepler-project.org/Wiki.jsp?page=

KeplerMeetingNotesJanuary2004
25http://kbi.sdsc.edu/events/SPA-Davis-02-05/

http://ptolemy.eecs.berkeley.edu/conferences/05/
http://kbis.sdsc.edu/events/SPA-07-04/
http://kbi.sdsc.edu/events/LINK-UP-10-04/
http://kepler-project.org/Wiki.jsp?page=KeplerMeetingNotesJanuary2004
http://kepler-project.org/Wiki.jsp?page=KeplerMeetingNotesJanuary2004
http://kbi.sdsc.edu/events/SPA-Davis-02-05/

7 EXCERPTS FROM THE QUARTERLY REPORTS 19

Figure 12: Social network obtained on March 7, 2005 from discussions on the Kepler IRC channel. Ilkay Altin-
tas (Kepler/SPA, SDSC), supposedly “gone” (but not quite) and Tim Wong (UC Davis, Bertram Ludäscher’s
ECS-289F student) form a very active link/discussion; similarly Laura Downey (Kepler/SEEK, UNM) and
Matt Jones (Kepler/SEEK, UCSB). Also Xiaowen Xin (Kepler/SPA, LLNL) has been in contact with Efrat
Frank (Kepler/GEON, SDSC).

• June 2005, Kepler developer meeting, Santa Bar-
bara, (timed to to take advantage of SSDBM
2005)

Kepler Collaboration Tools. There are several
ways by which Kepler developers from various
projects regularly communicate to collaborate and
co-develop the system. Standard mechanisms include
of course email and a shared CVS repository (SPA
also maintains a separate CVS repository for spe-
cific code that some SPA members might not want to
share or contribute to Kepler), but also voice-over-
internet teleconferencing via Skype26 and, in partic-
ular, IRC (internet-relay-chat). Figure 10 shows a
screenshot of the Kepler IRC channel, documenting
a discussion between SPA and SEEK project mem-
bers. The various interaction paths between team
members are also depicted in Figures 11 and 12.

26http://www.skype.com

7 Excerpts from the Quarterly
Reports

In this section we briefly highlight some of the de-
tailed technical developments and accomplishments,
roughly based on their chronological order as docu-
mented in the quarterly reports we have prepared –
for additional details please see the SDM quarterly
reports themselves.

At the SDM/SPA meeting at Georgia Tech in May
2003, the decision had been made to abandon earlier
efforts to start a SPA workflow system from scratch,
as it became clear that this would not be feasible
within the time constraints and given the limited re-
sources of the project. Moreover, a very suitable sys-
tem was found in UC Berkeley’s Ptolemy II system
that had simultaneously been adopted as a starting
point for a scientific workflow system by the SEEK
NSF/ITR project. As indicated above, this choice
has since proven an excellent one and first prototype
workflows based on Ptolemy II could already been
demonstrated at SSDBM’03 [ABB+03] and the SDM
Framework workshop [SDM03] and All-Hands Meet-
ing, August 2003.

After adoption of Ptolemy II as the underlying sys-

http://2005.ssdbm.org/
http://2005.ssdbm.org/
http://www.skype.com

7 EXCERPTS FROM THE QUARTERLY REPORTS 20

tem, technical development was often in the form of
new or improved actors:

• New actors implemented: pause actor, inter-
active shell actor, initial version of web ser-
vice actor.

• Initial work on an ant-based build system (in
collaboration with Kepler/SEEK members).

Subsequently a number of actors were developed or
refined:

• WSDL-based generic web service actor: Pro-
vides the user with an interface to connect and
execute any web service defined by a WSDL
URL.

• Initial version of Web service harvester: Im-
ports all the operations of all the web services in
a web service repository (e.g. UDDI) based on a
keyword search. The operations execute as local
actors when imported once.

• XSLT transformation actor: allows trans-
formations of XML and HTML generation from
XML, using XSLT scripts.

• BrowserUI actor: a browser user interface can
now be inserted anywhere in the workflow, allow-
ing the user to display intermediate results (in-
cluding text/HTML, SVG, etc. output), as well
as submission of user interactions and selections
through HTML forms.

• Database access and query actors: these al-
low access and manipulation of relational data.

• Grid ProxyInit, Globus Grid Job, and
GridFTP actors: allow the user to create Grid
jobs and to move large amounts of data round
using Globus tools.

These were the main developments until the end of
2003; development continued in 2004 with the follow-
ing items:

• New email actor: e.g., in long-running work-
flows, now an email can be sent to the user
(including to email/SMS-enabled cell phones)
about the status of the computation, including
success, failure, or iteration count etc.

• New command line actor implementation
started that allows users to invoke local com-
mands and legacy tools.

• New SRB actors (provided by Efrat Jaeger Ke-
pler/GEON); allow users access to SRB man-
aged data collections.

• Updated Web Service actor: allow for primi-
tive XML Schema types of WSDL-based generic
web service actor (before: only support for
xsd:string)

• Updated BrowserUI actor: The BrowserUI
actor allows to launch any default browser on
the client to provide workflow input and/or dis-
play workflow output (text/HTML, SVG, CGI,
XML, etc.)

In addition, new workflows were developed and sci-
entific communities were reached, in co-development
with other Kepler members:

• New Geologic Map Integration Workflow
(implemented/operational); this workflow ex-
hibits the use of web services and shows how a
complex external system, here ESRI’s ArcIMS
is incorporated into the workflow (Altintas,
Memon)

• New Mineral Classification Workflow (im-
plemented/operational); this workflow shows
how the workflow system can be used to re-
engineer an existing end user scientist applica-
tion. Includes loop constructs, SVG graphical
output through the BrowserUI actor, and data-
base access actor (Jaeger, Ludaescher)

• New Cheminformatics Workflow (designed
using Kepler/SEEK workflow prototyping tool);
once implemented this workflow will integrate
Protein Databank (PDB) queries with the com-
putational GAMESS biochemstry tool and the
APBS tool; when implemented this will be an ex-
ample of a "compute-intensive" workflow (Wibke
Sudholt, I. Altintas)

The initial Kepler/SPA release was put together by
Ilkay Altintas (SDSC) and Zhengang Cheng (NCSU).
Later developments in 2004 include:

• New timestamp actor that outputs the system
time.

• New SSH actor that implements the secure
shell (ssh2) protocol and lets user natively con-
nect to a server through secure shell.

• New generic JDBC-based DatabaseWriter
and DatabaseReader actors that connect to
any database and perform read, insert, update,
delete and create table functions.

• New ExecutionLog utility: this is a sepa-
rate workflow component that creates execution
logs on the fly. This feature is designed to

9 CONCLUDING REMARKS 21

let the user post/save this log to a variety of
grids/databases/files.

• Updated web service actor, web service har-
vester

• Created a WebStart installer for Kepler in-
cluding the SPA modules.

• Designed and implemented a new documentation
feature using taglets for describing actor signa-
tures.

• New FileStager and FileFetcher actors,
based on GridFTP.

• New Scp actor (secure copy).

8 Selected Publications and
Presentations

We briefly highlight a few recent publications and
presentations from the report period. See also the
official SPA webpage27 for additional publications.

• [LAB+05] – overview paper on scientic workflow
management and the Kepler system; used also
as a basis for this project report

• [ABB+05] – develops a framework for the de-
sign and reuse of “Grid workflows”, i.e., having
compute-intensive and data-intensive aspects

• [LLB+05] – overview on scientific data manage-
ment challenges, with a focus on data integration
and semantics

• [BGS+05] – describes the computational chem-
istry prototyping environment and its use of Ke-
pler

• [NL04b, NL04a, LN04, DLN05] – work in data-
base theory on the foundations of composing
queries with limited access patterns; this is di-
rectly applicable to composing scientific work-
flows from web services

• [ABJ+04] – presentation by Dr. Ludäscher at
the Global Grid Forum Workshop on Scientific
Workflows

• [BL04] – develops a new approach to employ
semantic information in scientific workflows to
guide structural data transformations

• [AL03, KAL+04] – presentations on Kepler at
Supercomputing 2003 and 2004 by Ilkay Altintas
and Werner Krebs, respectively

27http://www-casc.llnl.gov/sdm/publications.php

9 Concluding Remarks

We have provided an overview of scientific work-
flow management issues, an presented highlights of
our work on scientific workflow management during
the report period. This work is motivated by real-
world needs and examples that we encountered in
a number of application-oriented projects, in par-
ticular SDM/SPA. The spectrum of what can be
called a scientific workflow is wide and includes scien-
tific discovery workflows (e.g., Section 3.1.1), work-
flows that automate manual procedures or reengi-
neer custom tools (e.g., Section 3.1.2), and data
and compute-intensive workflows (e.g., Section 3.1.3).
Scientific workflow support is needed for practically
all information-oriented scientific disciplines, includ-
ing bioinformatics, cheminformatics, ecoinformatics,
geoinformatics, physics, etc. We identified a num-
ber of common requirements and desiderata of sci-
entific workflows (Section 3.2) and contrasted them
with business workflows.

The Kepler system addresses many of the core re-
quirements (Section 4) and provides support for web
service-based workflows and Grid extensions. The
source code of Kepler is freely available [KEP]; a
first beta-release is in preparation (there have been
several alpha-releases already). A unique feature of
Kepler is inherited from the underlying Ptolemy ii
system: the actor-oriented modeling approach. This
approach facilitates modeling and design of complex
systems and thus provides also a very promising di-
rection for pressing problems such as web service com-
position and orchestration. The way data polymor-
phism and behavioral polymorphism are supported
by an actor-oriented approach that “concentrates”
component interaction in a separate director entity,
can also shed light on other efforts to create reusable
component architectures such as CCA [AGG+99].
Areas of research include modeling issues such as the
use of higher-order functional constructs for workflow
design (Section 5.1), and optimization issues such as
the use of virtual data references (handles) to fa-
cilitate data-intensive, web service-based workflows
(Section 5.2).

The research and development on Kepler does not
occur in isolation. For example, cross-fertilization
comes from interactions and collaborations with
many groups; on one hand, this includes application
scientists which are our ultimate “customers”, on the
other hand, this includes colleagues working on re-
lated projects. For example, Taverna [TAV] is a sys-
tem that focuses on web service-based bioinformatics
workflows. In contrast, Triana provides mechanisms
for coupling workflows more tightly with Grid mid-

http://www-casc.llnl.gov/sdm/publications.php

REFERENCES 22

dleware tools. Other scientific workflow tools include
Pegasus, Chimera, and job scheduling tools such as
Condor/G and Nimrod/G. Future work will address
the various outstanding research issues and workflows
requirements that have not yet been (fully) met. For
example, some projects contributing to Kepler plan
to provide couplings to highly-interactive visualiza-
tion tools such as SCIRun28 and to GIS systems such
as GRASS29 and PostGIS30. A major challenge for
the future will be a better integration between tightly
coupled parallel applications and more loosely cou-
pled scientific workflows.

References
[ABB+03] I. Altintas, S. Bhagwanani, D. But-

tler, S. Chandra, Z. Cheng, M. Cole-
man, T. Critchlow, A. Gupta,
W. Han, L. Liu, B. Ludäscher, C. Pu,
R. Moore, A. Shoshani, and M. Vouk.
A Modeling and Execution Envi-
ronment for Distributed Scientific
Workflows. In 15th Intl. Conf. on
Scientific and Statistical Database
Management (SSDBM), Boston,
Massachussets, 2003.

[ABB+05] I. Altintas, A. Birnbaum,
K. Baldridge, W. Sudholt, M. Miller,
C. Amoreira, Y. Potier, and B. Lu-
daescher. A Framework for the Design
and Reuse of Grid Workflows. In Intl.
Workshop on Scientific Applications
on Grid Computing (SAG’04),
LNCS 3458. Springer, 2005.
http://www.sdsc.edu/~ludaesch/
Paper/sag04-kepler.pdf.

[ABJ+04] I. Altintas, C. Berkley, E. Jaeger,
M. Jones, B. Ludäscher, and S. Mock.
Kepler: Towards a Grid-Enabled Sys-
tem for Scientific Workflows. In Work-
shop on Workflow in Grid Systems,
Global-Grid Forum (GGF10), Berlin,
Germany, March 2004. .

[AGG+99] R. Armstrong, D. Gannon, A. Geist,
K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski. Toward a
Common Component Architecture for
High-Performance Scientific Comput-
ing. In 8th IEEE Intl. Symposium on

28http://software.sci.utah.edu/scirun.html
29http://grass.itc.it/
30http://postgis.refractions.net/

High Performance Distributed Com-
putation, August 1999.

[AGK00] D. Abramson, J. Giddy, and L. Kotler.
High Performance Parametric Model-
ing with Nimrod/G: Killer Applica-
tion for the Global Grid. In Intl.
Parallel and Distributed Processing
Symposium (IPDPS), Cancun, Mex-
ico, May 2000. http://www.csse.
monash.edu.au/~davida/nimrod/.

[AIL98] A. Ailamaki, Y. E. Ioannidis, and
M. Livny. Scientific Workflow Man-
agement by Database Management.
In 10th Intl. Conf. on Scientific and
Statistical Database Management (SS-
DBM), Capri, Italy, 1998.

[AL03] I. Altintas and B. Ludäscher. A
Modeling and Execution Environment
for Scientific Workflows. Supercom-
puting 2003, Phoenix, AZ, Novem-
ber 2003. http://kbi.sdsc.edu/
SciDAC-SDM/SC2003Slides.ppt.

[AM97] G. Alonso and C. Mohan. Work-
flow Management Systems: The Next
Generation of Distributed Processing
Tools. In S. Jajodia and L. Ker-
schberg, editors, Advanced Transac-
tion Models and Architectures. 1997.

[BDG03] J. Blythe, E. Deelman, and Y. Gil.
Planning for workflow construction
and maintenance on the Grid. In
ICAPS [ICA03].

[BGS+05] K. K. Baldridge, J. P. Greenberg,
W. Sudholt, S. Mock, I. Altintas,
C. Amoreira, Y. Potier, A. Birnbaum,
K. Bhatia, and M. Taufer. The
Computational Chemistry Prototyp-
ing Environment. In Proceedings of the
IEEE, Special Issue on Grid Comput-
ing, 2005. in print.

[BIR] Biomedical Informatics Research Net-
work Coordinating Center (BIRN-
CC), University of California, San
Diego. http://nbirn.net/.

[BL04] S. Bowers and B. Ludäscher. An
Ontology Driven Framework for Data
Transformation in Scientific Work-
flows. In International Workshop on
Data Integration in the Life Sciences

http://www.sdsc.edu/~ludaesch/Paper/sag04-kepler.pdf
http://www.sdsc.edu/~ludaesch/Paper/sag04-kepler.pdf
http://software.sci.utah.edu/scirun.html
http://grass.itc.it/
http://postgis.refractions.net/
http://www.csse.monash.edu.au/~davida/nimrod/
http://www.csse.monash.edu.au/~davida/nimrod/
http://kbi.sdsc.edu/SciDAC-SDM/SC2003Slides.ppt
http://kbi.sdsc.edu/SciDAC-SDM/SC2003Slides.ppt
http://nbirn.net/

REFERENCES 23

(DILS), LNCS 2994, Leipzig, Ger-
many, March 2004. .

[BLL04a] S. Bowers, K. Lin, and B. Ludäscher.
On Integrating Scientific Resources
through Semantic Registration. In
16th Intl. Conf. on Scientific and
Statistical Database Management (SS-
DBM), Santorini Island, Greece, 2004.

[BLL+04b] C. Brooks, E. A. Lee, X. Liu,
S. Neuendorffer, Y. Zhao, and
H. Zheng. Heterogeneous Concurrent
Modeling and Design in Java (Vol-
umes 1-3). Technical report, Dept.
of EECS, University of California,
Berkeley, 2004. Technical Memo-
randa UCB/ERL M04/27, M04/16,
M04/17.

[BSG+05] K. K. Baldridge, W. Sudholt, J. P.
Greenberg, C. Amoreira, Y. Potier,
I. Altintas, A. Birnbaum, D. Abram-
son, C. Enticott, and S. Garic. Cluster
and Grid Infrastructure for Computa-
tional Chemistry and Biochemistry. In
Parallel Computing for Bioinformat-
ics, 2005. submitted for publication.

[CGH+05] D. Churches, G. Gombas, A. Harrison,
J. Maassen, C. Robinson, M. Shields,
I. Taylor, and I. Wang. Program-
ming Scientific and Distributed Work-
flow with Triana Services. Concur-
rency and Computation: Practice and
Experience. Special Issue on Scientific
Workflows, 2005.

[CGK+02] F. Curbera, Y. Goland, J. Klein,
F. Leyman, D. Roller, S. Thatte, and
S. Weerawarana. Business Process
Execution Language for Web Services
(BPEL4WS), Version 1.0, 2002. http:
//www.ibm.com/developerworks/
library/ws-bpel/.

[CM95] I. Chen and V. Markowitz. The
Object-Protocol Model: Design, Im-
plementation, and Scientific Applica-
tions. ACM Transactions on Informa-
tion Systems, 20(5), 1995.

[DBG+03] E. Deelman, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi,
K. Blackburn, A. Lazzarini, A. Ar-
bree, R. Cavanaugh, and S. Koranda.

Mapping Abstract Complex Work-
flows onto Grid Environments. Jour-
nal of Grid Computing, 1(1):25–39,
2003.

[DLN05] A. Deutsch, B. Ludäscher, and
A. Nash. Rewriting Queries using
Views with Access Patterns under In-
tegrity Constraints. In Intl. Conf. on
Database Theory (ICDT), 2005. .

[DTL04] T. T. Douglas Thain and M. Livny.
Distributed Computing in Practice:
The Condor Experience. Concurrency
and Computation: Practice and Expe-
rience, 2004.

[EJL+03] J. Eker, J. W. Janneck, E. A. Lee,
J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Tam-
ing Heterogeneity – the Ptolemy Ap-
proach. In Proceedings of the IEEE,
volume 91(1), January 2003.

[eSc03] e-Science Workflow Services Work-
shop, e-Science Institute, Edin-
burgh, Scotland, December 2003.
http://www.nesc.ac.uk/esi/
events/303/index.html.

[eSc04] e-Science Grid Environments Work-
shop, e-Science Institute, Edinburgh,
Scotland, May 2004. http://www.
nesc.ac.uk/esi/events/.

[GEO] NSF/ITR: GEON: A Research
Project to Create Cyberin-
frastructure for the Geosciences.
www.geongrid.org.

[GGF04] Workflow in Grid Systems Work-
shop, GGF10, Berlin, Ger-
many, March 2004. http:
//www.extreme.indiana.edu/
groc/Worflow-call.html.

[Glo] The Globus Alliance. www.globus.
org.

[GRI04] GRIST Workshop on Service Compo-
sition for Data Exploration in the Vir-
tual Observatory, California Institute
of Technology, July 2004. http://
grist.caltech.edu/sc4devo/.

[GT98] J. Gao and M. A. Thompson, editors.
Combined Quantum Mechanical and
Molecular Mechanical Methods. Amer-
ican Chemical Society, 1998.

http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.nesc.ac.uk/esi/events/303/index.html
http://www.nesc.ac.uk/esi/events/303/index.html
http://www.nesc.ac.uk/esi/events/
http://www.nesc.ac.uk/esi/events/
www.geongrid.org
http://www.extreme.indiana.edu/groc/Worflow-call.html
http://www.extreme.indiana.edu/groc/Worflow-call.html
http://www.extreme.indiana.edu/groc/Worflow-call.html
www.globus.org
www.globus.org
http://grist.caltech.edu/sc4devo/
http://grist.caltech.edu/sc4devo/

REFERENCES 24

[Hal01] A. Halevy. Answering Queries Using
Views: A Survey. VLDB Journal,
10(4):270–294, 2001.

[ICA03] Proceedings of the ICAPS Workshop
on Planning for Web Services, Trento,
Italy, June 2003.

[KAL+04] W. G. Krebs, I. Altintas,
B. Ludäscher, P. Bourne,
I. Shindyalov, and M. A. Miller.
Integrated Genome Annotation Plat-
form (iGAP): A Flexible, Modular
System for Protein Sequence An-
notation. In Supercomputing (SC),
2004.

[KEP] Kepler: A System for Sci-
entific Workflows. http:
//kepler-project.org.

[Kie02] B. Kiepuszewski. Expressiveness and
Suitability of Languages for Control
Flow Modelling in Workflows. PhD
thesis, Queensland University of Tech-
nology, 2002.

[KM77] G. Kahn and D. B. MacQueen.
Coroutines and Networks of Parallel
Processes. In B. Gilchrist, editor,
Proc. of the IFIP Congress 77, pp.
993–998, 1977.

[LA03] B. Ludäscher and I. Altintas.
On Providing Declarative De-
sign and Programming Constructs
for Scientific Workflows based on
Process Networks. Technical Re-
port SciDAC-SPA-TN-2003-01, San
Diego Supercomputer Center, 2003.
http://kbi.sdsc.edu/SciDAC-SDM/
scidac-tn-map-constructs.pdf.

[LAB+05] B. Ludäscher, I. Altintas, C. Berkley,
D. Higgins, E. Jaeger, M. Jones, E. A.
Lee, J. Tao, and Y. Zhao. Scientific
Workflow Management and the Kepler
System. Distributed and Parallel Sys-
tems, 2005. to appear.

[LAG03] B. Ludäscher, I. Altintas, and
A. Gupta. Compiling Abstract
Scientific Workflows into Web
Service Workflows. In 15th Intl.
Conf. on Scientific and Statistical
Database Management (SSDBM),
Boston, Massachussets, 2003. http:

//kbis.sdsc.edu/SciDAC-SDM/
ludaescher-compiling.pdf.

[LGM03] B. Ludäscher, A. Gupta, and M. E.
Martone. A Model-Based Mediator
System for Scientific Data Manage-
ment. In Z. Lacroix and T. Critchlow,
editors, Bioinformatics: Managing
Scientific Data. Morgan Kaufmann,
2003.

[LIN04] LINK-Up Workshop on Scientific
Workflows, San Diego Supercomputer
Center, October 2004. http://kbis.
sdsc.edu/events/link-up-11-04/.

[LL05] E. A. Lee and B. Ludäscher, editors.
Sixth Biennial Ptolemy Minicon-
ference – Featuring the Kepler
Project, UC Berkeley, CA, May 2005.
http://ptolemy.eecs.berkeley.
edu/conferences/05/.

[LLB+05] B. Ludäscher, K. Lin, S. Bowers,
E. Jaeger-Frank, B. Brodaric, and
C. Baru. Managing Scientific Data:
From Data Integration to Scientific
Workflows. GSA Today, Special Issue
on Geoinformatics, 2005. to appear.

[LN04] B. Ludäscher and A. Nash. Web Ser-
vice Composition Through Declara-
tive Queries: The Case of Conjunctive
Queries with Union and Negation. In
20th Intl. Conf. on Data Engineering
(ICDE), 2004.

[LP95] E. A. Lee and T. Parks. Dataflow
Process Networks. Proceedings of
the IEEE, 83(5):773–799, May 1995.
http://citeseer.nj.nec.com/
455847.html.

[LPH01] L. Liu, C. Pu, and W. Han. An
XML-Enabled Data Extraction Tool
for Web Sources. Intl. Journal of In-
formation Systems, Special Issue on
Data Extraction, Cleaning, and Rec-
onciliation, 2001.

[Lud04] B. Ludäscher. Towards Actor-
Oriented Web Service-Based Scientific
Workflows (or: How to Handle Han-
dles). Technical report, San Diego Su-
percomputer Center, September 2004.

http://kepler-project.org
http://kepler-project.org
http://kbi.sdsc.edu/SciDAC-SDM/scidac-tn-map-constructs.pdf
http://kbi.sdsc.edu/SciDAC-SDM/scidac-tn-map-constructs.pdf
http://kbis.sdsc.edu/SciDAC-SDM/ludaescher-compiling.pdf
http://kbis.sdsc.edu/SciDAC-SDM/ludaescher-compiling.pdf
http://kbis.sdsc.edu/SciDAC-SDM/ludaescher-compiling.pdf
http://kbis.sdsc.edu/events/link-up-11-04/
http://kbis.sdsc.edu/events/link-up-11-04/
http://ptolemy.eecs.berkeley.edu/conferences/05/
http://ptolemy.eecs.berkeley.edu/conferences/05/
http://citeseer.nj.nec.com/455847.html
http://citeseer.nj.nec.com/455847.html

REFERENCES 25

[McP05] T. M. McPhillips. Pipelined scien-
tific workflows for inferring evolution-
ary relationships. Natural Diversity
Discovery Project, 2005. manuscript.

[Mor94] J. P. Morrison. Flow-Based Program-
ming – A New Approach to Appli-
cation Development. Van Nostrand
Reinhold, 1994.

[MVW96] J. Meidanis, G. Vossen, and M. Weske.
Using Workflow Management in DNA
Sequencing. In Intl. Conf. on Cooper-
ative Information Systems (CoopIS),
1996.

[NA01] R. S. Nikhil and Arvind. Implicit
Parallel Programming in pH. Morgan
Kaufmann, 2001.

[NCB04] National Center for Biotechnology
Information (NCBI). http://www.
ncbi.nlm.nih.gov/, 2004.

[NL04a] A. Nash and B. Ludäscher. Process-
ing First-Order Queries with Limited
Access Patterns. In ACM Sympo-
sium on Principles of Database Sys-
tems (PODS), Paris, France, June
2004. .

[NL04b] A. Nash and B. Ludäscher. Processing
Unions of Conjunctive Queries with
Negation under Limited Access Pat-
terns. In 9th Intl. Conf. on Extending
Database Technology (EDBT), LNCS
2992, pp. 422–440, Heraklion, Crete,
Greece, 2004.

[OAF+04] T. Oinn, M. Addis, J. Ferris, D. Mar-
vin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: A tool
for the composition and enactment
of bioinformatics workflows. Bioin-
formatics Journal, 20(17):3045–3054,
2004.

[OWL03] OWL Web Ontology Language Ref-
erence, W3C Proposed Recommenda-
tion, December 2003. www.w3.org/
TR/owl-ref/.

[Pro00] G. Project. GridFTP – Univer-
sal Data Transfer for the Grid,
2000. see http://www.globus.org/
datagrid/gridftp.html.

[PTO04] Ptolemy II project and system.
Department of EECS, UC Berke-
ley, 2004. http://ptolemy.eecs.
berkeley.edu/ptolemyII/.

[PYN+03] L. Peterson, E. Yin, D. Nelson, I. Al-
tintas, B. Ludäscher, T. Critchlow,
A. J. Wyrobek, and M. A. Cole-
man. Mining the Frequency Distrib-
ution of Transcription Factor Binding
Sites of Ionizing Radiation Responsive
Genes. In New Horizons in Genomics,
DOE/SC-0071, Santa Fe, New Mex-
ico., March 30–April 1 2003.

[R] R – Statistical Data Analysis. http:
//www.r-project.org.

[Ree95] H. J. Reekie. Realtime Signal Process-
ing: Dataflow, Visual, and Functional
Programming. PhD thesis, School of
Electrical Engineering, University of
Technology, Sydney, 1995.

[ROA] ROADNet: Real-time Observatories,
Applications and Data management
Network. roadnet.ucsd.edu.

[SBA+04] W. Sudholt, K. Baldridge, D. Abram-
son, C. Enticott, and S. Garic. Para-
meter Scan of an Effective Group Dif-
ference Pseudopotential Using Grid
Computing. New Generation Comput-
ing, 22:137–146, 2004.

[SBB+93] M. Schmidt, K. Baldridge, J. Boatz,
S. Elbert, M. Gordon, J. Jensen,
S. Koseki, N. Matsunaga, K. Nguyen,
S. Su, T. Windus, M. Dupuis,
and J. Montgomery. The Gen-
eral Atomic and Molecular Electronic
Structure System. Journal of Com-
putational Chemistry, 14:1347–1363,
1993. cf. http://www.msg.ameslab.
gov/GAMESS/GAMESS.html.

[SDM] Scientific Data Management
Center (SDM). http://sdm.
lbl.gov/sdmcenter/, see also
http://www.npaci.edu/online/v5.
17/scidac.html.

[SDM03] Scientific Data Management
Framework Workshop, Argonne
National Labs, August 2003.
http://sdm.lbl.gov/~arie/sdm/
SDM.Framework.wshp.htm.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
www.w3.org/TR/owl-ref/
www.w3.org/TR/owl-ref/
http://www.globus.org/datagrid/gridftp.html
http://www.globus.org/datagrid/gridftp.html
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://www.r-project.org
http://www.r-project.org
roadnet.ucsd.edu
http://www.msg.ameslab.gov/GAMESS/GAMESS.html.
http://www.msg.ameslab.gov/GAMESS/GAMESS.html.
http://sdm.lbl.gov/sdmcenter/
http://sdm.lbl.gov/sdmcenter/
http://www.npaci.edu/online/v5.17/scidac.html
http://www.npaci.edu/online/v5.17/scidac.html
http://sdm.lbl.gov/~arie/sdm/SDM.Framework.wshp.htm
http://sdm.lbl.gov/~arie/sdm/SDM.Framework.wshp.htm

REFERENCES 26

[SEE] NSF/ITR: Enabling the Science En-
vironment for Ecological Knowledge
(SEEK). seek.ecoinformatics.org.

[She98] A. Sheth. Changing Focus on In-
teroperability in Information Systems:
From System, Syntax, Structure to
Semantics. In M. Goodchild, M. Egen-
hofer, R. Fegeas, and C. Kottman,
editors, Interoperating Geographic In-
formation Systems, pp. 5–30. Kluwer,
1998.

[SRB] SDSC Storage Resource Broker.
http://www.sdsc.edu/srb/.

[TAV] The Taverna Project. http://
taverna.sf.net/.

[TG02] M. Takatuska and M. Gahegan. Geo-
VISTA Studio: A codeless visual
programming environment for geosci-
entific data analysis and visualiza-
tion. Computers and Geosciences,
28(2):1131–1144, 2002.

[TRI] The Triana Project. http://www.
trianacode.org/.

[vdA03] W. van der Aalst. Don’t go with
the flow: Web services composition
standards exposed. IEEE Intelligent
Systems. Web Services – Been there
done that? Trends & Controversies,
Jan/Feb 2003. http://tmitwww.
tm.tue.nl/research/patterns/
download/ieeewebflow.pdf.

[vdAtHKB03] W. van der Aalst, A. ter Hofst-
ede, B. Kiepuszewski, and A. Barros.
Workflow Patterns. Distributed and
Parallel Databases, 14(3):5–51, July
2003.

[vdAvH02] W. van der Aalst and K. van
Hee. Workflow Management: Models,
Methods, and Systems (Cooperative
Information Systems). MIT Press,
2002.

[WBB96] H. Wright, K. Brodlie, and M. Brown.
The Dataflow Visualization Pipeline
as a Problem Solving Environment. In
M. Göbel, J. David, P. Slavik, and
J. J. van Wijk, editors, Virtual Envi-
ronments and Scientific Visualization,
pp. 267–276. Springer, 1996.

[Wer01] T. Werner. Target gene identification
from expression array data by pro-
moter analysis. Biomolecular Engi-
neering, 17:87–94, 2001.

[WPS+05] D. Weinstein, S. Parker, J. Simpson,
K. Zimmerman, and G. Jones. Vi-
sualization in the SCIRun Problem-
Solving Environment. In C. Hansen
and C. Johnson, editors, Visualiza-
tion Handbook, pp. 615–632. Elsevier,
2005.

[WSD03] Web Services Description Language
(WSDL) Version 1.2. http://www.
w3.org/TR/wsdl12, June 2003.

[YB05] J. Yu and R. Buyya. A Taxonomy of
Workflow Management Systems for
Grid Computing. Technical Report
GRIDS-TR-2005-1, Grid Computing
and Distributed Systems Labora-
tory, University of Melbourne, 2005.
http://www.gridbus.org/reports/
GridWorkflowTaxonomy.pdf.

[zM04] M. zur Muehlen. Workflow-based
Process Controlling. Logos Verlag,
Berlin, 2004.

seek.ecoinformatics.org
http://www.sdsc.edu/srb/
http://taverna.sf.net/
http://taverna.sf.net/
http://www.trianacode.org/
http://www.trianacode.org/
http://tmitwww.tm.tue.nl/research/patterns/download/ieeewebflow.pdf
http://tmitwww.tm.tue.nl/research/patterns/download/ieeewebflow.pdf
http://tmitwww.tm.tue.nl/research/patterns/download/ieeewebflow.pdf
http://www.w3.org/TR/wsdl12
http://www.w3.org/TR/wsdl12
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf

	Executive Summary
	Background
	Scientific Workflows
	Example Workflows
	Promoter Identification
	Mineral Classification
	Job Scheduling

	Requirements and Desiderata
	Differences to Business Workflows

	SPA Technology Development
	Web Service Extensions
	Grid and other Extensions
	Actor-Oriented Modeling

	Research Issues
	Higher-Order Constructs
	Third Party Transfers
	Other Research Issues
	Related Work

	The Kepler Collaboration
	Excerpts from the Quarterly Reports
	Selected Publications and Presentations
	Concluding Remarks

