
A Calculus for Propagating Semantic Annotations
through Scientific Workflow Queries?

Shawn Bowers1 and Bertram Lud̈ascher1 2

1UC Davis Genome Center 2Department of Computer Science
University of California, Davis

Abstract. Scientific workflows facilitate automation, reuse, and reproducibility
of scientific data management and analysis tasks. Scientific workflows are often
modeled as dataflow networks, chaining together processing components (called
actors) that query, transform, analyse, and visualize scientific datasets. Seman-
tic annotations relate data and actor schemas with conceptual information from
a shared ontology, to support scientific workflow design, discovery, reuse, and
validation in the presence of thousands of potentially useful actors and datasets.
However, the creation of semantic annotations is complex and time-consuming.
We present a calculus and two inference algorithms toautomatically propagate
semantic annotations through workflow actors described by relational queries.
Given an input annotationα and a queryq, forward propagationcomputes an
output annotationα′; conversely,backward propagationinfersα from q andα′.

1 Introduction

Scientific workflows aim at automating repetitive scientific data management, analysis,
and visualization tasks and provide scientists with a mechanism to seamlessly “glue”
together different local and/or remote applications and (web) services into complex data
analysis pipelines. Fig.1 shows a simple ecology analysis workflow for computing two
biodiversity quantities calledRichness andProductivity using the KEPLER scientific
workflow system [17]. As can be seen from the figure, scientific workflows are often
modeled as networks of computational steps (calledactors) that query, transform, and
analyse input datasets (here, two datasets containing measurement data) via intermedi-
ate steps and derived datasets, resulting in a number of data products (here, containing
the desiredRichness andProductivity information). Scientific workflow systems (e.g.,
KEPLER, TAVERNA [21], TRIANA [19] and many others [24]) are emerging as flex-
ible and extensible problem-solving environments for designing, documenting, shar-
ing, and executing scientific workflows [18]. In contrast to the use of shell scripts or
spreadsheets, scientific workflows offer a versatile and controlled mechanism for au-
tomating data analysis pipelines, tracing data provenance [7,23], reproducing results,
etc. As more and more workflow components and datasets become available, however,
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Fig. 1.Simple scientific workflow for computing species richness and productivity [9]

users face the problem of selecting from thousands of possibly relevant workflow com-
ponents (e.g., given as web service operations, command-line tools, functions from sta-
tistics packages such as R, or native application components), and an even larger set of
possible datasets. Similarly, once candidate actor components and datasets have been
identified, there is the problem of whether it is possible to “chain” them together in
the desired form. Generic programming language data types (such asstring or ar-
rays of integers) donot provide any guidance as to whether it is meaningful to chain
together the output(s) of one actor with the input(s) of another actor. While the use of
WSDL or XML Schema types can guide workflow composition, this requires that a sin-
gle common schema is adopted, which is often impractical. To at least partially capture
information about a dataset or analysis component, informal metadata annotations are
often used in practice.

Example 1 (Informal Annotation) Consider a datasetD with the relational schema
S = {R(Obs, La, Lo, T, V)}. D might be given as a csv (comma-separated values) file,
with an accompanying documentation saying thatR.Obs identifies anobservationat
timeR.T, conducted at a point havinglatitudeandlongitudeR.La andR.Lo, respectively,
and having asvalueV, which is atemperaturemeasurement in degreescelsius. @

While such informal annotations are useful for the scientist when manually inspecting
and interpreting data, a scientific workflow system cannot make use of this information,
e.g., to check whether the annotation of a datasetD is compatible with the annotation of
a workflow actorA that consumes or producesD, or whether the output annotation of

A1 is compatible with the input annotation ofA2 in a chain of actors (· · ·A1
D−→ A2· · ·).

To address these problems, formal semantic annotations have been proposed [4,5].
A semantic annotationα: S → O associates elements of a data schemaS with concepts
and relationships of an ontologyO. 1 Thus,α can be seen as a “hybrid type” [5], linking
structural information given byS with conceptual level (“semantic”) information from
a shared community ontology (or controlled vocabulary)O.

1 We consider ontologies expressed in description logic,e.g., OWL-DL.
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Example 2 (Semantic Annotation) Let O be an ontology defining relevantconcepts
of a particular community or domain (e.g., Observation andTime) and relationships
(e.g., hasUnit andhasLatitude) between concepts. The informal annotation above can
be formalized by logic rules (constraints) of the formα: S → O:

R(o, x, y, t, v)︸ ︷︷ ︸
query over schema S

−→ Observation(o) ∧ hasUnit(o, celsius) ∧ hasVal(o, v) ∧ Time(t)︸ ︷︷ ︸
assertion over ontology O

This rule states thatR.o identifies anObservation, having a unitcelsius, and a valueR.v,
and thatR.t is aTime. Similar rulesα are used to map other columns or subsets ofR to
concepts and relationships inO. @

By capturing semantic annotations as sets of logic rulesα, a scientific workflow or
data integration system can exploit these constraints,e.g., for checking semantic type
correctness of data-to-actor and actor-to-actor connections, and for suggesting seman-
tically type-correct connections during workflow design [5].

In this paper we study the problem of automatically propagating a set of semantic
annotationsα “through” workflow actors which are described by relational queriesq.2

We consider theforward propagation problemα, q  α′ of deriving from an input
annotationα: S → O and a queryq: S → S′ an output annotationα′: S′ → O.
Similarly, thebackward propagation problemα′, q  α is to derive from knowledge of
an output annotationα′ and queryq an input annotationα. The forward and backward
propagation problems are summarized in Fig.2.

Example 3 (Forward Propagation) Consider a simple actorA that selects from the
above datasetR (input schema) only those observations with temperature measurements
below0◦C and locations that fall into a particular region of interestRroi(x, y) resulting
in a datasetR′ (output schema). We can describeA with a queryq as follows:

R′(o, v) :- R(o, x, y, t, v), Rroi(x, y), v < 0. (q)

Given the semantic annotationα of the actor inputR in Example2, the forward problem
is toautomaticallyderive an output annotationα′ for R′. Here, we obtain

R′(o, v) −→ Observation(o) ∧ hasUnit(o, celsius) ∧ hasVal(o, v) (α′)

2 The actor may not be implemented as a relational queryq. Instead,q is another form of meta-
data, aquery annotation, which describes or approximates an actor’s workflow function.
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since we “know” fromα andq thatv is the value of an observationo with unit celsius.
Note that to infer thisα′, we use the “only if” directionqhead → qbody of the (Datalog)
ruleqhead :- qbody defining the queryq above.3 Since annotationsα andα′ have a par-
ticular form (source-to-ontology constraints in a languageLα

S�O), α′ may not include
all deducible information:e.g., here we omit in the consequent ofα′ the fact thatv < 0
and possibly other information aboutR andRroi (as these are notO expressions). @

The manual creation of semantic annotations can be a complex and time-consuming
task. Thus providing automated solutions for deriving annotations is desirable for sup-
porting scalable frameworks of “semantics-aware” scientific workflows. In addition,
solving the propagation problem also provides new opportunities forsemantic type
checking: if both an input annotationα and an output annotationα′ for an actor are
given, then employing forward and backward propagation allows us to check the con-
sistency of the given annotations relative to the inferred ones.

Contributions and Previous Work. We first present a formal framework for semantic
annotationsα and define the associated forward and backward propagation problems.
We then present inference rules of our annotation propagation calculus (APC) and two
general propagation algorithms f-APC and b-APC for forward and backward propa-
gation, respectively. These algorithms proceed by structural induction on the operator
tree corresponding to a relational queryq. We use such queriesq to represent individual
actors of a workflow. An advantage of the APC approach is that it can be “scaled” to dif-
ferent query languagesLq, i.e., for certain query classes we obtain the exact (i.e., most
specific) annotation as the propagation result, but we also obtain results (not necessarily
most specific) for more expressive classesLq for which no exact solution exists.

We introduced semantic annotations in [4,5] to facilitate scientific data integration
and workflow design and composition, and proposed to automatically propagate such
annotations through workflows [6]. This paper extends our previous work [6] in several
ways: (i) by considering both forward and backward propagation, (ii) by introducing
the f-APC and b-APC algorithms for annotation propagation, and (iii) by considering
propagation challenges in terms of the annotation and query languages used.

The f-APC and b-APC algorithms employ a specific goal-directed resolution strat-
egy for annotation propagation. Similary, goal directed resultion strategies are also used
for solving schema mapping composition problems [13,20] as well as query rewriting
problems in data integration/exchange settings, where the corresponding rewriting tech-
niques can be understood as specialized versions of resolution [3], but for which certain
termination and efficiency guarantees can be given (unlike for general resolution).

Other Related Work. Annotation mechanisms in other related work are generally
more restricted than our approach in that they consider only single attribute or value
annotations. In [2], annotations are stored in a special attribute, and the user must spec-
ify how to propagate such value-based annotations through SQL queries, while we are
able to capture more expressive schema-based annotations, and also propagate them
automatically. Our approach also does not require a special semantics for interpreting

3 This is correct, since the symbol ‘:- ’ stands for an equivalenceqhead ↔ qbody, corresponding
to a sound andcompletedefinition of the query answer (a.k.a.“Clark’s completion” [10]).
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relational algebra queries. [14] present an approach to scientific annotations which al-
lowsvalue associations(as opposed to annotations to individual values only [2]). Such
associations between different schema columns can be easily expressed in our approach
as conjunctive conditions in the body ofα.

Propagating annotations is also related to the issue of (whyandwhere) data prove-
nance [7]. For example, [8] present an approach to propagate annotations through views,
but consider again simple text-based instance (i.e., value) annotations. In contrast, our
annotations are applied at the schema level, but can also specify subsets of the input
data (through the “query part”,i.e., the body ofα), including individual values just like
previous approaches. In [11] methods are presented for lineage tracing of data (within
the context of data warehouses), which take advantage of known structure or proper-
ties of transformations, similar to our queriesq. The lineage problem and propagation
methods considered in [11] are related but different from our approach. For example,
in their case, for first-order (relational) queries, an exact data lineage can be computed.
Conversely, in general, the problem of propagating a semantic annotation through a
first-order query may not have a solution in the desired annotation language. This in-
dicates that propagating semantic annotations is in general harder than computing data
lineage. The problem of propagation is also related to type inference in programming
languages, where types are generally given in less expressive langauges (e.g., compared
to dependency constraints) but programs are written in more expressive languages (e.g.,
compared to relational algebra queries).

2 Formalization of the Annotation Propagation Problem

Here we present our framework for semantic annotations and show how the propagation
problem can be formalized and reduced to a constraint implication problem.

Scientific Workflows. These are often modeled asdataflow process networks[15,16],4

consisting of a set of computational components calledactors, which can run as inde-
pendent processes or threads, and which exchange data tokens (e.g., scalars, vectors,
files, XML fragments, etc.) through unidirectional, buffered FIFOchannels. Channels
connectoutput portsof source actors withinput portsof target actors (cf. Fig. 1).

Mappings. A schemamappingis a binary relation5 on instancesDS , DS′ of disjoint
schemasS (input) andS′ (output). GivenS, S′, and a set of (logic) constraintsΣ, we
associate with(S, S′, Σ) the mappingm = { 〈DS , DS′〉 | (DS ∪ DS′) |= Σ }, i.e.,
the set of pairs〈DS , DS′〉 of instances ofS andS′ for which the combined instance
DS ∪ DS′ satisfiesΣ. For example, aqueryq corresponds to a (functional) mapping
mq: (S, S′, Σq). We writeq: S → S′ to emphasize the input/output signature ofq.

Actor Schemas and Semantic Annotations.With the input and output ports of an
actorA, we associate two disjoint relational schemas,S andS′, describing the input and

4 Many scientific workflow systems (e.g., INFORSENSE, KEPLER, PIPELINEPILOT, TAVERNA,
TRIANA ), scientific problem-solving environments (e.g., SCIRUN), and commercial LIMS
systems (e.g., LABV IEW) are based on this dataflow process network model.

5 We follow the convention to call such relations “mappings” [1,13,20], although they arenot
(functional) mappings in the traditional sense:e.g., unlike conventional mappings, a (non-
functional) “mapping”〈DS , DS′〉 always has an inverse “mapping”〈DS′ , DS〉.
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output data structures ofA, respectively. The input/output behavior ofA is described
(or approximated) via a queryq: S → S′, mapping instances of the input schemaS to
instances of the output schemaS′ (see Fig.2). An instanceDS of a schemaS is called a
dataset. A semantic annotationα: S → O is a mapping from instances of a (concrete)
data schemaS to instances of an (abstract, virtual) ontologyO. Here, an ontology is a
(finite) first-order structure. Given a queryq: S → S′ for an actorA, we callα: S → O
an input annotation, andα′: S′ → O an output annotationof A (Fig. 2). Using the
above notation, a semantic annotationα corresponds to a mappingmα: (S,O, Σα),
whereΣα is a set of logic constraints capturingα.

Annotation Propagation as Composition of Mappings. The forward propagation
problemα, q  α′ can be seen as a mapping composition problem [13,20]. The given
signaturesα: S → O, q: S → S′, andα′: S′ → O suggest the definition

α′ := α(q−) (f-prop)

i.e., obtain the propagated annotations as the compositionα′: (S′,O, Σα′) of α andq−.
Hereq−: (S′, S,Σq) is the inverse mappingof q, which is exactly likeq but with the
roles of inputs and outputs reversed. Similarly, for the backward propagation:

α := α′(q) (b-prop)

one could applyα′: (S′,O, Σα′) on top ofq: (S, S′, Σq), resulting inα: (S,O, Σα).
To view annotation propagation in this way as mapping composition helps to under-

stand some aspects of the subsequent annotation propagation calculus (APC) rules and
inference algorithm:e.g., in the foward case we are looking for a constraintα′: S′ → O.
Givenα: S → O andq: S → S′, we can “go” fromS′ toO by first applyingq in the
inverse directionq′: S′ → S, then applyingα: S → O to the result (cf. Fig.2), hence
we can think of the propagated result asα′ = α(q−). By similar reasoning, we obtain
α = α′(q) for the backward propagation.

The Annotation Propagation Problem. We now formally define the annotation prop-
agation problem by relating it to constraint implication as follows:

Definition 1 Consider a semantic annotationα: (S,O, Σα) expressed in an annotation
languageLα, and a queryq: (S, S′, Σq). Let q−: (S′, S,Σq−) be the inverse ofq.

We say thatα′: (S′, S,Σα′) is a forwardLα-propagationof α throughq, if Σα′ is
themost specificannotation inLα that is implied byΣα andΣq− , denotedΣα∪Σq− |=
Σα′ .We sayα1 is more specificthanα2, if Σα1 |= Σα2 . ThebackwardLα-propagation
is defined analogously: Find the most specificΣα ⊆ Lα with Σα′ ∪Σq |= Σα. @

This formalization has several advantages: First, under this propagation semantics, a
result annotation may exist even in cases where the mapping composition semantics
cannot be expressed in the constraint language of choice. Second, this formalization
naturally applies to inference-based (logic) approaches like the APC below.

3 Annotation Propagation Calculus (APC)

We first present the basic annotation propagation calculus (APC), then present two goal-
directed inference algorithms f-APC and b-APC for forward and backward propagation.
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(σ) ∀x R(x) ∧ ψ(x) → S′(x)
(π) ∀x∀y R(x,y) → S′(x)
(×) ∀x∀y R1(x) ∧R2(y) → S′(x,y)
(\) ∀x R1(x) ∧ ¬R2(x) → S′(x)
(∪) ∀x R1(x) ∨R2(x) → S′(x)

(σ−) ∀x S′(x) → R(x) ∧ ψ(x)
(π−) ∀x S′(x) → ∃y R(x,y)
(×−) ∀x∀y S′(x,y) → R1(x) ∧R2(y)
(\−) ∀x S′(x) → R1(x) ∧ ¬R2(x)
(∪−) ∀x S′(x) → R1(x) ∨R2(x)

a) q: S → S′ direction for b-APC b)q−: S′ → S direction for f-APC

Fig. 3.Relational algebra operators (atomic queries) expressed as logic constraints

Query Operators as Logic Constraints. The core idea of APC is the observation that
annotation propagation is easy for primitive (atomic) query operators. Therefore, we
start by representing a complex (first-order) queryqc in the form of a relational alge-
bra expression, or equivalently, as an operator tree, consisting of atomic query opera-
tors q ∈ {σ, π,×, \,∪}. Each relational operatorq defines a mappingq: (S, S′, Σq)
for the “standard” (i.e., forward) directionS → S′ of q, and an inverse mapping
q−: (S′, S,Σq−) for the opposite (i.e., backward) directionS′ → S. Here,Σq and
Σq− are as defined in Fig.3(a) and Fig.3(b), respectively.

3.1 Inference Rules of APC

The formalization of annotation propagation using logic constraints (see Definition1),
suggests a natural inference procedure for the forward problemα, q  α′, i.e., by
“applying” the constraintsΣα toΣq− , thus obtainingΣα′ . Similarly, one can combine
Σq andΣα′ to obtainΣα to solve the backward problem. This is the core idea behind
the APC inference rules.

Fig. 4 shows the rules for backward propagation, which take an output annotation
α′ and an atomic query operatorq and infer the input annotationα. Similary, Fig.5
shows how forward propagation is solved by applying the input annotationα on the
inverse queryq− to obtain the output annotationα′. The inference rules in both figures
are depicted with theirpremisesabove the horizontal line, and theirconsequent(s) be-
low the line. Each inference rule corresponds to an algebra operatorq: S → S′ or its
inverseq−: S′ → S. Moreover, with every rule forq (in b-APC) andq− (in f-APC), we
associate at least onegoal atom, marked asJAK in the head ofq (Figure4) or the head
of q− (Figure5). The basic idea of annotation propagation is to “resolve” the goal atom
in q (or in q−) with some literal of the given semantic annotationα′ (or α), to obtain
the desired propagated annotation.

Applying Substitutions. To simplify the exposition of the rules in Fig.4 and Fig.5,
the application of unifiers is not shown but implicit. More precisely, letθ be anmgu
(most-general-unifier) of a goal atomJR(u)K in q (or q−) with a corresponding atom
R(x) on the left-hand side of an annotationα′ (or α). The unifierθ is a (most general)
substitution under which both atoms become identical,i.e., θ(R(u)) = θ(R(x)). In
the figures, with the b-APC and f-APC rules, we assume that thisθ is applied to the
consequent rule (below the line) to obtain the propagated annotation.
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Bσ

α′: S′(x), ϕ(x) → ∃z ω(x, z)
q: R(u), ψ(u) → JS′(u)K
α: R(u), ψ(u), ϕ(x) → ∃z ω(x, z)

Bπ

α′: S′(x), ϕ(x) → ∃z ω(x, z)
q: R(u,v) → JS′(u)K
α: R(u,v), ϕ(x) → ∃z ω(x, z)

B×

α′: S′(x,y), ϕ(x,y) → ∃z ω(x,y, z)
q: R1(u), R2(v) → JS′(u,v)K
α: R1(u), R2(v), ϕ(x,y) → ∃z ω(x,y, z)

B∪

α′: S′(x), ϕ(x) → ∃z ω(x, z)
q: R1(u) → JS′(u)K
R2(u) → JS′(u)K

α: R1(u), ϕ(x) → ∃z ω(x, z)

B\

α′: S′(x), ϕ(x) → ∃z ω(x, z)
q: R1(u), ¬R2(u) → JS′(u)K
α: R1(u), ¬R2(u), ϕ(x) → ∃z ω(x, z)

Fig. 4.Backward propagation (b-APC) rules forα′, q  α

Additional Remarks for f-APC. For f-APC we assume that annotationsα and the
constraintq−π , capturing the inverse of relational projectionπ, have been “skolemized”
(replacing∃-quantified variables by symbolic identifiers while keeping track of the∀-
variables they depend on). In the ruleFσ, we denote by(ϕ(x) ∧ ¬ψ(u))∗ thatϕ hasψ
“factored out”,i.e., we simplifyϕ ∧ ¬ψ.

3.2 Operator-Driven Annotation Propagation in APC

The above APC rules for forward and backward propagation based on atomic query
operators induce two natural inference algorithms for complex queries,i.e., consisting
of nested expressions of operators. The approach is to drive the application of infer-
ence rules by the structure of the operator tree of a given complex queryq. To illustrate
this structural induction over the operator tree, consider first the backward problem
α′, q  α. Let q: S → S′ be a complex query, expressed as a nested relational alge-
bra expression of unary or binary operatorsqi: q = qn(qn−1(· · · q1 · · · ) whereqn
corresponds to the top-most (root) node of the operator tree, and leaf nodes (such as
q1) are applied to the input relations ofq (cf. Fig.6). Recall the “composition solution”
α := α′(q) to the backward problem (see (b-prop) on page6). Applyingα′ to the nested
expression forq yieldsα = α′(q) = α′(qn(qn−1(· · · ))). As mapping composition is
associative, we can first applyα′ to qn (the root node), obtaining an intermediate anno-
tationα1, which is applied toqn−1, yieldingα2, which is further propagated downward
in the tree, etc. This process is repeated until the leaf nodes are reached. Fig.6(a) illus-
trates this top-down process for b-APC.

Similarly, for the forward problemα, q  α′, we have the “composition solution”
(f-prop) of the formα′ := α(q−). First note that the “inverse reading” of the operator
tree can be seen as an expressionq− = q−1 (q−2 (· · · )) in which the root nodeqn becomes
an innermost node. Applyingα to this expression, and again exploiting associativity, we
obtain a bottom-up annotation propagation for f-APC: Fig.6(b) depicts this process.

Strictly speaking, the notation (nested expressions) used forq andq− above were
based on unary operators. However, it should be clear how the top-down approach for
b-APC and the bottom-up approach for f-APC work in the case of binary operators.
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Fσ

α: R(x), ϕ(x) → ω(x, f(x))
q−: S′(u) → JR(u)K, ψ(u)

α′: S′(u), (ϕ(x) ∧ ¬ψ(u))∗ → ω(x, f(x))
Fπ

α: R(x), ϕ(x) → ω(x, f(x))
q−: S′(u) → JR(u,g(u))K
α′: S′(u), ϕ(x) → ω(x, f(x))

F×

α: R1(x), ϕ(x) → ω(x, f(x))
q−: S′(u,v) → JR1(u)K, R2(v)

α′: S′(u,v), ϕ(x) → ω(x, f(x))
F\

α: R1(x), ϕ(x) → ω(x, f(x))
q−: S′(u) → JR1(u)K, ¬R2(u)

α′: S′(u), ϕ(x) → ω(x, f(x))

F∪

α1: R1(x), ϕ1(x) → ω1(x, f(x))
α2: R2(y), ϕ2(y) → ω2(y,g(y))
q−: S′(u) → JR1(u)K ∨ JR2(u)K
α′: S′(u), ϕ1(x), ϕ2(y) → ω1(x, f(x)) ∨ ω2(y,g(y))

Fig. 5.Forward propagation (f-APC) rules forα, q−  α′

For the case of b-APC we perform apreorder traversal of the operator tree. At each
operator node we propagate (1) each source annotation given as input to the operator
propagation step, and (2) all unique annotations that can be derived (including those
that contain intermediate relation symbols) by repeatedly applying the corresponding
inference rule of the operator. Once all nodes of the operator tree have been visited,
the subset of source-to-target annotations (not mentioning intermediate relations) are
propagated through the query. We apply a similar procedure for f-APC, but instead use
a postorder traversal (i.e., bottom up), as shown in Fig.6(b). The following example
illustrates the inference steps of b-APC:

Example 4 Let R1(o, x, y, t, v), R2(u, p) be input schemas,S′(o, x, y, v, u, p) the out-
put schema (Fig.6), whereS′ is the given output annotation

α′: S′(o, x, y, v, u, p)→ Observation(o), hasVal(o, v), Species(p)

Also consider the query shown in the figure, which combines allR1 observations, made
at a particular timec , with species observed at a locationd (e.g., assuming the spatial
extent ofR1 is d, the query extendsR1 with its corresponding species). We follow the
navigation path given in Fig.6(a) to compute the backward propagation. The first step
derivesα1 := α′(q4) by applyingB× toα′ andq4 (the goal atom is in double brackets):

q4: R′′1(o, x, y, v), R′2(u, p)→ JS′(o, x, y, v, u, p)K
The resulting annotationα1 = α′(q4) is propagated downwards the operator tree:

α1: R′′1(o, x, y, v), R′2(u, p)→ Observation(o), hasVal(o, v), Species(p)

The next step isα2 = α1(q3) via ruleBπ, i.e., applyingα1 to q3 (= πoxyv(R′1)):

q3: R′1(o, x, y, t, v)→ JR′′1(o, x, y, v)K
which results in

α2: R′1(o, x, y, t, v), R
′
2(u, p)→ Observation(o), hasVal(o, v), Species(p)

Next we applyα2 to q2 (= σt=c(R1))

q2: R1(o, x, y, t, v), t=c → JR′1(o, x, y, t, v)K
and using ruleBσ we obtainα3 = α2(q2):
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α3: R1(o, x, y, t, v), t=c , R′2(u, p)→ Observation(o), hasVal(o, v), Species(p)
Finally, on the second, parallel branch we have a selectionq1 (= σu=d(R2)):

q1: R2(u, p), u=d → JR′2(u, p)K
We obtain the final resultα4 := α1(q1) viaBσ:

α4: R1(o, x, y, t, v), t=c, R2(u, p), u=d→ Observation(o), hasVal(o, v), Species(p)@

The forward algorithm f-APC proceeds similarly but bottom-up instead of top-down:

Example 5 Consider two relationsR1 andR2 with semantic annotationsαa andαb:

αa: R1(o, x, y, t, v)→ Observation(o), hasVal(o, v)
αb: R2(u, p)→ Site(u), Species(p), observedIn(p, u)

and the same queryq as in the previous example. We follow the navigation path given
in Fig. 6(b) to compute the forward propagation. The first step derivesα1 := α(q−2 ) by
applyingFσ to αa and the inverseq−2 of the operatorσt=c (R1)

q−2 : R′1(o, x, y, t, v)→ JR1(o, x, y, t, v)K, t = c

α1: R′1(o, x, y, t, v)→ Observation(o), hasVal(o, v)
The next step derivesα2 ← α1, q

−
3 by applyingFπ to α1 and operatorπo,x,y,v (q−3 )

q−3 : R′′1(o, x, y, v)→ JR′1(o, x, y, g(o, x, y, v), v)K
α2: R′′1(o, x, y, v)→ Observation(o), hasVal(o, v)

The next step derivesα3 ← αb, q
−
1 by applyingFσ to αb and the operatorσu=d (q−1 )

q−1 : R′2(u, p)→ JR2(u, p)K, u = d

α3: R′2(u, p)→ Site(u), Species(p), observedIn(p, u)
The last step derivesα′ (denotedα′a andα′b below) by applyingF× twice, once toα2

and the operator× (q−4 ) and then toα3 andq−4 .

q−4 : S′(o, x, y, v, u, p)→ JR′′1(o, x, y, v)K, R′2(u, p)
α′a: S′(o, x, y, v, u, p)→ Observation(o), hasVal(o, v)

q−4 : S′(o, x, y, v, u, p)→ R′′1(o, x, y, v), JR′2(u, p)K
α′b: S′(o, x, y, v, u, p)→ Site(u), Species(p), observedIn(p, u)

Soundness and Termination of APC Rules and Algorithms.Applications of APC
inference rules correspond to one or more first-order resolution steps [22,3]. Thus, from
the soundness of resolution, the soundness of f-APC and b-APC is immediate.

Proposition 1 (Soundness of b-APC and f-APC)For Σ′
α andΣq as in Fig.4:

If Σα′ ∪Σq `b-APCΣα then Σα′ ∪Σq |= Σα

Similarly, forΣα andΣq− as in Fig.5:
If Σα ∪Σq− `f-APC Σα′ then Σα ∪Σq− |= Σα′

Annotation propagation in both the forward and backward versions of APC proceeds
by structural induction on the operator tree ofq. Since there are only finitely many
rule applications per node in the tree, and since each node in the tree is visited once,
termination follows. Note however, that we assume here that annotations and query
operators are strictly source-to-target (e.g., for recursive (Datalog) queries, termination
is not guaranteed).
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Fig. 6.Structural inductions on operator trees for queriesq, where (a) shows a preorder
navigation for b-APC and (b) a postorder navigation for f-APC.

Proposition 2 (Termination of b-APC and f-APC) For any relational queryq and any
finite set of annotations, the algorithms b-APC and f-APC terminate.

4 Discussion
Semantic annotations are a promising approach for ensuring compatibility and reuse
of actors in scientific workflows. However, the current manual process of generating
semantic annotations limits their utility. We have proposed a method for automatically
propagating semantic annotations forward and/or backward through a dataflow process
networks of actors, described by relational queries. We have shown how the problem of
propagation can be recast as one of constraint implication, and presented a calculus of
annotation propagation (APC) and developed two algorithms (b-APC and f-APC), cor-
responding to a top-down and bottom-up propagation of annotations through a query’s
operator tree. Both algorithms have been implemented in Prolog. Despite the initial re-
sults presented here, several interesting problems remain. The presented approach can
be seen as a specialized first-order resolution procedure which is guided by the operator
structure of a query. In general, resolution methods, including specialized versions such
as the Chase (seee.g.[12]), may not terminate,e.g., due to recursive rules and Skolem
symbols. In contrast, our approach terminates, because we guide and limit the inference
steps using the structure of the operator tree. However, we cannot always guarantee to
obtain the most specific annotation via our propagation algorithm. In future work we
plan to identify classes of queries and annotations where most specific annotations can
be effectively computed. Similarly, we are interested in deriving approximate solutions
even in cases where a most specific annotation does not exist. relationship between the
formalization of annotation propagation as mapping composition (only sketched in this
paper) and the one as constraint implication (used in this paper as the basis for APC).
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