
Processing Unions of Conjunctive Queries with
Negation under Limited Access Patterns

Alan Nash1 and Bertram Ludäscher2

1Department of Mathematics, anash@math.ucsd.edu
2San Diego Supercomputer Center, ludaesch@sdsc.edu

University of California, San Diego

Abstract. We study the problem of finding executable query plans over
distributed sources with limited access patterns. This problem is becom-
ing increasingly important in the area of distributed query processing,
most notably, web services. For the purposes of query planning, web ser-
vices can be seen as remote procedure calls with input/output access
pattern restrictions. The problem is to decide whether a given query
Q is feasible, i.e., whether one can find an equivalent executable query
Q′ that observes the limited access patterns given by the sources. We
characterize the complexity of deciding feasibility for the classes CQ¬

(conjunctive queries with negation) and UCQ¬ (unions of CQ¬ queries),
which has been open until now: testing feasibility is just as hard as test-
ing containment and therefore ΠP

2 -complete. We also provide a uniform
treatment for CQ, UCQ, CQ¬, and UCQ¬ by devising an algorithm
which is optimal for each of these classes. In addition, we show how one
can often avoid the worst-case complexity by certain approximations at
compile-time and at runtime. At compile-time, even if a query Q is not
feasible, we can find efficiently the minimal executable query containing
Q. For query answering at runtime, we devise an algorithm which may
report complete answers even in the case of infeasible plans and which
can indicate to the user the degree of completeness for certain incomplete
answers.

1 Introduction

We study the problem of finding executable query plans over distributed sources
having limited query capabilities. The problem arises naturally in the context
of database integration and query optimization in the presence of limited source
capabilities (e.g., see [PGH98,FLMS99]). In particular, for any database media-
tor system that supports not only conventional SQL databases, but also sources
with access pattern restrictions [LC01,Li03], it is important to come up with
query plans which observe those restrictions. Most notably, the latter occurs for
sources which are modeled as web services [WSD03]. For the purposes of query
planning, a web service operation can be seen as a remote procedure call, corre-
sponding to a limited query capability which requires certain arguments of the
query to be bound (the input arguments), while others may be free (the output
arguments).

Web Service Operations. We use the following abstraction of web services as
relations with limited access patterns: A web service interface is a set of related
operations {op1, . . . , opk}, each of which has an associated input message (re-
quest) and output message (response).1 The n (m) parts of an input (output)
message correspond to the n input (m output) parameters of the web service
operation, respectively. For the purpose of distributed query planning, we can
often consider a web service operation to be a function

op : x1, . . . , xn → {〈y1, . . . , ym〉}

mapping input n-tuples to a number of output m-tuples. We can model this
operation as a simple relational view with access pattern (a.k.a. binding pattern)
restrictions:

Ri...i o...o
op (x̄, ȳ)←− ȳ ∈ op(x̄)

Here the access pattern ‘i...i o...o’ (= inom) of Rop indicates that the first n
arguments x̄ = x1, . . . , xn serve as inputs and thus need to be bound, while the
next m arguments ȳ = y1, . . . , ym serve as outputs.

Example 1 (Web Services) Consider the following information integration
example over a books schema with the usual attributes. Some data source may
export the following operations as part of a web service:

op1 : ISBN→ {〈Authors,Title,Price〉}
op2 : Title→ {〈ISBN,Authors,Price〉}

The first operation returns, for a given ISBN, answer tuples containing the au-
thors, title, and price, while the second operation returns, for a given title, a set
of answer tuples having ISBN, author, and price information. We can consider
these operations as simple relational views with access patterns over the same
underlying book relation B:2

Biooo(xi, xa, xt, xp)←− 〈xa, xt, xp〉 ∈ op1(xi)
Booio(xi, xa, xt, xp)←− 〈xi, xa, xp〉 ∈ op2(xt)

Here the access patterns ‘iooo’ and ‘ooio’ of B indicate the input and output
restrictions of each argument position of B and thus correspond to the allowed
access patterns for the two web service operations op1 and op2: we need at least
the ISBN or a title to get any book information.

An important problem of query planning over sources with access pattern
restrictions is to determine whether a query Q is feasible, i.e., whether Q is
equivalent to an executable query plan Q′ that observes the access patterns.

1 This corresponds to the message pattern in-out [WSD03, Part 2, Section 2.2]
2 We denote logic variables in lowercase x, y, . . . and relation symbols in uppercase

R, S, T, . . .

Example 2 (Query Plans) Consider the following conjunctive query with nega-
tion Q

Q(xi, xa, xt, xp)←− B(xi, xa, xt, xp), C(xi, . . .),¬L(xt, . . .)

asking for books available through B which are contained in some catalog C, but
not in the local library L. Assume that the access patterns are Biooo, Booio, Co...,
and Lo..., respectively. The body of the query Q is not executable as is (i.e., from
left to right) because B would be invoked first with no variable bound, violating
both access patterns for B. However, the query becomes executable when we
move the call to C before the call to B. We say that the query Q is orderable
since one can rearrange it into an executable form. Had we moved ¬L(xt, . . .) in
front of B instead of C(xi, . . .), then the resulting query would not have been
executable, in spite of L’s all-output access pattern. The reason is that a negated
call can only be used to constrain or filter a set of answers, but cannot produce
variable bindings.

The previous example shows that for some queries which are not executable,
simple reordering can yield an executable plan. However there are queries which
cannot be reordered yet are feasible.3 This raises the question of how to deter-
mine whether a query is feasible and how to obtain “good approximations” in
case the query is not feasible. Clearly, these questions depend on the class of
queries under consideration. For example, feasibility of Datalog queries is unde-
cidable [LC01] and a similar construction shows that it is also undecidable for
first-order queries [NL03]. On the other hand, feasibility is decidable for sub-
classes such as conjunctive queries without (CQ) and with union (UCQ) [LC01].

Contributions. We present a new algorithm, Feasible, for deciding the fea-
sibility of conjunctive queries with negation (CQ¬) and unions of conjunctive
queries with negation (UCQ¬), thereby extending previous results for CQ and
UCQ [Li03]. Our construction also provides an elegant unifying treatment for
all of CQ, UCQ, CQ¬, and UCQ¬; in particular we present a uniform algo-
rithm that performs optimally for each of these classes. For our upper bounds,
we use a recent elegant algorithm and result by Wei and Lausen [WL03] for
containment of safe UCQ¬ and UCQ. We provide matching lower bounds for
Feasible, thus characterizing the complexity of feasibility of UCQ¬ and UCQ
as ΠP

2 -complete. In addition to these new theoretical results on the complex-
ity of deciding feasibility, we also present a number of practical improvements
and approximations for developers of database mediator systems:4 We present
an efficient polynomial-time algorithm, Plan?, which computes two plans Qu

and Qo, which at runtime produce underestimates and overestimates of the an-
swers to Q, respectively. Whenever Plan? outputs two identical Qu and Qo,
we know at compile-time that Q is feasible without actually incurring the cost
3 Li and Chang call this notion stable [LC01,Li03].
4 The corresponding efficient algorithms are being added to a real-world database

mediator system [BIR].

of the ΠP
2 -complete general feasibility test. In addition, we present an efficient

runtime algorithm Answer? which, given a database instance D, computes un-
derestimates Answer(Qu, D) and overestimates Answer(Qo, D) of the exact
answer. If Q is not feasible, Answer? may still compute a complete answer and
signal the completeness of the answer to the user at runtime. In case the answer
is incomplete (or not known to be complete), Answer? can often give a lower
bound on the relative completeness of the answer.

Outline. The paper is organized as follows: In Section 2 we provide some pre-
liminaries and terminology on the query classes being studied. In Section 3 we
introduce basic notions such as executable, orderable, and feasible, which will be
needed throughout the paper. In Section 4 we present our main algorithms for
computing execution plans, determining the feasibility of a query, and runtime
processing of answers. In Section 5 we present the main theoretical results, in
particular a characterization of the complexity of deciding feasibility of UCQ¬

queries. Also we show how related algorithms can be obtained as special cases of
our uniform approach. Finally, we summarize our findings and discuss how our
work relates to several real-world application projects in Section 6. We include
some technical details and proofs in the appendix.

2 Preliminaries

We will need to talk about several kinds of queries, so we review their definitions
here. We call a variable or a constant a term. Unless we explicitly disallow
constants or it is clear from the context (for example under quantification), we
use expressions of the form x̄ to refer to a finite sequence of terms. We call an
atomic predicate R(x̄) or its negation ¬R(x̄) a literal. We use R̂(x̄) to denote
either R(x̄) or ¬R(x̄).

A conjunctive query (CQ) is a query Q of the form

(∃ȳ)(R1(x̄1) ∧ . . . ∧R`(x̄`))

where each Ri(x̄i) is an atomic predicate and where ȳ is included in x̄1, . . . , x̄`.
That is, CQs are existential quantifications of conjunctions of positive literals or
SPJ (select-project-join) queries. The variables ȳ are bound or non-distinguished.
The remaining variables are free or distinguished and we denote them by free(Q).
We denote all variables in Q by vars(Q) so we have free(Q) := vars(Q) \ {ȳ}.
Assume that in the case of Q these variables are z̄; then we can write Q in rule
form as follows

Q(z̄)←−R1(x̄1), . . . , R`(x̄`)

(the existential quantification is implicit). We call Q(z̄) the head and R1(x̄1), . . . , R`(x̄`)
the body of the rule.

A union of conjunctive queries (UCQ) is a query Q of the form

Q1 ∨ . . . ∨Qk

where each Qi ∈ CQ. In other words, UCQs are unions of SPJ queries. If the
free variables in Q are z̄, then to write Q in rule form we simply give one rule
for each Qi, all with the same head Q(z̄).

A conjunctive query with negation (CQ¬) is a query of the form

(∃ȳ)(R̂1(x̄1) ∧ . . . ∧ R̂`(x̄`))

where each R̂i(x̄i) is a literal and where ȳ is included in x̄1, . . . , x̄`. That is,
CQ¬s are existential quantifications of conjunctions of literals (both positive
and negative).

A union of conjunctive queries with negation (UCQ¬) is a query of the form

Q1 ∨ . . . ∨Qk

where each Qi ∈ CQ¬. In other words, UCQ¬s are unions of CQ¬s.
For Q ∈ CQ¬, we denote by Q+ the conjunction of the positive literals in Q

in the same order as they appear in Q and by Q− the conjunction of the negative
literals in Q in the same order as they appear in Q. A CQ or CQ¬ query is safe
if every variable of the query appears in a positive literal in the body. A UCQ
or UCQ¬ query is safe if each of its CQ or CQ¬ parts is safe and if all of them
have the same free variables. In this paper we only consider safe queries.

3 Limited Access Patterns and Feasibility

In this section we present the basic definitions for queries in the presence of lim-
ited access patterns. In particular, we define the notions executable, orderable,
and feasible. While the former two notions are syntactic in the sense that they
can be decided by a simple inspection of a query, the latter notion is semantic,
since feasibility is defined up to logic equivalence. An executable query can be
seen as a query plan, prescribing how to execute the query. An orderable query
can be seen as an “almost executable” plan (it just needs to be reordered to
yield a plan). A feasible query, however, does not directly provide an execution
plan. The problem we are interested in is how to determine whether such an
executable plan exists and how to find it. These are two different, but related
problems.

Definition 1 (Access Pattern) An access pattern for a k-ary relation R is an
expression of the form Rα where α is word of length k over the alphabet {i, o}.

We call the jth position of P an input slot if α(j) = i and an output slot if
α(j) = o.5 At runtime, we must provide values for input slots in order to execute
the query, while for output slots such values are not required (and instead can
be provided by the source relation being queried).

5 Other authors use ‘b’ and ‘f’ for bound and free, but we prefer to reserve the no-
tions of bound and free for variables under or not under the scope of a quantifier,
respectively.

In general, with access pattern Rα we may retrieve the set of tuples {ȳ |
R(x̄, ȳ)} as long as we supply the values of x̄ corresponding to all input slots in
R. We allow values to be supplied to output slots, but they are not required.

Example 3 (Access Patterns) Given the access patterns Biooo and Booio on
the book relation mentioned in the introduction, we can obtain the set {〈xa, xp〉 |
(∃xi)B(xi, xa, xt, xp)} of authors and prices given a title xt and the set {xt |
(∃xa, xp)B(xi, xa, xt, xp)} of titles given an ISBN number xi, but we cannot
obtain the set {〈xa, xt〉 | (∃xi, tp)B(xi, xa, xt, xp)} of authors and titles, given
no input.

Definition 2 (Adornment) Given a set P of access patterns, a P-adornment
on Q ∈ UCQ¬ is an assignment of access patterns from P to predicates in Q.

Definition 3 (Executable) Q ∈ CQ¬ is P-executable if P-adornments can be
added to Q so that every variable of Q appears first in an output slot of a non-
negated predicate. Q ∈ UCQ¬ with Q := Q1 ∨ . . . ∨Qk is P-executable if every
Qi is P-executable. We consider the empty rule ⊥ to be executable and to return
an empty result relation.

An executable query provides a query plan: execute each rule separately (possibly
in parallel) from left to right.

Definition 4 (Orderable) Q ∈ UCQ¬ with Q := Q1 ∨ . . . ∨Qk is P-orderable
if for every Qi ∈ CQ¬ there is a permutation Q′

i of the literals in Qi so that
Q′ := Q′

1 ∨ . . . ∨Qk is P-executable.

Clearly, if Q is executable, then Q is orderable, but not conversely.

Example 4 (Orderable, Not Executable) Given access patterns P := {Biooo, Booio, Co, Lo}
the query

Q(xi, xa, xt, xp)←−B(xi, xa, xt, xp), C(xi),¬L(xt)

is not executable because xi appears first in an input slot. However

Q′(xi, xa, xt, xp)←− C(xi), B(xi, xa, xt, xp),¬L(xt)

is executable, so Q is orderable.

Definition 5 (Feasible) Q ∈ UCQ¬ is P-feasible if it is equivalent to a P-
executable Q′ ∈ UCQ¬.

Clearly, if Q is orderable, then Q is feasible, but not conversely.

Example 5 (Feasible, Not Orderable) Given access patterns P := {Biooo, Booio, Co, Lo}
the query

Q(xa)←−B(xi, xa, xt, xp), L(xt), B(yi, xa, yt, yp), C(yi)

Q(xa)←−B(xi, xa, xt, xp), L(xt),¬B(yi, xa, yt, yp), C(yi)

is not orderable since yt and yp cannot be bound, but is feasible because it is
equivalent to

Q′(xa)←− L(xt), B(xi, xa, xt, xp), C(yi)

which is executable.

Usually, we have in mind a fixed set P of access patterns and then we simply
say executable, orderable, and feasible instead of P-executable, P-orderable, and
P-feasible. The following two definitions and the algorithm in Figure 1 are small
modifications of those presented in [LC01].

Definition 6 (Answerable Literal) Given Q ∈ CQ¬, we say that a literal
R̂(x̄) (not necessarily in Q) is Q-answerable if there is an executable QR ∈ CQ¬

consisting of R̂(x̄) and literals in Q.

Definition 7 (Answerable Part AQ) Given Q ∈ CQ¬, if Q is unsatisfiable
then AQ is ⊥. If Q is satisfiable, AQ is the query given by the Q-answerable
literals in Q, in the order given by the algorithm Answerable (see 1). If Q ∈
UCQ¬ with Q = Q1 ∨ . . . Qk then AQ = AQ1 ∨ . . . ∨AQk .

Notice that the answerable part AQ of Q is always executable, but may be empty.

Proposition 1 Q ∈ CQ¬ is orderable iff every literal in Q is Q-answerable.

Proposition 2 There is a quadratic-time algorithm for computing AQ.

The algorithm is given in Figure 1.

Corollary 1 There is a quadratic-time algorithm for checking whether Q ∈
UCQ¬ is orderable.

In Section 5.1 we define and discuss containment of queries. Query P is
said to be contained in query Q (in symbols, P v Q) if for every instance
D, Answer(P,D) ⊆ Answer(Q,D). We prove the following result in the ap-
pendix.

Proposition 3 If Q ∈ UCQ¬, then Q v AQ.

Corollary 2 If Q ∈ UCQ¬ and AQ v Q, then Q is feasible.

Proof If AQ v Q then AQ ≡ Q and therefore, since AQ is executable, Q is
feasible.

We will see in Section 5 (and in the appendix) that the converse holds as well; this
is one of our main results. We need one more technical result for the algorithms
and proofs presented in the next sections.

Proposition 4 Q ∈ CQ¬ is unsatisfiable iff there exists a predicate R and terms
x̄ so that both R(x̄) and ¬R(x̄) appear in Q.

Proof Clearly if there are such R and x̄ then Q is unsatisfiable. If not, then
consider the frozen query [Q+] ([Q+] is a Herbrand model of Q+). Clearly [Q+] �
Q so Q is satisfiable.

Therefore, we can check whether Q ∈ CQ¬ is satisfiable in quadratic time: for
every R(x̄) in Q+, look for ¬R(x̄) in Q−.

Input: – CQ¬ query Q = L1 ∧ . . . ∧ Lk over
relational schema R with access patterns P

Output: – answerable part A of Q (AQ)

procedure Answerable(Q,P)
if Unsatisfiable(Q) then return ⊥
A := ∅ /* answerable literals */
B := ∅ /* bound variables */
repeat

done := true
for i := 1 to k do

if Li /∈ A and (vars(Li) ⊆ B
or Li is positive and invars(Li) ⊆ B) then

A := A ∧ Li

B := B ∪ vars(Li)
done := false

until done
return A

Fig. 1. Algorithm Answerable(CQ¬)

4 Computing Plans and Answering Queries

Given a UCQ¬ query Q = Q1 ∨ · · · ∨Qn over a relational schema R with access
pattern restrictions P, our goal is to find executable plans for Q which satisfy
P. As we shall see such plans may not always exist and deciding whether Q is
feasible, i.e., equivalent to some executable Q′ is a hard problem (ΠP

2 -complete).
On the other hand, we will be able to obtain efficient approximations, both at
compile-time and at runtime.

By compile-time we mean the time during which the query is being processed,
before any specific database instance D is considered or available. By runtime
we mean the time during which the query is executed against a specific database
instance D. For example, feasibility is a compile-time notion, while completeness
(of an answer) is a runtime notion.

4.1 Compile-Time Processing

Let us first consider the case of an individual CQ¬ query Q = L1 ∧ . . . ∧ Lk

where each Li is a literal. Figure 1 depicts a simple and efficient (quadratic in
the size of the query) algorithm Answerable to compute AQ, the answerable
part of Q.

First we handle the special case that Q is unsatisfiable. In this case we return
“⊥”, since Q is equivalent to the empty query (the query returning no tuples).
Otherwise, at every stage, we will have a set of input variables (i.e., variables
with bindings) B and an executable sub-plan A. Initially, A and B are empty.
Now we iterate, each time looking for at least one more answerable literal Li

Input: – UCQ¬ query Q(x̄) = Q1 ∨ · · · ∨Qn over
relational schema R with access patterns P

Output: – execution plans Qu, Qo

procedure Plan?(Q)
for i := 1 to n do

Ai := Answerable(Qi,P)
Ui := Qi \Ai

Qu
i :=

{
Ai if Ui = ∅
⊥ otherwise

v̄ := x̄ \ vars(Ai)
Qo

i := Ai ∧ (v̄ = null)
Qu := Qu

1 ∨ · · · ∨Qu
n

Qo := Qo
1 ∨ · · · ∨Qo

n

output Qu, Qo

Fig. 2. Algorithm Plan?(UCQ¬)

that can be handled with the bindings B we have so far (invars(Li) gives the
variables in Li which are in input slots). If we find such answerable literal Li, we
add it to A and we update our variable bindings B. When no such Li is found,
we exit the outer loop. Obviously, Answerable is polynomial (quadratic) time
in the size of Q.

We are now ready to consider the general case of computing execution plans
for a UCQ¬ query Q (Figure 2). For each CQ¬ query Qi of Q, we compute its
answerable part Ai := AQi and its unanswerable part Ui. As the underestimate
of Qu

i , we consider Ai if Ui is empty; else we dismiss Qi altogether for the
underestimate. Either way, we ensure that Qu

i v Qi. For the overestimate Qo
i we

give Ui the “benefit of doubt” and consider that it could be true. However, we
need to consider the case that not all variables x̄ in the head of the query occur
in the answerable part Ai: some may appear only in Ui, so we cannot return a
value for them. Hence we set the variables in x̄ which are not in Ai to null.
This way we ensure that Qi v Qo

i , except when Qo
i has null values. We have to

interpret tuples with nulls carefully (see Section 4.2). Clearly, if all Ui are empty,
then Qu = Qo and all Qi can be executed in the order given by Answerable,
so Q is orderable and thus feasible. Also note that Plan? is efficient, requiring
at most quadratic time for any disjunct Qi.

Example 6 (Underestimate, Overestimate Plans) Consider the following
query Q = Q1 ∨Q2 with the access patterns P = {So, Roo, Bii, T oo}.

Q1(x, y)←− ¬S(z), R(x, z), B(x, y)
Q2(x, y)←− T (x, y)

Although we can use S(z) to produce bindings for z, this is not the case for its
negation ¬S(z). But by moving R(x, z) to the front of the first disjunct, we can
first bind z and then test against the filter ¬S(z). However, we cannot satisfy

Input: – UCQ¬ query Q(x̄) = Q1 ∨ · · · ∨Qn over
relational schema R with access patterns

Output: – true if Q is feasible, false otherwise

procedure Feasible(Q)
(Qu, Qo) := Plan?(Q)
if Qu = Qo then return true
else if Qo contains null then return false
else return Qo v Q

Fig. 3. Algorithm Feasible(UCQ¬)

the access pattern for B. Hence, we will end up with the following plans for
Qu = Qu

2 and Qo = Qo
1 ∨Qo

2.

Qu
2 (x, y) ←− T (x, y)

Qo
1(x, y) ←− R(x, z),¬S(z), y = null

Qo
2(x, y) ←− T (x, y)

Note that the unanswerable part B(x, y) results in an underestimate Qu
1 (x, y)

equivalent to ⊥, so Qu
1 is dropped from Qu (the unanswerable B(x, y) is also

responsible for the infeasibility of this plan. In the overestimate, R was moved
in front of S and B was replaced by a special condition equating the unknown
value of y with null.

Feasibility Test. While Plan? is an efficient way to compute plans for a query
Q, if it returns Qu 6= Qo then we do not known whether Q is feasible. One way,
discussed below, is to not perform any static analysis in addition to Plan? and
just “wait and see” what results Qu and Qo produce at runtime. This approach
is particularly useful for ad-hoc, one-time queries.

On the other hand, when designing integrated views of a mediator system
over distributed sources and web services, it is desirable to establish at view
definition time that certain queries or views are feasible and have an equivalent
executable plan for all database instances. For such “view design” and “view de-
bugging” scenarios, a full static analysis using algorithm Feasible in Consider
Figure 3. First, Feasible calls Plan? to compute the two plans Qu and Qo.
Ideally, Qu and Qo coincide, so feasibility is established. Similarly, if the over-
estimate contains some CQ¬ sub-query in which a null occurs, we know that
Q cannot be feasible. Otherwise, Q may still be feasible, i.e., provided that AQ

(= overestimate Qo if there are no null’s) is contained in Q. The complexity of
Feasible is dominated by the ΠP

2 -complete containment check AQ v Q.

4.2 Runtime Processing

The worst-case complexity of Feasible seems to indicate that in practice and
for large queries there is no hope to obtain plans having complete answers.

Input: – UCQ¬ query Q(x̄) = Q1 ∨ · · · ∨Qn over
relational schema R with access patterns

– D a database instance over R
Output: – underestimate ansu

– difference ∆ to overestimate anso

– completeness information

procedure Answer?(Q)
(Qu, Qo) := Plan?(Q)
ansu := Answer(Qu, D)
anso := Answer(Qo, D)
∆ := anso \ ansu

output ansu

if ∆ = ∅ then output “answer is complete”
else

output “answer is not known to be complete”
output “these tuples may be part of the answer:”
output ∆
if ∆ has no null values then

output “answer is at least” |ansu|
|anso| “complete”

/* optional: minimize ∆ using dom on Ui */

Fig. 4. Algorithm Answer?(UCQ¬) for runtime handling of plans

Fortunately, the situation is not that bad after all. First, as indicated above,
we may use the outcome of the efficient Plan? algorithm to at least in some
cases decide feasibility at compile-time (see first part of Feasible up to the
containment test). Perhaps even more important, from a practical point of view,
is the ability to decide completeness of answers dynamically, i.e., at runtime.

Consider algorithm Answer? in Figure 4. We first let Plan? compute the
two plans Qu and Qo and evaluate them on the given database instance D
to obtain the underestimate and overestimate ansu and anso, respectively. If
the difference ∆ between them is empty, then we know the answer is complete
even though the query may not be feasible. Intuitively, the reason is that an
unanswerable part which causes the infeasibility may in fact be irrelevant for a
specific query.

Example 7 (Not Feasible, Runtime Complete) Consider the plans created
for the query in Example 6:

Qu
2 (x, y) ←− T (x, y)

Qo
1(x, y) ←− R(x, z),¬S(z), y = null

Qo
2(x, y) ←− T (x, y)

Given that Bii is the only access pattern for B, the query Q1 in Example 6
is not feasible since we cannot create a binding for B’s y. However, for a given

database instance D,6 it may happen that the answerable part R(x, z),¬S(z)
does not produce any results. In that case, the unanswerable part B(x, z) is
irrelevant and the answer obtained is still complete.

Often it is not accidental that certain disjuncts evaluate to false, but rather
it follows from some underlying semantic constraints, in which case the “cut-off”
unanswerable residues do not compromise the completeness of the answer.

Example 8 (Dependencies) In our example above, if R.z is a foreign key
referencing S.z, then always {z | R(x, z)} ⊆ {z | S(z)}. Therefore, the first
disjunct Qo

1(x, y) in Example 6 could have been discarded at compile-time by a
semantic optimizer. However, even in the absence of such checks, our runtime
processing can still recognize this situation and report a complete answer.

In the BIRN mediator [GLM03], when unfolding queries against global-as-
view defined integrated views into UCQ¬ plans, we have indeed experienced
query plans with a number of unsatisfiable (with respect to some underlying,
implicit integrity constraints) CQ¬ bodies. In such cases, when plans are redun-
dant or partially unsatisfiable, our runtime handling of answers allows to report
complete answers even in cases when the feasibility check fails or when the se-
mantic optimization cannot eliminate the unanswerable part. In Figure 4, we
know that ansu is complete if ∆ is empty, i.e., the overestimate plan Qo has
not contributed new answers. Otherwise we cannot know whether the answer
is complete. However, if ∆ does not contain null values, we can quantify the
completeness of the underestimate relative to the overestimate.

We have to be careful when interpreting tuples with null values in the over-
estimate though.

Example 9 (Nulls) Let us now assume that R(x, z),¬S(z) from above holds
for some variable binding. Such a binding, say β = {x/a, z/b}, gives rise to an
overestimate tuple Qo

1(a, null).

How should we interpret a tuple like (a, null) ∈ ∆? The given variable
binding β = {x/a, z/b} gives rise to the following partially instantiated query:

Qo
1(a, y)←− R(a, b),¬S(b), B(a, y).

Given the access pattern Bii we cannot know the contents of {y | B(a, y)}. So
our special null value in the answer means that there may be one or more y
values such that (a, y) is in the answer to Q. On the other hand, there may be no
such y in B which has a as its first component. So the only thing we can definitely
infer when we see (a, null) in the answer is that R(a, b) and ¬S(b) are true for
some value b; but we do not know whether indeed there is a matching B(a, y)
tuple. The incomplete information on B due to the null value also explains why

6 Recall that behind R and S there may actually be web service operations. So what
we call “the database” D is really the union of the different parts of sources.

in this case we cannot give a numerical value for the completeness information
in Answer?.

From Theorem 1 below it follows that the overestimates anso computed via
Qo cannot be improved, i.e., the construction is optimal. This is not the case for
the underestimates as presented here.

Improving the Underestimate. The Answer? algorithm computes under- and
overestimates ansu, anso for UCQ¬ queries at runtime. If a query is feasible,
then we will always have ansu = anso, which is detected by Answer?. However,
in the case of infeasible queries, there are still additional improvements that can
be made. Consider the algorithm Plan? in Figure 2: it divides a CQ¬ query Qi

into two parts, the answerable part Ai and the unanswerable part Ui. For each
variable xj which requires input bindings in Ui not provided by Ui, we can create
a domain enumeration view dom(xj) over the relations of the given schema and
provide the bindings obtained in this way as partial domain enumerations to Ui.

Example 10 (Domain Enumeration) For our running example from above,
instead of discarding Qu

1 , we obtain an improved underestimate as follows:

Qu
1 (x, y)←− R(x, z),¬S(z), dom(y), B(x, y)

where dom(y) could be defined, e.g., as the union of the projections of various
columns from other relations for which we have access patterns with output
slots: dom(x)←− R(x,) ∨R(, x) ∨ . . .

This domain enumeration approach has been used in various forms [DL97].
Note that in our setting of Answer? we can create a very dynamic handling of
answers: if Answer? determines that ∆ 6= ∅, the user may want to decide at
that point whether he or she is satisfied with the answer or whether the possibly
costly domain enumeration views should be used. Similarly, the relative answer
completeness provided by Answer? can be used to guide the user and/or the
system when introducing domain enumeration views.

5 Feasibility of Unions of Conjunctive Queries with
Negation

Here we establish the complexity of determining whether a safe Q ∈ UCQ¬ is
feasible. We assume all queries we refer to are safe.

5.1 Query Containment

We will need to discuss the query containment problem for UCQ¬ queries. In
general, query P is said to be contained in query Q (in symbols, P v Q) if for
every instance D, Answer(P,D) ⊆ Answer(Q,D).

Definition 8 (Containment Problem) We write CONT(L) for the following
decision problem: For a class of queries L, given P,Q ∈ L determine whether
P v Q.

Definition 9 (Containment Mapping) For P,Q ∈ CQ, a function σ: vars(Q)→
vars(P) is a containment mapping if P and Q have the same free (distinguished)
variables, σ is the identity on the free variables of Q, and, for every literal R(ȳ)
in Q, there is a literal R(σȳ) in P .

Some early results in database theory are:

Proposition 5 If P,Q ∈ CQ then P v Q iff there is a containment mapping
σ: vars(Q)→ vars(P).

Proposition 6 If P,Q ∈ UCQ with P = P1 ∨ . . . ∨ Pk and Q = Q1 ∨ . . . ∨Q`,
then P v Q iff for every i with 1 6 i 6 k there is a j with 1 6 j 6 ` so that
Pi v Qj.

Proposition 7 [CM77] Both CONT(CQ) and CONT(UCQ) are NP-complete.

The problems CONT(CQ¬) and CONT(UCQ¬), which we will need, are
harder.

Proposition 8 [SY80] [LS93] Both CONT(CQ¬) and CONT(UCQ¬) are ΠP
2 -

complete.

For many important special cases, testing containment can be done efficiently.
In particular, the algorithm given in [WL03] for containment of safe CQ¬ and
UCQ¬ uses an algorithm for CONT(CQ) as a subroutine. Chekuri and Rajara-
man [CR97] show that containment of acyclic CQs can be solved in polynomial
time (they also consider wider classes of CQs) and Saraiya [Sar91] shows that
containment of CQs, in the case where no predicate appears more than twice in
the body, can be solved in linear time. By the nature of the algorithm in [WL03],
these gains in efficiency will be passed on directly to the test for containment of
CQs and UCQs (so the check will be in NP) and will also improve the test for
containment of CQ¬ and UCQ¬.

5.2 Feasibility

Definition 10 (Feasibility Problem) We write FEASIBLE(L,P) for the fol-
lowing decision problem: For a class of queries L and a set of access patterns P,
given Q ∈ L determine whether Q is feasible.

The following theorem, from which our main results follow, is proved in the
appendix.

Theorem 1 If Q ∈ UCQ¬, E is executable, and Q v E, then Q v AQ v E.
That is, AQ is a minimal feasible query containing Q.

Corollary 3 Q is feasible iff AQ v Q.

Theorem 2
FEASIBLE(UCQ¬,P) ≡P

m CONT(UCQ¬)

That is, determining whether a UCQ¬ query is feasible is polynomial-time many-
one equivalent to determining whether a UCQ¬ query is contained in another
UCQ¬ query.

Proof From Corollary 3 and Proposition 2 it follows that

FEASIBLE(UCQ¬,P) 6P
m CONT(UCQ¬).

For the opposite direction, consider two queries P,Q ∈ UCQ¬ where P :=
P1 ∨ . . . ∨ Pk. We define the query

P ′ :≡ P1, B(y) ∨ . . . ∨ Pk, B(y)

where y is a variable not appearing in P or Q and B is a predicate not appearing
in P or Q with access pattern Bi. We give predicates R appearing in P or Q
output access patterns (i.e., Rooo...). As a result, P and Q are both executable,
but P ′ @ P and P ′ is not feasible. We set Q′ := P ′∨Q. Clearly, AQ′ ≡ P ∨Q. If
P v Q, then AQ′ ≡ P ∨Q ≡ Q v Q′ so by Corollary 3, Q′ is feasible. If P 6v Q,
then since P ′ @ P and P ′ 6v Q we have AQ′ ≡ P ∨Q 6v P ′ ∨Q ≡ Q′ so again by
Corollary 3, Q′ is not feasible. This shows

CONT(UCQ¬) 6P
m FEASIBLE(UCQ¬,P).

Since CONT(UCQ¬) is ΠP
2 -complete, we have

Corollary 4 FEASIBLE(UCQ¬,P) is ΠP
2 -complete.

The class of queries UCQ¬ includes the classes of queries CQ, UCQ, and CQ¬

(conjunctive queries, with union, and with negation, respectively). We have the
following strict inclusions

CQ (UCQ,CQ¬ (UCQ¬.

In the following subsections we show that the algorithm Feasible which essen-
tially consists of the following two steps:

– compute AQ

– test AQ v Q

provides optimal processing for all these subclasses of UCQ¬. Also, we compare
algorithm Feasible to the algorithms given in [LC01].

5.3 Conjunctive Queries

Li and Chang [LC01] show that FEASIBLE(CQ,P) is NP-complete and provide
two algorithms for testing feasibility of Q ∈ CQ:

– Find a minimal M ∈ CQ so M ≡ Q, then check that AM = M (they call
this algorithm CQstable).

– Compute AQ, then check that AQ v Q (they call this algorithm CQstable*).

The advantage of the latter approach is that AQ may be equal to Q, eliminating
the need for the equivalence check. For conjunctive queries, algorithm Feasible
is exactly the same as CQstable*.

Example 11 (CQ Processing) Consider access patterns F o and Bi and the
CQ

Q(x)←− F (x), B(x), B(y), F (z)

which is not orderable. Algorithm CQstable first finds the minimal M ≡ Q

M(x)←− F (x), B(x)

then checks M for orderability (M is in fact executable). Algorithms CQstable*
and Feasible first find A := AQ

A(x)←− F (x), B(x), F (z)

then check that A v Q holds (which is the case).

5.4 Conjunctive Queries with Union

Li and Chang [LC01] show that FEASIBLE(UCQ,P) is NP-complete and pro-
vide two algorithms for testing feasibility of Q ∈ UCQ with Q = Qi ∨ . . . ∨Qk:

– Find a minimal (with respect to union) M ∈ UCQ so M ≡ Q with M =
Mi ∨ . . .∨M`, then check that every Mi is feasible using either CQstable or
CQstable* (they call this algorithm UCQstable)

– Take the union P of all the feasible Qis, then check that Q v P (they call
this algorithm UCQstable*). Clearly, P v Q holds by construction.

For UCQs, algorithm Feasible is different from both of these and thus pro-
vides an alternate algorithm. The advantage of CQstable* and Feasible over
CQstable is that P or AQ may be equal to Q, eliminating the need for the
equivalence check.

Example 12 (CQU Processing) Consider access patterns F o, Go, Ho, and
Bi and the query

Q(x)←− F (x), G(x)

Q(x)←− F (x),H(x), B(y)

Q(x)←− F (x)

Algorithm UCQstable first finds the minimal (with respect to union) M ≡ Q

M(x)←− F (x)

then checks that M is feasible (it is). Algorithm UCQstable* first finds P , the
union of the feasible rules in Q

P (x)←− F (x), G(x)

P (x)←− F (x)

then checks that Q v P holds (it does). Algorithm Feasible finds A := AQ the
union of the answerable part of each rule in Q

A(x)←− F (x), G(x)

A(x)←− F (x),H(x)

A(x)←− F (x)

then checks that A v Q holds (it does).

5.5 Conjunctive Queries with Negation

Proposition 9 CONT(CQ¬) 6P
m FEASIBLE(CQ¬)

Proof Assume P,Q ∈ CQ¬ are given by

P (x̄) :≡ (∃x̄0)(R̂1(x̄1) ∧ . . . ∧ R̂k(x̄k))

and
Q(x̄) :≡ (∃ȳ0)(Ŝ1(ȳ1) ∧ . . . ∧ Ŝ`(ȳ`))

where the Ris and Sis are not necessarily distinct and the xis and yis are also
not necessarily distinct. Then define

L(x̄) :≡ (∃x̄0, ȳ0, u, v)(R̂′
1(u, x̄1)∧. . .∧R̂′

k(u, x̄k)∧Ŝ′
1(v, ȳ1)∧. . .∧Ŝ′

`(v, ȳ`)∧T (u))

with access patterns T o, R′ioo...
i , S′ioo...

i . Then clearly

AL = (∃x̄0, u)(R̂′
1(u, x̄1) ∧ . . . ∧ R̂′

k(u, x̄k) ∧ T (u))

and therefore

P v Q iff P v P ∧Q iff AL v L iff L is feasible.

The second iff follows from the fact that every containment mapping η: P∧Q−→
P corresponds to a unique containment mapping η′: L−→AL and vice versa.

Since CONT(CQ¬) is ΠP
2 -complete, we have

Corollary 5 FEASIBLE(CQ¬,P) is ΠP
2 -complete.

6 Discussion and Conclusions

We have studied the problem of producing and processing executable query
plans for sources with limited access patterns. In particular, we have extended
the results by Li et al. [LC01,Li03] to conjunctive queries with negation (CQ¬)
and unions of conjunctive queries with negation (UCQ¬). From a theoretical
point of view, our main theorem (Theorem 2) shows that checking feasibility
for CQ¬ and UCQ¬ is equivalent to checking containment for CQ¬ and UCQ¬

(respectively) and thus ΠP
2 -complete. Moreover, we have shown that our treat-

ment for UCQ¬ nicely unifies previous results and techniques for CQ and UCQ
respectively and also works optimally for CQ¬. In particular, we have presented
a uniform algorithm which is optimal for all four classes.

We have also shown how we can often avoid the theoretical worst-case com-
plexity, both by approximations at compile-time and by a novel runtime pro-
cessing strategy. The basic idea is to avoid performing the computationally hard
containment checks and instead (i) use two efficiently computable approximate
plans Qu and Qo, which produce tight underestimates and overestimates of the
actual query answer for Q (algorithm Plan?), and defer the containment check
in the algorithm Feasible if possible, and (ii) use a novel runtime algorithm An-
swer?, which may report complete answers even in the case of infeasible plans,
and which can sometimes quantify the degree of completeness. [Li03, Sec.7] em-
ploys a similar technique to the case of CQ. However, since union and negation
are not handled, our notion of “sandwiching” the result from above and be-
low is not applicable (essentially, the underestimate is always empty when not
considering union).

While some of our work may seem rather technical in nature, it is in fact mo-
tivated and driven by a number of very practical engineering problems. As part of
the Bioinformatics Research Network project [BIR], we are developing a database
mediator system for federating heterogeneous brain data [GLM03,LGM03]. The
current prototype takes a query against a global-as-view definition and unfolds
it into an UCQ¬ plan. We have used Answerable and a simplified version
(without the containment check) of Plan? and Answer? in the system. Our
theoretical investigations have solved several of the pending algorithmic issues
and we can now proceed with the extension of the mediator planner. In the
BIRN project, as in many other projects pertaining to scientific data integra-
tion, sources with limited query capabilities are ubiquitous: in addition to rela-
tional and XML databases, many data and computational resources are acces-
sible through web services which – as we have shown – can be conceived of as
very limited relational sources with access patterns.

For example, in the SEEK and SciDAC projects [SEE,SDM02] we are build-
ing distributed scientific workflow systems which can be seen as procedural vari-
ants of the declarative query plans which a mediator is processing.

Consider, e.g., the problem of a molecular biologist who is interested in find-
ing co-regulated genes, based on sequence similarity and cluster analysis using
various online databases and computational tools. Increasingly these tools and
databases become accessible as web services and thus within the realm of query

planning with limited access patterns. The query rewriting techniques that we
are employing for these kinds of scientific data workflows [LAG03] contain the
presented problem of computing executable plans and thus can benefit from our
results.

In this paper, we have not dealt with the optimization problem of how to
select among the several possible executable plans. For example, how should we
“bundle” together sub-plans coming from the same source? Clearly, these are
important questions and extensions of the current work and we are planning to
address these issues in the future. Similarly, we are interested in extending our
techniques to larger classes of queries and to consider the addition of integrity
constraints. Even though many questions become undecidable when moving to
full first-order or Datalog queries, we are interested in finding analogous compile-
time and runtime approximations as presented in this paper.

Acknowledgements. Work supported by NSF-ACI 9619020, NSF-ITR 0225676,
NSF-ITR 0225673, and DOE/SciDAC DE-FC02-01ER25486.

References

[BIR] Biomedical Informatics Research Network Coordinating Center (BIRN-CC),
University of California, San Diego. http://nbirn.net/.

[CM77] A. K. Chandra and P. M. Merlin. Optimal Implementation of Conjunc-
tive Queries in Relational Data Bases. In ACM Symposium on Theory of
Computing (STOC), pp. 77–90, 1977.

[CR97] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In
Intl. Conf. on Database Theory (ICDT), Delphi, Greece, 1997.

[DL97] O. M. Duschka and A. Y. Levy. Recursive plans for information gathering.
In Proc. IJCAI, Nagoya, Japan, 1997.

[FLMS99] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query Optimization
in the Presence of Limited Access Patterns. In SIGMOD, pp. 311–322, 1999.

[GLM03] A. Gupta, B. Ludäscher, and M. Martone. BIRN-M: A Semantic Mediator
for Solving Real-World Neuroscience Problems. In ACM Intl. Conference on
Management of Data (SIGMOD), 2003.

[LAG03] B. Ludäscher, I. Altintas, and A. Gupta. Compiling Abstract Scientific
Workflows into Web Service Workflows. In 15th Intl. Conference on Sci-
entific and Statistical Database Management (SSDBM), Boston, Massachus-
sets, 2003.

[LC01] C. Li and E. Y. Chang. On Answering Queries in the Presence of Limited
Access Patterns. In Intl. Conference on Database Theory (ICDT), 2001.

[LGM03] B. Ludäscher, A. Gupta, and M. E. Martone. Bioinformatics: Managing
Scientific Data, chapter A Model-Based Mediator System for Scientific Data
Management. Morgan Kaufmann, 2003.

[Li03] C. Li. Computing Complete Answers to Queries in the Presence of Limited
Access Patterns. Journal of VLDB, 2003. conditional acceptance.

[LS93] A. Y. Levy and Y. Sagiv. Queries Independent of Updates. In Proc. VLDB,
pp. 171–181, 1993.

[NL03] A. Nash and B. Ludäscher. From Feasible Queries to Executable Plans –
Complexity and Algorithms. Technical Report BIRN-TR-07-03, Bioinfor-
matics Research Network, U.C. San Diego, 2003.

[PGH98] Y. Papakonstantinou, A. Gupta, and L. M. Haas. Capabilities-Based Query
Rewriting in Mediator Systems. Distributed and Parallel Databases, 6(1):73–
110, 1998.

[Sar91] Y. Saraiya. Subtree elimination algorithms in deductive databases. PhD
thesis, Computer Science Dept., Stanford University, 1991.

[SDM02] Scientific Data Management Center (SDM). http://sdm.lbl.gov/

sdmcenter/ and http://www.er.doe.gov/scidac/, 2002.

[SEE] Science Environment for Ecological Knowledge (SEEK). http://seek.

ecoinformatics.org/.

[SY80] Y. Sagiv and M. Yannakakis. Equivalences Among Relational Expressions
with the Union and Difference Operators. Journal of the ACM, 27(4):633–
655, 1980.

[WL03] F. Wei and G. Lausen. Containment of Conjunctive Queries with Safe Nega-
tion. In Intl. Conference on Database Theory (ICDT), 2003.

[WSD03] Web Services Description Language (WSDL) Version 1.2. http://www.w3.

org/TR/wsdl12, June 2003.

A Appendix: Auxiliary Material and Proofs

We assume all queries we refer to are safe. In particular, Theorems 3 and 4 below
hold only for safe queries. We will need the following results.

Proposition 10 If R̂(x̄) is Q-answerable, then it is Q+ answerable.

Proposition 11 If Q ∈ CQ¬, Ŝ(x̄) is Q-answerable, and for every literal R(x̄)
in Q+, ¬R(x̄) is P -answerable, then Ŝ(x̄) is P -answerable.

Proof If Ŝ(x̄) is Q-answerable, it is Q+ answerable by Proposition 10. By defi-
nition, there must be executable Q′ consisting of Ŝ(x̄) and literals from Q+ Since
every literal R(x̄) in Q+ is P -answerable, there must be executable PR consist-
ing of R(x̄) and literals from P . Then the conjunction of all PRs is executable
and consists of Ŝ(x̄) and literals from P . That is, Ŝ(x̄) is P -answerable.

vars(Q) is the set of variables that appear in Q.

Proposition 12 If P,Q ∈ CQ, σ: vars(Q)→vars(P) is a containment mapping
(so P v Q), and R̂(σx̄) is Q answerable, then R̂(x̄) is P answerable.

Proof If the hypotheses hold, there must be executable Q′ consisting of R̂(σx̄)
and literals from Q. Then P ′ = σQ′ consists of R̂(x̄) and literals from P . Since we
can use the same adornments for P ′ as the ones we have for Q′, P ′ is executable
and therefore, R̂(x̄) is P -answerable.

Here we give the proof of theorem 1. We will need the following results.
Given P,R ∈ CQ¬ where P :≡ (∃x̄)P ′ and Q :≡ (∃ȳ)Q′ with P ′, Q′ quantifier

free (i.e., consisting only of joins), we write P,Q to denote the query (∃x̄, ȳ)(P ′∧
Q′). Recently, [WL03] gave the following theorems (2 and 5).

Theorem 3 [WL03] If P,Q ∈ CQ¬ then P v Q iff P is unsatisfiable or there
is a containment mapping σ: vars(Q)→vars(P) witnessing P+ v Q+ such that,
for every negative literal ¬R(ȳ) in Q, R(σȳ) is not in P and P,R(σȳ) v Q.

Proof (Proposition 3) For Q ∈ CQ this is clear since AQ contains only
literals from Q and therefore the identity map is a containment mapping from
AQ to Q. If Q ∈ CQ¬ and Q is unsatisfiable, the result is obvious. Otherwise the
identity is a containment mapping from (AQ)+ to Q+. If a negative literal ¬R(ȳ)
appears in (AQ)+, then since ¬R(ȳ) also appears in Q, Q,R(ȳ) is unsatisfiable,
and therefore Q v AQ.

Theorem 4 [WL03] If P ∈ CQ¬ and Q ∈ UCQ¬ with Q = Q1 ∨ . . . ∨ Qk

then P v Q iff P is unsatisfiable or if there is i (1 6 i 6 k) and a containment
mapping σ: vars(Qi)→vars(P) witnessing P+ v Q+ such that, for every negative
literal ¬R(ȳ) in Qi, R(σȳ) is not in P and P,R(σȳ) v Q.

Therefore, if P ∈ CQ¬ and Q ∈ UCQ¬ with Q = Q1 ∨ . . . ∨ Qk, we have that
P v Q iff there is a tree with root P+ v Q+

r for some r and where each node is
of the form

P+, N1(x̄1), . . . , Nm(x̄m) v Q+
s

and represents a true containment except when

P,N1(x̄1), . . . , Nm(x̄m)

is unsatisfiable, in which case also the node has no children. Otherwise, for some
containment mapping

σs: vars(Q+
s)→ vars(P+, N1(x̄1), . . . , Nm(x̄m))

witnessing the containment, there is one child for every negative literal in Qs.
Each child is of the form

P+, N1(x̄1), . . . , Nm(x̄m), Nm+1(x̄m+1) v Q+
t

where x̄m+1 = σs(ȳ) and ¬Nm+1(ȳ) appears in Qs.
We will need the following two facts about this tree, in the special case where

Q v E with E executable, in the proof of Theorem 1.

Lemma 1 If R̂(x̄) is Q+, N1(x̄1), . . . , Nm(x̄m)-answerable, it is Q+ answerable.

Proof By induction. It is obvious for m = 0. Assume that the lemma holds for
m and that R̂(x̄) is Q+, N1(x̄1), . . . , Nm+1(x̄m+1)-answerable. We have Q+, N1(x̄1), . . . , Nm(x̄m) v
E+

s for some s witnessed by a containment mapping σ and x̄m+1 = σ(ȳ) for
some literal ¬Nm+1(ȳ) appearing in Es. Since Es is executable, by Propositions
1 and 10, ¬Nm+1(ȳ) is E+

s -answerable. Therefore by Proposition 12, ¬Nm+1(x̄)
is Q+, N1(x̄1), . . . , Nm(x̄m)-answerable and by the induction hypothesis, Q+-
answerable. Therefore, by Proposition 11 and the induction hypothesis, R̂(x̄) is
Q+-answerable.

Lemma 2 If Q,N1(x̄1), . . . , Nm(x̄m) is unsatisfiable, then AQ, N1(x̄1), . . . , Nm(x̄m)
is also unsatisfiable.

Proof If Q is satisfiable, but Q,N1(x̄1), . . . , Nm(x̄m) is unsatisfiable, then by
Proposition 4 we must have some ¬Ni(x̄i) in Q. Ni(x̄i) must have been added
from some Ni(ȳ) in Es and some containment map

σs: vars(E+
s)→ vars(Q+, N1(x̄1), . . . , Ni−1(x̄i−1))

satisfying σsȳ = x̄. Since Es is executable, by Propositions 1 and 10, ¬Ni(ȳ) is
E+

s -answerable. Therefore by Proposition 12, ¬Ni(x̄i) is Q+, N1(x̄1), . . . , Nm(x̄m)-
answerable and by Lemma 1, Q+-answerable. Therefore, we must have ¬Ni(x̄i)
in AQ, so AQ, N1(x̄1), . . . , Nm(x̄m) is also unsatisfiable.

We are now ready to prove one of our main theorems.

Theorem 1 For Q ∈ UCQ¬ with Q = Q1∨ . . .∨Qk then if E is executable and
Q v E then Q v AQ v E. That is, AQ is a minimal feasible query containing
Q.

Proof We have Q v AQ from Proposition 3. Set Ai = AQi . We know that for
all i, Qi v E. We will show that Qi v E implies Ai v E, from which it follows
that AQ v E.

If Qi is unsatisfiable, then Ai is also unsatisfiable, so Ai v E holds trivially,
Therefore assume, to get a contradiction, that Qi is satisfiable, Qi v E, and
Ai 6v E. Since Qi is satisfiable and Qi v E, by theorem 4.3 in [WL03] we must
have a tree with root Q+

i v E+
r for some r and where each node is of the form

Q+
i , N1(x̄1), . . . , Nm(x̄m) v E+

s

and represents a true containment except when

Qi, N1(x̄1), . . . , Nm(x̄m)

is unsatisfiable, in which case also the node has no children. Otherwise, for some
containment mapping

σs: vars(E+
s)→ vars(Q+

i , N1(x̄1), . . . , Nm(x̄m))

witnessing the containment there is one child for every negative literal in Es.
Each child is of the form

Q+
i , N1(x̄1), . . . , Nm(x̄m), Nm+1(x̄m+1) v E+

t

where x̄m+1 = σs(ȳ) and ¬Nm+1(ȳ) appears in Es.
Since Ai 6v E, if in this tree we replace every Q+

i by A+
i , by Lemma 2 we must

have some non-terminal node where the containment doesn’t hold. Accordingly,
assume that

Q+
i , N1(x̄1), . . . , Nm(x̄m) v E+

s

and
A+

i , N1(x̄1), . . . , Nm(x̄m) 6v E+
s .

For this to hold, there must be a containment mapping

σs: vars(E+
s)→ vars(Q+

i , N1(x̄1), . . . , Nm(x̄m))

which maps into some literal R(x̄) which appears in Q+
i but not in A+

i . That is,
there must be some ȳ so that R(ȳ) appears in Es and σ(ȳ) = x̄. By Propositions 1
and 10, since Es is executable, R(ȳ) is E+

s -answerable. By Proposition 12, R(x̄)
is Q+

i , N1(x̄1), . . . , Nm(x̄m)-answerable and so, by Lemma 1, Q+
i -answerable.

Therefore, R(x̄) is in A+
i , which is a contradiction.

