
On Active Deductive Databases:

The Statelog Approach?

Georg Lausen Bertram Lud�ascher Wolfgang May

Institut f�ur Informatik, Universit�at Freiburg, Germany
flausen,ludaesch,mayg@informatik.uni-freiburg.de

Abstract. After briey reviewing the basic notions and terminology of
active rules and relating them to production rules and deductive rules,
respectively, we survey a number of formal approaches to active rules.
Subsequently, we present our own state-oriented logical approach to ac-
tive rules which combines the declarative semantics of deductive rules
with the possibility to de�ne updates in the style of production rules
and active rules. The resulting language Statelog is surprisingly simple,
yet captures many features of active rules including composite event de-
tection and di�erent coupling modes. Thus, it can be used for the formal
analysis of rule properties like termination and expressive power. Finally,
we show how nested transactions can be modeled in Statelog, both from
the operational and the model-theoretic perspective.

1 Introduction

Motivated by the need for increased expressiveness and the advent of new appli-
cations, rules have become very popular as a paradigm in database programming
since the late eighties [Min96]. Today, there is a plethora of quite di�erent appli-
cation areas and semantics for rules. From a bird's-eye view, deductive and active
rules may be regarded as two ends of a spectrum of database rule languages:

Deductive Rules
\higher" level

Production Rules Active Rules
\lower" level

strati�ed, well-
founded Datalog:

: : : : : :
RDL1, pro-

cedural Datalog:
: : : : : : A-RDL : : : : : : Ariel : : : : : : Starburst : : : : : : Postgres

Fig. 1. Spectrum of database rule languages (adapted from [Wid93])

On the one end of the spectrum, deductive rules provide a concise and elegant
representation of intensionally de�ned data. Recursive views and static integrity
constraints can be speci�ed in a declarative and uniform way using deductive
rules, thereby extending the query capabilities of traditional relational languages
like SQL. Moreover, the semantics developed for deductive rules with negation
are closely related to languages from the �eld of knowledge representation and

? In: Transactions and Change in Logic Databases, B. Freitag, H. Decker,

M. Kifer, and A. Voronkov, editors, LNCS 1472, Springer, 1998

nonmonotonic reasoning, which substantiates the claim that deductive rules are
rather \high-level" and model a kind of natural reasoning process. However,
deductive rules do not provide enough expressiveness or control to directly sup-
port the speci�cation of updates or active behavior. Since updates play a crucial
role even in traditional database applications, numerous approaches have been
introduced to incorporate updates into deductive rules.

In contrast to deductive rules, active rules support (re)active behavior like
triggering of updates as a response to external or internal events. Conceptually,
most rule languages for active database systems (ADBs) are comparatively \low-
level" and often allow to exert explicit control on rule execution. While such
additional procedural control increases the expressive power of the language
considerably, this is also the reason why the behavior of active rules is usually
much more di�cult to understand or predict than the meaning of deductive
rules. Not surprisingly, researchers continue to complain about the unpredictable
behavior of active rules and the lack of a uniform and clear semantics.

Production rules constitute an intermediate family of languages and provide
facilities to express updates and some aspects of active behavior, yet avoid overly
detailed control features of active rules at the right end of the spectrum.

Contributions and Overview. In this paper, we introduce to the di�erent
rule paradigms in databases in Figure 1, and survey a number of formal and
logical approaches to active rules. We then present a speci�c state-oriented logical
approach to active rules called Statelog, which yields a precise formal semantics
for active rules. It can be shown that certain production rules and deductive rules
are special cases of Statelog rules, and that many (but not all) features of active
rules like composite event detection and di�erent coupling modes can be speci�ed
in Statelog. Thus, Statelog can serve as a uni�ed logical framework for active
and deductive rules, in which fundamental properties of rules like termination
behavior, complexity, and expressiveness can be studied in a rigorous way. The
main technical contribution of this paper is the continuation and re�nement
of [LML96], where a model-theoretic Kripke-style semantics for Statelog in the
context of a nested transaction model has been presented.

The paper is organized as follows: In Section 2, we �rst introduce the basic
terminology and features of active rules, and then briey relate them to pro-
duction rules and deductive rules, respectively. Section 3 is a short survey on
some formal approaches to active rules. In Section 4, we introduce Statelog, a
state-oriented extension of Datalog and summarize the main results. A key idea
of the approach is to add a state argument to every predicate: for example,
[s] p(x; y) intuitively means that p(x; y) holds in state [s] (this idea has come
up several times; see Section 3.2). Starting from a simple model for at transac-
tions, the framework is extended subsequently to incorporate nested transactions
(Section 5). Section 6 develops an abstract, conceptual model for Statelog with
nested transactions by a model-theoretic Kripke-style semantics. Some conclud-
ing remarks are given in Section 7.

2

2 Rules in Databases

Rules in database programming languages come in many di�erent avors. In this
section, we discuss language issues of the above-mentioned rule spectrum and
highlight di�erences between the paradigms.

2.1 Active Rules

Active rules are typically expressed as Event-Condition-Action (ECA) rules of
the form

on heventi if hconditioni then hactioni.

Whenever the speci�ed event occurs, the rule is triggered and the corresponding
action is executed if the condition is satis�ed in the current database state. Rules
without the event part are sometimes called production rules, rules without the
condition part are sometimes referred to as triggers.

Events. Events can be classi�ed as internal or external. Internal events are
caused by database operations like retrieval or update (insertion, deletion, mod-
i�cation) of tuples, or transactional events like commit or abort. In object-
oriented systems, such internal events may take place through method invo-
cations. External events occurring outside the database system may also be
declared and have to be monitored by the ADB.

Starting from primitive (external or internal) events, more complex composite
events can be speci�ed using an event algebra; typical operators are disjunction
(E1jE2), sequence (E1;E2), conjunction (E1; E2), etc. (cf. [CKAK94,Sin95]).
Alternatively, logics like past temporal logic (see e.g., [LS87,Cho95b]) may be
used for the speci�cation of composite events. Several event detection algorithms
have been developed which allow to detect composite events without storing the
complete database history, for instance by applying temporal reduction rules
[LS87,Cho95b] or residuation [Sin95].

A question arising from the use of composite events is which of the constituent
events \take part" in the composite event and how they are \consumed" by the
composite event. This event consumption policy is elaborated using parameter
contexts, which were introduced for the SNOOP algebra in [CKAK94,CM94]. In
order to illustrate the di�erent parameter contexts, consider the composite event
E := ((F;G);H), which occurs if H occurs after both F and G have occurred.
Assume the following event history is given:

G1

j
F1
j

F2
j

G2

j
F3
j

H1

j
H2

j
t

Here, the Fj 's denote several occurrences of the same primitive event F , similarly
for Gk and Hl.

3

Di�erent parameter contexts are motivated by applications where constituent
events should be consumed by the composite event in a certain way. The following
parameter contexts have been proposed [CKAK94]:

� Recent: In this context, only the most recent occurrences of constituent
events are used; all previous occurrences are lost. In the above event his-
tory, E will be raised twice: for the constituent events fG2; F3; H1g and for
fG2; F3; H2g.
� Chronicle: In this context, events are consumed in their chronological order.
In a sense, this corresponds to a �rst-in-�rst-out strategy: E will be reported
for fG1; F1; H1g and for fF2; G2; H2g.
� Continuous: In this context, each event which may initiate a composite
event starts a new instance of the composite event. A constituent event can
be shared by several simultaneous occurrences of the composite event. In the
example, each Gi and each Fj starts a new instance. Thus, the composite
occurrences fG1; F1; H1g, fF1; G2; H1g, fF2; G2; H1g, and fG2; F3; H1g are
reported. The composite event initiated at F3 is still to be completed.

� Cumulative: In this context, all occurrences of constituent events are accu-
mulated until (and consumed when) the composite event is detected. In the
example, E is raised once for the constituent events fG1; F1; F2; G2; F3; H1g.
� Unrestricted: In this context, constituent events are not consumed, but are
reused arbitrarily many times. For the above history, E is reported for all
twelve possible combinations of fFj ; Gk; Hlg.

Conditions. If the triggering event of an active rule has been detected, the
rule becomes eligible, and the condition part is checked. The condition can be
a conventional SQL-like query on the current state of the database, or it may
include transition conditions, i.e., conditions over changes in the database state.
The possibility to refer to di�erent states or delta relations is essential in order
to allow for active state-changing rules.

Actions. If the condition of the triggered rule is satis�ed, the action is executed.
Internal actions are database updates (insert, delete, modify) and transactional
commands (commit, abort), external actions are executed by procedure calls
to application programs and can cause application-speci�c actions outside the
database system (e.g., send-mail, turn-on-sensor). Usually, it is necessary to pass
parameters between the di�erent parts of ECA-rules, i.e., from the triggering
event to the condition and to the action part. In logic-based approaches this can
be modeled very naturally using logical variables, while this issue may be more
involved under the intricacies of certain execution models.

Execution Models. The basic execution model of active rules is similar to the
recognize-act cycle of production rule languages like OPS5 [BFKM85]: one or
more triggered rules (i.e., whose triggering event and condition are satis�ed) are

4

selected and their action is executed. This process is repeated until some termi-
nation condition is reached|for example, when no more rules can be triggered,
or a �xpoint is reached. Clearly, there are a lot of possible choices and details
which have to be elaborated in order to precisely specify the semantics of rule
execution.

One issue is the granularity of rule processing, which speci�es when rules are
executed. This may range from execution at any time during the ADB's opera-
tion (�nest granularity), over execution only at statement boundaries, to trans-
action boundary execution (coarsest granularity). Another important aspect is
whether rules are executed in a tuple-oriented or set-oriented way. Set-oriented
execution conforms more closely to the standard model of querying in relational
databases, and is in a sense more \declarative" than tuple-oriented execution. In
contrast, tuple-oriented execution adds another degree of nondeterminism to the
language, since the outcome may now depend on the order in which individual
rule instances are �red.

Finally, several coupling modes have been proposed, which describe the re-
lationship between rule processing and database transactions. Under immediate
and deferred coupling, the triggering event, as well as condition evaluation and
action execution, occur within the same transaction. In the former case, the ac-
tion is executed immediately after the condition has become true, while in the
latter case, action execution is deferred to the end of the current transaction.
Under decoupled (sometimes called detached or concurrent) execution mode, a
separate transaction is spawned for condition evaluation and action execution.
Decoupled execution may be further divided into dependent or independent de-
coupled: in the former case, the separate transaction is spawned only after the
original transaction commits, while in the latter case the new transaction is
started independently. In the most sophisticated models, one may even have
distinct coupling modes for event-condition coupling and for condition-action
coupling.

Systems. Most of the active database systems provide a low-level, procedural se-
mantics of rules; see e.g. [WC96a] for an overview on a number of systems. Early
precursors of active rules have been introduced in CODASYL, System R, and
OPS5. More recent systems include Postgres, Starburst, Ariel, Heraclitus, ODE,
and SAMOS. HiPAC has been inuential by establishing the ECA-rule paradigm;
follow-on projects are Sentinel [CKAK94] (with its powerful event speci�cation
language SNOOP) and REACH. Regarding commercial systems, the current
SQL3 proposal o�ers so-called declarative constraints used speci�cally for main-
taining referential integrity, and general-purpose triggers [CPM96,ISO97].

A-RDL [SK96] is closely related to deductive databases: intensional relations
are de�ned by means of deductive rules. Delta relations record the net e�ect of
changes to edb-relations during execution of a transaction. Active behavior is
encoded via rules in an if-then style.

Chimera [CFPT96] distinguishes between declarative and procedural expres-
sions: Declarative expressions are used in query primitives, integrity constraints,

5

and view declarations; transactions are speci�ed using procedural expressions
for actions and declarative expressions in conditions.

2.2 Production Rules

Production rules can be viewed as ECA-rules without the event part. However,
production rules have been around long before the ECA paradigm has been
established. In particular, the production rule language OPS5 [BFKM85] has
been used in the AI community since the seventies. From a more abstract point
of view, one can regard general ECA-rules also as production rules since the
event detection part can be encoded in the condition.1 This abstraction is very
useful as it allows to apply techniques and results developed for production rules
to active rules.

A characteristic feature of production rule semantics is the forward chaining
execution model: The conditions of all rules are matched against the current
state. From the set of triggered rules (candidate set) one rule is selected using
some conict resolution strategy and the corresponding actions are executed.
This process is repeated until there are no more triggered rules.

In the database community, such a forward chaining or �xpoint semantics
has been studied for a number of Datalog variants (see, e.g., [AV91]) thereby
providing a logic-based formalization of production rules:

Let Datalog: denote the class of Datalog programs which allow negated atoms
in rule bodies. The inationary Datalog: semantics (I-Datalog) turns the well-
known immediate consequence operator TP developed for (de�nite) logic pro-
grams into an inationary operator T+

P by keeping all tuples which have been
derived before, i.e., T+

P (I) := I [TP (I), where I is the set of ground atoms
derived in the previous round. Starting with a set of facts I (the initial state),
T+
P is iterated until a �xpoint (the �nal state) is reached. Since the computation

is inationary, deletions cannot be expressed directly. In contrast, Datalog::2

has a noninationary semantics by allowing negative literals to occur also in
the head of rules and interpreting them as deletions: if a negative literal :A
is derived, a previously inferred atom A is removed from I. If both A and :A
are inferred in the same round, several options exists: priority may be given ei-
ther to insertion or to deletion, or a \no-op" may be executed, using the truth
value of A from the previous state, or the whole computation may be aborted
[Via97]. While for I-Datalog termination is guaranteed, this is no longer the case
of Datalog::: it is undecidable whether a Datalog:: program reaches a �xpoint
for all databases; moreover, conuence is no longer guaranteed if instead of the
presented semantics, a nondeterministic semantics is used [AS91]. On the other
hand, nondeterminism can be a powerful programming paradigm which increases
the (theoretical and practical) expressiveness of a language [AV91,GGSZ97].

1 For e�ciency reasons however, the distinction between events and conditions may
be crucial in practice.

2 Another noninationary semantics called P-Datalog is obtained by only keeping the
newly derived tuples in each iteration; see also Section 4.5.

6

A problem with these \procedural" Datalog semantics is that the handling
of negation can lead to quite unintuitive results:

Example 1 Under the inationary semantics, the program

tc(X,Y) e(X,Y).
tc(X,Y) e(X,Z), tc(Z,Y).
non tc(X,Y) : tc(X,Y).

does not compute in non tc the complement of the transitive closure of a given
edge-relation e. The reason is that the last rule is applied \too early", i.e., before
the computation of the �xpoint for tc is completed. Thus, despite the fact that
the derivation of non tc(x,y) may be invalidated by a subsequent derivation of
tc(x,y), this unjusti�ed tuple remains in non tc. 2

Although the given program may be rewritten using a (somewhat intricate)
technique for delaying rules, a better solution is to use one of the declarative se-
mantics developed for logic programs whenever the use of negation is important;
see Section 2.3.

RDL1 [KdMS90] is a deductive database language with production rule se-
mantics; a rule algebra is used as an additional control mechanism. A-RDL
[SK96] extends RDL1 by active database concepts, in particular delta relations
and a module concept.

2.3 Deductive Rules

The logic programming and deductive databases communities have studied in-
depth the problem of assigning an appropriate semantics to logic programs with
negation and have come up with now well-established solutions: The strati�ed,
well-founded, and stable semantics [ABW88,VG89,GL88] are generally accepted
as intended and intuitive semantics of logic programs with negation. For strat-
i�ed programs like the one in Example 1, all three semantics coincide.3 For
non-strati�ed programs, the well-founded semantics yields a unique three-valued
model, whereas the stable semantics consists of a (possibly empty) set of two-
valued stable models, each of them extending the well-founded model.

For relational databases, i.e., �nite structures, termination and conuence of
declarative rules can be guaranteed: For example, under the strati�ed semantics,
rules are partitioned into strata according to the dependencies between rule
de�nitions. Thus, the strata induce a partial order on rules which is used to
evaluate programs. Within each stratum, the rules are �red simultaneously in
a set-oriented way. Since the computation within strata is monotonic, the rules
may also be evaluated in arbitrary order and/or tuple-oriented within a stratum
without sacri�cing conuence. Termination is guaranteed since it is not possible
to add and remove the same fact repeatedly as is the case for Datalog:: and
noninationary Datalog:.

3 A program is strati�ed if no relation de�nition negatively depends on itself; thus,
there is \no recursion through negation".

7

In principle, although Datalog is primarily a query language, it could be
used as a relational update language, for example by interpreting relations like
old R and new R as the old and new values of a relation R, respectively, or
by assuming that R0, R00, etc. refer to di�erent states of R. However, such an
approach has several drawbacks: First, part of the semantics is encoded into
relation names and thus outside of the logical framework. More importantly, the
language does not incorporate the notion of state which is central to updates
and active rules. In particular, only a �xed number of state transitions can be
modeled by \priming" relation names as described above.

A number of deductive database prototypes with declarative semantics exist
including Aditi, Coral, FLORID, Glue-Nail, LDL, LOLA, and XSB-Prolog (cf.
[RH94,Min96,SP97]).

3 Formal Approaches to Active Rules

Whereas the meaning of deductive rules is based on solid logical foundations,
the meaning of the more low-level and operationally intricate active rules is
often hard to understand and predict|especially, if the semantics is only given
informally. This has lead to numerous research towards formal foundations of
active rules. In the sequel, we discuss some of these approaches; due to lack of
space and the focus on logic-based approaches, we can only provide a rough and
necessarily incomplete summary.

3.1 Analysis of Rule Properties

Although there is a great variety of execution models for active rules, certain
fundamental properties like termination and complexity come up repeatedly and
have been studied in the context of the respective execution models:

Termination, Conuence, and Determinism. [AWH95] develop static anal-
ysis techniques for active rules which guarantee termination, conuence, and ob-
servable determinism (i.e., whether each program produces a unique stream of
observable actions) under the Starburst execution model. Rule analysis is based
on a triggering graph which contains an edge between rules ri and rj if the for-
mer may trigger the latter. Termination is guaranteed if the triggering graph
is acyclic, conuence is guaranteed if all unrelated rules commute pairwise. Re-
lated work on static rule analysis using triggering and dependency graphs or
techniques from term rewriting include [ZH90,BW94,BCP95,KC95,KU96].

Expressive Power and Complexity. [PV97] develop a generic formal frame-
work for the speci�cation of active databases: A trigger program consists of rules
of the form condition ! action, where condition is a �rst-order sentence and
action is an external program. Each rule is assigned a coupling mode (either
immediate or deferred) and a set of database events (insertion, deletion) on

8

which it reacts. It is assumed that a priority is assigned to rules, and that the
semantics is deterministic. Existing active database prototypes can be obtained
by specializing certain parameters of the framework which allows to compare
their relative expressiveness. Moreover, the impact of active database features
on expressive power and complexity is studied. In the presented framework, the
complexity of immediate triggering is essentially EXPTIME, even without delta
relations and PSPACE if there is a bound on the nesting of immediate queues.
Deferred triggering is more expressive and captures PSPACE, EXPSPACE, or
all computations on ordered databases, depending on the allowed operations for
queue management.

3.2 Logic-Based Formalizations of Rule Semantics

Whereas the above-mentioned works focus on analysing rule properties in some
speci�c execution model, a lot of research aims at formalizing and characterizing
the semantics of active rules in the �rst place. Once a formal model has been
established, abstract properties like termination or expressiveness can be studied.

Situation Calculus Based. In [BL96,BLT97] a language Lactive for active
rules is developed, which allows to formalize and reason about the behavior of
active rules. The language borrows from L1 [BGP97], an extension of the ac-
tion description language A [GL93] used for modeling actual and hypothetical
actions and situations, which in turn is based on the situation calculus. The
main constructs of Lactive are causal laws describing which uents are added
or deleted by an action, executability conditions stipulating when actions can
be executed, and active rules de�ning a triggering event, an evaluation mode, a
conjunctive precondition, and a sequence of actions. The automaton-based se-
mantics of Lactive uses transition diagrams with states (labeled by sets of uents)
and transitions (labeled by actions) to specify the meaning of an active database
description in Lactive. A translation of Lactive into logic programs is presented
using a situation calculus notation. The generated rules are non-strati�ed, and
the choice operator of [SZ90] (which is based on stable models) is used for nonde-
terministically selecting one rule among all rules that may be �red in a situation.
Like the situation calculus, Lactive focuses more on reasoning about the e�ect of
actions than on the computationally easier task of executing them.

State-Oriented Datalog Extensions. By extending Datalog with a notion of
state, (re)active production rules and deductive rules can be handled in a uni�ed
way, thereby combining the advantages of active and deductive rules. Two such
(closely related) Datalog extensions are XY-Datalog [Zan93,Zan95,MZ97] and
Statelog [LHL95,LML96] (see [KLS92] for an early precursor of the latter). The
speci�cation of operational aspects like composite event detection and coupling
modes is possible in the logical language since the rules allow access to di�erent
database states|even complex execution models for nested transactions can
be handled in this way as shown in detail for Statelog in subsequent sections.

9

However, the more procedural aspects are introduced into the language, the more
intricate the representation of these features in the logical framework becomes.
XY-Datalog and Statelog are themselves closely related to Datalog1S [Cho95a],
a query language for temporal databases.

Logic-Based Formalization of Operational Semantics. In [FWP97], a
framework for the integration of the di�erent operational semantics of active
and deductive rules is developed. The meaning of ECA rules is speci�ed using
distinct speci�cation languages for events, conditions, and actions, respectively.
The operational semantics for these ECA sublanguages and their interplay is
formalized by means of deductive rules. More precisely, the database history
(i.e., the ordered set of database states) is modeled using timestamped atoms,
and the meaning of events, conditions, and actions is de�ned based on the event
calculus in [Kow92]. The approach has been used for the formalization of the
active rule component which is added to the deductive object-oriented database
system ROCK & ROLL [BFP+95].

In contrast to Statelog and XY-Datalog, which provide a single uni�ed lan-
guage for active and deductive rules, [FWP97] integrate the di�erent operational
semantics of active and deductive rules using a common (deductive) speci�cation
formalism.

Another approach to logic-based formalization of active rule semantics is pre-
sented in [FT95], where so-called Extended ECA rules are used to encode the
operational semantics of an ADB. Using these user-readable EECA rules, exist-
ing ADBs can be compared and classi�ed. The precise meaning of EECA rules
is obtained by translating them into a logical core language which speci�es pro-
cedural details like event consumption, coupling modes, etc. Unlike in Statelog,
this logical language is not meant to be handled by the rule programmer, but is
considered as an internal representation which is used by the execution model,
and thus is on a lower-level than the EECA rules.

Production Rule Semantics. Many approaches to active rules are based on a
forward chaining execution model in the style of production rules, e.g., [AWH95],
[PV95], and [Zan93,LHL95] above.4 This is particularly true also for the PARK
semantics of active rules [GMS92], which can be conceived as an inationary
�xpoint semantics extended by a mechanism to handle update literals +L and
�L, denoting insertion and deletion of L, respectively. Similar as in Statelog
(Section 4), update literals correspond to events if they occur in the body, and
to actions if they occur in the head. A main bene�t of the approach is the simple
and precise semantics with its exible conict resolution policy, the latter being
a parameter to the PARK semantics. The Statelog approach also allows exible
conict resolution policies, however, they are not treated as a black box as in

4 Due to their declarative semantics with explicit states the latter may also be eval-
uated top-down, say in XSB-Prolog [SSW94]; however, the bottom-up view is more
natural in this context.

10

[GMS92], but can be programmed within the logical rule language (Section 5.5
and [Lud98]).

3.3 Update Languages vs. Active Rules

Since active behavior can be speci�ed by de�ning new updates as an automatic
response to previous updates, active rule languages and languages for updates
share essential features. A prominent logical framework for updates is Transac-
tion Logic TR [BK94], a language that deals on a high level of abstraction with
the phenomenon of state change in logic databases. The focus is on the composi-
tion of complex updates, whereas primitive updates (so-called elementary tran-
sitions) are not part of TR but regarded as parameters which are supplied by a
transition oracle. In TR|like in most languages based on top-down evaluation|
updates are expressed in the body. These approaches are often tuple-oriented,
so the speci�cation of set-oriented updates (bulk-updates) becomes an issue.
[WF97] present an update language based on deferred updates which solves this
problem. Other well-known approaches in the deductive database community
subsumable under the \updates in the body" paradigm are the early works on
DLP [MW88] (based on dynamic logic), and LDL updates [NT89]. In contrast,
frameworks with semantics similar to production rules typically express updates
in the head of rules (cf. Sections 2.2 and 4). A main di�erence between update
languages and active rules is that in the former, updates are initiated explicitly
by the user, whereas the latter specify how rules initiate update (trans)actions
automatically in response to occurring events.

Bibliographic Notes

A good starting point for further reading is [WC96a] which contains a nice in-
troduction to active rules [WC96b], and describes the essentials of a number of
prototypes. [DHW95] is another introductory text, [Cha92] contains a special
issue on active databases. [PDW+93] discusses dimensions of active behavior
(such as structure and execution model of active rules) which allow to examine
and classify ADBs according to their distinctive features. [FT95] contains an-
other classi�cation of ADBs: the di�erent possible options in rule behavior are
encoded using Extended ECA rules, expressing the above-mentioned semantic
dimensions, which are then translated into an internal core language. [PCFW95]
surveys work on formal speci�cation of active database functionality. [DGG95]
presents the active database management system manifesto. In [Day95], a survey
on the accomplishments of research in active databases is given. The workshops
[WC94] and [BH95] were dedicated particularly to active rules; the workshop
series [PW93,Sel95,GB97] also has major sections on active rules.

11

4 Extending Datalog with States: Flat Statelog

Although there has been lot of work in active databases, no single generally
accepted framework for active rules has evolved (the ECA paradigm|though
widely used and accepted|only gives a very rough idea of rule execution and
leaves most issues unresolved). The semantics of active rules is often de�ned
only in an informal and procedural way, making it very di�cult to understand
and predict the behavior of rules. Not surprisingly, it is required in the active
database manifesto [DGG95] that \: : : rule execution must have a clear seman-
tics, i.e., must de�ne when, how, and on what database state conditions are
evaluated and actions executed".

In the sequel, we introduce Statelog, a logical framework for active rules which
precisely and unambiguously de�nes the meaning of rules. Moreover, it allows
to study fundamental properties of active rules like termination, conuence and
expressive power. The framework does not account for all facets of active rules
which may be useful in practice (e.g., tuple-level execution), but covers many
essential features including immediate and deferred execution and composite
events.

In this section, we present \at" Statelog, which is based on a linear state
space and corresponds to a at transaction model. Using a hierarchical state
space, a framework incorporating nested transactions is developed in Section 5.
For simplicity of presentation, we postpone a detailed description of the signa-
ture (delta relations, control relations, etc.) to Section 5.2; the intended use of
relations will be clear from the context.

4.1 Basic Execution Model

The basic execution model of Statelog is illustrated in Figure 2: States are iden-
ti�ed by the natural numbers IN0; the k-th �nal state is denoted by fk 2 IN0.

Assume fi is the current �nal state of the database. The database remains
in this state as long as no new external events occur. Queries are executed
against fi and may involve base relations, derived relations (i.e., local views on
the current state), or historical information (using certain auxiliary relations;
see Section 4.4). Observe that intermediate states are depicted as small circles,
whereas bigger circles correspond to �nal states, i.e., which are materialized
and directly accessible to the user. External actions correspond to outputs of
the active rule program and are reported at �nal states. As described below, a
stream of incoming external events is conceived as a sequence E0; E1; : : : of sets of
events which induces (i) a sequence of transactions between (user-visible) �nal
states f0; f1; : : :, and (ii) a stream of outgoing external actions A0;A1; : : :

The (simultaneous) occurrence of a set of external events Ei is modeled by
asserting, at the i-th �nal state fi, a �nite set of facts

5

Ei = f[fi]�e(�x) j event e(�x) has occurredg :

5 For clarity, relations for external events (\input") and external actions (\output")
are pre�xed with \�" and \�", respectively; states are often bracketed: [s] .

12

In general, using this new \seed" information, the rules of a Statelog program
de�ne a sequence of (intermediate) transitions

fi ; fi+1; fi+2; � � �; fi+k = fi+1

until the transaction starting at fi ends in the next �nal state fi+1. Events
occurring between fi and fi+1 are mapped to the new �nal state fi+1. It should
be clear from Figure 2 that the logic model of P [D [E0 [� � � [Ek (where D
denotes the initial database) is \add-only", i.e., past states cannot be changed,
and new events inuence only the current and future states. System-de�ned
predicates BOT and EOT can be used to distinguish between the di�erent kinds
of states. In this model, the state space (or temporal domain) over which the
database evolves is isomorphic to the natural numbers IN0, i.e., a linear time
model is used. Another more general model is presented in Section 5.

�E0 �E1 � � � �Ei incoming
external events

f0 : : : f1 : : : fi : : : fi+1

BOT EOT EOT EOT

BOT BOT [$]

�A0 �A1 � � � �Ai
outgoing

external actions

Classi�cation of states

state BOT EOT

initial true false

intermediate false false

past �nal true true

actual �nal [$] false true

Fig. 2. Mapping of external events to �nal states and classi�cation of states

4.2 Syntax

In Statelog, access to di�erent database states is accomplished via state terms of
the form [S+k] , where S+k denotes the k-fold application of the unary function
symbol \+1" to the state variable S. Since the database evolves over a linear
state space, S may only be bound to some n 2 IN0.

A Statelog database D[k] at state k 2 IN0 is a �nite set of facts of the form
[k] p(x1; : : : ; xn) where p is an n-ary relation symbol and xi are constants from
the underlying domain. If k = 0, or is understood from the context, we simply
write D.

A Statelog rule r is an expression of the form

[S+k0]H [S+k1]B1; : : : ; [S+kn]Bn

where the head H is a Datalog atom, Bi are Datalog literals (atoms A or negated
atoms :A), and ki 2 IN0. The leap li := k0�ki of Bi is the distance between the
state referred to in the head and the state for Bi in the body. If several literals

13

share the same state term [S+k] , then [S+k] can be \factored out": e.g., the
body [S]B1; [S+1]B2; [S+1]B3 may be abbreviated as [S]B1; [S+1]B2; B3.

We require that Statelog rules are progressive, since the current state cannot
be de�ned in terms of future states, nor should it be possible to change past
states: A rule r is called progressive, if k0 � ki for all i = 1; : : : ; n. If k0 = ki for
all i = 1; : : : ; n, then r is called local and corresponds to the usual query rules.
On the other hand, if k0 = 1 and ki = 0 for all i � 1, r is called 1-progressive
and denotes a transition rule. A Statelog program is a �nite set of progressive
Statelog rules.

4.3 Semantics

Every Statelog program may be conceived as a standard logic program by view-
ing the Statelog atom [S+k] p(t1; : : : ; tn) as syntactic sugar for p(S+k; t1; : : : ; tn).

6

In this way, notions (e.g., local strati�cation) and declarative semantics (e.g., per-
fect model MP) developed for deductive rules can be applied directly to Statelog.

Here, we adopt the state-strati�ed semantics7 as the canonical model of a
Statelog program P with database D. P is called state-strati�ed, if there are no
negative cyclic rule dependencies within a single state [LHL95]. More precisely,
state-strati�cation is based on the extended dependency graph GP of P . Its nodes

are the rules of P . Given two rules r1; r2 there is an edge (r1
l;(:)
�!r2) 2 GP if the

relation symbol in the head of r1 occurs positively (negatively) in the body of
r2. Here, l is the leap of the corresponding literal in r2. P is state-strati�ed
if GP contains no local cycle C (i.e., where

P

(r1
l;(:)
! r2)2C

l = 0) involving a

negative edge. This notion is closely related to XY-strati�cation [Zan93] and
ELS-strati�cation [KRS95]. Together with the requirement of progressiveness,
state-strati�cation implies local strati�cation [Lud98]:

Theorem 1 (State-Strati�cation)
Let P be a constant-free and progressive Statelog program. Then,

P is state-strati�ed , P is locally strati�ed. 2

Thus, if P is locally strati�ed, there exists a unique perfect model MP[D [Prz88],
for any Statelog database D (= D[0]).

Example 2 Consider the following progressive Statelog program, which deletes
all employees E from a department D which is deleted:

r1 : [S] del:emp(E,Sal,D) [S] del:dept(D,), emp(E,Sal,D) .
r2 : [S+1] emp(E,Sal,D) [S] emp(E,Sal,D), : del:emp(E,Sal,D) .

On occurrence of a delete event to dept, r1 checks whether there is an employee
E working at department D, and if so, this employee is put in a special delta
relation del:emp (cf. Section 5.2). r2 is a frame rule specifying that only those

6 Here, p denotes any type of relation (base, control, ...); see Section 5.2.
7 See Section 6 for a model-theoretic Kripke-style semantics.

14

tuples are copied to the instance of emp at the next state which are not in
del:emp. Thus, logically, no real deletion occurs but a smaller \copy" of the old
database state is created. Note that although the program is not strati�ed, it is

state-strati�ed since the negative cycle r2
0
! r1

1;:
! r2 is not local (i.e., does not

occur within a single state). 2

Note that state-strati�cation does not imply local strati�cation for non-
progressive rules (hence the progressiveness requirement in Theorem 1):

Example 3 (Non-Progressive Rules) The program

P : [S] p [S+1] : p.

is state-strati�ed since it contains no local cycle. However, the truth-value of
[n] p depends negatively on the unfounded sequence [n+1] , [n+2] , : : :, so P is
not locally strati�ed: in the well-founded model, p is unde�ned. 2

4.4 Composite Events

Although the Statelog language is surprisingly simple, various kinds of composite
events and consumption modes can be expressed, as shown in [MZ95] using a
closely related variant of Datalog1S. Assume, for instance, that we want to detect
the composite event

E(X;Y) := (F (X) ;G(Y));

i.e., F (X) followed by G(Y) for some (external or internal) events F and G.
Under an unrestricted context, this can be expressed by temporal reduction rules
(similar to [LS87,Cho95b]):

[S] detd:F (X) [S]F (X):
[S+1] detd:F (X) [S] detd:F (X):
[S+1] detd:E(X;Y) [S] detd:F (X); [S+1]G(Y):

Auxiliary relations detd:R store detected events. Using slight modi�cations of
these rules, di�erent event consumption modes can be accomplished:

If one adds the goal :F () to the second rule, only the most recent occur-
rences of F are used, thereby modeling event consumption with recent context.
Note that in this variant the most recent occurrence of F can take part in several
occurrences of E. However, if :F () and :E(;) are added to the second rule,
then every occurrence of E consumes all constituent events, so F can take part
only in one occurrence of E.

Under the chronicle context, events are processed in a �rst-in-�rst-out man-
ner, and thus make use of a queue in an essential way. Therefore, one can show
(see [Lud98]) that composite events with chronicle contexts are not expressible
in pure Statelog and require appropriate extensions (e.g., timestamping as in
[MZ95]).

15

4.5 Formal Results

Using Statelog as a uni�ed logical language for active and deductive rules allows
to study abstract rule properties like termination, expressive power, and com-
plexity (see also Section 3.1). Here, we only sketch the main results; see [LLM98]
and [Lud98] for details.

For notational convenience, we do not distinguish between base relations and
external events below, but assume w.l.o.g. that a Statelog databaseD[k] includes
the set of external events occurring in state k as a set of facts.

Termination. We say that a Statelog program P terminates for D, if the
sequence of database states induced by P and D becomes stationary|more
precisely: if for some n0 and all n � n0: MP[D[n] = MP[D[n+1] , where the
snapshot MP[D[n] at state n of the perfect modelMP[D is de�ned as

MP[D[n] := fp(�x) jMP[D j= [n] p(�x)g :

If P terminates for D, thenMP[D[$] is used as a generic notation for the unique
�nal state; otherwise, we agree to setMP[D[$] := ;.

Let TermP;D denote the set of pairs (P;D) such that P terminates for D;
Term9D;P and Term8D;P denote the set of Statelog programs which terminate
for some and all databases D, respectively. Then one can show [Lud98]:

Theorem 2 (Termination) 1. Term9D;P and Term8D;P are undecidable.
2. TermP;D is PSPACE-complete (with n = jDj).
3. TermP;D can be decided using a Statelog program P # which (i) terminates

for all D, and (ii) is e�ectively constructible from P . 2

Note that (3) means, in a sense, that Statelog programs allow to \speak" about
their termination behavior at run-time (i.e., for given D). However, since testing
for termination may be prohibitively expensive, it is desirable to identify e�cient
classes of terminating programs:

One such class is G-Statelog (guarded Statelog) where each update rule is
required to have a positive occurrence of an external event in the body, thereby
guaranteeing that such rules can be applied only once at the beginning of a
transaction. Another more powerful class is �-Statelog (�-monotonic Statelog):
here, the basic idea is to enforce termination by preventing oscillation of updates
(i.e., repeated insertion and deletion of the same tuple). Since Statelog programs
operate on �nite structures, the corresponding constructions guarantee termina-
tion in PTIME.

Di�erent Rule Semantics in Statelog. As shown above and in Section 5,
Statelog allows to handle typical features of active rules at the right end of the
spectrum in Figure 1, like composite event detection and (re)active programming
of updates. Moreover, several of the more declarative languages in the middle
and further to the left of the spectrum turn out to be special cases of Statelog
rules:

16

� Production rules : Let I-Datalog and P-Datalog denote the inationary and
noninationary (or partial) semantics for Datalog:, respectively.

� Deductive rules : The declarative semantics for Datalog: programs are de-
noted by S-Datalog (strati�ed Datalog) and WF-Datalog (well-founded Dat-
alog), respectively.

These semantics have a very natural representation in Statelog [Lud98]; see
Figure 3: Observe that the noninationary P-Datalog semantics only transfers
those tuples to the new state, which are derived anew. In contrast, the ina-
tionary I-Datalog semantics propagates all previously derived tuples through all
states. S-Datalog rules can be represented directly by local state-strati�ed rules.
Finally, one way to represent the alternating �xpoint computation [VG89] of
WF-Datalog is as shown in Figure 3: this encoding yields a terminating pro-
gram i� the well-founded model is total; however, using a \doubled" encoding,
it is easy to obtain a program which explicitly computes the true, false, and
unde�ned atoms and always terminates.

H B;:C ,

8>>>>>>>>>>><
>>>>>>>>>>>:

P-Datalog : [S+1]H [S]B; [S]:C

I-Datalog : [S+1]H [S]B; [S]:C
[S+1]H [S]H

S-Datalog : [S]H [S]B; [S]:C

WF-Datalog : [S+1]H [S+1]B; [S]:C

Fig. 3. Encoding schema for di�erent rule semantics

Expressive Power and Complexity. With every Statelog program P one
can associate di�erent database mappings: The most important one describes
the transaction expressiveness, i.e., the mapping � $

P : D[0] 7! MP[D[$] from
the initial database state to the �nal state.

A natural question is: What kind of database mappings can be expressed
using Statelog wrt. transactions? For languages involving intermediate states
like XY-Datalog and Statelog, one can also consider transition expressiveness,
i.e., the class of database mappings from one state to the immediate successor
state.

Figure 4 summarizes the main results wrt. transition and transaction ex-
pressiveness: In the middle, well-known classes of database transformations are
depicted (cf. [AHV95]). To the left and right, the equivalent (wrt. transitions
and transactions, respectively) Statelog variants are depicted:

17

Transition Expressiveness Transaction Expressiveness

WF-Statelog

fGj�jNFj"g-Statelog

XY-Datalog

fPjIg-Statelog

All

While

Fixpoint

S-Datalog

FO

9FO

Datalog

pos9FO

Conjunctive

?

fPjNFjWFj"g-Statelog
XY-Datalog

fIj�g-Statelog

G-Statelog

?

=

=

=

=

=

=

=

(

Data Complexity:

�DB-PSPACE

�DB-PTIME

Fig. 4. Summary of expressiveness results [Lud98]

WF-Statelog is a Statelog variant where rules need not be strati�ed, but
may involve well-founded negation; G-, �-, NF-, P-, I-, and "-Statelog denote
guarded, �-monotonic, normal form, noninationary, inationary, and unre-
stricted Statelog, respectively [LLM98,Lud98]. In NF-Statelog, for example, rules
may only be 1-progressive or local. The expressiveness results in Figure 4 can
be established using rewritings into NF-Statelog and the above encodings of
di�erent Datalog: semantics. The nice match between Statelog classes and the
known query classes also yields the corresponding complexity results: Statelog
transitions are always evaluable in PTIME, whereas transactions may require
PSPACE in general. An e�cient (i.e., PTIME-evaluable) class of transactions
is given by �-Statelog, a class of terminating Statelog programs which|unlike
inationary languages|allows both insertions and deletions.

5 Nested Transactions in Statelog

The Statelog programs considered so far de�ne a single transaction from the
current state to the new �nal state for any given database (which includes a set
of external events). External events occurring subsequently correspond to new
facts being added and initiate the next transaction. Thus, the Statelog execution

18

model depicted in Figure 2 corresponds to a at transaction model. In the se-
quel, we show how Statelog can be extended to model nested transactions. With
nested transactions, Statelog provides a uni�ed framework for modeling several
advanced concepts in active databases, e.g., sophisticated coupling modes, event
consumption policies, and trigger �ring policies.

The following example, adapted from [MW88,Che95], motivates why struc-
turing capabilities and a re�ned transaction model may be useful:

Example 4 (To Hire or Not to Hire)
Consider relation emp from Example 2. We want to hire an employee only if
the average salary after the update does not exceed a certain limit. Such a
\post-conditional" update may be expressed in at Statelog as follows:8

[S] ins:emp(E,Sal,D), [S+1] checksal(D) [S] �hire if possible(E,Sal,D).

[S] check ok [S] checksal(D), avg(D, AvgSal), AvgSal < 50000.

[S+1] del:emp(E,Sal,D) [S] �hire if possible(E,Sal,D), [S+1] : check ok.

On occurrence of the external event �hire if possible(E,Sal,D), employee E is
preliminarily inserted and the new average salary is checked in [S+1] . If it
exceeds the admissible amount, the insertion is undone by the last rule. 2

The above program speci�es the desired transaction, yet there are some potential
pitfalls and drawbacks with this solution:

� Undoing the e�ect of changes (here: the compensation of insertions by corre-
sponding deletions) has to be programmed by the rule designer. However, it
is often desirable to automatically propagate the failure of a subtransaction
like checksal.
� There is no structure which allows grouping of semantically closely related
rules.

� The e�ects of ephemeral changes [Zan95], i.e., changes whose e�ect is undone
later within the same transaction, and hypothetical changes are visible to
other rules, since there is no encapsulation of e�ects of semantically related
rules. E.g., if �hire if possible(...) occurs in [S] , the delete request ins:emp
may trigger other active rules, although in [S+2] the update is revoked. This
may lead to unjusti�ed (re)actions by other rules, similar to those described
in [Zan95].

To avoid these problems, the transaction concept considered so far has to be
re�ned: First, speci�c system-de�ned rules can be used to automatically undo
the e�ect of failed transactions. Moreover, the second and third item can be
resolved by grouping rules into certain modules which encapsulate rule e�ects.
In principle, a at transaction model would be su�cient here. However, it is
often natural and more adequate to model certain tasks as subtransactions which

8 For simplicity, we view the predicate holding the average salary avg(D,AvgSal) of a
department D as a built-in.

19

are nested within the calling transaction: For example, hire(E,Sal,D) may be a
subtransaction of a top-level transaction main; the salary check in turn may be
a subtransaction of hire (see Example 6).

5.1 Hierarchical State Space

In order to model nested transactions and handle the problems described above,
[LML96] propose the concept of Statelog procedures. A Statelog procedure � is
a named and possibly parameterized set of Statelog user rules. In this sense, the
at Statelog programs considered so far can be seen as parameterless anony-
mous Statelog procedures. When � is called at run-time, it de�nes a transaction
T� by issuing primitive updates (through delta relations) and/or calling other
procedures which in turn may de�ne subtransactions, etc. T� either terminates
successfully (indicated by a special predicate committed:�), or aborts. When �
calls another procedure �, a subtransaction T� is started whose results are either
incorporated into T�, if T� commits, or discarded otherwise. From the point of
view of the calling transaction T�, the subtransaction T� is atomic, therefore
requests derived directly within T� and those submitted by T� should be indis-
tinguishable. This is achieved by certain system-de�ned rules.

The behavior of � is encapsulated, since deltas de�ned by T� are only visible
within T�, but not in other (concurrent) transactions. Subtransactions execute
in isolation and in an all-or-nothing manner, i.e., no results of T� will be visible
in T� if T� aborts. Note that this does not mean that T� also aborts|on the
contrary, � can detect the failure of T� (via aborted:�) and issue alternative or
compensating actions, or retry the execution of � later.

In order to model the isolated execution of a Statelog procedure � as a
(sub)transaction T�, a unique name space for each (parameterized) invocation
of �(�x) has to be introduced. This is accomplished by extended state terms and
frame terms. The latter provide the transaction frame in which � executes.

The execution of Statelog procedures as nested transactions induces a hier-
archical structure of the state space instead of the linear structure considered
before (cf. Figure 5). Every state term encodes the complete transaction hierar-
chy from the top-level transaction down to the current transaction. States on the
same level are grouped into transaction frames. The model-theoretic foundation
of this concept is given by Kripke structures with di�erent accessibility relations,
see Section 6.

Given a �xed set � of procedure names of a Statelog program, the set of
state identi�ers S� and frame identi�ers F� are de�ned as the least sets such
that

� ["] 2 F� ,

� [f:n] 2 S�, if [f] 2 F� and n 2 IN0,

� [s:�(�x)] 2 F� , if [s] 2 S�; � 2 � , and �x 2 U!.9

9 U! :=
S

i2IN
U i.

20

[":2:�:0] [":2:�:n]
[":2:�]

[":0] [":1] [":2] [":3] � � � ["]

[":2:�:0] [":2:�:m]

[":2:�:1] [":2:�:m{1]
[":2:�]

[":2:�:1:�:0] [":2:�:1:�:k]
[":2:�:1:�]

Fig. 5. States and frames

Here, the arity of � matches that of �x = x1; : : : ; xk, and U is the underlying
domain. State terms and frame terms are de�ned similarly but may also involve
variables. State and frame identi�ers induce a hierarchically structured state
space: The initial frame ["] denotes the top-level transaction, its initial state is
[":0] . Let [s] denote the current state. Then for a procedure call �(�x), the frame
of the subtransaction induced by the execution of �(�x) is [f] = [s:�(�x)] and the
�rst state of the transaction is [f:0] = [s:�(�x):0] . The successor state of [f:n]
(on the same level) is [f:(n+1)] . The grouping of states into a frame [f] 2 F�

is de�ned as

[f] := f [f:n] j n 2 IN0 g ;

which implies that every state [f:n] belongs to exactly one frame [f] . Using this
representation, the frames [s:�(�x)] and [s:�(�y)] induced by di�erent parallel
procedure calls of � and � in the same state [s] can be uniquely identi�ed (if the
name of the procedure is the same, at least the parameters are di�erent). Sim-
ilarly, frames of transactions induced by the same procedure call from di�erent
states, [s1:�(�x)] and [s2:�(�x)] , can also be distinguished. The constructor \." is
left-associative: e.g., [s1:�1:s2:�2] = [((s1:�1):s2):�2] .

5.2 Signature

In order to model the speci�c features of active rules, we introduce several types
of relations (their precise semantics and interplay will be speci�ed by system-
de�ned Statelog rules below): The set of relation symbols of a given schema R
is given as the disjoint union of the following sets:

R = edb(R) _[idb(R) _[�(R) _[�(R) _[�(R) _[prot(R) _[�(R) _[ctl(R):

21

Base and Derived Relations. The extensional database edb(R) comprises
the base relations which are stored in the database. In user-de�ned rules, edb-
relations may only occur in the body; they are updated via delta relations from
�(R). In contrast, derived relations belong to the intensional database idb(R)
and de�ne views. Thus, idb-relations may occur in rule heads and bodies but
may not be changed directly. Typically, idb-relations are not materialized but
computed on demand.

External Events and Actions. Relations from�(R) represent external events
of interest which are monitored by the ADB. Consequently, external events can
only occur in rule bodies. External actions are de�ned by the relations from
�(R) and represent requests to execute certain actions outside the ADB system.
Relation symbols denoting external events and actions are pre�xed with the
symbols \�" and \�", respectively.

Delta Relations. For every base relation p 2 edb(R) there are delta relations
del:p; ins:p 2 �(R). Delta relations (or just deltas) denote update requests to
delete or insert the corresponding tuples into p, respectively. For simplicity, we
write mod:p(x=y) instead of del:p(x); ins:p(y).

Procedure Calls. �(R) denotes the set of procedure names. A procedure �
with parameters �x is \called" by deriving �(�x) in the head of a rule.

Protocol Relations. For every base relation p 2 edb(R) there are protocol
relations deld:p; insd:p 2 prot(R) (for inserted and deleted, resp.) which store
the accumulated net e�ect of a sequence of updates. They can be used for sev-
eral purposes, e.g., to enforce termination, as an auxiliary store for aborting
transactions, or for returning the net e�ect of a subtransaction [Lud98].

Note that from the above-mentioned relations, only those from idb(R), �(R),
�(R), and �(R) are user-de�nable; the relations from edb(R) and prot(R) are
maintained by the system.

Control Relations. ctl(R) contains special control relations like BOT, EOT,
running, and abort for transaction control, and auxiliary relations for the detec-
tion of composite events. Additionally, aborted:�(�x) or committed:�(�x) indicate
if a subtransaction has been aborted or committed.

5.3 User-De�ned vs. System-De�ned Rules

In the Statelog core language there is no distinction between user-de�ned and
system-de�ned rules (e.g., the program given in Example 2 explicitly contains
the frame rule r2). However, an ADB system should provide the user with a
prede�ned intuitive programming \environment" which takes care of low-level

22

aspects of the execution model like frame rules and transaction control. In par-
ticular, one may hide the explicit handling of states from the user by forcing
her to use only local rules. If the user really needs to refer to di�erent states,
syntactic sugaring in the form of prede�ned operators can be used (Example 5).

5.4 User-De�ned Rules

We require that all user-de�ned Statelog rules are local; thus, state terms may
be omitted. Moreover, only relations from idb(R), �(R), �(R), �(R) and cer-
tain distinguished relations from ctl(R) are allowed to occur in rule heads of a
user program. For example, the usual integrity constraints from databases like
functional, join, and inclusion dependencies can be encoded in the form of de-
nials, i.e., as a set of local rules s.t. abort is derived by these rules if an integrity
violation is detected.

Programs and Procedures. A Statelog program is a �nite collection of
Statelog procedures. A Statelog procedure � is an expression of the form

proc �(X1; : : : ; Xn) fH1 B1 ; : : : ; Hk Bk g

where X1; : : : ; Xn are the parameters of � which may occur in the Statelog user
rules Hi Bi. Every program contains a distinguished procedure main.

As in the case of at Statelog, the meaning of rules is given by the declarative
semantics of their representation as a logic program. Especially, if rules are locally
strati�ed, a unique perfect model exists.10

Depending on the relation symbol in the head of a rule, the following cases
can be distinguished:

Views: p(�X) : : : if p 2 idb(R)

Change Requests: ins:p(�X) : : : if ins:p 2 �(R)

del:p(�X) : : : if del:p 2 �(R)

Procedure Calls: �(�X) : : : if � 2 �(R)

External Actions: �a(�X) : : : if �a 2 �(R)

Transaction Control: abort : : :

External events are allowed only in the body of rules of main, whereas actions
may occur in all procedures, but are only allowed in rule heads. Since edb-
relations are not directly user-de�nable, all changes to base relations have to be
accomplished through insert and delete requests. The materialization of these
requests is implemented by frame rules as described below.

10 A logic programming semantics for Statelog with nested transactions is presented
in [LML96]. Note that in order to guarantee local strati�cation, also dependencies
through subtransactions have to be considered.

23

Visibility of User-De�ned Rules. Let P (�) denote the (user-de�ned) rules
of a procedure �. Apart from P (�), the visible user-de�ned rules P ([S:�(�x)]) in
frame [S:�(�x)] include idb-relations of the calling transaction:

De�nition 1 The set of visible rules P ([F]) of a frame is de�ned as

P (["]) := P (main)
P ([F:n:�(�x)]) := P (�) [fp(: : :) B 2 P ([F]) j p 2 idb(R)g

for all n 2 IN0; � 2 �(R):
2

Thus, idb-relations are communicated to subtransactions by passing their de�n-
ing rules, whereas edb-relations are communicated to subtransactions by copying
their extensions into the initial state of a subtransaction.

5.5 System-De�ned Rules

System-de�ned frame and procedure rules implement the intended semantics of
request relations, protocol relations, and procedure calls. All changes are encap-
sulated within the current transaction frame and invisible everywhere else until
the transaction commits. State terms are used in the speci�cation of transitions
and transaction management.

Starting a Transaction. If one or more external events �e(�x) occur, the
beginning of a transaction is signaled:

[S]BOT [S]�e(�X):

We assume that all external events which are detected within a certain time
interval are raised only in the initial state of the top-level transaction (which
coincides with the �nal state of the previous transaction). All events occurring
subsequently are associated with the next initial state.

Frame Rules specify the correct handling of update requests and transitions.
For all p 2 edb(R), there are the following frame rules:

[S+1] p(�X) [S] ins:p(�X);:EOT:
[S+1] p(�X) [S] p(�X);: del:p(�X);:EOT:

Thus, updates to base relations are executed immediately in the transition to
the successor state, unless the end of transaction is detected. Clearly, instead
of this immediate coupling between condition evaluation and action execution,
one could also specify deferred execution. Then a di�erent set of frame rules
accumulates delete requests and executes all of them at the end of transaction.
Frame rules also propagate the edb to the subsequent transaction:

[S+1] p(�X) [S] ins:p(�X);BOT:
[S+1] p(�X) [S] p(�X);: del:p(�X);BOT:

24

Protocol relations insd:p; deld:p 2 prot(R) store the accumulated net e�ect of
changes during a transaction:

[S+1] insd:p(�X) [S] ins:p(�X);:EOT:
[S+1] insd:p(�X) [S] insd:p(�X);: del:p(�X);:EOT:
[S+1] deld:p(�X) [S] del:p(�X);:EOT:
[S+1] deld:p(�X) [S] deld:p(�X);: ins:p(�X);:EOT:

While there are pending change requests, a transaction is running:

[S] running [S] ins:p(�X);: p(�X):
[S] running [S] del:p(�X); p(�X):

A �xpoint is reached when there are no more changes, so EOT is signaled:

[S] EOT [S] BOT;: running:
[S+1] EOT [S] running;: abort; [S+1] : running:

The internal event abort terminates a transaction prematurely:

[S] EOT [S] abort:

Apart from user-de�ned aborts, a transaction aborts if inconsistent requests are
raised:

[S] abort [S] ins:p(�X); del:p(�X):

Other conict resolution policies can also be easily speci�ed: For example, if
the previous rule is omitted, the above frame rules give priority to insertions
whenever insertions and deletions occur simultaneously. Similarly, if one adds
the goal : del:p(�X) to the above frame rules with ins:p(�X) in the body, then
deletions will have higher priority.

Procedure Rules implement the semantics of procedure calls, i.e., the execu-
tion of subtransactions.
For all � 2 �(R); p 2 edb(R), there are the following rules:

A procedure call creates the initial state of a new frame, signals BOT and
initializes the edb-relations:

[S:�(�X):0] BOT [S] �(�X):
[S:�(�X):0] p(�Y) [S] p(�Y); �(�X):

The processing of the results is implemented by rules checking the successful
termination of the subtransactions and evaluating their protocol relations. Since
these contain the changes made by the subtransactions, their extensions are
copied into the request relations of the parent transaction:

[S] ins:p(�Y) [S] �(�X); [S:�(�X):N] insd:p(�Y);EOT;: abort:
[S] del:p(�Y) [S] �(�X); [S:�(�X):N] deld:p(�Y);EOT;: abort:

25

Thus, update requests reported to the parent by � are indistinguishable from
those derived directly (provided � commits, i.e., EOT ^ :abort holds).

Parent transactions also perform some bookkeeping about committed and
aborted subtransactions:

[S] committed:�(�X) [S] �(�X); [S:�(�X):N] EOT;: abort:
[S] aborted:�(�X) [S] �(�X); [S:�(�X):N] EOT; abort:

The user can formulate application-speci�c aspects of transaction management,
e.g., that the parent transaction should abort, if the child aborts:

abort �(�X); aborted:�(�X):

Serial Conjunction. It is sometimes convenient, especially in the context of
procedures and nested transactions, to provide the user with a special connective
\
" denoting a serial version of conjunction.11 To this end, we de�ne

A0
 � � �
An B0
 � � �
Bm

as a shorthand notation for the Statelog rule

[S+m]A0; : : : ; [S+m+n]An; [S] running; : : : ; [S+m+n] running
[S]B0; : : : ; [S+m]Bm:

For example, a rule of the form A0
 A1 B; where A0 and A1 are primitive
actions (like ins:p, del:p) or procedure calls, informally means: \if B is true, then
do A0 followed by A1". Conversely, the rule A B0
 B1 intuitively says: \if
B0 was previously true, and B1 holds now, then do A".

5.6 Examples

Example 5 (Hypothetical Updates) In order to implement a hypothetical
deletion of an employee, we can use the rule

del:emp(E,Sal,D)
 ins:emp(E,Sal,D) �hyp del emp(E), emp(E,Sal,D).

When �hyp del emp(E) occurs, employee E is removed from the database and im-
mediately inserted afterwards. If we want to determine if E is an \indispensable"
employee, i.e., one whose deletion would result in an unpopulated department,
we can use the rule:

ins:indispensable(E) (�hyp del emp(E), emp(E,Sal,D))
 : emp(, ,D).

The hierarchical transaction model allows a exible treatment of several inter-
esting features of databases, like the following:

11 The symbol \
" is borrowed from [BK94], where it denotes a similar connective.

26

� Static integrity constraints can be implemented by aborting transactions
(Example 6).

� Checking the admissibility of changes and blocking inadmissible ones: for
any fact p(�x) that should be guaranteed, derive ins:p(�x). Every request to
delete it causes an inconsistency.

� Ephemeral updates: every transaction can try some updates, check their
results and decide whether it should commit or abort (Example 6).

� Hypothetical updates: every transaction can work on relations which are
deleted before committing without having any e�ect at commit-time. By
this it can create a hypothetical scenario, check the outcome and report the
consequences. This can be used to evaluate several alternatives in parallel.

Finally, we are su�ciently equipped to revisit Example 4 in the extended frame-
work. Observe that the problems of the at approach mentioned at the beginning
of Section 5 are resolved here:

Example 6 (To Hire or Not to Hire, Cont'd)
We specify the hire and checksal transactions by procedures:

proc main fhire(E,Sal,D) �hire if possible(E,Sal,D)g.

proc hire(E,Sal,D) fins:emp(E,Sal,D)
 checksal(D) BOT;
abort aborted:checksal(D)g.

proc checksal(D) fabort avg(D,AvgSal)>50000g.

Whenever �hire if possible occurs, a subtransaction hire(: : :) is initiated. At the
beginning of transaction (and only then), hire adds the new employee followed
by a call to checksal. If checksal aborts then hire also aborts, resulting in an
unchanged database. Otherwise hire commits and the insertion is realized. The
following signatures are de�ned:

edb(R) = fempg; �(R) = fins:emp; del:empg;
prot(R) = finsd:emp; deld:empg; �(R) = fmain; hire; checksalg;
ctl(R) = fBOT; running;EOT; abort; aborted:checksal; aborted:hireg:

Figure 6 depicts the state space which is created when hire(john,60000,d1) is
called (and eventually aborted, since the average after the hypothetical update
exceeds 50000).

Frames are represented by shadowed boxes, states are represented by ordinary
boxes. In all states, the upper entry denotes the state term, the data below the
�rst horizontal line are facts which are derived by frame rules or local rules, and
the data below the second line (if it exists) are facts which are derived from
results of subtransactions. 2

Example 7 (The Christmas-Problem)
Consider a relation emp(E, BirthDay, Sal) with the obvious meaning. We want
to implement the following, informally given procedure: Every employee shall be
given a salary raise by 5% at her birthday; on Christmas every employee shall
get an extra $1000. This is accomplished in at Statelog as follows [LHL95]:

27

� � � [":n�1]
[":n]
hire(john,60000,d1), running
aborted:hire(john,60000,d1)

[":n+1] � � �

["]

[":n.hire(john,60000,d1).0]
BOT,
(ins:emp(john,60000,d1)
 checksal(d1)),
ins:emp(john,60000,d1), running.

[":n.hire(john,60000,d1).1]
emp (john,60000,d1), insd:emp (john,60000,d1),
checksal(d1)
aborted:checksal(d1), abort, EOT

[":n:hire(john,60000,d1)]

[":n.hire(john,60000,d1).0.
checksal(d1).0]

BOT, avg(d1,50001), abort, EOT

[":n:hire(john,60000,d1).0.checksal(d1)]

Fig. 6. Frames and Database States

[S+1] mod:emp(E,Bday,Sal/Sal1)
[S] �daily, date(Day), Day=Bday, emp(E,Bday,Sal), Sal1:= Sal*1.05).

[S+1] mod:emp(E,Bday,Sal/Sal1)
[S] �daily, date(Day), xmas(Day), emp(E,Bday,Sal), Sal1:= Sal+1000.

These rules work �ne unless there is some employee whose birthday is on Christ-
mas: Then two inconsistent modify-requests are generated, and the subsequent
state is not well-de�ned. In a at model, the problem could be solved by complete
case splitting or by a rule using three states (however, this raises the problem
that the intermediate state should not trigger other rules). In the structured
model, the sequential composition inc xmas
 inc bday can be used by the top-
level transaction incsal to specify the order of execution:

proc main fincsal(Day) �daily, date(Day)g.

proc incsal(Day) finc xmas(Day)
 inc bday(Day) BOTg.

proc inc xmas(Day) fmod:emp(E,Bday,Sal/Sal1)
BOT,xmas(Day),emp(E,Bday,Sal), Sal1:= Sal+1000g.

proc inc bday(Day) fmod:emp(E,Bday,Sal/Sal1)
BOT, Day=Bday, emp(E,Bday,Sal), Sal1:= Sal*1.05g.

If inc xmas(Day)
 inc bday(Day) were replaced by the simultaneous conjunction
inc xmas(Day) , inc bday(Day), then two conicting requests would be derived and
the transaction would be aborted automatically by the corresponding system-
de�ned rules. 2

Using the nested transaction model, di�erent rule schemata for modeling
certain coupling modes, event consumption policies, and trigger �ring policies
can be de�ned, thereby providing a concise, formal speci�cation of these features.

28

Example 8 (Control Features) Instead-triggers can be modeled by replacing
a procedure call �(�x) by another call �(�x): when a call �(�x) is derived, it is
discarded immediately, and the call �(�x) is derived instead. The procedure rules
from Section 5.5 are modi�ed, for every � 2 �(R), as follows:

[S:�(�X):0] BOT [S] �(�X);: discard:�(�X):
[S:�(�X):0] p(�Y) [S] p(�Y); �(�X);: discard:�(�X):

Now the instead-trigger \�(�x) instead of �(�x)" is expressed by the (local) rule

�(�X); discard:�(�X) �(�X):

Before- and after-triggers can be modeled as specialized instances of instead-
triggers based on serial conjunction: Consider a trigger of the form \before �(�x)
do �(�x)". This can be accomplised by the following rules (�0 contains the same
rules as �):

� �(�X); discard:�(�X) �(�x):
proc � �(�X) f�(�X)
 �0(�X) BOTg:

Other control features which can be handled include di�erent event consump-
tion modes (see Section 4.4) and deferred (instead of immediate) coupling (cf.
Section 5.5). 2

5.7 Operational Semantics

The above rule system de�nes a partial order on state identi�ers: Within a
frame, [f:n] � [f:m] if n < m; additionally, [f:n] � [f:n:�:k] � [f:(n+1)] for
� 2 �(R) and all k 2 IN. With the additional requirement on user-de�ned rules
that there are no negative dependencies from relations of �(R) to any other
relation of the same state, � can serve as a base for computing the individual
database states as follows:

1. compute [f:i] (edb(R) [prot(R)) from [f:(i{1)] (edb(R) [�(R) [prot(R)),
2. compute [f:i] (idb(R) [�(R) [�(R)),
3. compute f[f:i:�(�x):IN] j [f:i]�(�x) holdsg recursively,
4. add the resulting requests from
f[f:i:�(�x):n] prot(R) j [f:i]�(�x) and [f:i:�(�x):n]EOT holdsg to [f:i] �(R),

5. extend [f:i] (idb(R)[�(R)[�(R)), based on the additions to [f:i] �(R) from
step 4 (\add-only", since these relations do not depend negatively on �(R)),

6. compute f[f:i:�(�x):IN] j [f:i]�(�x) has been derived in the previous stepg,
7. iterate steps 4{6 until a �xpoint is reached,
8. if not [f:i]EOT, proceed with step 1 for [i+1] .

Note that with the above schema, [f:i] (edb(R)[prot (R)) are computed once in
the �rst step. Therefore, the database in the initial state [f:i:�(�x):0] of subframes
is identical for all subframes [f:i:�(�x)] , independent from the iteration step in
which the procedure call has been derived.

29

� � �

� � � � � �

� � �

R R R

R R R

R R R

Q(�)

Q(�)

S(�)

S(�)

Fig. 7. Hierarchical Kripke Structure

6 Kripke-Style Semantics

A conceptual model for Statelog with nested transactions is established using a
Kripke-style semantics, thereby providing states as \�rst-class citizens" of the
logical framework. State identi�ers are mapped to states of a Kripke structure
which formalizes the relationships between individual states in terms of accessi-
bility relations. The Kripke semantics yields an abstract and natural model of
the hierarchical state space and can serve as a basis for the speci�cation and
veri�cation of properties of a database system. We show that the rules given in
the previous section (where states are \rei�ed", i.e., encoded into the language)
are correct wrt. the abstract Kripke semantics.

De�nition 2 (Statelog Kripke Structure) A Statelog Kripke structure over
a given Statelog signature R is a tuple K = (G;U ;R;Q;S;M;P), (cf. Figure 7)
where

G is a set of states,
U is the universe,
R � G �G is an accessibility relation modeling the temporal successor relation.
Q;S � G��(R)�U!�G are two labeled accessibility relations between states

representing the procedure-call and -return relation, respectively.
M is a function which maps every state to a �rst-order interpretation over R

with universe U ,
P is a function which maps every g 2 G to a set of local rules (the rules visible

in g). 2

Here, the Statelog Kripke frame (G;R;Q;S) models the relationships between
states and frames: Every computation path (g1; g2; : : :) in a Statelog Kripke struc-
ture s.t.R(gi; gi+1) for all i corresponds to a frame in the hierarchical state space
(note thatR(g; g) denotes that a subtransaction has reached a �xpoint, i.e., then,
M(g) j= EOT holds). Q denotes the frame-subframe-relation, i.e., Q(g; �(�x); g0)
means that the �rst state of the subtransaction induced by a call of procedure
� with arguments �x is g0. S(g0; �(�x); g) means that g0 is the �nal state of the
subtransaction induced by a call of procedure � with arguments �x in g. Thus,
results of subtransactions are communicated along S.

30

The following characterization covers the intended semantics of the Statelog
frame rules:

De�nition 3 A Statelog Kripke structure K = (G;U ;R;Q;S;M;P) over a
signature R is a model of a Statelog program P over R and an initial database
D if

� U is the active domain of P and D.
� There is a g0 2 G s.t. M(g0)jedb(R) = D, andM(g0)jprot(R) = ;, and there
is no g s.t. Q(g; ; g0) or R(g; g0) (existence of an initial state).

� External events are only mapped to the initial state of transactions on the
highest hierarchical level, i.e., M(g)j�(R) 6= ; only if R�(g0; g) and g = g0
orM(g) j= EOT.12

� The relation R models the temporal successor relation, i.e.,

R(g; h)) P(h) = P(g)

and the following relationship between edb(R) and �(R) in g and edb(R)
and prot(R) in h holds:

R(g; h)) for all p 2 edb(R) :
M(h)(p) = (M(g)(p) [M(g)(ins:p)) nM(g)(del:p) and
M(h)(insd:p) = (M(g)(insd:p) [M(g)(ins:p)) nM(g)(del:p) and
M(h)(deld:p) = (M(g)(deld:p) [M(g)(del:p)) nM(g)(ins:p)

and R is total, i.e., for every g 2 G there is a g0 2 G s.t. R(g; g0).
� Q models the subtransaction calls: for all g 2 G, � 2 �(R), �u 2 U! :

M(g) j= �(�u) , there is an h s.t. Q(g; �(�u); h) ;

and Q(g; �(�u); h) implies that M(h) j= BOT, M(h)jedb(R) = M(g)jedb(R),
M(h)jprot(R) = ;, and

P(h) = P (�) [fp(: : :) B 2 P(g) j p 2 idb(R)g :

� S models the return-from-subtransaction relation:
for all g; g0; h0 2 G, � 2 �(R), �u 2 U!:

Q(g; �(�u); g0) and R�(g0; h0) andM(h0) j= EOT , S(h0; �(�u); g) :

� For every g 2 G,

M(g) =MP(g)(M(g)jedb(R)[prot(R)[�(R) [C(g))

where C(g) is the set of requests which are contributed to g by subtransac-
tions (and communicated along S), given as

C(g)(ins:p) := f�u j there are g0 2 G; � 2 �(R); �v 2 U! s.t. S(g0; �(�v); g) and
M(g0) j= : abort and �u 2M(g0)(insd:p)g

C(g)(del:p) := f�u j there are g0 2 G; � 2 �(R); �v 2 U! s.t. S(g0; �(�v); g) and
M(g0) j= : abort and �u 2M(g0)(deld:p)g :

2

12 as usual, R� denotes the transitive closure of R.

31

Proposition 3 In every Statelog Kripke structure which is a model of a Statelog
program P , the following holds:

� The temporal successor relation R is deterministic modulo external events:
for all g; h; h0 2 G:

R(g; h) and R(g; h0))M(h)jRn�(R) =M(h0)jRn�(R) :

� For every g 2 G in a non-top level frame (i.e., on a level where there are
no external events) s.t. M(g) j= BOT, there is a unique computation path
(g0; g1; : : : ; gn) with gi j= :EOT for all i < n and gn j= EOT.
� for every Statelog program P , database D, and sequence E0; E1; E2; : : : of sets
of external events, there is a unique Kripke model of P with an initial state
M(g0) = Mmain(D [E0) and a top-level computation path (g0; g1; : : :) s.t.
M(gi) j= EOT , i 2 ff1; f2; : : :g (fi denotes the i-th �nal state; see
Section 4.1); in this case: M(gfi) j= Ei. 2

S�1 can also be regarded as a relation describing the e�ects of subtransactions:
For � 2 �(R) and �u 2 U!,

�(�u)(g) := h 2 G s.t. (h; g) 2 S(�(�u))

is the result of executing �(�u) in state g. The relationship between M(g) and
M(�(�u)(g)) is important for expressing (correctness) properties of subtransac-
tions. With this, C(g) can be characterized in terms of the e�ects of the sub-
transactions which are issued in g:

C(g)(ins:p) = f�u j there is a � 2 �(R); �v 2 U! s.t. �v 2M(g)(�) and
M(�(�y)(g)) j= : abort and �u 2M(�(�y)(g))(insd:p)g ;

C(g)(del:p) = f�u j there is a � 2 �(R); �v 2 U! s.t. �v 2M(g)(�) and
M(�(�y)(g)) j= : abort and �u 2M(�(�y)(g))(deld:p)g :

Equipped with a notion of states, computation sequences, and subtransactions,
the semantics of the individual subsets of a Statelog signature (cf. Section 5.2)
can be described in terms of state transitions and (sub)transactions:

Theorem 4 (Adequacy) Statelog Kripke structures are an adequate model of
the intended semantics of nested transactions based on the elementary actions
ins and del:

� R models the temporal successor relation:
{ edb-relations are changed exactly via requests: for all p 2 edb(R), g; h 2
G: if (g; h) 2 R, then

M(h)(p) = (M(g)(p) nM(g)(del:p)) [M(g)(ins:p) :

{ In all states, the protocol relations contain the non-revoked changes of the
corresponding subtransactions: For all (g; h) 2 QR� and all p 2 edb(R):

M(h)(p) = (M(g)(p) [M(h)(insd:p)) nM(h)(deld:p) :

32

� Q models the subtransaction calls:
{ In the initial states of subtransactions, the edb is the same as in the
calling state and the protocol relations (procedure knowledge) are empty.

{ The de�nition of the IDB in a subtransaction contains the de�nition of
the IDB in the calling transaction.

� S models the return-from-subtransaction relation:
{ For all g; h 2 G, if S(h; ; g) andM(h) 6j= abort, then for all p 2 edb(R):

M(g)(ins:p) �M(h)(insd:p) andM(g)(del:p) �M(h)(deld:p) :

� Internal semantics of states (Perfect model of P(g)):
{ Insert/delete requests are derived by user-de�ned rules or contributed by
subtransactions.

{ IDB and subtransaction calls are derived by user-de�ned rules. 2

The declarative semantics of the perfect model of a Statelog program and the
operational semantics given in Section 5.7 for computing a Statelog model state-
by-state coincide with the presented Kripke semantics:

Theorem 5 (Equivalence) Fix a Statelog program P , an initial database D,
and a sequence E = (E0; E1; : : :) of sets of external events. For every Statelog
Kripke structure K = (G;U ;R;Q;S;M;P) which is a model of P , there is a
partial mapping � : S� ! G such that:

� dom(�) = f[s] j MP[D[E j= [s] running _ EOTg, i.e., the \used" states.
� For all literals L over R,M(�(s)) j= L i� MP[D[E j= [s]L.
� For every n 2 IN0; [f:n] 2 dom(�): P(�([f:n])) = P ([f]). 2

7 Summary and Conclusion

Active rules extend the traditional passive database technology and are a pow-
erful programming paradigm with a large number of application areas. While an
increasing number of systems becomes available and active rule programming is
carried out in real world applications, theoretical foundations of active rules are
still rare. In the �rst part of the paper, we have introduced the basics of active
rules and related them to production rules and deductive rules, respectively. Af-
ter discussing a number of formal approaches to active rules, we have elaborated
on a state-oriented logical framework which integrates active and deductive rules.
The underlying core language Statelog precisely speci�es the meaning of a set
of active rules and allows to investigate fundamental properties like termination
and expressive power [LLM98,Lud98]. Although the basic execution model of
at Statelog is relatively straightforward and corresponds to at transactions
dealing only with immediate and deferred coupling on the statement-level, it
captures many essential features of active rules including composite events. It
can be shown [Lud98] that some features like chronicle contexts of composite
events cannot be expressed directly, but require certain extensions like event

33

queues or timestamping, as presented in [MZ95]. While the proposed frame-
work enjoys the desirable feature of a deterministic semantics, it is sometimes
useful to consider nondeterministic extensions, in particular to model existing
nondeterministic systems. A possible extension is to use the choice construct of
[SZ90] which can be integrated seamlessly with a state-oriented language like
Statelog or XY-Datalog (see e.g., [GGSZ97]). Finally, we have shown how the
at transaction model can be extended to handle nested transactions using a
hierarchical state space. In this extended framework, low-level procedural con-
structs like before- and instead-triggers can be formalized in an intuitive way. Fi-
nally, a model-theoretic semantics based on labeled Kripke-structures has been
developed for Statelog with nested transactions, which provides a conceptual,
implementation-independent model for active rule behavior.

References

[ABW88] K. R. Apt, H. Blair, and A. Walker. Towards a Theory of Declarative
Knowledge. In J. Minker, editor, Foundations of Deductive Databases and
Logic Programming, pp. 89{148. Morgan Kaufmann, 1988.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley, 1995.

[AS91] S. Abiteboul and E. Simon. Fundamental Properties of Deterministic and
Nondeterministic Extensions of Datalog. Theoretical Computer Science,
78(1):137{158, 1991.

[AV91] S. Abiteboul and V. Vianu. Datalog Extensions for Database Queries and
Updates. Journal of Computer and System Sciences, 43(1):62{124, 1991.

[AWH95] A. Aiken, J. Widom, and J. M. Hellerstein. Static Analysis Techniques for
Predicting the Behavior of Active Database Rules. ACM Transactions on
Database Systems (TODS), 20(1):3{41, March 1995.

[BCP95] E. Baralis, S. Ceri, and S. Paraboschi. Improving Rule Analysis by Means
of Triggering and Activation Graphs. In Sellis [Sel95], pp. 165{181.

[BFKM85] L. Brownston, R. Farrel, E. Kant, and N. Martin. Programming Expert
Systems in OPS5: An Introduction to Rule-Based Programming. Addison-
Wesley, 1985.

[BFP+95] M. L. Barja, A. A. A. Fernandes, N. W. Paton, M. H. Williams, A. Dinn, and
A. I. Abdelmoty. Design and implementation of ROCK & ROLL: a deduc-
tive object-oriented database system. Information Systems, 20(3):185{211,
1995.

[BGP97] C. Baral, M. Gelfond, and A. Provetti. Representing Actions: Laws, Obser-
vations and Hypotheses. Journal of Logic Programming, 31(1{3):201{243,
1997.

[BH95] M. Berndtsson and J. Hansson, editors. 1st Intl. Workshop on Active and
Real-Time Database Systems (ARTDB), Workshops in Computing, Sk�ovde,
1995. Springer.

[BK94] A. J. Bonner and M. Kifer. An Overview of Transaction Logic. Theoretical
Computer Science, 133(2):205{265, 1994.

[BL96] C. Baral and J. Lobo. Formal Characterization of Active Databases. In
Pedreschi and Zaniolo [PZ96], pp. 175{195.

34

[BLT97] C. Baral, J. Lobo, and G. Trajcevski. Formal Characterization of Active
Databases: Part II. In F. Bry, K. Ramamohanarao, and R. Ramakrish-
nan, editors, Intl. Conference on Deductive and Object-Oriented Databases
(DOOD), number 1341 in LNCS, pp. 247{264, Montreux, Switzerland, 1997.
Springer.

[BW94] E. Baralis and J. Widom. An Algebraic Approach to Rule Analysis in
Expert Database Systems. In Intl. Conference on Very Large Data Bases,
pp. 475{486, Santiago, Chile, 1994.

[CFPT96] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Active Rule Manage-
ment in Chimera. In Widom and Ceri [WC96a], chapter 6, pp. 151{176.

[Cha92] S. Chakravarthy, editor. Bulletin of the Technical Committee on Data En-
gineering: Special Issue on Active Databases, volume 15(1{4). IEEE Com-
puter Society, 1992.

[Che95] W. Chen. Programming with Logical Queries, Bulk Updates and Hypothet-
ical Reasoning. In B. Thalheim, editor, Workshop Semantics in Databases,
Prague, January 1995. Technische Universit�at Cottbus.

[Cho95a] J. Chomicki. Depth-Bounded Bottom-Up Evaluation of Logic Programs.
Journal of Logic Programming, 25(1):1{31, October 1995.

[Cho95b] J. Chomicki. E�cient Checking of Temporal Integrity Constraints Us-
ing Bounded History Encoding. ACM Transactions on Database Systems
(TODS), 20(2):149{186, 1995.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite
Events for Active Databases: Semantics, Contexts and Detection. In J. B.
Bocca, M. Jarke, and C. Zaniolo, editors, Intl. Conference on Very Large
Data Bases, pp. 606{617, Santiago de Chile, 1994.

[CM94] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Speci�cation
Language for Active Databases. Data & Knowledge Engineering, 14:1{26,
1994.

[CPM96] R. Cochrane, H. Pirahesh, and N. Mattos. Integrating Triggers and Declar-
ative Constraints in SQL Database Sytems. In Intl. Conference on Very
Large Data Bases, pp. 567{578, Mumbai (Bombay), India, 1996.

[Day95] U. Dayal. Ten Years of Activity in Active Database Systems: What HaveWe
Accomplished? In M. Berndtsson and J. Hansson, editors, 1st Intl. Work-
shop on Active and Real-Time Database Systems (ARTDB), Workshops in
Computing, pp. 3{22, Sk�ovde, 1995. Springer.

[DGG95] K. R. Dittrich, S. Gatziu, and A. Geppert. The Active Database Manage-
ment System Manifesto: A Rulebase of ADBMS Features. In Sellis [Sel95],
pp. 3{20.

[DHW95] U. Dayal, E. Hanson, and J. Widom. Active Database Systems. In W. Kim,
editor, Modern Database Systems: The Object Model, Interoperability, and
Beyond, chapter 21, pp. 434{456. ACM Press, 1995.

[FT95] P. Fraternali and L. Tanca. A Structured Approach for the De�nition of the
Semantics of Active Databases. ACM Transactions on Database Systems,
20(4):414{471, 1995.

[FWP97] A. A. A. Fernandes, M. H. Williams, and N. W. Paton. A Logic-Based In-
tegration of Active and Deductive Databases. New Generation Computing,
15(2):205{244, 1997.

[GB97] A. Geppert and M. Berndtsson, editors. Proc. of the 3nd Intl. Workshop on
Rules in Database Systems (RIDS), number 1312 in LNCS, Sk�ovde, Sweden,
1997.

35

[GGSZ97] F. Giannotti, S. Greco, D. Sacc�a, and C. Zaniolo. Programming with Non-
Determinism in Deductive Databases. Annals of Mathematics and Arti�cial
Intelligence, 19(I{II):97{125, 1997.

[GL88] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Pro-
gramming. In R. Kowalski and K. Bowen, editors, Intl. Conference on Logic
Programming (ICLP), pp. 1070{1080, 1988.

[GL93] M. Gelfond and V. Lifschitz. Representing Action and Change by Logic
Programs. Journal of Logic Programming, 17:301{321, 1993.

[GMS92] G. Gottlob, G. Moerkotte, and V. S. Subrahmanian. The PARK Semantics
for Active Rules. In P. M. G. Apers, M. Bouzeghoub, and G. Gardarin,
editors, Intl. Conference on Extending Database Technology, number 1057
in LNCS, Avignon, France, 1992. Springer.

[ISO97] ISO-ANSI Working draft. SQL3, 1997. ISO/IEC JTC 1/SC 21/WG 3.
[KC95] S.-K. Kim and S. Chakravarthy. A Conuent Rule Execution Model for Ac-

tive Databases. Technical Report UF-CIS-TR-95-032, University of Florida,
1995. http://www.cis.u.edu/~sharma.

[KdMS90] G. Kiernan, C. de Maindreville, and E. Simon. Making Deductive Database
a Practical Technology: a step forward. In ACM Intl. Conference on Man-
agement of Data (SIGMOD), pp. 237{246, 1990.

[KLS92] M. Kramer, G. Lausen, and G. Saake. Updates in a Rule-Based Language
for Objects. In Intl. Conference on Very Large Data Bases (VLDB), pp.
251{262, Vancouver, 1992.

[Kow92] R. A. Kowalski. Database Updates in the Event Calculus. Journal of Logic
Programming, 12(1&2):121{146, 1992.

[KRS95] D. B. Kemp, K. Ramamohanarao, and P. J. Stuckey. ELS Programs and
the E�cient Evaluation of Non-Strati�ed Programs by Transformation to
ELS. In Ling et al. [LMV95], pp. 91{108.

[KU96] A. P. Karadimce and S. D. Urban. Re�ned Triggering Graphs: A Logic-
Based Approach to Termination Analysis in an Active Object-oriented
Database. In 12th International Conference on Data Engineering (ICDE),
pp. 384{391, 1996.

[LHL95] B. Lud�ascher, U. Hamann, and G. Lausen. A Logical Framework for Active
Rules. In Proc. 7th Intl. Conference on Management of Data (COMAD),
pp. 221{238, Pune, India, 1995. Tata McGraw-Hill.

[LLM98] G. Lausen, B. Lud�ascher, and W. May. On Logical Foundations of Active
Databases. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems, chapter 12, pp. 389{422. Kluwer Academic Publish-
ers, 1998.

[LML96] B. Lud�ascher, W. May, and G. Lausen. Nested Transactions in a Logical
Language for Active Rules. In Pedreschi and Zaniolo [PZ96], pp. 196{222.

[LMV95] T. W. Ling, A. O. Mendelzon, and L. Vieille, editors. Intl. Conference on
Deductive and Object-Oriented Databases (DOOD), number 1013 in LNCS,
Singapore, 1995. Springer.

[LS87] U. W. Lipeck and G. Saake. Monitoring Dynamic Integrity Constraints
Based on Temporal Logic. Information Systems, pp. 255{269, 1987.

[Lud98] B. Lud�ascher. Integration of Active and Deductive Database Rules. PhD the-
sis, Institut f�ur Informatik, Universit�at Freiburg, 1998. in�x-Verlag, Sankt
Augustin, 1998, ISBN 3-89601-445-5.

[Min96] J. Minker. Logic and Databases: a 20 Year Retrospective. In Pedreschi and
Zaniolo [PZ96], pp. 3{57.

36

[MW88] S. Manchanda and D. S. Warren. A Logic-Based Language for Database
Updates. In J. Minker, editor, Foundations of Deductive Databases and
Logic Programming, pp. 363{394. Morgan-Kaufmann, Los Altos, CA, 1988.

[MZ95] I. Motakis and C. Zaniolo. Composite Temporal Events in Active Database
Rules: A Logic-Oriented Approach. In Ling et al. [LMV95], pp. 19{37.

[MZ97] I. Motakis and C. Zaniolo. Temporal Aggregation in Active Database Rules.
In ACM Intl. Conference on Management of Data (SIGMOD), pp. 440{451,
Tucson, Arizona, 1997.

[NT89] S. Naqvi and S. Tsur. A Logical Language for Data and Knowledge Bases.
Computer Science Press, New York, 1989.

[PCFW95] N. W. Paton, J. Campin, A. A. A. Fernandes, and M. H. Williams. Formal
Speci�cation of Active Database Functionality: A Survey. In Sellis [Sel95],
pp. 21{37.

[PDW+93] N. W. Paton, O. D��az, M. H. Williams, J. Campin, A. Dinn, and A. Jaime.
Dimensions of Active Behaviour. In Paton and Williams [PW93], pp. 40{57.

[Prz88] T. C. Przymusinski. On the Declarative Semantics of Deductive Databases
and Logic Programs. In J. Minker, editor, Foundations of Deductive
Databases and Logic Programming, pp. 191{216. Morgan Kaufmann, 1988.

[PV95] P. Picouet and V. Vianu. Semantics and Expressiveness Issues in Ac-
tive Databases. In ACM Symposium on Principles of Database Systems
(PODS), 1995.

[PV97] P. Picouet and V. Vianu. Expressiveness and Complexity of Active
Databases. In F. Afrati and P. Kolaitis, editors, 6th Intl. Conference on
Database Theory (ICDT), number 1186 in LNCS, pp. 155{172, Delphi,
Greece, 1997. Springer.

[PW93] N. W. Paton and M. H. Williams, editors. 1st Intl. Workshop on Rules in
Database Systems (RIDS), Workshops in Computing, Edinburgh, Scotland,
1993. Springer.

[PZ96] D. Pedreschi and C. Zaniolo, editors. Intl. Workshop on Logic in Databases
(LID), number 1154 in LNCS, San Miniato, Italy, 1996. Springer.

[RH94] K. Ramamohanarao and J. Harland. An Introduction to Deductive
Database Languages and Systems. The VLDB Journal, 3(2):107{122, April
1994.

[Sel95] T. K. Sellis, editor. 2nd Intl. Workshop on Rules in Database Systems
(RIDS), number 985 in LNCS, Athens, Greece, 1995. Springer.

[Sin95] M. P. Singh. Semantical Considerations on Workows: An Algebra for
Intertask Dependencies. In Intl. Workshop on Database Programming Lan-
guages, electronic Workshops in Computing, Gubbio, Italy, 1995. Springer.

[SK96] E. Simon and J. Kiernan. The A-RDL System. InWidom and Ceri [WC96a],
chapter 5, pp. 111{149.

[SP97] P. Sampaio and N. Paton. Deductive Object-Oriented Database Systems:
A Survey. In Geppert and Berndtsson [GB97], pp. 1{19.

[SSW94] K. F. Sagonas, T. Swift, and D. S. Warren. XSB as an E�cient Deduc-
tive Database Engin. In ACM Intl. Conference on Management of Data
(SIGMOD), pp. 442{453, 1994.

[SZ90] S. Sacc�a and C. Zaniolo. Stable Models and Non-Determinism in Logic
Programs with Negation. In Proc. of the 9th ACM Symposium on Principles
of Database Systems, pp. 205{217, 1990.

[VG89] A. Van Gelder. The Alternating Fixpoint of Logic Programs with Negation.
In ACM Symposium on Principles of Database Systems (PODS), pp. 1{10,
1989.

37

[Via97] V. Vianu. Rule-Based Languages. Annals of Mathematics and Arti�cial
Intelligence, 19(I{II):215{259, 1997.

[WC94] J. Widom and S. Chakravarthy, editors. 4th Intl. Workshop on Research
Issues in Data Engineering (RIDE). IEEE Computer Society Press, 1994.

[WC96a] J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules
for Advanced Database Processing. Morgan Kaufmann, 1996.

[WC96b] J. Widom and S. Ceri. Introduction to Active Database Systems. In Active
Database Systems: Triggers and Rules for Advanced Database Processing
[WC96a], chapter 1, pp. 1{41.

[WF97] C.-A. Wichert and B. Freitag. Capturing Database Dynamics by Deferred
Updates. In Intl. Conference on Logic Programming (ICLP), Leuven, Bel-
gium, 1997. MIT Press.

[Wid93] J. Widom. Deductive and Active Databases: Two Paradigms or Ends of a
Spectrum. In Paton and Williams [PW93].

[Zan93] C. Zaniolo. A Uni�ed Semantics for Active and Deductive Databases. In
Paton and Williams [PW93], pp. 271{287.

[Zan95] C. Zaniolo. Active Database Rules with Transaction Conscious Stable
Model Semantics. In Ling et al. [LMV95], pp. 55{72.

[ZH90] Y. Zhou and M. Hsu. A Theory for Rule Triggering Systems. In Intl. Conf.
on Extending Database Technology, pp. 407{421, 1990.

38

