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guage provides the mediation engineer only with a
tree-structurednodel of the source, i.e., the names

We propose an extension to current view-based and possible nesting structure of XML elements as

mediator systems callethodel-based mediatign
in which views are definednd executedht the
level of conceptual models (CMs) rather than at
the structural level. Structural integration and
lifting of data to the conceptual level is “pushed
down” from the mediator to wrappers which in our

system export classes, associations, constraints,

defined by an XML DTD, but gives no hint on se-
mantic relationships, class structures, not to men-
tion application domain specific constraints.

We argue that such a mediator architecture
based solely on an XML-like semistructured data
model, while very powerful and useful in simple
“one world scenarios” (say comparison shopping

and query capabilities of a source. Another novel with amazon.com and barnesandnoble.com ),

feature of our architecture is the use dbmain

is not adequate when mediating across complex

maps semantic nets of concepts and relationships sources whose data comes from seemingly disjoint

that are used to mediate across sources fraoi-
tiple worlds (i.e., whose data are related indi-
rectand often complex ways). As part of register-
ing a source’s CM with the mediator, the wrapper
creates a “semantic index” of its data into the do-

“worlds”:

Example 1 (Two Neuroscience Worlds)
Consider two Neuroscience laboratotiethat
perform experiments on two different brain
regions. The first laboratongYNAPSE studies

main map. We show that these indexes not only yongritic spines of pyramidal cells in the hip-

semantically correlate the multiple worlds data

pocampus. The primary schema elements are

and thereby support the definition of the integrated , ;s the anatomical entites that are reconstructed

CM, but that they are also useful during query pro-

cessing, for example, to select relevant sources. A
first prototype of the system has been implemented

for a complex Neuroscience mediation problem.

1 Introduction

from 3-dimensional serial-sections. For each
entity (e.g., spines, dendrites), researchers make
a number of measurements, and study how these
measurements change across age and species
under several experimental conditions.

In contrast, thencMIR laboratory studies the
Purkinje Cells of the cerebellum, inspecting the
branching patterns from the dendrites of filled
neurons, and localization of various proteins in

Mediator systems federate and integrate data fromperon compartments. The schema used by this

disparate sources in order to elicit information group consists of a number of measurements of
that the individual sources cannot provide indepen- he dendrite branches (e.g., segment diameter) and

dently. Currently, the “standard” mediator archi- e amount of different proteins found in each of
tecture employs wrappers that translate heteroge-inese subdivisions. Let us assume each of the
nous source data into a common (often semistruc- yyo schemas has a clashaving alocation ~ at-

tured) data model like XML. A “mediation engi-  gipyte which can have a value lik@yramidal
neer” provides an integrated view definition (IVD)  caii dendrite” and "Purkinje Cell" ,
on the wrapped XML sources. In such a sys- spectively.

tem, an IVD is ideally expressed in a declarative
guery language for XML or semistructured data.
When developing the IVD, an XML query lan-

re-

1seesynapses.bu.edu
ucsd.edu (NCMIR)

(SYNAPSE) andwww-ncmir.



Newon) To formalize this we can usdescription logic

e X o (DL) statements (see, e.g., [CLN98]) sucltas:
("Compartment Spiny_Neuron
\‘;Td ZD (\_.,7 A%@ NeuronC. Jhas.Compartment
LN J BN NS Axon, Dendrite, Som& Compartment
(mwon ) (Denatte) (Soma ) AND (Purane Cell ) (Pyrmical_Gol) Spiny.Neuron= Neuronr1 3has.Spine
hes Purkinje Cell, PyramidalCell C Spiny.-Neuron
(Branch) DendriteC_ 3has.Branch
Y has ShaftC Branchr 3has.Spine
(om SpineC Jcontains.lonBinding Protein
‘ SpineC lon_RegulatingComponent
S Nl lon_Activity C 3subproces®f.Neurotransmission
(Proten) spine ) lon_Binding_ProteinC Proteinr1 3controls.lonActivity
T Gontans lon_RegulatingComponent= Jregulates.lopActivity
(on_pinding Prosain, - (Ton Regting Companert> Together with additional inference rules (e.g., for
\f?r“""s/_\ = reaulaes transitivity ofhas ), DL axioms like these formally
Clon pciviy capture the domain knowledge. Figure 1 shows
RS a graphic portrayal of these DL formulas in the
Wajrolranwiss on’ . . .
N— form of a domain map a kind of semantic net
used for defining and executing IVDs at the media-
Figure 1. Domain Map for SYNAPSEand NCMIR tor. The above example from a real-world integra-
(unlabeled, gray edges “isa” ~"“LC") tion scenario illustrates a fundamental difference

in the nature of information integration as stud-
ied in most of the database literature and as nec-
How are the schemas sfyNAPSEandNCMIR essary for scientific data management. In the lat-

related? Evidently they carry distinctly different ter, seemingly unconnected schema can be seman-
information and do not even enter the purview of tically closewhen situated in the scientific context
the schema conflicts usually studied in databaseswhich in this case is the neuroanatomy and neuro-
[KS96]. To the scientist however, they are re- physiological setting described above. We call this
lated because of the following reason: Release mediation across multiple worlds

of calcium from spirly 'dendrites OCCUTS @s & re-  |n this paper we develop a novel model-based
sult of neurotransmission and results in changes mediator architecture for such mediation scenar-
in spine morphology (sizes and shapes obtainedjps define its formal framework, and sketch query

from sYNAPSE. Propagation of calcium signals  processing in our system prototype.
throughout a neuron depends upon the morphol-

ogy of the dendrites, the distribution of calcium
stores in a neuron and the distribution of calcium
binding proteins, whose subcellular distribution
for Purkinje cells are measured RgMIR.

Thus, a researcher who wanted to model the ef-
fects of neurotransmission in hippocampal spines
would get structural information on hippocampal
spines fromsYNAPSE and information about the
types of calcium binding proteins found in spines
from NCMIR. Note that in order to connect the two
sources, we need, independent of the observed ex

perimental source datadditional domain knowl- called domain map(DM) at the mediator. DMs

edgelike the following: are related to semantic nets and ontologies, but
Purkinje cells and Pyramidal cells have dendrites (j) have a formal semantics, (ii) are more power-
that have higher-order branches that contain spines. fy| due to rule-based extensions, and (iii) can be
Dendritic spines are ion (calcium) regulating compo-  “executed” during query execution of IVDs (Sec-
nents. Spines have ion binding proteins. Neurotransmis- tion 5). Section 6 concludes with a discussion on
sion involves ionic activity (release). lon-binding pro-  re|ated work.
teins control ion activity (propagation) in a cell. lon-
regulating components of cells affect ionic activity (re-
lease). 2see Definition 1 for details

The outline and main contributions are as fol-
lows: Section 2 presents the overall architecture:
schema definitiorand data accessf sources is
lifted from the structural to theonceptual level
thereby facilitating the mediation engineer’s task
of developing IVDs. The architecture is indepen-
dent of a specific formalism for conceptual models
(CMs) due to a special CNplug-in mechanism
which is based on the underlying XML transport
syntax and a generic meta-model for CMs (Sec-
tion 3). Mediation across multiple worlds is facil-
itated by incorporating an expert knowledge base
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Figure 2. A Model-Based Mediator
2 Mediation Architecture

Figure 2 depicts a system architecture for model-
based mediation: As is standard for mediator ar-
chitectures, differences in the sources’ data mod-
els are resolved by wrappers that translate the raw
data into a common generic data format (XML)
on which current mediator systems would directly
define the integrated views using an XML query
language [LPV00]. We extend this architecture
by lifting exported source data from the level of
uninterpreted, semistructured data in XML syn-
tax to the semantically rich level afonceptual
models with domain knowledd€MSs). In this
way, the mediator's complex task of defining in-
tegrated views over heterogeneous sources be
comes more manageable since class hierarchies
object structure, properties of relationships (rela-
tional constraints, cardinalities, ...), and in par-
ticular domain specific constraints of sources all
become accessible for view definition at the me-
diator. The mediator’s view definition language
in such a model-based architecture is not only a
semistructured query language (like Lorel, YATL,
XML-QL, Quilt, ...), but also a declarativejuery
language for conceptual modetisat can express
complex schema and instance level transforma-
tionsand checlogical constraints

Rather than reinventing yet another variant of
conceptual models, we use a simple, generic con-
ceptual model GCM at the mediator level. The
wrappers can export their “CM-lifted” source data

3Strictly speaking, GCM is a meta-model for CMs.

either directly in GCM, or in any standard CM for-
malism like (E)ER, UML, OMR, RDF, etc. for
which a CM-to-GCMplug-in has been provided.
Syntactically all information (queries, CM signa-
tures and data, mediator/wrapper dialogues, etc.)
goes “over the wire” in XML syntax. Therefore
the mediator also includes an XML sublanguage
for translating between XML and the mediator’'s
local GCM representation making the system com-
pletely independent of the chosen XML syntax for
exchanging CMs. The KIND mediator prototype
(Section 5) is based on an object-oriented logic
programming system for realizing practically all
of the above tasks.

The Mediator System at Work. At runtime, a
wrapped sourcé can join the mediated system by
registeringits conceptual model CikF) with the
mediator)M . This requires thab sends the me-
diator descriptions of the exportethss schemas
relationship schemasandsemantic ruleghat are
evaluable at the mediator (e.qg., for defining virtual
classes and relationships, CM-specific constraints,
or arbitrary domain-specific constraints). Apart
from this schema level informatiot$, also trans-
mits a description of itgjuery capabilitieso M,
which is a (usually very limited) CM query lan-
guage that can be seen as the “logical API” for
retrieving actual object instances of ¢¥). The
query capability descriptions minimally specify
means (e.g., primary keys) for browsing through
all instances of exported classes and relations, and
optionally declare further capabilities &inding
patternsor query templatesvhich allow the me-
diator to optimize query evaluation by “pushing

down” subqueries and computations to the wrap-
per

The exported objects of a C) can have spe-
cial anchor andcontext attributed that provide
the “semantic coordinates” of the data in the me-
diator's domain mapDM(M). Recall from the
introduction that although the mediatdf “sees”
all source data at the conceptual level G3), for
multiple world scenarios, there is typically little or
no overlap in the concepts of QM4;). The role
of the domain map DNIM) is thus to provide a
declarative means for specifyimaglditional knowl-
edgethat isnot presentn the sources but that can
be used (like a road map) to navigate through and
interrelate the multiple source worlds.

4or methodsi.e.,derived attributesvhich are computed on
demand at the mediator.



CM Plug-In Mechanism. One goal of our
model-based mediation architecture is to make the
mediator independent of a source’s current or fu-
ture choice of CM formalism for communicating
conceptual-level schema and data.

As a first step, we require that sources export
all CM information (i.e., at the schema and in-
stance level) in XML. For example, CMs formal-
ized in XML Schema or RDF Schema come di-
rectly in XML syntax® For other formalisms like
(E)ER, ORM, UML class diagrams etc. XML ex-
change formats are available or can be easily de-
fined. For each such format the mediator system

possibly some default values from the direct su-
perclas$), but alsobehavior(via derived or com-
puted methods) may be inherited as in OOP. Ob-

jects can participate irelationships(or associa-

tions) which can be further constrained to ag-
gregationscompositionsor other whole/part rela-
tionships with a specific semantics [Ode94]. Addi-
tional semantics of relations can also be expressed
using cardinality constraints value constraints
functional dependencigstc. Finally, arbitrary
non-structurablomain-specific constraintre of-

ten expressed in a more or less formal constraint
language like OCL (UML's object constraint lan-

needs to have a specific system component and in-guage). From the above, we derive a set of require-

terface, including say an XMI-API for handling
UML models expressed in XMI [XMI99].

A second and crucial step for the plug-in mech-
anism is to devise a meta-model called GCM
(Generic Conceptual Modgethat is universalin
the sense that any conceivable CM formalism can
be expressed in it. Now the crux of the plug-in
mechanism is that the mediator no longer needs
one module for each CM formalism. Instead a
new CM formalism say UXF [SY98] is added to
the system by simply plugging an UXF-2-GCM
translator into the mediator. Essentially such a
translator is nothing more than @mplex XML
guery expression that a source sends once to the
mediator when a new CM is introduced. For
example, a UXF-2-GCM translator is an XML
query that maps XML documents conforming to
the UXF DTD to their equivalent GCM represen-
tations thereby providing the desired GCM view
on UXF. Hence, in this architecture the mediator
needs onha single GCM enginéor handlingar-
bitrary CMs.

3 Formal Framework

Our requirements for the generic conceptual
(meta-)model GCM are derived from the following
typical features of conceptual models: Elements
of the domain, calleabjects(or entitieg are or-
ganized intoclasseqentity type} based on sim-
ilarity or common features. The availabheeth-
ods (attributes sloty and their result types deter-
mine the structure of the objects of a class. Classes
can be organized hierarchically viesabclass re-
lation. The latter induces a notion @fheritance

for example structuralandvalue inheritanc€in-
stances of a class inherit their “slot structure” and

5see www.w3.org/TR/xmlschema-{0,1,2} and

www.w3.org/TR/rdf-schema/

ments for a GCM:

GCM Core Expressions. The GCM should al-
low the following atomic schema- and instance-
level declarations:

e instancéX, C') specifying that the object
namedX is aninstance ofclassC  (INST)

subclaséCy, C») specifying thatC; is a
(subclass off’s, i.e., instances af’; are also
instances o€, ’ (SUB)

methodC, M, C),) specifying thatmethod
M is applicable to objects i@ yielding (zero
or more) objects irC,,. A concrete instance
(method result) can be denoted similarly,
say for instancéx, C), instancéy, Cys) as
methodg,s:(z, M, y) (METH)

relation(R, A, /C4, ..., A,/C,) specifies an
n-ary relation among objects of class&s;
A; correspond toattributes or association
roles (REL)

Note that (SUB) means thaubclasgs reflexive
and transitive. To specify thatbclasss also an-
tisymmetric (implying thasubclasss a partial or-
der, which prevents cycles in the class hierarchy)
or to express arbitrary domain constraints, we em-
ploy a GCM extension mechanism.

GCM Extension Mechanism. The extension
mechanism of GCM is given by a suitallegic
rule languagde.g., to express domain constraints)

¢ asyntaxfor rules in the style head if body
deriving new information (head provided
bodyis true, and (RULES)

6A multiple inheriance probleran arise if a class has sev-
eral direct superclasses.

“sometimes(’;, C» are calledspecializationsor general-
izationsof each other




GCM expression I FL expression | other FL axioms |

instancé X, C) X:C
subclas$C', Ca) Cp:Co C:C:=C:class
methodC, M, Cyr) C[IM=»C\s] C1:C2:-C1::C3,C3::C2
method,,s¢ (X, M, Y) X[M—»Y] X:02:=X:C1,C1:C2
relation(R, A1/C1,...,An/Cr) R[A1=Ch;...; Ap=Ch]
relationmst(R, Al/Xl, L. ,An/Xn) T'(Xl, . ,Xn) : R[A1—>X1; .. .;An—>Xn}

Table 1. F-logic fragment for the generic conceptual model GCM

e an associated logicaemantics (SEM) CM. However, FO(LFP) and similar fixpoint log-

ics from finite model theory do not have an intu-

itive, declarative semantics, hence are not adequate

as a specification language for CMs. A declara-

tive rule language with an intuitive semantics that

' expresses precisely FO(LFP) is Datalog with well-
founded negation.

The form of the rule head determines what is be-
ing defined, e.g., new instance or schema informa-
tion for objects, classes, and relationships using
the core expressions above. Certain logic rules
calledintegrity constraintsdo not derive “regular

object information” but check the consistency of
a CM instance. We express a logic integrity con-

strainty that should hold for all instances ofa CM  F-Logic as GCM. - As the concrete GCM for the
as adenialy := — . Hence ify) can be derived ~ formalization and implementation of our model-

then the CM instance violates and an inconsis- Pased mediator system, we use F-Logic (short:

tency is detected. We extend this basic functional- FL) [KLW95], an object-oriented extension of
ity of boolean denialg by requiring, that when a well-founded Datalog. The choice of FL is partly
violation is detected for convenience, since FL natively contains all of

the above-mentioned GCM concepts (and several
e adeniak) can add dailure witnesswy, to @ others) due to its roots in knowledge representation
distinguishednconsistency class .  (IC) and deductive, object-oriented databases. Hence
with FL we get a GCM formalism “for free” and
avoid indirect Datalog encodings at the user level.
In particular, the flexible, higher-order FL syntax

, h | di turns out to be extremly useful in the real sys-
GCM Expressiveness. There are several candi- o118 | a5t hut not least, FL implementations like

date formalisms that satisfy the above GCM re- FLORA [YKO0O] and FLORID [FLORID] are read-

qwremerllts.l For example one maly Just use f';St' ily available and have been successfully used in
Ordef caiculus FQ or some Datalog variant for o|51eq areas like guerying of semistructured data
specifying extensions to the GCM core part. In- [LHL *+98], mediation of Web sources [MHL99],
dee?' FO can a!ready expregﬁ common €oN- 544 in an earlier version of our Neuroscience me-
straints for relational models including key con-  io.00 [GLMOO]

straints, inclusion dependencies, aggregation and  Aq the GCM. we use a fragment of FL that can
cardinality constraints etc. However, CMs often “host” all standard CM formalisms as “logic plug-
contain “inductive” properties and constraints like ins”. Table 1 shows the equivalent FL syntax for
aninheritance semantictat relates the meaning .GCM core expressions and a minimial set of
of “subclass to t'hat of “instance, ora qlosure FL axioms specifying the reflexive and transitive
propertyfor certain whole/part relationships. Such closure of “: ”, and the upward propagation of
properties ar@ot expressible by FO formulas but .o\ . " As the GCM extension mechanism
in appropriate extensions of FO with fixpoint oper- we use FL rules with well-founded negation se-
ators like FO(LFP) or Datalog. Therefore our final mantics, i.e., expressions of the fohad :— body

requirementis that whereheadis an FL atom that becomes true if

o GCM expressiveness should extend FO and body a conjunction of FL atoms or negated atoms,
includeinductive properties (EXPR) is true. Recall that the GCM and its FL incarna-

Example 2 shows how such witness objects are in-
serted intdc .

. . 8 - i i in-
For example, if we pICk FO(LFP) as the GCM for schema-level de_zductlons, XPath queries, rule main
tenance (e.g., when object parameters are dropped or added,

rule language, we kno‘{V Fhaﬂ PTIME.properties the “variable-arity” frame notation is more robust wrt. the
can be computed on finite ordered instances of a changes), etc.



tion only specify a minimal core model, but addi- scenarios. In our architecture, DMs are special
tional constraints can be easily added using logic conceptual models whose classes weaaticepts
rules: For example, assume the CM requires that Concepts provide the semantic anchor points from
the subclass relation:!” or any other relation? which sources can “hang off” their data. Concepts
is a partial order. The following example illustrates can be linked via binary relations calleales In-

how this is formalized. tuitively, a labeled edg€’ = D of a DM means
that if ¢ € C then there is somd € D such
thatr(c,d) holds: e.g.dendrite ¥ branch
means that every dendrite must have some branch
(cf. Figure 1). More formally:

Example 2 (Checking Inductive Properties)

The following integrity constraints test whether
a binary relationR is a partial order on a class
C: rule (1) finds allX in C for which R is not
reflexive. Similarly, (2) reports missing transitive Definition 1 (Domain Maps) A domain mags a
edges, and (3) derives node object pairs that finite set comprising (i) description logic (DL)
violate R's antisymmetry onC. Thus, R is a facts and (ii)logic rules both involving finite sets
partial order onC' iff (1-3) donotinsert a failure  C (conceptsandR (roles). Facts are visualized as
witness intac : edge-labeled digraphshere nodes correspond to
concepts and edge labels to roles. The description

1) we(C,RX) :ic =X:C, R(X,X). ) )
(1) il ) e not REGX) logic formulas for edges are given by:

(2) we(CRX,ZY) :ic =X)Y,Z :C,
R(X,2), R(ZY), not R(X,Y).

_ e C—>D & CLCD (isa)
(3) wes(C,R,X,Y) :ic =X:C,

REGY), RY.X), X #Y. e CLD & CCIrD (eX
If we assign “:” and the meta-classclass ” ALL:r
(holding all class names) to the relation variaBle cC = Do CEVD (all)
and class variabl€’ respectively, the above rules e AND—»;{C;} & Cin---nC, (and)
test whether %: " is indeed a partial order. This
example also shows the power of schema reason- ® OR—+{C;} & CiU---UC, (or)
ingin FL. =
ingin eC3D & C=D (eqV)

Example 3 (Cardinality Constraints) Ed . giti for incl
Aggregation and cardinality constraints are ges expressing necessary conditions Tor Inciu-

ubiquitous in real applications. Consider the SO0 ofC'in D (isg) and existence af-related ob-

; ; jects inD (eX are most common (Fig. 3). If alt
GCM declarationrelation(R, A/C1, B/C>) and Jec _ ;
assume the CM at hand specifies that the cardi- "¢lated objects of any € C"have to be inD, (all)

nalities of rolesA and B satisfy the conditions is used. NodesNDandORcorrespond teonjunc-

card,(N):=(N=1) and cardp(N):=(N<2) tionsanddisjunctionsof the union of all outgoing
Applied to has(neuron,axon) this says_that edges, respectlvely. When gnlquanodes are
a neuron can havec2 axons and an axon is omitted and_ outgomg arcs directly attached t(_) f[he
contained in exactIane neuron; more formally: concept being defined. Necessary and sufficient
’ conditions ofC' are expressed usingdy).
wxi (RVBN) ric - DL is a subset of first-order logic (FO). For ex-

N = count {VAIVBLR(VAVB) }, N#1. ample, the equivalent o&g) in first-order logic is:
ws2(R,VAN) :ic =

N = count {VB[VA]; -:R[A—VA;B—VB]}, N>2. e Vz (C(z) = Jy (D(y) Ar(z,y)) FOEXY
The body of the first rule counts for each vaii@
of B the numberN of valuesVA If N#1 a car-
dinality violation is detected and the witnesg
gives the violating tripleR, VB, N. The second
rule illustrates a different FL syntax for tuple ob-

There are different ways in which we can “exe-
cute” the axiom for an edge at the mediator, viz.
as anintegrity constraintor as anassertion e.g.,
translating FO£X) as anintegrity constraintin F-

: ' logic (FL) yields
jects and check& <2 for B by grouping orvA
Wo,r,p(X) ric = X:C, not (Y :D, r(X)Y))
4 Mediation with Domain Maps and tests whether the mediator’s object base con-

tains for eackx: Ca correspondiny: D; otherwise
Domain maps (DMs) formalize expert knowledge a violation is reported. Such an integrity constraint
that is needed to mediate across multiple world is useful when the mediated object base is required



4

@&

has

Compartment ALL: has
|ny Neur({n
Neost a ( Dendrite  MyDendrit
eostriatum @ QH/Z ( MyDendrite
= proj
edium_Spiny_Neuron Neurotransmltter AND
\—& exp
Substance P Dopamme R

M JﬁrOJ

Globus Pall idus_Internal

N T

Figure 3. Domain map after registering new knowledge about

to bedata-completevrt. C = D. The other, more
frequent case is to view FEX) as arassertiorthat

in the real world (but not necessarily in the object
base) the corresponding target objgeixists. The
following assertion creates a virtual placeholder
objectf ¢.,,p (z) Wwhenever the object base doext
containy:

- X:C,
7)), Y =f

Y:D, r(X,Y)

not (-Z:D, r(X, c,r,0(X).

If necessary, a DM can use the full expressive
power of the underlying GCM. However, expres-
siveness is paid for with complexity and the re-
quirement (EXPR) above can makeasoning
about conceptandecidable:

Proposition 1 Subsumption and satisfiability are
undecidable for unrestricted GCM domain maps.

Here,subsumptiomeans to decide whether mem-
bership in a concept class' implies member-
ship in another clas®, for all logic interpreta-
tions (i.e., instances of the DM) that satisfy a
given domain map DMSatisfiabilityis the ques-
tion whether such af exists.

In our experience, in a typical mediator system,
reasoning abouthe DM may be required only to
a limited extent. Instead, a specific DM is given to
navigate the “multiple worlds” and to define and
executantegrated views.

Registering Source Data. A sourceS may reg-

ister its data with the mediatdil by “anchoring”

its objects (i.e., the instances of CH)) at the me-
diator's domain map DMvithoutchanging the lat-
ter: each data objeote S is simply “tagged” with

the concept(sl’; in DM of which o is an instance.
Thus,M can derive (in FL)o:C; ---0: C,,.

“Substantia 1 nigra, J)C C Subslanlla nlgra J)I'

po

G"Igt;us_Pal li dus_Exte;él

MyNeuron and MyDendrite  (dark)

A sourceS can alsochangethe mediator's DM

by adding and refining DM concepts: Figure 3
depicts a DM after registering two new concepts
MyNeuron and MyDendrite The knowledge
about these is sent t using DL axioms:

MyDendrite = Dendrite M1 Jexp.Dopamine R

MyNeuron C Medium_Spiny _Neuron
M 3Jproj.Globus  _pallidus

M Vhas.MyDendrite

_external

Thus instances dftyDendrite  are exactly those
dendrites that express Dopamine R(eceptor), and
MyNeuron objects are medium spiny neurons pro-
jecting to Globus Palladius External aodly have
MyDendrite s. Assuming properties aneherited
along the transitive closure aa ,° it follows
that MyNeuron, like any Medium_Spiny _Neuron
projects to certain structure®Rin Fig. 3). With
the newly registered knowledge, it follows that
MyNeuron definitely projects to Globus Palladius
External. If we want to specify thatdnly projects

to the latter, amonmonotonic inheritan¢e.g., us-
ing FL with well-founded semantics can be em-
ployed.

Integrated Views Using Domain Maps. Do-
main maps include base relations likka and
has _a. Often, when using a domain map as part
of the integrated view definition IVD, we have to
infer knowledge, i.e., derive virtual relations: e.g.,
“Purkinje cell has_a axon” (since Purkinje cell
isa neuron and neurdms _a compartment called
axon). This is accomplished by applying certain
graph operationson the domain map DM. E.g.,
we can derive th@eductive closurdas _a_star

of has _a wrt. isa as follows:

%or S’s local copy of the DM

10¢.g., using the rules for:* " (=isa ) in Table 1



tc(R)X,Y)  —RX.Y). 5 Query Processing in the KIND Me-
te(R)(X,Y) —tc(R)(X,2), tc(R)(Z,Y). diator Prototype

de(R)(X)Y)  —tc(isa)(X,Z), R(ZY).
dc(R)(X,Y) —R(X,2), tc(isa)(Z,Y). . . .
has_a.star(X.Y)  —dc(has _a)(X.Y). A prototypical implementation of the model-based

mediator architecture calledip* [GLMO01] has
The rules forc( R) define thetransitive closure  been developed, based on theoRA system
of any binary relationR. The rules fordc( R) [YKOQ] as the deductive engine. The development
define the deductive closure &f wrt. the transi-  of the architecture and the system was driven by
tive closure ofisa . Intuitively, R links are prop-  the need to mediate real data coming from largely
agated up and down thea chains. The rule disjoint Neuroscience “worlds”. The following ex-
for has _a_star derives all inferablalirect has _a ample is taken from this mediation scenario and
links. Note thathas _a_star itself is not transi- illustrates how generic operations on the domain
tive, i.e., transitivehas _a edges are not included map are useful to formulate and execute complex
in has _a_star . Indeed, it would be wasteful to queries at the mediator.

compute the much largee(has _a_star) when Using the mediated classatsstribution
evaluating the IVD since a recursive traversal of andprotein _distribution from above, and a
the direct links is sufficient. classneurotransmission

. In Example 1, the. two sources could be related neuriransmission[organism string
simply because their data was anchored at con- transmitting  _neuron =string
cepts that were linked via relationships in the do- transmitting ~ _compartment =sstring
main map. This is an example of a lookeler- receiving neuron =string

receiving _compartment =-string

ation of correlated data where no némtegrated neurotransmitter  =>string |.

objectsare computed at the mediator. Instead, the

integrated view is just a union view on the sources we can answer queries like the following:
but (due to the model-based architecture) with the
advantage that data can be navigated an correlated
at the conceptual level using a domain map. Ex-
ample 4 goes beyond this loose federation and ex-
tends the global-as-view integration paradigm to
define integrated views not only over classes from |n terms of the given views, this user query can be
information sources, but over a combination of in- \yritten as

formation sources and the domain map:

“What is the distribution of those
calcium-binding proteins that are found
in neurons that receive signals from par-
allel fibers in rat brains?”

answer(P, D) ‘—  neurotransmission[
Example 4 We can construct the IVD for the me- organism —'rat;
. . . . . transmlttlng _compartment
dlatelzd. Classproteln_ _distribution and popu- _parallel fiber’;
late it in the following manner: receiving _neuron —X;
receiving _compartment —Y],
D: protein  _distribution[protein _name—Y; D: protein  _distribution[
animal —Z; distribution _root —P; protein _name—P; ion _bound
distribution —D] - —»{calcium }; distribution _root —_].
'NCMIR'.protein.name=Y, o . o
'SENSELAB'.neuron.organism=Z, This is a typical query of a scientist who stud-
contains(ANATOM'.nervous system ies neurotransmissiorfand produces the data of
-has _astar, P), SENSELAB above), and needs information gath-
aggregate(Y, . . .
'NCMIR’.protein _amount.amount ered by groups that stugyotein localization(like
has _a_star,P,D). NCMIR). Note that the user does not specify the

. _ distribution root, forcing the mediator to provide
The function aggregate  recursively traverses g “reasonable” root for the neuron-compartment
a binary relationR (here: has_astar ) start-  pairs that satisfy the first condition. The follow-

ing from node P, and computes the aggre- ing are the main steps of the query plan:
gate of the specified attribute at each level

of the relation R. The result for the com- 1. push selectiongrat , parallelfiber ) to
putation for P="cerebellum" , z="rat* , and SENSELABandget bindinggor X andY
Y="Ryanodine Receptor" can be seen in the

. 11Knowledge-basedIntegration of Neuroscience Data
system snapshot in [GLMO1]. www.npaci.edu/DICE/Neuro/kind01.html



2. using the domain map DM/), select and generation of DM graphs for the user interface
sourcegthat have data anchored for the neu- [GLMO1].
ron/compartment pairg,Y from step (1); in

our case, onlWwcMIR is returned ]
Related Work. [CDG'98] present an architec-

3. push selectiongiven by thex,Y locations to ture that uses conceptual models to support in-
NCMIR, andretrieveonly proteinsP that are  formation integration. While we use an FL ver-
found inX,Y sion of GCM, they employ a description logic

d h | distributi ¢ calledDLR to formalize ER diagrams and other
Now we need to compute the actual distribution of ~\,s - Note that the focus in description logics

gacﬂ_protgmfr:om_NCI\gF;_at fjhe ml_e-d|ator%.But ©0 " is on reasoningabout CMs at theschema level
0 this using the view defined earlier, we firstmust 5y ot o deriving new information about a pop-

determine whicfbrain _region c.)f the NEUron ylatedinstanceof a CM as in our case. There-
should serve as the root Qf the distribution. This is fore description logics are designed such that prob-
accompllshe_d by.computlng tlﬂmst upper bound lems like satisfiability, subsumptionand equiva-
(lub) of locations in the domain map. lenceof concepts remain decidable at the schema
4. with the lub as the root nodecompute level. Since already FL without object creation
the view protein _distribution at the (i.e., function symbols) can express all FO queries,
mediator as described before. Note that réasoning about CMs in our GCM model is unde-
this involves adownward closurealong the ~ Cidable in general. However, in our architecture
has a_star relation. we use only a limited amount of reasoning about
CMs and the focus is oexecution(evaluation) of
The last two operations filter out a segment in |ogic rules on given object instances of CMs, i.e.,
the domain map as the “region of correspondence” a much more tractable problem. Moreover, in real
between the two information sources, and demon- gpplication scenarios like our Neuroscience do-
strate how graph operations on the domain map main, restricted and decidable fragments like the
can be actively used to compute conceptual map- AnaTom domain map are often sufficient.

pings between sources. [FRV96] present a method for rewriting and de-
composing queries in a cooperative information
6 Discussion and Conclusions system using “semantic knowledge”. However,

their work does not deal at all with mediation at the

We have presented a novel mediator architecture conceptual level, or the use of domain knowledge
for complex multiple world scenarios, which re- 10 mediate across multiple world scenarios. Rather
quire additional knowledge in order to federate or “Semantic knowledge” in their setting means OQL
integrate across the data. The additional domain réwrite rules of the forn@,~@- that can be ap-
knowledge is made available to the mediator in Plied for query reformulation.

the form of a high-levedomain mapacting as A system architecture developed by ex-
a “semantic coordinate system” that can be used perts from the Neuroscience domain is de-
by sources to situate their data in the global con- scribed in [NLC'99].  Like many generic
text. The complexity of scientific domains like the models, their EAV/CR model is based on a
Neurosciences also requires that view definitions ternary entity-attribute-value representation, ex-
are expressed at the semantically rainceptual ~ tended with classes and relationships. However
leveland not just at the level of semistructured data their approach deals with the “data part” of in-
(XML) as in current mediator systems. Our archi- tegration only. In particular, there is no suitable
tecture is “immune” to the formalism for concep- declarative rule language for defining complex in-
tual models as used by the sources due to a plug-tegrated views or queries.

in mechanism that maps other CMs, expressed Theimportance of semantics in information ex-
in XML syntax, via complex XML queries, to a change is also witnessed by the recent interest in
generic conceptual model GCM. A prototype has XML Schema and RDF. Indeed RDF or XML
been implemented using an underlying F-logic en- Schema, when used with a rule language like F-
gine for evaluating queries and views in the GCM, logic, can be used as a GCM.

graph operations on the domain map (digh,and At least two decades of prior research exists in
deductive closures), and even |/O operations like the general area of information integration. Sheth,
XML transformations (as needed for CM plug-ins) in a recent overview [She98], classified informa-



tion integration research into three generations. [GBMS99]
In our architecture, similar to second generation
approaches like TSIMMIS [GMPI7], integrated

views are defined using the so-callgbbbal-as-

view(GAV) approach, in which an integrated view  [GLmo0]
definition IVD of the global view is defined in
terms of local views on the sources. However,
our system specifies (and executes!) IVDs at the
level ofconceptual modelsxported by the sources
and thus falls into the category of third generation
approaches which focus @emantic integration
Also, unlike other GAV systems, our use of DMs
allows us to define global views via DMs over
sources that could not have been joined directly.

Since domain maps correspond to edge-labeled
graphs, our global views involveomplex recur-
sive operationsOn the other handpcal-as-view
(LAV) approaches like SIMS [SIM98] define each
local source as a view on the more pervasive global
schema. For answering a user query on the global[ksgs]
schema, an inverse operation is used to map the
query to appropriate local schemata. Often, such
inverse operations may not, and in the case of our
complex, recursive views, do not exist.

COIN [GBMS99] performs integration by cre-
ating a domain model as a universe of primitive
and semantic types, where a semantic type can
take a differentvalue in every context that uses
it. The system allows the mapping of source-
specific values to the same semantic type and per-
mits axioms that convert between value domains [MHL *99]
for the same semantic type. Thus COIN'’s notion
of domain knowledge or ontology effectively re-
solvesattribute domain conflictsand does not ad-
dress the problem of mediating semantically dis- [NLC+99]
tinct schema by any schema-based integration op-
eration.

[GLMO1]

[GMP+97]

[KLWO5]

[LHL 98]

[LPVOO]
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