
Model-Based Mediation with Domain Maps
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Abstract

We propose an extension to current view-based
mediator systems calledmodel-based mediation,
in which views are definedand executedat the
level of conceptual models (CMs) rather than at
the structural level. Structural integration and
lifting of data to the conceptual level is “pushed
down” from the mediator to wrappers which in our
system export classes, associations, constraints,
and query capabilities of a source. Another novel
feature of our architecture is the use ofdomain
maps, semantic nets of concepts and relationships
that are used to mediate across sources frommul-
tiple worlds (i.e., whose data are related inindi-
rect and often complex ways). As part of register-
ing a source’s CM with the mediator, the wrapper
creates a “semantic index” of its data into the do-
main map. We show that these indexes not only
semantically correlate the multiple worlds data
and thereby support the definition of the integrated
CM, but that they are also useful during query pro-
cessing, for example, to select relevant sources. A
first prototype of the system has been implemented
for a complex Neuroscience mediation problem.

1 Introduction

Mediator systems federate and integrate data from
disparate sources in order to elicit information
that the individual sources cannot provide indepen-
dently. Currently, the “standard” mediator archi-
tecture employs wrappers that translate heteroge-
nous source data into a common (often semistruc-
tured) data model like XML. A “mediation engi-
neer” provides an integrated view definition (IVD)
on the wrapped XML sources. In such a sys-
tem, an IVD is ideally expressed in a declarative
query language for XML or semistructured data.
When developing the IVD, an XML query lan-

guage provides the mediation engineer only with a
tree-structuredmodel of the source, i.e., the names
and possible nesting structure of XML elements as
defined by an XML DTD, but gives no hint on se-
mantic relationships, class structures, not to men-
tion application domain specific constraints.

We argue that such a mediator architecture
based solely on an XML-like semistructured data
model, while very powerful and useful in simple
“one world scenarios” (say comparison shopping
with amazon.com and barnesandnoble.com ),
is not adequate when mediating across complex
sources whose data comes from seemingly disjoint
“worlds”:

Example 1 (Two Neuroscience Worlds)
Consider two Neuroscience laboratories1 that
perform experiments on two different brain
regions. The first laboratory,SYNAPSE, studies
dendritic spines of pyramidal cells in the hip-
pocampus. The primary schema elements are
thus the anatomical entites that are reconstructed
from 3-dimensional serial-sections. For each
entity (e.g., spines, dendrites), researchers make
a number of measurements, and study how these
measurements change across age and species
under several experimental conditions.

In contrast, theNCMIR laboratory studies the
Purkinje Cells of the cerebellum, inspecting the
branching patterns from the dendrites of filled
neurons, and localization of various proteins in
neuron compartments. The schema used by this
group consists of a number of measurements of
the dendrite branches (e.g., segment diameter) and
the amount of different proteins found in each of
these subdivisions. Let us assume each of the
two schemas has a classC having alocation at-
tribute which can have a value like"Pyramidal

Cell dendrite" and "Purkinje Cell" , re-
spectively.

1seesynapses.bu.edu (SYNAPSE) andwww-ncmir.
ucsd.edu (NCMIR)
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Figure 1. Domain Map for SYNAPSEand NCMIR

(unlabeled, gray edges� “isa” � “v”)

How are the schemas ofSYNAPSEandNCMIR

related? Evidently they carry distinctly different
information and do not even enter the purview of
the schema conflicts usually studied in databases
[KS96]. To the scientist however, they are re-
lated because of the following reason: Release
of calcium from spiny dendrites occurs as a re-
sult of neurotransmission and results in changes
in spine morphology (sizes and shapes obtained
from SYNAPSE). Propagation of calcium signals
throughout a neuron depends upon the morphol-
ogy of the dendrites, the distribution of calcium
stores in a neuron and the distribution of calcium
binding proteins, whose subcellular distribution
for Purkinje cells are measured byNCMIR.

Thus, a researcher who wanted to model the ef-
fects of neurotransmission in hippocampal spines
would get structural information on hippocampal
spines fromSYNAPSE and information about the
types of calcium binding proteins found in spines
from NCMIR. Note that in order to connect the two
sources, we need, independent of the observed ex-
perimental source data,additional domain knowl-
edgelike the following:

Purkinje cells and Pyramidal cells have dendrites
that have higher-order branches that contain spines.
Dendritic spines are ion (calcium) regulating compo-
nents. Spines have ion binding proteins. Neurotransmis-
sion involves ionic activity (release). Ion-binding pro-
teins control ion activity (propagation) in a cell. Ion-
regulating components of cells affect ionic activity (re-
lease).

To formalize this we can usedescription logic
(DL) statements (see, e.g., [CLN98]) such as:2

Neuronv 9has.Compartment
Axon, Dendrite, Somav Compartment
Spiny Neuron� Neuronu 9has.Spine
Purkinje Cell, PyramidalCellv Spiny Neuron
Dendritev 9has.Branch
Shaftv Branchu 9has.Spine
Spinev 9contains.IonBinding Protein
Spinev Ion RegulatingComponent
Ion Activity v 9subprocessof.Neurotransmission
Ion Binding Proteinv Proteinu 9controls.IonActivity
Ion RegulatingComponent� 9regulates.IonActivity

Together with additional inference rules (e.g., for
transitivity ofhas ), DL axioms like these formally
capture the domain knowledge. Figure 1 shows
a graphic portrayal of these DL formulas in the
form of a domain map, a kind of semantic net
used for defining and executing IVDs at the media-
tor. The above example from a real-world integra-
tion scenario illustrates a fundamental difference
in the nature of information integration as stud-
ied in most of the database literature and as nec-
essary for scientific data management. In the lat-
ter, seemingly unconnected schema can be seman-
tically closewhen situated in the scientific context,
which in this case is the neuroanatomy and neuro-
physiological setting described above. We call this
mediation across multiple worlds.

In this paper we develop a novel model-based
mediator architecture for such mediation scenar-
ios, define its formal framework, and sketch query
processing in our system prototype.

The outline and main contributions are as fol-
lows: Section 2 presents the overall architecture:
schema definitionand data accessof sources is
lifted from the structural to theconceptual level,
thereby facilitating the mediation engineer’s task
of developing IVDs. The architecture is indepen-
dent of a specific formalism for conceptual models
(CMs) due to a special CMplug-in mechanism,
which is based on the underlying XML transport
syntax and a generic meta-model for CMs (Sec-
tion 3). Mediation across multiple worlds is facil-
itated by incorporating an expert knowledge base
called domain map(DM) at the mediator. DMs
are related to semantic nets and ontologies, but
(i) have a formal semantics, (ii) are more power-
ful due to rule-based extensions, and (iii) can be
“executed” during query execution of IVDs (Sec-
tion 5). Section 6 concludes with a discussion on
related work.

2see Definition 1 for details



Figure 2. A Model-Based Mediator

2 Mediation Architecture

Figure 2 depicts a system architecture for model-
based mediation: As is standard for mediator ar-
chitectures, differences in the sources’ data mod-
els are resolved by wrappers that translate the raw
data into a common generic data format (XML)
on which current mediator systems would directly
define the integrated views using an XML query
language [LPV00]. We extend this architecture
by lifting exported source data from the level of
uninterpreted, semistructured data in XML syn-
tax to the semantically rich level ofconceptual
models with domain knowledge(CMs). In this
way, the mediator’s complex task of defining in-
tegrated views over heterogeneous sources be-
comes more manageable since class hierarchies,
object structure, properties of relationships (rela-
tional constraints, cardinalities, ...), and in par-
ticular domain specific constraints of sources all
become accessible for view definition at the me-
diator. The mediator’s view definition language
in such a model-based architecture is not only a
semistructured query language (like Lorel, YATL,
XML-QL, Quilt, ...), but also a declarative,query
language for conceptual modelsthat can express
complex schema and instance level transforma-
tionsand checklogical constraints.

Rather than reinventing yet another variant of
conceptual models, we use a simple, generic con-
ceptual model GCM3 at the mediator level. The
wrappers can export their “CM-lifted” source data

3Strictly speaking, GCM is a meta-model for CMs.

either directly in GCM, or in any standard CM for-
malism like (E)ER, UML, OMR, RDF, etc. for
which a CM-to-GCMplug-in has been provided.
Syntactically all information (queries, CM signa-
tures and data, mediator/wrapper dialogues, etc.)
goes “over the wire” in XML syntax. Therefore
the mediator also includes an XML sublanguage
for translating between XML and the mediator’s
local GCM representation making the system com-
pletely independent of the chosen XML syntax for
exchanging CMs. The KIND mediator prototype
(Section 5) is based on an object-oriented logic
programming system for realizing practically all
of the above tasks.

The Mediator System at Work. At runtime, a
wrapped sourceS can join the mediated system by
registeringits conceptual model CM(S) with the
mediatorM . This requires thatS sends the me-
diator descriptions of the exportedclass schemas,
relationship schemas, andsemantic rulesthat are
evaluable at the mediator (e.g., for defining virtual
classes and relationships, CM-specific constraints,
or arbitrary domain-specific constraints). Apart
from this schema level information,S also trans-
mits a description of itsquery capabilitiesto M ,
which is a (usually very limited) CM query lan-
guage that can be seen as the “logical API” for
retrieving actual object instances of CM(S). The
query capability descriptions minimally specify
means (e.g., primary keys) for browsing through
all instances of exported classes and relations, and
optionally declare further capabilities asbinding
patternsor query templateswhich allow the me-
diator to optimize query evaluation by “pushing
down” subqueries and computations to the wrap-
per.

The exported objects of a CM(S) can have spe-
cial anchor andcontext attributes4 that provide
the “semantic coordinates” of the data in the me-
diator’s domain mapDM(M). Recall from the
introduction that although the mediatorM “sees”
all source data at the conceptual level CM(Si), for
multiple world scenarios, there is typically little or
no overlap in the concepts of CM(Si). The role
of the domain map DM(M) is thus to provide a
declarative means for specifyingadditional knowl-
edgethat isnot presentin the sources but that can
be used (like a road map) to navigate through and
interrelate the multiple source worlds.

4or methods, i.e.,derived attributeswhich are computed on
demand at the mediator.



CM Plug-In Mechanism. One goal of our
model-based mediation architecture is to make the
mediator independent of a source’s current or fu-
ture choice of CM formalism for communicating
conceptual-level schema and data.

As a first step, we require that sources export
all CM information (i.e., at the schema and in-
stance level) in XML. For example, CMs formal-
ized in XML Schema or RDF Schema come di-
rectly in XML syntax.5 For other formalisms like
(E)ER, ORM, UML class diagrams etc. XML ex-
change formats are available or can be easily de-
fined. For each such format the mediator system
needs to have a specific system component and in-
terface, including say an XMI-API for handling
UML models expressed in XMI [XMI99].

A second and crucial step for the plug-in mech-
anism is to devise a meta-model called GCM
(Generic Conceptual Model) that is universal in
the sense that any conceivable CM formalism can
be expressed in it. Now the crux of the plug-in
mechanism is that the mediator no longer needs
one module for each CM formalism. Instead a
new CM formalism say UXF [SY98] is added to
the system by simply plugging an UXF-2-GCM
translator into the mediator. Essentially such a
translator is nothing more than acomplex XML
query expression that a source sends once to the
mediator when a new CM is introduced. For
example, a UXF-2-GCM translator is an XML
query that maps XML documents conforming to
the UXF DTD to their equivalent GCM represen-
tations thereby providing the desired GCM view
on UXF. Hence, in this architecture the mediator
needs onlya single GCM enginefor handlingar-
bitrary CMs.

3 Formal Framework

Our requirements for the generic conceptual
(meta-)model GCM are derived from the following
typical features of conceptual models: Elements
of the domain, calledobjects(or entities) are or-
ganized intoclasses(entity types), based on sim-
ilarity or common features. The availablemeth-
ods(attributes, slots) and their result types deter-
mine the structure of the objects of a class. Classes
can be organized hierarchically via asubclass re-
lation. The latter induces a notion ofinheritance,
for example,structuralandvalue inheritance(in-
stances of a class inherit their “slot structure” and

5see www.w3.org/TR/xmlschema-{0,1,2} and
www.w3.org/TR/rdf-schema/

possibly some default values from the direct su-
perclass6), but alsobehavior(via derived or com-
puted methods) may be inherited as in OOP. Ob-
jects can participate inrelationships(or associa-
tions) which can be further constrained to beag-
gregations, compositions, or other whole/part rela-
tionships with a specific semantics [Ode94]. Addi-
tional semantics of relations can also be expressed
using cardinality constraints, value constraints,
functional dependencies, etc. Finally, arbitrary
non-structuraldomain-specific constraintsare of-
ten expressed in a more or less formal constraint
language like OCL (UML’s object constraint lan-
guage). From the above, we derive a set of require-
ments for a GCM:

GCM Core Expressions. The GCM should al-
low the following atomic schema- and instance-
level declarations:

� instance(X;C) specifying that the object
namedX is aninstance ofclassC (INST)

� subclass(C1; C2) specifying thatC1 is a
(subclass of)C2, i.e., instances ofC1 are also
instances ofC2 7 (SUB)

� method(C;M;CM ) specifying thatmethod
M is applicable to objects inC yielding (zero
or more) objects inCM . A concrete instance
(method result) can be denoted similarly,
say for instance(x;C); instance(y; CM ) as
methodinst(x;M; y) (METH)

� relation(R;A1=C1; : : : ; An=Cn) specifies an
n-ary relation among objects of classesCi;
Ai correspond toattributes or association
roles. (REL)

Note that (SUB) means thatsubclassis reflexive
and transitive. To specify thatsubclassis also an-
tisymmetric (implying thatsubclassis a partial or-
der, which prevents cycles in the class hierarchy)
or to express arbitrary domain constraints, we em-
ploy a GCM extension mechanism.

GCM Extension Mechanism. The extension
mechanism of GCM is given by a suitablelogic
rule language(e.g., to express domain constraints)

� a syntaxfor rules in the style “head if body”
deriving new information (=head) provided
bodyis true, and (RULES)

6A multiple inheriance problemcan arise if a class has sev-
eral direct superclasses.

7sometimesC1, C2 are calledspecializationsor general-
izationsof each other



GCM expression FL expression other FL axioms

instance(X;C) X :C : : :
subclass(C1; C2) C1 ::C2 C ::C :– C : class

method(C;M;CM ) C[M))CM ] C1 ::C2 :–C1 ::C3; C3 ::C2
methodinst(X;M; Y ) X[M!!Y ] X :C2 :– X :C1; C1 ::C2

relation(R;A1=C1; : : : ; An=Cn) R[A1)C1; : : : ;An)Cn] : : :
relationinst(R;A1=X1; : : : ; An=Xn) r(X1; : : : ; Xn) :R[A1!X1; : : : ;An!Xn] : : :

Table 1. F-logic fragment for the generic conceptual model GCM

� an associated logicalsemantics. (SEM)

The form of the rule head determines what is be-
ing defined, e.g., new instance or schema informa-
tion for objects, classes, and relationships using
the core expressions above. Certain logic rules,
called integrity constraintsdo not derive “regular
object information” but check the consistency of
a CM instance. We express a logic integrity con-
straint' that should hold for all instances of a CM
as adenial := :'. Hence if can be derived
then the CM instance violates' and an inconsis-
tency is detected. We extend this basic functional-
ity of boolean denials by requiring, that when a
violation is detected

� a denial can add afailure witnessw to a
distinguishedinconsistency classic . (IC)

Example 2 shows how such witness objects are in-
serted intoic .

GCM Expressiveness. There are several candi-
date formalisms that satisfy the above GCM re-
quirements. For example one may just use first-
order calculus FO or some Datalog variant for
specifying extensions to the GCM core part. In-
deed FO can already expressall common con-
straints for relational models including key con-
straints, inclusion dependencies, aggregation and
cardinality constraints etc. However, CMs often
contain “inductive” properties and constraints like
an inheritance semanticsthat relates the meaning
of “subclass” to that of “instance”, or a closure
propertyfor certain whole/part relationships. Such
properties arenot expressible by FO formulas but
in appropriate extensions of FO with fixpoint oper-
ators like FO(LFP) or Datalog. Therefore our final
requirement is that

� GCM expressiveness should extend FO and
includeinductive properties. (EXPR)

For example, if we pick FO(LFP) as the GCM
rule language, we know thatall PTIME properties
can be computed on finite ordered instances of a

CM. However, FO(LFP) and similar fixpoint log-
ics from finite model theory do not have an intu-
itive, declarative semantics, hence are not adequate
as a specification language for CMs. A declara-
tive rule language with an intuitive semantics that
expresses precisely FO(LFP) is Datalog with well-
founded negation.

F-Logic as GCM. As the concrete GCM for the
formalization and implementation of our model-
based mediator system, we use F-Logic (short:
FL) [KLW95], an object-oriented extension of
well-founded Datalog. The choice of FL is partly
for convenience, since FL natively contains all of
the above-mentioned GCM concepts (and several
others) due to its roots in knowledge representation
and deductive, object-oriented databases. Hence
with FL we get a GCM formalism “for free” and
avoid indirect Datalog encodings at the user level.
In particular, the flexible, higher-order FL syntax
turns out to be extremly useful in the real sys-
tem.8 Last but not least, FL implementations like
FLORA [YK00] and FLORID [FLORID] are read-
ily available and have been successfully used in
related areas like querying of semistructured data
[LHL+98], mediation of Web sources [MHL+99],
and in an earlier version of our Neuroscience me-
diator [GLM00].

As the GCM, we use a fragment of FL that can
“host” all standard CM formalisms as “logic plug-
ins”. Table 1 shows the equivalent FL syntax for
the GCM core expressions and a minimial set of
FL axioms specifying the reflexive and transitive
closure of “:: ”, and the upward propagation of
“ : ” wrt. “ :: ”. As the GCM extension mechanism
we use FL rules with well-founded negation se-
mantics, i.e., expressions of the formhead:– body
wherehead is an FL atom that becomes true if
body, a conjunction of FL atoms or negated atoms,
is true. Recall that the GCM and its FL incarna-

8for schema-level deductions, XPath queries, rule main-
tenance (e.g., when object parameters are dropped or added,
the “variable-arity” frame notation is more robust wrt. the
changes), etc.



tion only specify a minimal core model, but addi-
tional constraints can be easily added using logic
rules: For example, assume the CM requires that
the subclass relation “:: ” or any other relationR
is a partial order. The following example illustrates
how this is formalized.

Example 2 (Checking Inductive Properties)
The following integrity constraints test whether
a binary relationR is a partial order on a class
C: rule (1) finds allX in C for which R is not
reflexive. Similarly, (2) reports missing transitive
edges, and (3) derives node object pairs that
violate R’s antisymmetry onC. Thus, R is a
partial order onC iff (1–3) do not insert a failure
witness intoic :

(1) wrc(C,R,X) : ic :– X : C, not R(X,X).

(2) wtc(C,R,X,Z,Y) : ic :– X,Y,Z : C,
R(X,Z), R(Z,Y), not R(X,Y).

(3) was(C,R,X,Y) : ic :– X : C,
R(X,Y), R(Y,X), X 6=Y.

If we assign “:: ” and the meta-class “class ”
(holding all class names) to the relation variableR
and class variableC respectively, the above rules
test whether “:: ” is indeed a partial order. This
example also shows the power of schema reason-
ing in FL.

Example 3 (Cardinality Constraints)
Aggregation and cardinality constraints are
ubiquitous in real applications. Consider the
GCM declarationrelation(R;A=C1; B=C2) and
assume the CM at hand specifies that the cardi-
nalities of rolesA andB satisfy the conditions
cardA(N):=(N=1) and cardB(N):=(N�2).
Applied to has(neuron,axon) this says that
a neuron can have�2 axons and an axon is
contained in exactly one neuron; more formally:

w6=1(R,VB,N) : ic :–
N = count fVA[VB];R(VA,VB) g, N 6=1.

w>2(R,VA,N) : ic :–
N = count fVB[VA]; : R[A!VA;B!VB] g, N>2.

The body of the first rule counts for each valueVB
of B the numberN of valuesVA. If N 6=1 a car-
dinality violation is detected and the witnessw 6=1

gives the violating tripleR;VB; N . The second
rule illustrates a different FL syntax for tuple ob-
jects and checksN�2 for B by grouping onVA.

4 Mediation with Domain Maps

Domain maps (DMs) formalize expert knowledge
that is needed to mediate across multiple world

scenarios. In our architecture, DMs are special
conceptual models whose classes we callconcepts.
Concepts provide the semantic anchor points from
which sources can “hang off” their data. Concepts
can be linked via binary relations calledroles. In-
tuitively, a labeled edgeC

r
! D of a DM means

that if c 2 C then there is somed 2 D such
that r(c; d) holds: e.g.,dendrite

has
! branch

means that every dendrite must have some branch
(cf. Figure 1). More formally:

Definition 1 (Domain Maps) A domain mapis a
finite set comprising (i) description logic (DL)
facts, and (ii) logic rules, both involving finite sets
C (concepts) andR (roles). Facts are visualized as
edge-labeled digraphswhere nodes correspond to
concepts and edge labels to roles. The description
logic formulas for edges are given by:

� C ! D , C v D (isa)

� C
r
! D , C v 9r:D (ex)

� C
ALL:r
! D , C v 8r:D (all)

� AND!ifCig , C1 u � � � u Cn (and)

� OR!ifCig , C1 t � � � t Cn (or)

� C
=
! D , C � D (eqv)

Edges expressing necessary conditions for inclu-
sion ofC in D (isa) and existence ofr-related ob-
jects inD (ex) are most common (Fig. 3). If allr-
related objects of anyc 2 C have to be inD, (all)
is used. NodesANDandORcorrespond toconjunc-
tionsanddisjunctionsof the union of all outgoing
edges, respectively. When unique,ANDnodes are
omitted and outgoing arcs directly attached to the
concept being defined. Necessary and sufficient
conditions ofC are expressed using (eqv).

DL is a subset of first-order logic (FO). For ex-
ample, the equivalent of (ex) in first-order logic is:

� 8x (C(x) ! 9y (D(y) ^ r(x; y) ) FO(ex)

There are different ways in which we can “exe-
cute” the axiom for an edge at the mediator, viz.
as anintegrity constraintor as anassertion: e.g.,
translating FO(ex) as anintegrity constraintin F-
logic (FL) yields

wC;r;D(X) : ic :– X : C, not (Y : D, r(X,Y))

and tests whether the mediator’s object base con-
tains for eachX : Ca correspondingY : D; otherwise
a violation is reported. Such an integrity constraint
is useful when the mediated object base is required
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to bedata-completewrt.C
r
! D. The other, more

frequent case is to view FO(ex) as anassertionthat
in the real world (but not necessarily in the object
base) the corresponding target objecty exists. The
following assertion creates a virtual placeholder
objectf C;r;D(x) whenever the object base doesnot
containy:

Y : D, r(X,Y) :– X : C,
not ( Z : D, r(X, Z)), Y = f C;r;D(X).

If necessary, a DM can use the full expressive
power of the underlying GCM. However, expres-
siveness is paid for with complexity and the re-
quirement (EXPR) above can makereasoning
about conceptsundecidable:

Proposition 1 Subsumption and satisfiability are
undecidable for unrestricted GCM domain maps.

Here,subsumptionmeans to decide whether mem-
bership in a concept classC implies member-
ship in another classD, for all logic interpreta-
tions (i.e., instances of the DM)I that satisfy a
given domain map DM.Satisfiabilityis the ques-
tion whether such anI exists.

In our experience, in a typical mediator system,
reasoning aboutthe DM may be required only to
a limited extent. Instead, a specific DM is given to
navigate the “multiple worlds” and to define and
executeintegrated views.

Registering Source Data. A sourceS may reg-
ister its data with the mediatorM by “anchoring”
its objects (i.e., the instances of CM(S)) at the me-
diator’s domain map DMwithoutchanging the lat-
ter: each data objecto 2 S is simply “tagged” with
the concept(s)Ci in DM of which o is an instance.
Thus,M can derive (in FL):o : C1 � � � o : Cn.

A sourceS can alsochangethe mediator’s DM9

by adding and refining DM concepts: Figure 3
depicts a DM after registering two new concepts
MyNeuron and MyDendrite . The knowledge
about these is sent toM using DL axioms:

MyDendrite � Dendrite u 9exp.Dopamine R

MyNeuron v Medium Spiny Neuron
u 9proj.Globus pallidus external
u 8has.MyDendrite

Thus instances ofMyDendrite are exactly those
dendrites that express Dopamine R(eceptor), and
MyNeuron objects are medium spiny neurons pro-
jecting to Globus Palladius External andonlyhave
MyDendrite s. Assuming properties areinherited
along the transitive closure ofisa ,10 it follows
that MyNeuron , like anyMedium Spiny Neuron

projects to certain structures (ORin Fig. 3). With
the newly registered knowledge, it follows that
MyNeuron definitely projects to Globus Palladius
External. If we want to specify that itonlyprojects
to the latter, anonmonotonic inheritance, e.g., us-
ing FL with well-founded semantics can be em-
ployed.

Integrated Views Using Domain Maps. Do-
main maps include base relations likeisa and
has a. Often, when using a domain map as part
of the integrated view definition IVD, we have to
infer knowledge, i.e., derive virtual relations: e.g.,
“Purkinje cell has a axon” (since Purkinje cell
isa neuron and neuronhas a compartment called
axon). This is accomplished by applying certain
graph operationson the domain map DM. E.g.,
we can derive thedeductive closurehas a star

of has a wrt. isa as follows:
9or S’s local copy of the DM

10e.g., using the rules for “:: ” (= isa ) in Table 1



tc(R)(X,Y) :– R(X,Y).
tc(R)(X,Y) :– tc(R)(X,Z), tc(R)(Z,Y).

dc(R)(X,Y) :– tc(isa)(X,Z), R(Z,Y).
dc(R)(X,Y) :– R(X,Z), tc(isa)(Z,Y).

has a star(X,Y) :– dc(has a)(X,Y).

The rules fortc( R) define thetransitive closure
of any binary relationR. The rules fordc( R)

define the deductive closure ofR wrt. the transi-
tive closure ofisa . Intuitively, R links are prop-
agated up and down theisa chains. The rule
for has a star derives all inferabledirect has a

links. Note thathas a star itself is not transi-
tive, i.e., transitivehas a edges are not included
in has a star . Indeed, it would be wasteful to
compute the much largertc(has a star) when
evaluating the IVD since a recursive traversal of
the direct links is sufficient.

In Example 1, the two sources could be related
simply because their data was anchored at con-
cepts that were linked via relationships in the do-
main map. This is an example of a loosefeder-
ation of correlated data where no newintegrated
objectsare computed at the mediator. Instead, the
integrated view is just a union view on the sources
but (due to the model-based architecture) with the
advantage that data can be navigated an correlated
at the conceptual level using a domain map. Ex-
ample 4 goes beyond this loose federation and ex-
tends the global-as-view integration paradigm to
define integrated views not only over classes from
information sources, but over a combination of in-
formation sources and the domain map:

Example 4 We can construct the IVD for the me-
diated classprotein distribution and popu-
late it in the following manner:

D: protein distribution[protein name!Y;
animal !Z; distribution root !P;
distribution !D] :–

’NCMIR’.protein.name=Y,
’SENSELAB’.neuron.organism=Z,
contains(’ANATOM’.nervous system

.has a star, P),
aggregate(Y,

’NCMIR’.protein amount.amount,
has a star,P,D).

The function aggregate recursively traverses
a binary relationR (here: has a star ) start-
ing from node P , and computes the aggre-
gate of the specified attribute at each level
of the relationR. The result for the com-
putation for P="cerebellum" , Z="rat" , and
Y="Ryanodine Receptor" can be seen in the
system snapshot in [GLM01].

5 Query Processing in the KIND Me-
diator Prototype

A prototypical implementation of the model-based
mediator architecture called KIND11 [GLM01] has
been developed, based on the FLORA system
[YK00] as the deductive engine. The development
of the architecture and the system was driven by
the need to mediate real data coming from largely
disjoint Neuroscience “worlds”. The following ex-
ample is taken from this mediation scenario and
illustrates how generic operations on the domain
map are useful to formulate and execute complex
queries at the mediator.

Using the mediated classesdistribution

andprotein distribution from above, and a
classneurotransmission :

neurotransmission[organism )string ;
transmitting neuron )string ;
transmitting compartment )string ;
receiving neuron )string ;
receiving compartment )string ;
neurotransmitter )string ].

we can answer queries like the following:

“What is the distribution of those
calcium-binding proteins that are found
in neurons that receive signals from par-
allel fibers in rat brains?”

In terms of the given views, this user query can be
written as

answer(P, D) :– neurotransmission[
organism !’rat’;
transmitting compartment

!’parallel fiber’;
receiving neuron !X;
receiving compartment !Y],

D: protein distribution[
protein name!P; ion bound

!!fcalcium g; distribution root ! ].

This is a typical query of a scientist who stud-
ies neurotransmission(and produces the data of
SENSELAB above), and needs information gath-
ered by groups that studyprotein localization(like
NCMIR). Note that the user does not specify the
distribution root, forcing the mediator to provide
a “reasonable” root for the neuron-compartment
pairs that satisfy the first condition. The follow-
ing are the main steps of the query plan:

1. push selections(rat , parallel fiber ) to
SENSELABandget bindingsfor X andY

11Knowledge-basedIntegration of Neuroscience Data,
www.npaci.edu/DICE/Neuro/kind01.html



2. using the domain map DM(M), select
sourcesthat have data anchored for the neu-
ron/compartment pairsX,Y from step (1); in
our case, onlyNCMIR is returned

3. push selectionsgiven by theX,Y locations to
NCMIR, andretrieveonly proteinsP that are
found inX,Y

Now we need to compute the actual distribution of
each proteinP from NCMIR at the mediator. But to
do this using the view defined earlier, we first must
determine whichbrain region of the neuron

should serve as the root of the distribution. This is
accomplished by computing theleast upper bound
(lub) of locations in the domain map.

4. with the lub as the root node,compute
the view protein distribution at the
mediator as described before. Note that
this involves adownward closurealong the
has a star relation.

The last two operations filter out a segment in
the domain map as the “region of correspondence”
between the two information sources, and demon-
strate how graph operations on the domain map
can be actively used to compute conceptual map-
pings between sources.

6 Discussion and Conclusions

We have presented a novel mediator architecture
for complex multiple world scenarios, which re-
quire additional knowledge in order to federate or
integrate across the data. The additional domain
knowledge is made available to the mediator in
the form of a high-leveldomain mapacting as
a “semantic coordinate system” that can be used
by sources to situate their data in the global con-
text. The complexity of scientific domains like the
Neurosciences also requires that view definitions
are expressed at the semantically richconceptual
leveland not just at the level of semistructured data
(XML) as in current mediator systems. Our archi-
tecture is “immune” to the formalism for concep-
tual models as used by the sources due to a plug-
in mechanism that maps other CMs, expressed
in XML syntax, via complex XML queries, to a
generic conceptual model GCM. A prototype has
been implemented using an underlying F-logic en-
gine for evaluating queries and views in the GCM,
graph operations on the domain map (e.g.,lub and
deductive closures), and even I/O operations like
XML transformations (as needed for CM plug-ins)

and generation of DM graphs for the user interface
[GLM01].

Related Work. [CDG+98] present an architec-
ture that uses conceptual models to support in-
formation integration. While we use an FL ver-
sion of GCM, they employ a description logic
calledDLR to formalize ER diagrams and other
CMs. Note that the focus in description logics
is on reasoningabout CMs at theschema level
and not on deriving new information about a pop-
ulated instanceof a CM as in our case. There-
fore description logics are designed such that prob-
lems likesatisfiability, subsumption, andequiva-
lenceof concepts remain decidable at the schema
level. Since already FL without object creation
(i.e., function symbols) can express all FO queries,
reasoning about CMs in our GCM model is unde-
cidable in general. However, in our architecture
we use only a limited amount of reasoning about
CMs and the focus is onexecution(evaluation) of
logic rules on given object instances of CMs, i.e.,
a much more tractable problem. Moreover, in real
application scenarios like our Neuroscience do-
main, restricted and decidable fragments like the
ANATOM domain map are often sufficient.

[FRV96] present a method for rewriting and de-
composing queries in a cooperative information
system using “semantic knowledge”. However,
their work does not deal at all with mediation at the
conceptual level, or the use of domain knowledge
to mediate across multiple world scenarios. Rather
“semantic knowledge” in their setting means OQL
rewrite rules of the formQ1;Q2 that can be ap-
plied for query reformulation.

A system architecture developed by ex-
perts from the Neuroscience domain is de-
scribed in [NLC+99]. Like many generic
models, their EAV/CR model is based on a
ternary entity-attribute-value representation, ex-
tended with classes and relationships. However
their approach deals with the “data part” of in-
tegration only. In particular, there is no suitable
declarative rule language for defining complex in-
tegrated views or queries.

The importance of semantics in information ex-
change is also witnessed by the recent interest in
XML Schema and RDF. Indeed RDF or XML
Schema, when used with a rule language like F-
logic, can be used as a GCM.

At least two decades of prior research exists in
the general area of information integration. Sheth,
in a recent overview [She98], classified informa-



tion integration research into three generations.
In our architecture, similar to second generation
approaches like TSIMMIS [GMP+97], integrated
views are defined using the so-calledglobal-as-
view(GAV) approach, in which an integrated view
definition IVD of the global view is defined in
terms of local views on the sources. However,
our system specifies (and executes!) IVDs at the
level ofconceptual modelsexported by the sources
and thus falls into the category of third generation
approaches which focus onsemantic integration.
Also, unlike other GAV systems, our use of DMs
allows us to define global views via DMs over
sources that could not have been joined directly.

Since domain maps correspond to edge-labeled
graphs, our global views involvecomplex recur-
sive operations. On the other hand,local-as-view
(LAV) approaches like SIMS [SIM98] define each
local source as a view on the more pervasive global
schema. For answering a user query on the global
schema, an inverse operation is used to map the
query to appropriate local schemata. Often, such
inverse operations may not, and in the case of our
complex, recursive views, do not exist.

COIN [GBMS99] performs integration by cre-
ating a domain model as a universe of primitive
and semantic types, where a semantic type can
take a differentvalue in every context that uses
it. The system allows the mapping of source-
specific values to the same semantic type and per-
mits axioms that convert between value domains
for the same semantic type. Thus COIN’s notion
of domain knowledge or ontology effectively re-
solvesattribute domain conflicts, and does not ad-
dress the problem of mediating semantically dis-
tinct schema by any schema-based integration op-
eration.
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