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Abstract. Scientific workflows are becoming increasingly important as a unify-
ing mechanism for interlinking scientific data management, analysis, simulation,
and visualization tasks. Scientific workflow systems are problem-solving envi-
ronments, supporting scientists in the creation and execution of scientific work-
flows. While current systems permit the creation of executable workflows, con-
ceptual modeling and design of scientific workflows has largely been neglected.
Unlike business workflows, scientific workflows are typically highly data-centric
naturally leading to dataflow-oriented modeling approaches. We first develop a
formal model for scientific workflows based on an actor-oriented modeling and
design approach, originally developed for studying models of complex concurrent
systems. Actor-oriented modeling separates two modeling concerns: component
communicatiorfdataflow) and overall workflowoordination(orchestration). We

then extend our framework by introducing a nolgbrid type system, separat-

ing further the concerns of conventional data modelsiguctural data typgand
conceptual modelingsémantic type In our approach, semantic and structural
mismatches can be handled independently or simultaneously, and via different
types ofadapters giving rise to new methods of scientific workflow design.

1 Introduction

Scientific workflows are quickly becoming recognized as an important unifying mech-
anism to combine scientific data management, analysis, simulation, and visualization
tasks. Scientific workflows often exhibit particular traits, e.g., they can be data-intensive,
compute-intensive, analysis-intensive, and visualization-intensive, thus covering a wide
range of applications from low-level “plumbing workflows” of interest to Grid engi-
neers, to high-level “knowledge discovery workflows” for scientists [11]. Consequently,
workflows steps can have very different granularities and may be implemented as shell
scripts, web services, local application calls, or as complex subworkflows.

A scientific workflow systeis a problem-solving environment that aims at simpli-
fying the task of “gluing” these steps together to form executable data management and
analysis pipelines. While current systems permit the creation of executable workflows,
conceptual modeling and design of scientific workflows has been largely neglected. Un-
like business workflows, scientific workflows are typically highly data-centric, naturally

* This work supported in part by NSF/ITR 0225673 (GEON), NSF/ITR 0225676 (SEEK),
NIH/NCRR 1R24 RR019701-01 (BIRN-CC), and DOE DE-FC02-01ER25486 (SDM).



leading to dataflow-oriented modeling approaches, while business workflow modeling
is dominated by control, event, and task-oriented approachés [17], making them less
suitable for the modeling challenges of scientific workflows.

This paper addresses three important problems in scientific-workflow design and
engineering. First, in existing systems it is often unclear what constitutes a scientific
workflow, and there are few if any abstract models available to describe scientific work-
flows. (By abstract model, we mean a model for scientific workflows analogous to data
models in database management.) Second, existing systems do not support the end-to-
end development of scientific workflows, in particular, design methods and frameworks
for the early stages of conceptual design do not exist. And third, in scientific workflow
systems such as#®LER[11] that aim at providing a unified environment where work-
flows and their components can be shared and reused, mechanisms do not exist that
support the discovery, reuse, and adaptation of existing workflows and components.

To address these issues, we first develdprenal model for scientific workflows
(Section[B) based on an actor-oriented modeling approach, originally developed for
studying complex concurrent systerns [9]. A benefit of actor-oriented modeling is that
it separates two distinct modeling concerns: componentmunicatior{dataflow) and
overall workflow coordination(a.k.a. orchestration). We then extend this framework
by introducing a novehybrid type systepseparating further the concerns of conven-
tional data modelingstructural data typgand conceptual modelingémantic type
The separation of types facilitates timelependenvalidation of structural and seman-
tic type constraints and offers a number of benefits for scientific workflow design and
component reuse. Structural and semantic types can also be explinitelyin our ap-
proach, using special (hybridization) constraints. These constraints can be exploited in
various ways, e.g., to further propagate and refine known (structural or semantic) types
in scientific workflows, or to infer (partial) structural mappings between structurally
incompatible (but semantically compatible) workflow components.

Based on our formal model, we also introduce a number of aeiteling primi-
tivesthat a workflow designer can apply to evolve a formal scientific workflow design in
a stepwise, controlled manner (Sectidn 4). The different modeling primitives give rise
to distinctdesign strategiesncluding task-driven vs. data-driven, structure-driven vs.
semantics-driven, and top-down vs. bottom-up. Two important design primitives-are
tor replacemenandadapter insertionBoth primitives, when combined with the hybrid
type system, yield powerful new component discovery and adaptation mechanisms.

2 Preliminaries: Business vs. Scientific Workflows and lEPLER

The characteristics and requirements of scientific workflows partially overlap those of
business workflows. Historically, business workflows have roots going back to office au-
tomation systems, and more recently gained momentum in the form of business process
modeling and business process engineefiiig [2,16,18]. Today we see influences of busi-
ness workflow standards in web-service choreography standards. Examples include the
Business Process Execution Language for Web Services (BPE@W&)erger of

Yhttp://www-128.ibm.com/developerworks/library/specification/
ws-bpel/
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IBM's WSFL and Microsoft's XLANG, as well as ontology-based web-service ap-
proaches such as OWIEJ,SNhen analyzing the underlying design principles and ex-
ecution models of business workflow approaches, a focus on control-flow patterns and
events becomes apparent, whereas dataflow is often a secondary issue.

Scientific workflow systems, on the other hand, tend to have execution models that
are much more dataflow-oriented. Examples include academic systems sueh as K
PLER[LI], Tavernal[15], and Triana[12], and commercial systems such as Inforsense’s
DiscoveryNet, Scitegic’s Pipeline-Pilot, and National Instrument’s LabView. With re-
spect to their modeling paradigm and workflow execution models, these systems are
closer to visual dataflow programming languages for scientific data and services than
to the more control-flow and task-oriented business workflow systems, or to their early
scientific workflow predecessois |13,1].

The difference between dataflow and control-flow orientation can also be observed
in the underlying formalisms. For example, visualizations of business workflows often
resemble flowcharts, state transition diagrams, or UML activity diagrams, all of which
emphasize events and control-flow over dataflow. Formal analysis of workflows usually
involves studying their control-flow patterris([8,5]. Conversely, the underlying execu-
tion model of current scientific workflow systems usually resembles dataflow process
networks[[10], having traditional application areas in digital signal processing and elec-
trical engineering. Dataflow-oriented approaches are applicable at very different levels
of granularity, from low-level CPU operations found in processor architectures, over
embedded systems, to high-level programming paradigms such as flow-based program-
ming [14]. Scientific workflow systems and visualization pipeline systems can also be
seen as dataflow-oriented problem-solving environménts [7] that scientists use to ana-
lyze and visualize their data.

Actor-Oriented Workflow Modeling in K EPLER. The KEPLER scientific work-
flow system is an open-source application, with contributing members from various
application-oriented research projectseH{ER aims at developing generic solutions
to the process and application-integration challenges of scientific workflows. Figure 1
shows a shapshot of #LERrunning a bioinformatics scientific workflow.
KEPLERextends the PoLEMY Il system, developed for modeling heterogeneous
and concurrent systems and engineering applications, to support scientific workflows.
In KEPLER, users develop workflows by selecting appropriate components called “ac-
tors” (e.g., from actor libraries or by wrapping web services as actors) and placing them
on the design canvas, after which they can be “wired” together to form the desired
workflow graph. As shown in Figufé 1, workflows can also be hierarchically structured.
Actors haveinput portsandoutput portsthat provide the communication interface to
other actors. Control-flow elements such as branching and loops are also supported.
A unique feature of POLEMY Il (and thus of KEPLER) is that the overall execution
and component interaction semantics of a workflow is not buried inside the compo-
nents themselves, but rather factored out into a separate component odillectar.
PToLEMY Il supports a large number of different directors, each one corresponding to

2 http://www.daml.org/services/owl-s/
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Fig. 1. A bioinformatics workflow in KEPLER the composite actofcenter) contains
a nestedsubworkflom(upper right); workflow steps include remote service invocation
and data transformation; and the execution model is enforcedibgaor (green box)

a unique model of computation. Taken together, workflows, actors, ports, connections,
and directors represent the basic building blocks of actor-oriented modeling.

3 A Formal Model of Actor-Oriented Scientific Workflows

This section further defines actor-oriented modeling and its application to scientific
workflows. We describe a formal model for scientific workflows and a rich typing sys-
tem for workflows and workflow components that considers both structural and seman-
tic types. We also briefly describe the use of directors for specifying workflow com-
putation models, which simplifies the task of defining workflows withiePKER and,

along with the typing system, can facilitate the reuse of workflow components.

3.1 Actor-Oriented Hierarchical Workflow Graphs

Workflow Graphs. An actor-orientedvorkflow graphiV = (A, D) consists of a set

A of actorsrepresenting components or tasks and a sdatdflow connection® con-
necting actors via data ports. Actors have well defined interfaces and generally speak-
ing, unlike a software agent, are passive entities that given some input data, produce
output data (according to their interface). Actors communicate by passing data tokens
between their ports.



Ports. Each actorA € A has an associated sairts(A) of data ports where each
p € ports(A) is either arinput or output i.e., ports(A) = in(A4) U out(A) is a disjoint
union of input portsand output ports respectively. We can think gforts(A) as the
input/outputsignatureX’4 of A, denotedA :: in(4) — out(A)ﬁ

Dataflow Connections. Letin(W) = [J,.4 in(A4) be the set of all of input ports of
W; the setsut(WW) andports(W) are defined similarly. Alataflow connectiod € D

is a directed hyperedgé = (o,i), simultaneously connecting output portso =
{01,...,0n} Cout(W) with m input portsi = {i1,...,in} C in(W). Intuitively, we
can think ofd = (o, i) as consisting of anerge stepnerge(d) = o that combines data
tokens from the output ports, and adistribute steplistrib(d) = i that distributes the
merged tokens to the input poﬂt@

A dataflow connectiod = ({01}, {i1}) between a single output port and a single

input port corresponds to a directed edngeL i1. In general, however, we represent

d as an auxiliary connection node havingncoming edges from all output pordsc o
andm outgoing edges to all input porise i. Dataflow connection € D is called
well-oriented if it connects at least one output and one input port. In this way, a directed
dataflow dependency between ports is induced.

Workflow Abstraction and Refinement. Abstraction and refinement are crucial mod-
eling primitives. When abstracting a workfld#/, we would like to “collapse” it into a
single,composite actordy, (hiding W “inside”). Conversely, we might want to refine
an actorA by further specifying it via asubworkflowlV 4, thereby turningd4 into a
composite actor witf 4 “inside” (cf. Figures 1 anfl]3). In both cases, we need to make
sure that the i/o-signatutE 4 of the composite actor matches the i/o-signatlyge of

the contained subworkflow.

Let W = (A,D) be a workflow. Thefree portsof W are all ports that do not
participate in any data connection, ieeports(W) := {p | foralld €e D : p ¢ d}. A
workflow designer might not want to expose all free ports externally when abstracting
W into a composite actodyy . Instead the i/o-signature is often limited to a subSgt
of distinguished ports.

Composite Actors. A composite actordy is a pair(W, Xy,) comprising asubwork-
flow W and a set of distinguished pott&y, C freeports(W), thei/o-signatureof 1.
We require that the i/o-signatures of the subworkflidvand of the composite actor
Ay containing match, i.e. Xy = ports(Aw ).

Hierarchical Workflow Graphs. A hierarchical workfloniV = (A, D, X) is defined

like a workflow graph, with the difference that actors might be composite. Inductively,
subworkflows can be hierarchical, so that any level of nesting can be modeled. For
uniformity, we also include the distinguished i/o-signatiref the top-level workflow.

3 We may also distinguishar(A) C in(A), the parameter portsf A, distinct from “regular”
data input ports, and used to model different actor “configurations”.

4 The semantics of merging and distributing tokens through dataflow connectiosspmeate
concernthat is deliberately left unspecified. Instead, this execution semantics is defined sepa-
rately viadirectors



3.2 Models of Computation

Following the paradigm o$eparation of concernshe actor-oriented workflow graphs
introduced above only specify communication links (dataflow) between components or
tasks (represented by actors), and—in the case of hierarchical workflows—their nesting
structure via composite actors. However, the workflow execution semantiesdsl of
computatioris deliberately left unspecified. InTRLEMY |l a new modeling primitive
called adirector is used to represent the particular choice of model of computation [9].

Thus, we can extend our definition of workflow (grapi) to include a model of
computation by means of a directdf, i.e., W = (A, D, X, M). In the case of the
unspecified merge/distribute semantics of a data connectiondedéo, i) above, a
director M may prescribe, e.g., the merge semantics to be one of the following: non-
deterministic (the token arrival order is unspecifiedMy; time-dependent and deter-
ministic (tokens are merged according to their timestamps); or time-independent and
deterministic (e.g., “round robin” merging of tokens, or “zipping” together tokens from
all input ports, creating a single record token). Similarly, different distribution seman-
tics may be prescribed by/: deterministic copy (replicate each incoming token on all
outputs); deterministic round robin (forward a token to alternating outputs); or nonde-
terministic round robin (randomly choose an output port).

More generally, a model of computation specifies all inter-actor communication
behavior, separating the concernasthestration(director) from the concern cctor
executionThe ProLEMY |l system comes with a number of directors including:

— Synchronous Dataflo@DF): Actors communicate through data connections corresponding
to queues and send or receive a fixed number of tokens each time they are fired. Actors are
fired according to a predetermined static schedule. Synchronous dataflow models are highly
analyzable and have been used to describe hardware and software systems.

— Process NetworkPN): A generalisation o§DF in which each actor executes as a separate
thread or process, and where data connections represent queues of unbounded size. Thus
actors can always write to output ports, but may get suspended (blocked) on input ports
witout a sufficient number of data tokens. TRE model of computation is closely related
to the Kahn/MacQueen semantics of process networks.

— Continuous TimgCT): Actors communicate through data connections, which represent the
value of a continuous time signal at a particular point in time. At each time point, actors
compute their output based on their previous input and the tentative input at the current time,
until the system stabilizes. When combined with actors that perform numerical integration
with good convergence behavior, such models are conceptually similar to ordinary differen-
tial equations and are often used to model physical processes.

— Discrete Even{DE): Actors communicate through a queue of events in time. Events are
processed in global time order, and in response to an event an actor is permitted to emit
events at the present or in the future, but not in the past. Discrete event models are widely
used to model asynchronous circuits and instantaneous reactions in physical systems.

3.3 Structural and Semantic Typing of Scientific Workflows

The formal model described above separates the concerns of component communica-
tion (dataflow connectionsrom the overall model of computation (a.k@chestra-

tion), imposed by the director. This separation achieves a forbebévioral polymor-
phism[9], resulting in more reusable actor components and subworkflows. In a sense,



the actor-oriented modeling approach “factors out” the concern of component coordi-
nation and centralizes it at the director.

As mentioned in Sectiop] 2, scientific workflows are typically data-oriented. The
modeling primitives so far, however, have been agnostic about data types. We introduce
a novelhybrid type systerfor modeling scientific data that separatgictural data
typesandsemantic data typesut allows them to be explicitly linked usirdgbridiza-
tion constraints

Structural Types. LetS be a language for describing structural data types. For exam-
ple,S may be one of XML Schema, XML DTD, ®OLEMY II's token type system, or
any other suitable data model or type system for describing structural aspects of data
such as the relational model, an object-oriented data model, or a programming language
type system (e.g., a polymorphic Hindley-Milner system).

Any portp € ports(W) may have atructural data types = dt(p), wheres € S'is
a type expression constraining the allowed set of values that thg pantaccept (for an
input portp € in(1W)) or produce (for an output popt € out(W)). When using XML
Schema ass, e.g., the structural data type of a port is a concrete XML Schema type
such axsd:date  or any user-defined type. 8 is the relational modek describes
the tuple or table type qf.

Semantic Types.Let O be a language for expressing semantic types. By this we mean,
in particular, suitable logics for expressingtologies For example(® might be a de-
scription logic ontology (expressed, e.g., in OWL-DL).

Any portp € ports(W) may have gort semantic typ€ = st(p), where C denotes
aconcept expressioover O. For example, € = st(p;) might be defined as

MEASUREMENTM VITEMMEASURED.SPECIESOCCURRENCE (C1)

indicating that the porp, accepts (or produces) data tokens that are measurements
where the measured item is a species occurrence (as opposed to, e.g., a temﬁerature).
In addition to port semantic types, any actbre A may also be associated with an
actor semantic typecategorizing the overall function or purpose/tﬂ

Well-Typed Workflows. Structural and semantic types facilitate the design and imple-
mentation of workflows by constraining the possible values and interpretations of data
in a scientific workflowlV. Another advantage is that the scientific workflow system
can validate data connections. For example, if the workflow designer connects two ports

D1 9, p2 With structural types; = dt(p;) ands, = dt(p2), the system can check
whether this connection satisfies the implied subtype constsaink s,. Similarly,
for semantic types C= st(p;) and G = st(p2), the system can check whether the
implied concept subsumption;@C C, holds.

5 We note that terms within a concept expression may be from distinct ontologies.
8 Typically the vocabularies chosen for semantic port types and semantic actor types are disjoint,
with the former denoting “objects” and the latter denoting “actions” or “tasks”.



3.4 Hybrid Types for Scientific Workflows

Structural and semantic types can be considered independently from one another. For
example, a workflow designer might start by modeling semantic types and only later in
the design process be concerned with structural types (cf. Sg¢tion 4). Conversely, when
reverse-engineering existing executable workflows, structural types might be given first;
and only later are semantic types introduced for the purpose of facilitating workflow
integration.

Treating semantic and structural types independently offers a number of benefits,
and is primarily motivated by the desire to easily interoperate legacy workflow compo-
nents and components created by independent groups wittn#R Decoupling the
structural and semantic aspects of workflow types facilitates the use of more standard
and generic structural data types, while still allowing the specific semantic constraints
of the data to be expressed. Also, one can provide or refine semantic types without
altering the underlying structural type, can search for all components having a partic-
ular semantic type (regardless of the structural type used), and can provide multiple
semantic types for a single component (e.g., drawn from distinct ontologies).

An additional feature of hybrid types is the ability to not only independently con-
sider structural and semantic types, but also interrelate them by a constraint mechanism
calledhybridization Thus, in general, a hybrid type has three (optional) components,
the structural type, the semantic type, and the hybridization constraint.

Formally, letH be a language of (hybridizatioepnstraintsi.e., linking structural
and semantic type information. We express constraints ftbim logic, thus requir-
ing that structural and semantic types are expressed in a logic formalism as well. For
structural types this means that for asye S and any logic query expressiefz)
over the seinst(s) of instances of, we can evaluate(z) on a particular data instance
I € inst(s), returning a ligfj of variable bindings z | I = e(z) ], i.e., those parts of
that satisfy the query(z)

For example, given the structural (relational) tyge= r(site, day, spp, occ) and
the above semantic type; (the following constrainty; “hybridizes”s; and G:

Vl‘site, xday, xspp, Loce Hy : r(xsite, xday7 xsppa xocc) —
MEASUREMENT(y) A ITEMMEASURED(Y, Tocc ) A (a1)
SPECIESOCCURRENCE Zocc)

Here, the left-hand side of the implication corresponds to a query expregsipthat
extracts the item being measured from a relational measurement record. The right-hand
side of the implication asserts the existence of BAMUREMENTy WhoselITEMMEA-

SURED Ty IS @ SPECIESOCCURRENCE Note that a hybridization constraint such as

a4 can be seen as a “semantic annotation” of the data struet\ftbe left-hand side of

the constraint) with a concept expression (the right-hand side of the constraint).

Exploiting Hybrid Types. By interlinking the otherwise independent structural and
semantic type systems, additional inferences can be made. Consider a data connection

7 We consider variable bindiniists to accomodate order-sensitive data models such as XML;
for unordered models setof bindings can be returned.
8 Here,z = 1, ..., x, denotes a vector of logical variables.



d that connects two poris; N p2 havingincompatiblestructural types; = dt(p1)
andss = dt(p2), i.e., wheres; is not a subtype ok,, denoteds; Z so. Given (hy-
bridization) constraints;; andas that map parts of; ands, to a common ontology,
one can indirectly identify structural correspondences between pastsarid s, by
“going through the ontology.” Technically, this approach is achieved by a resolution-
based reasoning technique called the c%se.

Exploiting I/O-Constraints. Moreover, foran actod € A, a setp;,, of i/o-constraints

may be given, inter-relating the input and output portsdofFor example, an i/o-
constraint can be used to define (or approximate) how values of output ports can be
derived from values of input ports. Such a (partial) specification of an actor can be
used to propagate hybridization constraints themselves through one or more actors. As-
sume thap; € in(A) has the structural typ&, = r(site, day, spp, occ) from above,

andps, € out( ) has a structural type, = r’(sp, oc) Hand that the following i/o-
constraintp;, is given:

. /
vwsite7 Tday,; Lsppy Locc - r(‘rsiteq Tday, Lspp, "EOCC) — T ('/ESPP’ xocc) (SOio)

Using the i/o-constrainp;,, we can now propagate the above constraintthrough”

the actorA by applyingy;,. We are currently exploring reasoning procedures for prop-
agation that handle a variety of i/o-constraint operations including aggregration, union,
and group-by constructs. In this simple example, by applying the propagation proce-
dure, we would obtain a (hybridization) constraintfor the output porp, of A:

VTsp, Toc FY : T/ (Tsp, Toc) —
MEASUREMENT(y) A ITEMMEASURED(Y, Zoc)A (a2)
SPECIESOCCURRENCE Zoc )

Summary. Given the various extensions described above, we can now defyped
workflowWW = (A, D, X, M, ) to also include a set afonstraintsp. More precisely,
® = (s, Do, Py, ;) coOnsists of a sebs associatingstructural typesfrom S to
ports inW, &, associatinggemantic typeom an ontology® to actors and port®
linking structural and semantic types of ports, and finglly, specifying i/o-constraints
of actors.

4 Design and Implementation of Scientific Workflows

This section presents a collection of design primitives to support workflow engineering
(workflow conceptual design to implementation). Each primitive corresponds to a basic
operation over the formal model for actor-oriented scientific workflows. Primitives are
described as transformations that return the result of applying an operation to a work-
flow. Workflow engineers can repeatedly apply these primitives, e.g., via Hre &R
graphical user interface, to create their desired scientific workflow (see Figure 2).

% For an early version of our approach, see [4].
10 The structural types; ands, are disconnected (unless an i/o-constraint is given), so one
cannot assume the values (or types) of the input match the values (or types) of the ouput.
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Fig. 2. Workflow engineers evolve workflows by applying design primitives (left),
shown as transformatiosand primitives are grouped to form design strategies (right)

Based on the primitives, we identify design strategies to help guide workflow engi-
neers as they develop scientific workflows (see Figlre 2). Each strategy emphasizes cer-
tain primitives within a larger design process. For example, a particular design method
may be divided into a set of phases, and each phase may be guided by a certain strategy.

In this section, we also outline an approach to help automate the implemention of
workflow designs. Our approach leverages hybrid typing to refine a workflow into an
implemented version by repeatedly applying specific design primitives.

4.1 Scientific Workflow Design Primitives

Basic Actor-Oriented Design Primitives. Figure[3 summarizes the basic actor-
oriented modeling primitives. In particular, we include primitives to: introduce new
actors and dataflow connections into workflows (transformatigiradd input and out-
put ports to actors (transformatiog); refine port structural types (transformatity);
group (abstract) a portion of a workflow into a composite actor (transformation
define an actor as a composite (transformati)ncreate dataflow connections (trans-
formationtg); and assign a director to a workflow (transformatieh For structural
datatype refinement (transformatity), we require the “refined” datatype to be a sub-
type of the existing structural type. Although not shown in Figure 3, we also assume a
transformation that “generalizes” structural types (structural &fgstraction requiring
introduction of appropriate structural supertypes.

Semantic Typing Primitives. Figureg4 summarizes the semantic (hybrid) typing prim-
itives. The first two transformationts andtg refine actor semantic types and input and
output port semantic types, respectively. Semantic-type refinement requires the intro-
duction of subconcepts, i.e., to refine an actor semantic type T,tth@ constraint
T’ C T must hold. Refining the semantic types of an actor results in specializing the
actor’s operation. For instance, by refining an input-port semantic type, we further limit
the kinds of objects an actor can process. And similarly, by refining an output-port se-
mantic type, we further limit the kinds of objects that can be produced by an actor.
Often, actor and port semantic type refinements are performed together. For exam-
ple, consider the following series of refinements (each consisting of individual actor
and port semantic type refinements):

1. DATAMATRIX — [ANALYSIS] — RESULTSET



Basic Transformations Starting Workflow | Resulting Workflow | Resulting Workflow

t,: Entity Introduction
(actor or data connection)

t,: Port Introduction

t;: Datatype Refinement
(s’ =s,t'=t)

t,: Hierarchical Abstraction

ts: Hierarchical Refinement

te: Dataflow Connection

t,: Director Introduction : (e

Fig. 3. Actor-oriented design primitives summarized as transformations where actors
are represented as solid boxes; ports as triangles; dataflow connections as circles; com-
posite actors as dashed boxes; and directors as solid (green) boxes

2. PHYLOGENETICMATRIX — [PHYLOGENETICANALYSIS] — PHYLOGENETICTREE
3. NEXUSMATRIX — [CLADISTICANALYSIS] — CONSENSUS REE

The first refinement states that the semantic type of an actorig ¥sis, consisting

of an input port of semantic typeAdA MATRIX and output port of semantic typeeR
SULTSET. Here, ANALYSIS, DATAMATRIX, and RESULTSET represent general con-
cepts. The second refinement provides more details concerning the actor semantic type,
which also influences the input and output port semantic types. The third refinement
provides semantic types specific to a particular implementation of an analysis, again
influencing the input and output port semantic types.

Primitivest; andt;; are used to refine hybridization constraints and i/o-constraints,
respectively. Like with semantic types, both hybridization constraint refinement and i/o-
constraint strengthening specialize existing hybridization constraints and i/o-constraints
(shown as the implications’ — « andy) — ¢ in Figure[4).

Similar to the structural type refinement operation, each semantic type refinement
operation is assumed to have a corresponding version for abstraction (i.e., generaliza-
tion of types).

Extended Primitives for Dataflow Connections. It is often convenient to “loosely”
connect actors through dataflow connections and then give the details of the connec-
tion later as the workflow becomes more complete. The dataflow-connection refinement
(transformationt;5) provides two approaches for specifying the details of such a con-
nection. The first (shown as the first resulting workflow for the refinment in Figure 4)
splits a dataflow-connection nodento two separate dataflow-connection nodeand

do such that:

merge(di) U merge(d2) = merge(d) anddistrib(d1) U distrib(dz) = distrib(d)
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Refinement

(TeCT)

tq: Port Semantic Type

Refinement
(C¢C.C, DEC D)

t,0: Annotation
Constraint Refinement
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t;,: Dataflow Connection
Refinement

ty3- Adapter Insertion

ty4: Actor Replacement

t,5: Workflow Combination
(Map)

Fig. 4. Additional primitives to support scientific-workflow design and implementation,
where adapters are shown as solid, rounded boxes

The second refinement transforms a dataflow-connection digde an actor nodet,
which is constructed frord as follows: (1) each pont in merge(d) generates a new
portp’ thatis added tin(A); (2) a new dataflow-connection node is created to connect
the portsp andp’; (3) a new porp” is created and added tat(A); and (4)merge(d)
is assigned the singleton sgt’}.

Although not shown in Figure] 4, we assume both versions of dataflow-connection
refinement have corresponding generalization primitives.

Primitives for Adapter Insertion. The adapter insertion primitive (transformatiqgp)

is used to insert special actors calldhptersbetween incompatible dataflow connec-
tions. We focus on adapters for situations in which a connection contains a semantic or
structural incompatibility.

A semantic adapteis used to align input and output port connections that do not
satisfy the subconcept typing constraint. We consider two cases for semantic adapter
insertion. In the first case, an output port with semantic type C is connected to an input
port with semantic type D. We assume that C and D are incompatible such that the
constraint CC D does not hold. For example, let C and D be defined as follows.

C = MEASUREMENTIM YITEMMEASURED.SPECIESOCCURRENCE
D = MEASUREMENTIM VITEMMEASURED.SPECIESRICHNESS

The first actor produces data containing species’ occurrence measurements and the
second actor consumes data containing species’ richness measurements. The seman-
tic types are not compatible becauseESIESOCCURRENCEIS not a subconcept of



SPECIERICHNESS In general, however, richness data can be obtained from occur-
rence data through a simple conversion, namely, by summing occurrrence.

In this case, one may choose to insert a semantic adapter between the two actors.
Conceptually, the adapter provides a data conversion that can reconcile the semantic
differences between the two actors. Typically the input and output semantic types of
a semantic adapter will be assigned the corresponding actor output and input, respec-
tively. A semantic adapter can also have a more general input semantic type (e.g., a
semantic type €2 C) and a more restrictive output semantic type (e.g.ZD).

A structural adapteiis similar to a semantic adapter, but is used to reconcile incom-
patible structural types found in data connections (as opposed to incompatible semantic
types). Within KEPLER, users can determine whether connections are created that are
semantically or structurally incompatible. Incompatible types can be fixed by: (1) in-
serting an appropriate adapter; (2) modifying the data connection; or (3) abstracting
and/or refining the problem types.

Primitives for Actor Replacement. The actor replacement primitive (transitior,)

is used to “swap” one actor in a workflow with another actor. We use standard object-
oriented inheritance rules|[6] to determine when a particular actor replacement is appro-
priate. Figuré b shows three simple cases: the general case of safe replacement (shown
on the left), unsafe replacement (shown in the middle), and context-sensitive replace-
ment (shown on the right). For general replacement, an attatan be replaced by
another actor, if the following conditions hold™]

1. A, has an input (output) port for each df’s input (output) por@

2. Aj’s actor semantic type is a subconceptafs actor semantic type;
3. Az’s input port types are equivalent or more general tHais; and

4. Aj’s output port types are equivalent or more specific tHals.

As shown in Figurg [5unsafe replacemeniccurs when the semantic (or structural)
port types do not satisfy the above conditions. However, unsafe replacement may still
be considered appropriate when the replacement is taken in context. That is, the gen-
eral form of unsafe replacement (the middle case of Figlre 5) may become safe when
the surrounding data connections are considered. We call thiscoasext-sensitive
replacementas shown in Figurg]5, the input and output semantic (and structural) re-
placement rules are determined by the semantic (and structural) types of corresponding
data connections.

Primitives for Combining Workflows. The workflow combination primitive (transfor-
mationt;5) is used to assemble two or more workflows into a single “conglomerate.” To
be combined, the input and output structural and semantic types of the separate work-
flows must be combatible. The most specific input types of the separate workflows are
used as the combined-workflow input types; and the most general output types of the

11 Note that in general we also require the i/o-constrginof the replacement to imply the i/o-
constraintf of the original actor (i.e.f’ — f).

12 Here, A, may contain more output ports thahi, and possibly more input ports so long as
the “extra” ports are not required. As future work, we are also more generally considering
matching aggregrations of ports.
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Fig. 5. Semantic type constraints for general, unsafe, and context-sensitive replacement

separate workflows are used as the combined-workflow output types. Combining sim-
ilar workflows is useful for cases where multiple algorithms exist to perform a similar
function, e.qg., to perform multiple multivariate statistics over the same input data.

The workflow combination primitive is similar to the higher order function

map = [a] -> (a -> b) -> [b] , which returns the result of applying a func-
tion to each element of a list. In particular, the workflow combination primitive
can be viewed as a variahtap :: a -> [(@a -> b)] -> [b] that takes a value

v and a list of functionsfy, fo,..., fn, and returns a list containing the values

fl(v)7f2(0)7 7fn(v)

4.2 Strategies for Workflow Design

As shown in Figurg]2 (and similar in spirit tol[3]), we define high-level design strategies
that emphasize specific transformation primitives. The strategies can be used to describe
design methods where at each stage, a particular strategy (a point in the design space of
Figure[2) is applied. The design strategies are defined as follows.

— Task-Driven DesignWorkflow engineers focus on identifying the conceptual actors of a
workflow. This strategy can involve defining actor ports, semantic types, structural types,
associations, and i/o-constraints along with hierarchcial refinements and replacements to
convert abstract actors to implemented versions.

— Data-Driven DesignWofkflow engineers focus on identifying the input data and dataflow
connections of workflows. Dataflow connections may be elaborated using refinement.

— Semantic-Driven DesigiWorkflow engineers focus on specifying the semantic types of the
workflow. The engineer may start with a “blank” workflow topology containing basic actors
and dataflow connections, and identify the appropriate semantic types, adding concepts and
roles to ontologies as needed.

— Structure-Driven DesigrlLike semantic-driven design, but for structural types.

— Input-Driven DesignWorkflow engineers focus on identifying the input of a workflow, and
design from “left to right,” i.e., from the input side to the output side of the workflow.

— Output-Driven DesignLike input-driven design, but focus on data products first.

— Top-Down DesignWorkflow engineers focus on refining actors and dataflow connections.
The engineer may begin with a single empty workflow and iteratively apply hierarchical and
dataflow connection refinement.



— Bottom-Up DesignWorkflow engineers focus on abstraction of actors and dataflow connec-
tions. The engineer may first define specific parts of a workflow and iteratively abstract the
workflow using hierarchical abstraction to connect the various parts.

Different workflow design methods apply in different situations. We have found
that the process of re-engineering existing applications into workflows often starts with
top-down, structure driven strategies. But, when scientists develop new workflows (e.g.,
new analyses as opposed to “re-engineered” ones), a mix of semantic, input, and output
strategies are used.

4.3 From Design to Implementation of Scientific Workflows

Here we outline an approach that leverages hybrid typing, replacement rules, and
adapter insertion to help automate the task of finding appropriate actor implementations
for workflow specifications. We assume there is a reposiRrgf semantically typed
actors and workflows. We use the teatvstract actotto refer to actors that cannot be ex-
ecuted (i.e., without implementations) acmhcrete actoto refer to executable actors.

R may consist of abstract or concrete actors, composite actors, and entire workflows.
The following steps sketch the approach for finding implementations of a workflow

if W is a concrete workflow, outpdd”

select an abstract actdr- € A that has an actor replacemett € R

letW'’ be the workflow that results from replaciaty by Ac

if W’ has an incompatible dataflow connection, insert an abstract adapter
5. repeat withV := W’

PwbhPE

The basic idea of the approach is to define a search space such that each node repre-
sents a workflow and transitions between nodes are defined using steps 2-4 above. The
procedure for finding implementations Bf is to navigate the search space (e.g., using

a breadth-first or depth-first search algorithm) looking for nodes that represent concrete
workflows. In the transitions (steps 2-4) defined above, we replace individual abstract
actors in a workflow with valid replacements from the respository. When a concrete
actor is inserted that violates a semantic or structural typing rule, we also insert an ab-
stract adapter actor, which can also be replaced (in subsequent steps). In general, for
a given worfklowWW there may be many associated concrete workflows, depending on
whenever an abstract actor can be replaced by more than one repository element. The
user may wish to combine some or all of the resulting workflows using the workflow
combination primitive.

5 Summary

This paper extends our previous work by describing a formal model of scientific work-
flows based on actor-oriented modeling and design. The approach facilitates conceptual
modeling of scientific workflows through a novel hybrid type system, and by provid-
ing a set of primitive modeling operations for end-to-end scientific workflow develop-
ment. Our approach can also support the conceptual and structural validation of scien-
tific workflows, as well as the discovery of type-conforming workflow implementations



via replacement rules and by inserting appropriate semantic and structural adapters for
workflow integration. Much of this work is currently implemented within theACER
system, and we are currently extendingd{ ER with semantic propagation and addi-
tional reasoning techniques to further exploit hybrid types.
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