
Processing Unions of Conjunctive Queries with
Negation under Limited Access Patterns

Alan Nash1 and Bertram Ludäscher2

1 Department of Mathematics, anash@math.ucsd.edu
2 San Diego Supercomputer Center, ludaesch@sdsc.edu

University of California, San Diego

Abstract. We study the problem of answering queries over sources with
limited access patterns. The problem is to decide whether a given query
Q is feasible, i.e., equivalent to an executable query Q′ that observes
the limited access patterns given by the sources. We characterize the
complexity of deciding feasibility for the classes CQ¬ (conjunctive queries
with negation) and UCQ¬ (unions of CQ¬ queries): Testing feasibility is
just as hard as testing containment and therefore ΠP

2 -complete. We also
provide a uniform treatment for CQ, UCQ, CQ¬, and UCQ¬ by devising
a single algorithm which is optimal for each of these classes. In addition,
we show how one can often avoid the worst-case complexity by certain
approximations: At compile-time, even if a query Q is not feasible, we
can find efficiently the minimal executable query containing Q. For query
answering at runtime, we devise an algorithm which may report complete
answers even in the case of infeasible plans and which can indicate to
the user the degree of completeness for certain incomplete answers.

1 Introduction

We study the problem of answering queries over sources with limited query ca-
pabilities. The problem arises naturally in the context of database integration
and query optimization in the presence of limited source capabilities (e.g., see
[PGH98,FLMS99]). In particular, for any database mediator system that sup-
ports not only conventional SQL databases, but also sources with access pattern
restrictions [LC01,Li03], it is important to come up with query plans which ob-
serve those restrictions. Most notably, the latter occurs for sources which are
modeled as web services [WSD03]. For the purposes of query planning, a web
service operation can be seen as a remote procedure call, corresponding to a
limited query capability which requires certain arguments of the query to be
bound (the input arguments), while others may be free (the output arguments).

Web Services as Relations with Access Patterns. A web service operation
can be seen as a function op: x1, . . . , xn → y1, . . . , ym having an input message
(request) with n arguments (parts), and an output message (response) with m
parts [WSD03, Part 2, Sec. 2.2]. For example, opB : author → {(isbn, title)} may
implement a book search service, returning for a given author A a list of books

E. Bertino et al. (Eds.): EDBT 2004, LNCS 2992, pp. 422–440, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Processing Unions of Conjunctive Queries with Negation 423

authored by A. We model such operations as relations with access pattern, here:
Boio(isbn, author , title), where the access pattern ‘oio’ indicates that a value for
the second attribute must be given as input, while the other attribute values
can be retrieved as output. In this way, a family of web service operations over
k attributes can be concisely described as a relation R(a1, . . . , ak) with an asso-
ciated set of access patterns. Thus, queries become declarative specifications for
web service composition.

An important problem of query planning over sources with access pattern
restrictions is to determine whether a query Q is feasible, i.e., equivalent to an
executable query plan Q′ that observes the access patterns.

Example 1 The following conjunctive query1 with negation

Q(i, a, t)←−B(i, a, t), C(i, a),¬L(i)

asks for books available through a store B which are contained in a catalog C,
but not in the local library L. Let the only access patterns be Bioo, Boio, Coo,
and Lo. If we try to execute Q from left to right, neither pattern for B works
since we either lack an ISBN i or an author a. However, Q is feasible since we
can execute it by first calling C(i, a) which binds both i and a. After that, calling
Bioo(i, a, t) or Boio(i, a, t) will work, resulting in an executable plan. In contrast,
calling ¬L(i) first and then B does not work: a negated call can only filter out
answers, but cannot produce any new variable bindings.

This example shows that for some queries which are not executable, simple
reordering can yield an executable plan. However there are queries which cannot
be reordered yet are feasible.2 This raises the question of how to determine
whether a query is feasible and how to obtain “good approximations” in case the
query is not feasible. Clearly, these questions depend on the class of queries under
consideration. For example, feasibility is undecidable for Datalog queries [LC01]
and for first-order queries [NL04]. On the other hand, feasibility is decidable for
subclasses such as conjunctive queries (CQ) and unions of conjunctive queries
(UCQ) [LC01].

Contributions. We show that deciding feasibility for conjunctive queries with
negation (CQ¬) and unions of conjunctive queries with negation (UCQ¬) is ΠP

2 -
complete, and present a corresponding algorithm, Feasible. Feasibility of CQ
and UCQ was studied in [Li03]. We show that our uniform algorithm performs
optimally on all these four query classes.

We also present a number of practical improvements and approximations
for developers of database mediator systems: Plan� is an efficient polynomial-
time algorithm for computing two plans Qu and Qo, which at runtime produce
underestimates and overestimates of the answers to Q, respectively. Whenever
Plan� outputs two identical Qu and Qo, we know at compile-time that Q is
1 We write variables in lowercase.
2 Li and Chang call this notion stable [LC01,Li03].

424 A. Nash and B. Ludäscher

feasible without actually incurring the cost of the ΠP
2 -complete feasibility test.

In addition, we present an efficient runtime algorithm Answer� which, given
a database instance D, computes underestimates Answer(Qu, D) and overesti-
mates Answer(Qo, D) of the exact answer. If Q is not feasible, Answer� may
still compute a complete answer and signal the completeness of the answer to
the user at runtime. In case the answer is incomplete (or not known to be com-
plete), Answer� can often give a lower bound on the relative completeness of
the answer.

Outline. The paper is organized as follows: Section 2 contains the preliminaries.
In Section 3 we introduce our basic notions such as executable, orderable, and
feasible. In Section 4 we present our main algorithms for computing execution
plans, determining the feasibility of a query, and runtime processing of answers.
In Section 5 we present the main theoretical results, in particular a characteriza-
tion of the complexity of deciding feasibility of UCQ¬ queries. Also we show how
related algorithms can be obtained as special cases of our uniform approach. We
summarize and conclude in Section 6.

2 Preliminaries

A term is a variable or constant. We use lowercase letters to denote terms. By x̄
we denote a finite sequence of terms x1, . . . , xk. A literal R̂(x̄) is an atom R(x̄)
or its negation ¬R(x̄).

A conjunctive query Q is a formula of the form ∃ȳ R1(x̄1) ∧ . . . ∧ Rn(x̄n).
It can be written as a Datalog rule Q(z̄) ←− R1(x̄1), . . . , Rn(x̄n). Here, the
existentially-quantified variables ȳ are among the x̄i and the distinguished (an-
swer) variables z̄ in the head of Q are the remaining free variables of Q, de-
noted free(Q). Let vars(Q) denote all variables of Q; then we have free(Q) =
vars(Q) \ {ȳ} = {z̄}. Conjunctive queries (CQ) are also known as SPJ (select-
project-join) queries.

A union of conjunctive queries (UCQ) is a query Q of the form Q1∨ . . .∨Qk

where each Qi ∈ CQ. If free(Q) = {z̄}, then Q in rule form consists of k rules,
one for each Qi, all with the same head Q(z̄).

A conjunctive query with negation (CQ¬) is defined like a conjunctive query,
but with literals R̂i(x̄i) instead of atoms Ri(x̄i). Hence a CQ¬ query is an exis-
tentially quantified conjunction of positive or negated atoms.

A union of conjunctive queries with negation (UCQ¬) is a query Q1∨ . . .∨Qk

where each Qi ∈ CQ¬; the rule form consists of k CQ¬-rules having the same
head Q(z̄).

For Q ∈ CQ¬, we denote by Q+ the conjunction of the positive literals in Q
in the same order as they appear in Q and by Q− the conjunction of the negative
literals in Q in the same order as they appear in Q.

A CQ or CQ¬ query is safe if every variable of the query appears in a
positive literal in the body. A UCQ or UCQ¬ query is safe if each of its CQ or
CQ¬ parts is safe and if all of them have the same free variables. In this paper
we only consider safe queries.

Processing Unions of Conjunctive Queries with Negation 425

3 Limited Access Patterns and Feasibility

Here we present the basic definitions for source queries with limited access pat-
terns. In particular, we define the notions executable, orderable, and feasible.
While the former two notions are syntactic in the sense that they can be decided
by a simple inspection of a query, the latter notion is semantic, since feasibility
is defined up to logic equivalence. An executable query can be seen as a query
plan, prescribing how to execute the query. An orderable query can be seen as
an “almost executable” plan (it just needs to be reordered to yield a plan). A
feasible query, however, does not directly provide an execution plan. The prob-
lem we are interested in is how to determine whether such an executable plan
exists and how to find it. These are two different, but related, problems.

Definition 1 (Access Pattern) An access pattern for a k-ary relation R is an
expression of the form Rα where α is word of length k over the alphabet {i, o}.

We call the jth position of P an input slot if α(j) = i and an output slot if
α(j) = o.3 At runtime, we must provide values for input slots, while for output
slots such values are not required, i.e., “bound is easier” [Ull88].4 In general,
with access pattern Rα we may retrieve the set of tuples {ȳ | R(x̄, ȳ)} as long as
we supply the values of x̄ corresponding to all input slots in R.

Example 2 (Access Patterns) Given the access patterns Bioo and Boio for
the book relation in Example 1 we can obtain, e.g., the set {〈a, t〉 | B(i, a, t)} of
authors and titles given an ISBN i and the set {t | ∃i B(i, a, t)} of titles given
an author a, but we cannot obtain the set {〈a, t〉 | ∃i B(i, a, t)} of authors and
titles, given no input.

Definition 2 (Adornment) Given a set P of access patterns, a P-adornment
on Q ∈ UCQ¬ is an assignment of access patterns from P to relations in Q.

Definition 3 (Executable) Q ∈ CQ¬ is P-executable if P-adornments can be
added to Q so that every variable of Q appears first in an output slot of a non-
negated literal. Q ∈ UCQ¬ with Q := Q1 ∨ . . . ∨Qk is P-executable if every Qi

is P-executable.

We consider the query which returns no tuples, which we write false, to be
(vacuously) executable. In contrast, we consider the query with an empty body,
which we write true, to be non-executable. We may have both kinds of queries
in ans(Q) defined below. From the definitions, it follows that executable queries
are safe. The converse is false.

An executable query provides a query plan: execute each rule separately
(possibly in parallel) from left to right.
3 Other authors use ‘b’ and ‘f’ for bound and free, but we prefer to reserve these

notions for variables under or not under the scope of a quantifier, respectively.
4 If a source does not accept a value, e.g., for y in Rio(x, y), one can ignore the y binding

and call R(x, y′) with y′ unbound, and afterwards execute the join for y′ = y.

426 A. Nash and B. Ludäscher

Definition 4 (Orderable) Q ∈ UCQ¬ with Q := Q1 ∨ . . .∨Qk is P-orderable
if for every Qi ∈ CQ¬ there is a permutation Q′

i of the literals in Qi so that
Q′ := Q′

1 ∨ . . . ∨Q′
k is P-executable.

Clearly, if Q is executable, then Q is orderable, but not conversely.

Definition 5 (Feasible) Q ∈ UCQ¬ is P-feasible if it is equivalent to a P-
executable Q′ ∈ UCQ¬.

Clearly, if Q is orderable, then Q is feasible, but not conversely.

Example 3 (Feasible, Not Orderable) Given access patterns Bioo, Boio,
Lo,

Q(a)←− B(i, a, t), L(i), B(i′, a′, t)
Q(a)←− B(i, a, t), L(i),¬B(i′, a′, t)

is not orderable since i′ and a′ cannot be bound, but feasible because this query
is equivalent to the executable query Q′(a)←− L(i), B(i, a, t).

Usually, we have in mind a fixed set P of access patterns and then we simply
say executable, orderable, and feasible instead of P-executable, P-orderable, and
P-feasible. The following two definitions and the algorithm in Figure 1 are small
modifications of those presented in [LC01].

Definition 6 (Answerable Literal) Given Q ∈ CQ¬, we say that a literal
R̂(x̄) (not necessarily in Q) is Q-answerable if there is an executable QR ∈ CQ¬

consisting of R̂(x̄) and literals in Q.

Definition 7 (Answerable Part ans(Q)) If Q ∈ CQ¬ is unsatisfiable then
ans(Q) = false. If Q is satisfiable, ans(Q) is the query given by the Q-
answerable literals in Q, in the order given by the algorithm Answerable
(see Figure 1). If Q ∈ UCQ¬ with Q = Q1 ∨ . . . ∨ Qk then ans(Q) =
ans(Q1) ∨ . . . ∨ ans(Qk).

Notice that the answerable part ans(Q) of Q is executable whenever it is safe.

Proposition 1 Q ∈ CQ¬ is orderable iff every literal in Q is Q-answerable.

Proposition 2 There is a quadratic-time algorithm for computing ans(Q).

The algorithm is given in Figure 1.

Corollary 3 There is a quadratic-time algorithm for checking whether Q ∈
UCQ¬ is orderable.

In Section 5.1 we define and discuss containment of queries and in Section 5.2
we prove the following proposition. Query P is said to be contained in query Q
(in symbols, P 	 Q) if for every instance D, Answer(P, D) ⊆ Answer(Q, D).

Proposition 4 If Q ∈ UCQ¬, then Q 	 ans(Q).

Corollary 5 If Q ∈ UCQ¬, ans(Q) is safe, and ans(Q) 	 Q, then Q is feasible.

Proof If ans(Q) 	 Q then ans(Q) ≡ Q and therefore, since ans(Q) is safe and
thus executable, Q is feasible.

We show in Section 5 that the converse also holds; this is one of our main results.

Processing Unions of Conjunctive Queries with Negation 427

Input: – CQ¬ query Q = L1 ∧ . . . ∧ Lk over a schema with access patterns P
Output: – ans(Q), the answerable part A of Q

procedure Answerable(Q, P)
if Unsatisfiable(Q) then return false
A := ∅; B := ∅ /* initialize answerable literals and bound variables */
repeat

done := true
for i := 1 to k do

if Li �∈ A and (vars(Li) ⊆ B or (positive(Li) and invars(Li) ⊆ B)) then
A := A ∧ Li ; B := B ∪ vars(Li); done := false

until done
return A

Fig. 1. Algorithm Answerable for CQ¬ queries

4 Computing Plans and Answering Queries

Given a UCQ¬ query Q = Q1 ∨ · · · ∨ Qn over a relational schema with access
pattern restrictions P, our goal is to find executable plans for Q which satisfy
P. As we shall see such plans may not always exist and deciding whether Q is
feasible, i.e., equivalent to some executable Q′ is a hard problem (ΠP

2 -complete).
On the other hand, we will be able to obtain efficient approximations, both at
compile-time and at runtime. By compile-time we mean the time during which
the query is being processed, before any specific database instance D is con-
sidered or available. By runtime we mean the time during which the query is
executed against a specific database instance D. For example, feasibility is a
compile-time notion, while completeness (of an answer) is a runtime notion.

4.1 Compile-Time Processing

Let us first consider the case of an individual CQ¬ query Q = L1 ∧ . . . ∧ Lk

where each Li is a literal. Figure 1 depicts a simple and efficient algorithm
Answerable to compute ans(Q), the answerable part of Q: First we handle
the special case that Q is unsatisfiable. In this case we return false. Otherwise,
at every stage, we will have a set of input variables (i.e., variables with bindings)
B and an executable sub-plan A. Initially, A and B are empty. Now we iterate,
each time looking for at least one more answerable literal Li that can be handled
with the bindings B we have so far (invars(Li) gives the variables in Li which
are in input slots). If we find such answerable literal Li, we add it to A and we
update our variable bindings B. When no such Li is found, we exit the outer
loop. Obviously, Answerable is polynomial (quadratic) time in the size of Q.

We are now ready to consider the general case of computing execution plans
for a UCQ¬ query Q (Figure 2). For each CQ¬ query Qi of Q, we compute
its answerable part Ai := ans(Qi) and its unanswerable part Ui := Qi \ Ai.
As the underestimate of Qu

i , we consider Ai if Ui is empty; else we dismiss Qi

428 A. Nash and B. Ludäscher

Input: – UCQ¬ query Q(x̄) = Q1 ∨ · · · ∨ Qn over a schema with access patterns P
Output: – execution plans Qu (underestimates), Qo (overestimates)

procedure Plan�(Q)
for i := 1 to n do

Ai := Answerable(Qi, P); Ui := Qi \ A1

if Ui = ∅ then Qu
i := Ai else Qu

i := false
v̄ := x̄ \ vars(Ai)
Qo

i := Ai ∧ (v̄ = null)
Qu := Qu

1 ∨ · · · ∨ Qu
n; Qo := Qo

1 ∨ · · · ∨ Qo
n

output Qu, Qo

Fig. 2. Algorithm Plan� for UCQ¬ queries

altogether for the underestimate. Either way, we ensure that Qu
i 	 Qi. For the

overestimate Qo
i we give Ui the “benefit of doubt” and consider that it could be

true. However, we need to consider the case that not all variables x̄ in the head
of the query occur in the answerable part Ai: some may appear only in Ui, so
we cannot return a value for them. Hence we set the variables in x̄ which are
not in Ai to null. This way we ensure that Qi 	 Qo

i , except when Qo
i has null

values. We have to interpret tuples with nulls carefully (see Section 4.2). Clearly,
if all Ui are empty, then Qu = Qo and all Qi can be executed in the order given
by Answerable, so Q is orderable and thus feasible. Also note that Plan� is
efficient, requiring at most quadratic time.

Example 4 (Underestimate, Overestimate Plans) Consider the following
query Q = Q1 ∨Q2 with the access patterns P = {So, Roo, Bii, T oo}.

Q1(x, y)←− ¬S(z), R(x, z), B(x, y)
Q2(x, y)←− T (x, y)

Although we can use S(z) to produce bindings for z, this is not the case for its
negation ¬S(z). But by moving R(x, z) to the front of the first disjunct, we can
first bind z and then test against the filter ¬S(z). However, we cannot satisfy
the access pattern for B. Hence, we will end up with the following plans for
Qu = Qu

1 ∨Qu
2 and Qo = Qo

1 ∨Qo
2.

Qu
1 (x, y) ←− false

Qu
2 (x, y) ←− T (x, y)

Qo
1(x, y) ←− R(x, z),¬S(z), y = null

Qo
2(x, y) ←− T (x, y)

Note that the unanswerable part U1 = {B(x, y)} results in an underestimate Qu
1

equivalent to false, so Qu
1 can be dropped from Qu (the unanswerable B(x, y) is

also responsible for the infeasibility of this plan). In the overestimate, R(x, z) is
moved in front of ¬S(z), and B(x, y) is replaced by a special condition equating
the unknown value of y with null.

Processing Unions of Conjunctive Queries with Negation 429

Input: – UCQ¬ query Q(x̄) = Q1 ∨ · · · ∨ Qn over a schema with access patterns
Output: – true if Q is feasible, false otherwise

procedure Feasible(Q)
(Qu, Qo) := Plan�(Q)
if Qu = Qo then return true
if Qo contains null then return false else return Qo � Q

Fig. 3. Algorithm Feasible for UCQ¬ queries

Feasibility Test. While Plan� is an efficient way to compute plans for a query
Q, if it returns Qu �= Qo then we do not know whether Q is feasible. One way,
discussed below, is to not perform any static analysis in addition to Plan� and
just “wait and see” what results Qu and Qo produce at runtime. This approach
is particularly useful for ad-hoc, one-time queries.

On the other hand, when designing integrated views of a mediator system
over distributed sources and web services, it is desirable to establish at view
definition time that certain queries or views are feasible and have an equivalent
executable plan for all database instances. For such “view design” and “view
debugging” scenarios, a full static analysis using algorithm Feasible in Figure 3
is desirable. First, Feasible calls Plan� to compute the two plans Qu and Qo.
If Qu and Qo coincide, then Q is feasible. Similarly, if the overestimate contains
some CQ¬ sub-query in which a null value occurs, we know that Q cannot be
feasible (since then ans(Q) is unsafe). Otherwise, Q may still be feasible, i.e., if
ans(Q) (= overestimate Qo in this case) is contained in Q. The complexity of
Feasible is dominated by the ΠP

2 -complete containment check Qo 	 Q.

4.2 Runtime Processing

The worst-case complexity of Feasible seems to indicate that in practice and
for large queries there is no hope to obtain plans having complete answers.
Fortunately, the situation is not that bad after all. First, as indicated above,
we may use the outcome of the efficient Plan� algorithm to at least in some
cases decide feasibility at compile-time (see first part of Feasible up to the
containment test). Perhaps even more important, from a practical point of view,
is the ability to decide completeness of answers dynamically, i.e., at runtime.

Consider algorithm Answer� in Figure 4. We first let Plan� compute the
two plans Qu and Qo and evaluate them on the given database instance D
to obtain the underestimate and overestimate ansu and anso, respectively. If
the difference ∆ between them is empty, then we know the answer is complete
even though the query may not be feasible. Intuitively, the reason is that an
unanswerable part which causes the infeasibility may in fact be irrelevant for a
specific query.

430 A. Nash and B. Ludäscher

Input: – UCQ¬ query Q(x̄) = Q1 ∨ · · · ∨ Qn over schema R with access patterns
– D a database instance over R

Output: – underestimate ansu

– difference ∆ to overestimate anso

– completeness information

procedure Answer�(Q)
(Qu, Qo) := Plan�(Q)
ansu := Answer(Qu, D); anso := Answer(Qo, D); ∆ := anso \ ansu

output ansu

if ∆ = ∅ then output “answer is complete”
else

output “answer is not known to be complete”
output “these tuples may be part of the answer:” ∆
if ∆ has no null values then

output “answer is at least” |ansu|
|anso| “complete”

/* optional: minimize ∆ using domain enumeration for Ui */

Fig. 4. Algorithm Answer�(UCQ¬) for runtime handling of plans

Example 5 (Not Feasible, Runtime Complete) Consider the plans cre-
ated for the query in Example 4 (here we dropped the unsatisfiable Qu

1):

Qu
2 (x, y) ←− T (x, y)

Qo
1(x, y) ←− R(x, z),¬S(z), y = null

Qo
2(x, y) ←− T (x, y)

Given that Bii is the only access pattern for B, the query Q1 in Example 4 is
not feasible since we cannot create y bindings for B(x, y). However, for a given
database instance D, it may happen that the answerable part R(x, z),¬S(z)
does not produce any results. In that case, the unanswerable part B(x, z) is
irrelevant and the answer obtained is still complete.

Sometimes it is not accidental that certain disjuncts evaluate to false, but
rather it follows from some underlying semantic constraints, in which case the
omitted unanswerable parts do not compromise the completeness of the answer.

Example 6 (Dependencies) In the previous example, if R.z is a foreign key
referencing S.z, then always { z | R(x, z)} ⊆ { z | S(z)}. Therefore, the first
disjunct Qo

1(x, y) can be discarded at compile-time by a semantic optimizer.
However, even in the absence of such checks, our runtime processing can still
recognize this situation and report a complete answer for this infeasible query.

In the BIRN mediator [GLM03], when unfolding queries against global-as-
view defined integrated views into UCQ¬ plans, we have indeed experienced
query plans with a number of unsatisfiable (with respect to some underlying,
implicit integrity constraints) CQ¬ bodies. In such cases, when plans are redun-
dant or partially unsatisfiable, our runtime handling of answers allows to report

Processing Unions of Conjunctive Queries with Negation 431

complete answers even in cases when the feasibility check fails or when the se-
mantic optimization cannot eliminate the unanswerable part. In Figure 4, we
know that ansu is complete if ∆ is empty, i.e., the overestimate plan Qo has
not contributed new answers. Otherwise we cannot know whether the answer
is complete. However, if ∆ does not contain null values, we can quantify the
completeness of the underestimate relative to the overestimate.

We have to be careful when interpreting tuples with nulls in the overestimate.

Example 7 (Nulls) Let us now assume that R(x, z),¬S(z) from above holds
for some variable binding. Such a binding, say β = {x/a, z/b}, gives rise to an
overestimate tuple Qo

1(a, null).

How should we interpret a tuple like (a, null) ∈ ∆? The given variable
binding β = {x/a, z/b} gives rise to the following partially instantiated query:

Qo
1(a, y)←− R(a, b),¬S(b), B(a, y).

Given the access pattern Bii we cannot know the contents of {y | B(a, y)}. So
our special null value in the answer means that there may be one or more y
values such that (a, y) is in the answer to Q. On the other hand, there may
be no such y in B which has a as its first component. So when (a, null) is in
the answer, we can only infer that R(a, b) and ¬S(b) are true for some value
b; but we do not know whether indeed there is a matching B(a, y) tuple. The
incomplete information on B due to the null value also explains why in this case
we cannot give a numerical value for the completeness information in Answer�.

From Theorem 16 below it follows that the overestimates anso computed via
Qo cannot be improved, i.e., the construction is optimal. This is not the case for
the underestimates as presented here.

Improving the Underestimate. The Answer� algorithm computes under-
and overestimates ansu, anso for UCQ¬ queries at runtime. If a query is feasible,
then we will always have ansu = anso, which is detected by Answer�. However,
in the case of infeasible queries, there are still additional improvements that can
be made. Consider the algorithm Plan� in Figure 2: it divides a CQ¬ query Qi

into two parts, the answerable part Ai and the unanswerable part Ui. For each
variable xj which requires input bindings in Ui not provided by Ui, we can create
a domain enumeration view dom(xj) over the relations of the given schema and
provide the bindings obtained in this way as partial domain enumerations to Ui.

Example 8 (Domain Enumeration) For our running example from above,
instead of Qu

1 being false, we obtain an improved underestimate as follows:

Qu
1 (x, y)←− R(x, z),¬S(z), dom(y), B(x, y)

where dom(y) could be defined, e.g., as the union of the projections of various
columns from other relations for which we have access patterns with output
slots: dom(x)←− R(x, y) ∨R(z, x) ∨ . . .

432 A. Nash and B. Ludäscher

This domain enumeration approach has been used in various forms [DL97].
Note that in our setting of Answer� we can create a very dynamic handling of
answers: if Answer� determines that ∆ �= ∅, the user may want to decide at
that point whether he or she is satisfied with the answer or whether the possibly
costly domain enumeration views should be used. Similarly, the relative answer
completeness provided by Answer� can be used to guide the user and/or the
system when introducing domain enumeration views.

5 Feasibility of Unions of Conjunctive Queries with
Negation

We now establish the complexity of deciding feasibility for safe UCQ¬ queries.

5.1 Query Containment

We need to consider query containment for UCQ¬ queries. In general, query P
is said to be contained in query Q (in symbols, P 	 Q) if for all instances D,
Answer(P, D) ⊆ Answer(Q, D). We write CONT(L) for the following decision
problem: For a class of queries L, given P, Q ∈ L determine whether P 	 Q.

For P, Q ∈ CQ, a function σ: vars(Q)→ vars(P) is a containment mapping
if P and Q have the same free (distinguished) variables, σ is the identity on the
free variables of Q, and, for every literal R(ȳ) in Q, there is a literal R(σȳ) in P .

Some early results in database theory are:

Proposition 6 [CM77] CONT(CQ) and CONT(UCQ) are NP-complete.

Proposition 7 [SY80,LS93] CONT(CQ¬) and CONT(UCQ¬) are ΠP
2 -

complete.

For many important special cases, testing containment can be done efficiently.
In particular, the algorithm given in [WL03] for containment of safe CQ¬ and
UCQ¬ uses an algorithm for CONT(CQ) as a subroutine. Chekuri and Rajara-
man [CR97] show that containment of acyclic CQs can be solved in polynomial
time (they also consider wider classes of CQs) and Saraiya [Sar91] shows that
containment of CQs, in the case where no relation appears more than twice in
the body, can be solved in linear time. By the nature of the algorithm in [WL03],
these gains in efficiency will be passed on directly to the test for containment of
CQs and UCQs (so the check will be in NP) and will also improve the test for
containment of CQ¬ and UCQ¬.

5.2 Feasibility

Definition 8 (Feasibility Problem) FEASIBLE(L) is the following decision
problem: given Q ∈ L decide whether Q is feasible for the given access patterns.

Processing Unions of Conjunctive Queries with Negation 433

Before proving our main results, Theorems 16 and 18, we need to estab-
lish a number of auxiliary results. Recall that we assume queries to be safe; in
particular Theorems 12 and 13 hold only for safe queries.

Proposition 8 Q ∈ CQ¬ is unsatisfiable iff there exists a relation R and terms
x̄ so that both R(x̄) and ¬R(x̄) appear in Q.

Proof Clearly if there are such R and x̄ then Q is unsatisfiable. If not, then
consider the frozen query [Q+] ([Q+] is a Herbrand model of Q+). Clearly [Q+] |=
Q so Q is satisfiable.

Therefore, we can check whether Q ∈ CQ¬ is satisfiable in quadratic time: for
every R(x̄) in Q+, look for ¬R(x̄) in Q−.

Proposition 9 If R̂(x̄) is Q-answerable, then it is Q+-answerable.

Proposition 10 If Q ∈ CQ¬, Ŝ(x̄) is Q-answerable, and for every literal R(x̄)
in Q+, ¬R(x̄) is P -answerable, then Ŝ(x̄) is P -answerable.

Proof If Ŝ(x̄) is Q-answerable, it is Q+-answerable by Proposition 9. By defini-
tion, there must be executable Q′ consisting of Ŝ(x̄) and literals from Q+. Since
every literal R(x̄) in Q+ is P -answerable, there must be executable PR consist-
ing of R(x̄) and literals from P . Then the conjunction of all PRs is executable
and consists of Ŝ(x̄) and literals from P . That is, Ŝ(x̄) is P -answerable.

Proposition 11 If P, Q ∈ CQ, σ: vars(Q)→vars(P) is a containment mapping
(so P 	 Q), and R̂(σx̄) is Q-answerable, then R̂(x̄) is P -answerable.

Proof If the hypotheses hold, there must be executable Q′ consisting of R̂(σx̄)
and literals from Q. Then P ′ = σQ′ consists of R̂(x̄) and literals from P . Since we
can use the same adornments for P ′ as the ones we have for Q′, P ′ is executable
and therefore, R̂(x̄) is P -answerable.

Given P, R ∈ CQ¬ where P = (∃x̄) P ′ and Q = (∃ȳ) Q′ and where P ′ and Q′

are quantifier free (i.e., consist only of joins), we write P, Q to denote the query
(∃x̄, ȳ) (P ′ ∧Q′). Recently, [WL03] gave the following theorems.

Theorem 12 [WL03, Theorem 2] If P, Q ∈ CQ¬ then P 	 Q iff P is un-
satisfiable or there is a containment mapping σ: vars(Q)→ vars(P) witnessing
P+ 	 Q+ such that, for every negative literal ¬R(ȳ) in Q, R(σȳ) is not in P
and P, R(σȳ) 	 Q.

Theorem 13 [WL03, Theorem 5] If P ∈ CQ¬ and Q ∈ UCQ¬ with Q =
Q1 ∨ . . . ∨Qk then P 	 Q iff P is unsatisfiable or if there is i (1 � i � k) and
a containment mapping σ: vars(Qi)→ vars(P) witnessing P+ 	 Q+ such that,
for every negative literal ¬R(ȳ) in Qi, R(σȳ) is not in P and P, R(σȳ) 	 Q.

434 A. Nash and B. Ludäscher

Therefore, if P ∈ CQ¬ and Q ∈ UCQ¬ with Q = Q1 ∨ . . .∨Qk, we have that
P 	 Q iff there is a tree with root P+ 	 Q+

r for some r and where each node is
of the form P+, N1(x̄1), . . . , Nm(x̄m) 	 Q+

s and represents a true containment
except when P, N1(x̄1), . . . , Nm(x̄m) is unsatisfiable, in which case also the node
has no children. Otherwise, for some containment mapping

σs: vars(Q+
s)→ vars(P+, N1(x̄1), . . . , Nm(x̄m))

witnessing the containment, there is one child for every negative literal in Qs.
Each child is of the form P+, N1(x̄1), . . . , Nm(x̄m), Nm+1(x̄m+1) 	 Q+

t where
x̄m+1 = σs(ȳ) and ¬Nm+1(ȳ) appears in Qs.

We will need the following two facts about this tree, in the special case where
Q 	 E with E executable, in the proof of Theorem 16.

Lemma 14 If R̂(x̄) is Q+, N1(x̄1), . . . , Nm(x̄m)-answerable, it is Q+-
answerable.

Proof By induction. It is obvious for m = 0. Assume that the lemma holds for
m and that R̂(x̄) is Q+, N1(x̄1), . . . , Nm+1(x̄m+1)-answerable.

We have Q+, N1(x̄1), . . . , Nm(x̄m) 	 E+
s for some s witnessed by a contain-

ment mapping σ and x̄m+1 = σ(ȳ) for some literal ¬Nm+1(ȳ) appearing in Es.
Since Es is executable, by Propositions 1 and 9, ¬Nm+1(ȳ) is E+

s -answerable.
Therefore by Proposition 11, ¬Nm+1(x̄) is Q+, N1(x̄1), . . . , Nm(x̄m)-answerable
and by the induction hypothesis, Q+-answerable. Therefore, by Proposition 10
and the induction hypothesis, R̂(x̄) is Q+-answerable.

Lemma 15 If the conjunction Q, N1(x̄1), . . . , Nm(x̄m) is unsatisfiable, then the
conjunction ans(Q), N1(x̄1), . . . , Nm(x̄m) is also unsatisfiable.

Proof If Q is satisfiable, but Q, N1(x̄1), . . . , Nm(x̄m) is unsatisfiable, then by
Proposition 8 we must have some ¬Ni(x̄i) in Q. Ni(x̄i) must have been added
from some Ni(ȳ) in Es and some containment map

σs: vars(E+
s)→ vars(Q+, N1(x̄1), . . . , Ni−1(x̄i−1))

satisfying σsȳ = x̄. Since Es is executable, by Propositions 1 and 9, ¬Ni(ȳ) is E+
s -

answerable. Therefore by Proposition 11, ¬Ni(x̄i) is Q+, N1(x̄1), . . . , Nm(x̄m)-
answerable and by Lemma 14, Q+-answerable. Therefore, we must have ¬Ni(x̄i)
in ans(Q), so ans(Q), N1(x̄1), . . . , Nm(x̄m) is also unsatisfiable.

We include here the proof of Proposition 4 and then prove our main results,
Theorems 16 and 18.

Proof (Proposition 4) For Q ∈ CQ this is clear since ans(Q) contains only
literals from Q and therefore the identity map is a containment mapping from
ans(Q) to Q. If Q ∈ CQ¬ and Q is unsatisfiable, the result is obvious. Otherwise
the identity is a containment mapping from (ans(Q))+ to Q+. If a negative
literal ¬R(ȳ) appears in ans(Q), then since ¬R(ȳ) also appears in Q, we have
that Q, R(ȳ) is unsatisfiable, and therefore Q 	 ans(Q) by Theorem 12.

Processing Unions of Conjunctive Queries with Negation 435

Theorem 16 If Q ∈ UCQ¬, E is executable, and Q 	 E, then Q 	 ans(Q) 	
E. That is, ans(Q) is a minimal feasible query containing Q.

Proof We have Q 	 ans(Q) from Proposition 4. Set Ai = ans(Qi). We know
that for all i, Qi 	 E. We will show that Qi 	 E implies Ai 	 E, from which it
follows that ans(Q) 	 E.

If Qi is unsatisfiable, then Ai is also unsatisfiable, so Ai 	 E holds trivially,
Therefore assume, to get a contradiction, that Qi is satisfiable, Qi 	 E, and
Ai �	 E. Since Qi is satisfiable and Qi 	 E, by [WL03, Theorem 4.3] we must
have a tree with root Q+

i 	 E+
r for some r and where each node is of the

form Q+
i , N1(x̄1), . . . , Nm(x̄m) 	 E+

s and represents a true containment except
when Qi, N1(x̄1), . . . , Nm(x̄m) is unsatisfiable, in which case also the node has
no children. Otherwise, for some containment mapping

σs: vars(E+
s)→ vars(Q+

i , N1(x̄1), . . . , Nm(x̄m))

witnessing the containment there is one child for every negative literal in Es.
Each child is of the form Q+

i , N1(x̄1), . . . , Nm(x̄m), Nm+1(x̄m+1) 	 E+
t where

x̄m+1 = σs(ȳ) and ¬Nm+1(ȳ) appears in Es.
Since Ai �	 E, if in this tree we replace every Q+

i by A+
i , by

Lemma 15 we must have some non-terminal node where the containment
doesn’t hold. Accordingly, assume that Q+

i , N1(x̄1), . . . , Nm(x̄m) 	 E+
s and

A+
i , N1(x̄1), . . . , Nm(x̄m) �	 E+

s . For this to hold, there must be a containment
mapping

σs: vars(E+
s)→ vars(Q+

i , N1(x̄1), . . . , Nm(x̄m))

which maps into some literal R(x̄) which appears in Q+
i but not in A+

i . That is,
there must be some ȳ so that R(ȳ) appears in Es and σ(ȳ) = x̄. By Propositions
1 and 9, since Es is executable, R(ȳ) is E+

s -answerable. By Proposition 11, R(x̄)
is Q+

i , N1(x̄1), . . . , Nm(x̄m)-answerable and so, by Lemma 14, Q+
i -answerable.

Therefore, R(x̄) is in A+
i , which is a contradiction.

Corollary 17 Q is feasible iff ans(Q) 	 Q.

Theorem 18 FEASIBLE(UCQ¬) ≡P
m CONT(UCQ¬).

That is, determining whether a UCQ¬ query is feasible is polynomial-time many-
one equivalent to determining whether a UCQ¬ query is contained in another
UCQ¬ query.

Proof One direction follows from Corollary 17 and Proposition 2. For the other
direction, consider two queries P, Q ∈ UCQ¬ where P = P1∨ . . .∨Pk. The query

P ′ := P1, B(y) ∨ . . . ∨ Pk, B(y)

where y is a variable not appearing in P or Q and B is a relation not appearing
in P or Q with access pattern Bi. We give relations R appearing in P or Q
output access patterns (i.e., Rooo...). As a result, P and Q are both executable,

436 A. Nash and B. Ludäscher

but P ′ � P and P ′ is not feasible. We set Q′ := P ′∨Q. Clearly, ans(Q′) ≡ P ∨Q.
If P 	 Q, then ans(Q′) ≡ P ∨Q ≡ Q 	 Q′ so by Corollary 17, Q′ is feasible. If
P �	 Q, then since P ′ � P and P ′ �	 Q we have ans(Q′) ≡ P ∨Q �	 P ′ ∨Q ≡ Q′

so again by Corollary 17, Q′ is not feasible.

Since CONT(UCQ¬) is ΠP
2 -complete, we have

Corollary 19 FEASIBLE(UCQ¬) is ΠP
2 -complete.

UCQ¬ includes the classes CQ, UCQ, and CQ¬. We have the following strict
inclusions CQ � UCQ, CQ¬

� UCQ¬. Algorithm Feasible essentially consists
of two steps: (i) compute ans(Q), and (ii) test ans(Q) 	 Q. Below we show that
Feasible provides optimal processing for all the above subclasses of UCQ¬.
Also, we compare Feasible to the algorithms given in [LC01].

5.3 Conjunctive Queries

Li and Chang [LC01] show that FEASIBLE(CQ) is NP-complete and provide
two algorithms for testing feasibility of Q ∈ CQ:

– Find a minimal M ∈ CQ so M ≡ Q, then check that ans(M) = M (they
call this algorithm CQstable).

– Compute ans(Q), then check that ans(Q) 	 Q (they call this algorithm
CQstable*).

The advantage of the latter approach is that ans(Q) may be equal to Q, elim-
inating the need for the equivalence check. For conjunctive queries, algorithm
Feasible is exactly the same as CQstable*.

Example 9 (CQ Processing) Consider access patterns F o and Bi and the
conjunctive query

Q(x)←− F (x), B(x), B(y), F (z)

which is not orderable. Algorithm CQstable first finds the minimal M ≡ Q

M(x)←− F (x), B(x)

then checks M for orderability (M is in fact executable). Algorithms CQstable*
and Feasible first find A := ans(Q)

A(x)←− F (x), B(x), F (z)

then check that A 	 Q holds (which is the case).

5.4 Conjunctive Queries with Union

Li and Chang [LC01] show that FEASIBLE(UCQ) is NP-complete and provide
two algorithms for testing feasibility of Q ∈ UCQ with Q = Q1 ∨ . . . ∨Qk:

Processing Unions of Conjunctive Queries with Negation 437

– Find a minimal (with respect to union) M ∈ UCQ so M ≡ Q with M =
M1 ∨ . . .∨M�, then check that every Mi is feasible using either CQstable or
CQstable* (they call this algorithm UCQstable)

– Take the union P of all the feasible Qis, then check that Q 	 P (they call
this algorithm UCQstable*). Clearly, P 	 Q holds by construction.

For UCQs, algorithm Feasible is different from both of these and thus pro-
vides an alternate algorithm. The advantage of CQstable* and Feasible over
CQstable is that P or ans(Q) may be equal to Q, eliminating the need for the
equivalence check.

Example 10 (UCQ Processing) Consider access patterns F o, Go, Ho, and
Bi and the query

Q(x)←− F (x), G(x)
Q(x)←− F (x), H(x), B(y)
Q(x)←− F (x)

Algorithm UCQstable first finds the minimal (with respect to union) M ≡ Q

M(x)←− F (x)

then checks that M is feasible (it is). Algorithm UCQstable* first finds P , the
union of the feasible rules in Q

P (x)←− F (x), G(x)
P (x)←− F (x)

then checks that Q 	 P holds (it does). Algorithm Feasible finds A := ans(Q)
the union of the answerable part of each rule in Q

A(x)←− F (x), G(x)
A(x)←− F (x), H(x)
A(x)←− F (x)

then checks that A 	 Q holds (it does).

5.5 Conjunctive Queries with Negation

Proposition 20 CONT(CQ¬) �P
m FEASIBLE(CQ¬)

Proof Assume P, Q ∈ CQ¬ are given by

P (x̄) := (∃x̄0)(R̂1(x̄1) ∧ . . . ∧ R̂k(x̄k))

Q(x̄) := (∃ȳ0)(Ŝ1(ȳ1) ∧ . . . ∧ Ŝ�(ȳ�))

where the Ris and Sis are not necessarily distinct and the xis and yis are also
not necessarily distinct. Then define

L(x̄) := (∃x̄0, ȳ0, u, v)(T (u)∧R̂′
1(u, x̄1)∧. . .∧R̂′

k(u, x̄k)∧Ŝ′
1(v, ȳ1)∧. . .∧Ŝ′

�(v, ȳ�))

438 A. Nash and B. Ludäscher

with access patterns T o, R′ioo...
i , S′ioo...

i . Then clearly

ans(L) = (∃x̄0, u)(T (u) ∧ R̂′
1(u, x̄1) ∧ . . . ∧ R̂′

k(u, x̄k))

and therefore P 	 Q iff P 	 P ∧Q iff ans(L) 	 L iff L is feasible. The second iff
follows from the fact that every containment mapping η: P ∧Q→ P corresponds
to a unique containment mapping η′: L→ ans(L) and vice versa.

Since CONT(CQ¬) is ΠP
2 -complete, we have

Corollary 21 FEASIBLE(CQ¬) is ΠP
2 -complete.

6 Discussion and Conclusions

We have studied the problem of producing and processing executable query
plans for sources with limited access patterns. In particular, we have extended
the results by Li et al. [LC01,Li03] to conjunctive queries with negation (CQ¬)
and unions of conjunctive queries with negation (UCQ¬). Our main theorem
(Theorem 18) shows that checking feasibility for CQ¬ and UCQ¬ is equivalent
to checking containment for CQ¬ and UCQ¬, respectively, and thus is ΠP

2 -
complete. Moreover, we have shown that our treatment for UCQ¬ nicely unifies
previous results and techniques for CQ and UCQ respectively and also works
optimally for CQ¬. In particular, we have presented a new uniform algorithm
which is optimal for all four classes. We have also shown how we can often avoid
the theoretical worst-case complexity, both by approximations at compile-time
and by a novel runtime processing strategy. The basic idea is to avoid performing
the computationally hard containment checks and instead (i) use two efficiently
computable approximate plans Qu and Qo, which produce tight underestimates
and overestimates of the actual query answer for Q (algorithm Plan�), and de-
fer the containment check in the algorithm Feasible if possible, and (ii) use a
runtime algorithm Answer�, which may report complete answers even in the
case of infeasible plans, and which can sometimes quantify the degree of com-
pleteness. [Li03, Sec.7] employs a similar technique to the case of CQ. However,
since union and negation are not handled, our notion of bounding the result
from above and below is not applicable there (essentially, the underestimate is
always empty when not considering union).

Although technical in nature, our work is driven by a number of practical
engineering problems. In the Bioinformatics Research Network project [BIR03],
we are developing a database mediator system for federating heterogeneous brain
data [GLM03,LGM03]. The current prototype takes a query against a global-as-
view definition and unfolds it into a UCQ¬ plan. We have used Answerable
and a simplified version (without containment check) of Plan� and Answer� in
the system. Similarly, in the SEEK and SciDAC projects [SEE03,SDM03] we are
building distributed scientific workflow systems which can be seen as procedural
variants of the declarative query plans which a mediator is processing.

Processing Unions of Conjunctive Queries with Negation 439

We are interested in extending our techniques to larger classes of queries
and to consider the addition of integrity constraints. Even though many ques-
tions become undecidable when moving to full first-order or Datalog queries, we
are interested in finding analogous compile-time and runtime approximations as
presented in this paper.

Acknowledgements. Work supported by NSF-ACI 9619020 (NPACI),
NIH 8P41 RR08605-08S1 (BIRN-CC), NSF-ITR 0225673 (GEON), NSF-ITR
0225676 (SEEK), and DOE DE-FC02-01ER25486 (SciDAC).

References

[BIR03] Biomedical Informatics Research Network Coordinating Center (BIRN-
CC), University of California, San Diego. http://nbirn.net/, 2003.

[CM77] A. K. Chandra and P. M. Merlin. Optimal Implementation of Conjunc-
tive Queries in Relational Data Bases. In ACM Symposium on Theory of
Computing (STOC), pp. 77–90, 1977.

[CR97] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited.
In Intl. Conf. on Database Theory (ICDT), Delphi, Greece, 1997.

[DL97] O. M. Duschka and A. Y. Levy. Recursive plans for information gathering.
In Proc. IJCAI, Nagoya, Japan, 1997.

[FLMS99] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query Optimization
in the Presence of Limited Access Patterns. In SIGMOD, pp. 311–322,
1999.

[GLM03] A. Gupta, B. Ludäscher, and M. Martone. BIRN-M: A Semantic Mediator
for Solving Real-World Neuroscience Problems. In ACM Intl. Conference
on Management of Data (SIGMOD), 2003. System demonstration.

[LC01] C. Li and E. Y. Chang. On Answering Queries in the Presence of Limited
Access Patterns. In Intl. Conference on Database Theory (ICDT), 2001.

[LGM03] B. Ludäscher, A. Gupta, and M. E. Martone. Bioinformatics: Manag-
ing Scientific Data. In T. Critchlow and Z. Lacroix, editors, A Model-
Based Mediator System for Scientific Data Management. Morgan Kauf-
mann, 2003.

[Li03] C. Li. Computing Complete Answers to Queries in the Presence of Limited
Access Patterns. Journal of VLDB, 12:211–227, 2003.

[LS93] A. Y. Levy and Y. Sagiv. Queries Independent of Updates. In Proc.
VLDB, pp. 171–181, 1993.

[NL04] A. Nash and B. Ludäscher. Processing First-Order Queries under Limited
Access Patterns. submitted for publication, 2004.

[PGH98] Y. Papakonstantinou, A. Gupta, and L. M. Haas. Capabilities-Based
Query Rewriting in Mediator Systems. Distributed and Parallel Databases,
6(1):73–110, 1998.

[Sar91] Y. Saraiya. Subtree elimination algorithms in deductive databases. PhD
thesis, Computer Science Dept., Stanford University, 1991.

[SDM03] Scientific Data Management Center (SDM).
http://sdm.lbl.gov/sdmcenter/ and http://www.er.doe.gov/scidac/,
2003.

[SEE03] Science Environment for Ecological Knowledge (SEEK).
http://seek.ecoinformatics.org/, 2003.

440 A. Nash and B. Ludäscher

[SY80] Y. Sagiv and M. Yannakakis. Equivalences Among Relational Expressions
with the Union and Difference Operators. Journal of the ACM, 27(4):633–
655, 1980.

[Ull88] J. Ullman. The Complexity of Ordering Subgoals. In ACM Symposium
on Principles of Database Systems (PODS), 1988.

[WL03] F. Wei and G. Lausen. Containment of Conjunctive Queries with Safe
Negation. In Intl. Conference on Database Theory (ICDT), 2003.

[WSD03] Web Services Description Language (WSDL) Version 1.2.
http://www.w3.org/TR/wsdl12, June 2003.

	Introduction
	Preliminaries
	Limited Access Patterns and Feasibility
	Computing Plans and Answering Queries
	Compile-Time Processing
	Runtime Processing

	Feasibility of Unions of Conjunctive Queries with Negation
	Query Containment
	Feasibility
	Conjunctive Queries
	Conjunctive Queries with Union
	Conjunctive Queries with Negation

	Discussion and Conclusions

