
An Ontology-Driven Framework for Data

Transformation in Scientific Workflows�

Shawn Bowers and Bertram Ludäscher

San Diego Supercomputer Center
University of California, San Diego
La Jolla, CA, 92093-0505, USA,
{bowers, ludaesch}@sdsc.edu

Abstract. Ecologists spend considerable effort integrating heterogene-
ous data for statistical analyses and simulations, for example, to run
and test predictive models. Our research is focused on reducing this
effort by providing data integration and transformation tools, allowing
researchers to focus on “real science,” that is, discovering new knowledge
through analysis and modeling. This paper defines a generic framework
for transforming heterogeneous data within scientific workflows. Our ap-
proach relies on a formalized ontology, which serves as a simple, unstruc-
tured global schema. In the framework, inputs and outputs of services
within scientific workflows can have structural types and separate seman-
tic types (expressions of the target ontology). In addition, a registration
mapping can be defined to relate input and output structural types to
their corresponding semantic types. Using registration mappings, ap-
propriate data transformations can then be generated for each desired
service composition. Here, we describe our proposed framework and an
initial implementation for services that consume and produce XML data.

1 Introduction

For most ecological and biodiversity forecasting, scientists repeatedly perform
the same process: They select existing datasets relevant to their current study,
and then use these datasets as input to a series of analytical steps (that is, a sci-
entific workflow). However, ecological and biodiversity data is typically heteroge-
neous. Researchers must spend considerable effort integrating and synthesizing
data so that it can be used in a scientific workflow. Reusing analytical steps
within workflows involves a similar integration effort. Each analytic step (or
service since they can be implemented as web services [CCMW01]) in a work-
flow consumes and produces data with a particular structural representation,
much like a dataset. To compose existing services, the structural and semantic
differences between the services must be resolved, and this resolution is typi-
cally performed by the scientist either manually or by writing a special-purpose
program or script.
� This work supported in part by the National Science Foundation (NSF) grants

ITR 0225676 (SEEK) and ITR 0225673 (GEON), and by DOE grant DE-FC02-
01ER25486 (SciDAC-SDM).

E. Rahm (Ed.): DILS 2004, LNBI 2994, pp. 1–16, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

2 Shawn Bowers and Bertram Ludäscher

The Science Environment for Ecological Knowledge (SEEK)1 [Mic03] is a
multidisciplinary effort aimed at helping scientists discover, access, integrate, and
analyze distributed ecological information. We envision the use of web-enabled
repositories to store and access datasets, including raw data and derived results,
software components, and scientific workflows. Additionally, we wish to exploit
formalized, ecological ontologies to help scientists discover and integrate datasets
and services, as workflows are designed and executed.

This paper proposes a framework that exploits ontological information to
support structural data transformation for scientific workflow composition. We
believe data transformation is an integral part of semantic mediation, which aims
at providing automated integration services within SEEK. The framework is de-
signed to allow researchers to easily construct scientific workflows from existing
services, without having to focus on detailed, structural differences. In particu-
lar, when a service is stored in SEEK, each input and output is annotated with
a structural and (optionally) a semantic type. In our framework, a structural
type—similar to a conventional programming-language data type—defines the
allowable data values for an input or output, whereas a semantic type describes
the high-level, conceptual information of an input or output, and is expressed
in terms of the concepts and properties of an ontology. Thus, although struc-
turally different, two services may still be semantically compatible based on their
semantic types.

The goal of the framework is to exploit semantic types to (semi-) automat-
ically generate mappings between services with heterogeneous structural types.
By defining input and output registration mappings, which link a structural type
to a corresponding semantic type, ontological information is used to inform data
transformation. When a scientist wishes to compose two services, the input and
output registration mappings are combined to create a correspondence between
the two structural types. The correspondence is then used, when possible, to
generate the desired data transformation, thus making the services structurally
compatible.

The rest of this paper is organized as follows. Section 2 briefly describes
scientific workflows and introduces an example workflow used throughout the
paper. Section 3 defines our proposed framework for data transformation. Sec-
tion 4 describes an initial implementation of the framework for services that ex-
change XML data. In particular, we define a language for specifying registration
mappings, based on structural types expressed using XML Schema. Section 5
discusses related work. Section 6 concludes with a discussion of future work.

2 Scientific Workflows

SEEK extends the Ptolemy system [BCD+02] to support scientific workflows.
Ptolemy is an open-source, Java-based application that provides interfaces for
designing and executing data-flow process networks [LP95]. In particular, we

1 See http://seek.ecoinformatics.org/

An Ontology-Driven Framework for Data Transformation 3

S1

(life stage property)

S2

(mortality rate
for period)

P1

P2

P4

P3 P5

Fig. 1. Two connected services to calculate the k-value [BHT96] during a par-
ticular life-stage period.

are extending Ptolemy to support web-services, web-enabled repositories and
workflow execution, scientific datasets, and semantic-type annotations through
ontologies. This section briefly describes scientific workflows and introduces our
running example. We note that our definition of a scientific workflow is inspired
by, and compatible with, the dataflow models of Ptolemy.

We define a scientific workflow as a set of connected services. By service, we
mean any software component that takes input and produces output, including
but not limited to web services. A service has zero or more uniquely named ports.
A port serves as either an input or an output to a service. Services exchange
information using connections, which link an output port to one ore more input
ports. When a pipeline is executed, data is transferred via connections from
output to input ports according to an execution model. An execution model is
an algorithm that determines how services should be scheduled and how data
should flow through services.

Figure 1 depicts a simple workflow that contains two services S1 and S2,
where the output port P2 of S1 is connected to the input port P3 of S2. The
purpose of this simple workflow is to compute mortality rates for periods within
the lifecycle of an organism [BHT96]. For example, consider the two datasets
shown in Figure 2. The table on the left, Figure 2(a), gives population samples
for specific development phases of the common field grasshopper (taken from
Begon, et al [BHT96]). The dataset on the right, Figure 2(b), gives periods of
development defined in terms of phases. Note that only one such period is given.
Here, S2 applies the “killing power,” or k-value statistic to determine the rate
of mortality for a set of observations (given in P3) and a set of phases (given in
P4). For the datasets in Figure 2, S2 would output a single pair (Nymphyl, 0.44)
on port P5. We note that, in SEEK, S1 and S2 represent stand-alone services
that would be selected by an ecologist from a repository and connected, possibly
as part of a larger workflow.

We require each port to have a structural type, which is similar to a con-
ventional data type found in programming languages. In general, a structural
type is expressed according to a type system, which consists of a set of base
types, a description of the allowable types (of the type system), and rules defin-
ing when one type is a subtype of another. A type definition is a restriction on
the structure of values being produced or consumed by a port. Thus, any value

4 Shawn Bowers and Bertram Ludäscher

Phase Observed Period Phases

Eggs
Instar I
Instar II
Instar III
Instar IV
Adults

44,000
3,513
2,529
1,922
1,461
1,300

Nymphal {Instar I, Instar II, Instar III, Instar IV}

(a) (b)

Fig. 2. Example datasets for computing k-values during lifecycle periods.

that conforms to the structural type (or a subtype of the structural type) is an
allowed value for the port.

We assume the function structType(P) is well defined for each port P and
returns the structural type of P . Given two ports Pa and Pb, we write Pa � Pb

to denote that the structural type of Pa is a subtype of the structural type of
Pb. If Pa � Pb, we say Pa is structurally compatible with Pb.

One of the goals of SEEK is to allow scientists to reuse existing services when
building new ecological models. In general, we assume services are not “designed
to fit.” That is, two distinct services may produce and consume compatible
information, but have incompatible structural types.

3 Ontologies for Data Transformation

In this section, we define our proposed framework for ontology-driven data trans-
formation. We first describe the use of semantic-type annotations in SEEK for
enriching workflow services. We then describe how semantic types are exploited
in our framework via registration mappings, which are used to generate data
transformations between structurally incompatible services.

3.1 Ontologies and Services

As part of SEEK, we are developing technology that lets ecologists define, man-
age, and exploit ontologies. In general, we permit scientists to construct domain
or project-specific ontologies and define mappings between them, when appro-
priate. In addition, we are developing, with the help of ecologists, an upper-level
ecological ontology to serve as a framework for incorporating the various domain-
specific ontologies. The upper-level ontology includes concepts and relationships
for ecological properties, methods, measurements, and taxonomies. In the rest
of this paper, we assume a single global ontology, however, in our envisioned
environment there will more likely be many ontologies that when combined, for
example, through mappings, form a single, global ontology.

A semantic type is defined using the concepts and properties of the ontology.
In SEEK, we use semantic types to annotate services and datasets, where a
semantic-type annotation defines the conceptual information represented by the

An Ontology-Driven Framework for Data Transformation 5

MeasContext

Observation EntityMeasProperty

hasContext 0:* 1:1

appliesTo

hasProperty

0:*

Accuracy
Qualifier

Ecological
Property

Abundance
Count

LifeStage
Property

Numeric
Value

Spatial
Location

hasLocation

hasCount

1:1

1:1hasValue

1:1

itemMeasured

1:*

Fig. 3. Portion of a SEEK ontology for ecological measurements.

item. A semantic type defines the conceptual information that is either consumed
or produced by a port. Thus, semantic types for ports are similar to semantic
pre- and post-conditions in DAML-S [ABH+02]. We note that in SEEK, however,
semantic types are independent of the structural details of a port. We believe
decoupling structural and semantic types has the following advantages. First,
although we require structural types, semantic types are optional. Thus, a service
can still be used even if it is not fully specified. Second, a port’s semantic type can
be defined or updated after the service is deployed, without requiring changes
to the structural type. Finally, we believe semantic types are easier to specify if
they do not mix structural information. For example, a port’s semantic type may
be as simple as a single concept label, even though it has a complex structural
type.

We have adopted the Web Ontology Language (OWL) [MvH03] to express
ontologies in SEEK. Figure 3 shows a fragment of the SEEK measurement on-
tology. The ontology is represented graphically, using RDF-Schema conventions
[BG03]. Only a subset of the OWL constructs are used in Figure 3. In particular,
we only consider class and property definitions, subclass relationships, and car-
dinality constraints on properties. (The notation 0:* and 1:* represent value and
existential restrictions, respectively, and 1:1 represents an exactly-one number
restriction [BN03].) Similarly, Figure 4 gives the semantic types for ports P2 and
P3 of Figure 1. As shown, the semantic type of port P3 accepts observations,
each of which measures an abundance count within the context of a life-stage
property. The semantic type of P2 outputs similar observations, but with accu-
racy qualifiers. In general, the semantic type of a port is defined as an OWL
concept.

6 Shawn Bowers and Bertram Ludäscher

Observation

semType(P3)

MeasContext

hasContext

1:1

appliesTo LifeStage
Property

1:1

Abundance
Count

itemMeasured Number
Value

hasCount

1:11:1

semType(P2)

�

Accuracy
Qualifier

hasProperty

1:1

hasValue

1:1

Fig. 4. Example semantic types for output and input ports P2 and P3.

We assume the function semType(P) returns the semantic type of a port P .
As stated above, a semantic type denotes a concept, which either exists as, or
is a restricted subclass of, a concept within an ontology. As shown in Figure 4,
semType(P2) is a subtype of semType(P3), which we denote using the standard
� relation used in description logics. Intuitively, P2 � P3 holds if every instance
of the concept semType(P2) is also an instance of the concept semType(P3).

3.2 Connecting Semantically Compatible Services

To correctly compose two services, a valid connection must be defined between
an output port of the source service and an input port of the target service.
Intuitively, a desired connection (see Figure 5) is valid if it is both semantically
and structurally valid. A connection from port Ps to port Pt is semantically
valid if Ps � Pt and structurally valid if Ps � Pt. The connection is structurally
feasible if there exists a structural transformation δ such that δ(Ps) � Pt.

Our focus here is on the situation shown in Figure 5. Namely, that we have
semantically valid connections that are not structurally valid, but feasible. Thus,
the goal is to find a δ that implements the desired structural transformation.

3.3 Structural Transformation Using Registration Mappings

Figure 6 shows our proposed framework for data transformation in scientific
workflows. The framework uses registration mappings, which consists of a set of
rules that define associations between a port’s structural and semantic types.
In this paper, we use registration mappings to derive data transformations. A
rule q ↔ p in a registration mapping associates data objects identified with
a query q to concepts identified with a concept expression p. For example, q
may expressed as an XQuery [BCF+03] for XML sources or as an SQL query
for relational sources, selecting a set of objects belonging to the same concept

An Ontology-Driven Framework for Data Transformation 7

Source
Service

Target
Service

Ps Pt

Ontology (OWL)

Semantic
Type Ps

Semantic
Type Pt

Structural
Type Pt

Structural
Type Ps

Desired Connection

Incompatible

Compatible

(�)

(�)

δ(Ps)
δ (�)

Fig. 5. A semantically valid, but structurally invalid connection.

Registration
Mapping (Out)

Registration
Mapping (In)

Source
Service

Target
Service

Ps Pt

Semantic
Type Ps

Semantic
Type Pt

Structural
Type Pt

Structural
Type Ps

Desired Connection

Compatible (�)

Data Transformation

Correspondence

Fig. 6. The proposed transformation framework.

expression p. Thus, q ↔ p is the part of a registration mapping that registers the
q-selected objects with concepts denoted by p. We note that in general, p can
represent a single concept or possibly a complex, description logic expression. In
this section, we describe the general approach shown in Figure 6, and in the next
section we define a specific implementation of the framework for XML sources,
which includes a specific language for expressing registration mappings.

A registration mapping consists of one or more rules of the form q ↔ p.
The expression q is a query that selects instances of the structural type to reg-
ister to a concept denoted by p from the semantic type. We call the query q
a sub-structure selection. In this paper, we only consider concept expressions p
that denote contextual paths as opposed to arbitrary description logic expres-
sions. A context path denotes a concept, possibly within the context of other
concepts. For example, using the ontology fragment given in Figure 3, Observa-
tion.itemMeasured.hasLocation is a contextual path, where the concept selected

8 Shawn Bowers and Bertram Ludäscher

by the path is SpatialLocation within the context of an observation measurement.
Given a registration mapping rule q ↔ Observation.itemMeasured.hasLocation,
we say that each data object selected by q is a SpatialLocation object for an
AbundanceCount, which is the item being measured for some Observation ob-
ject. It is important to note that we do not explicitly provide unique identifiers
for data objects within a mapping rule. Instead, we use the contextual path sim-
ply as an annotation mechanism. Thus, data objects are identified locally to a
structural-type instance, and these local identifiers are annotated with the ap-
propriate semantic types. When a contextual-path expression is defined, it can
be checked for validity (that is, that it makes sense) with respect to the semantic
type, for example, with the help of a description-logic reasoner..

We distinguish between output and input registration mappings, where an
output mapping is a registration mapping defined for an output port, and an
input mapping is a registration mapping defined for an input port. Output and
input registration mapping rules are composed to construct a correspondence
mapping between the source and target structural types (see figure below). A
correspondence mapping consists of rules of the form qs �→ qt, where qs and qt are
queries against instances of output (source) and input (target) structural types,
respectively. A rule in a correspondence mapping states an association between
the two sub-structures defined by qs and qt. We construct individual correspon-
dence mapping rules by composing registration mapping rules as shown in the
figure below. Note that from a correspondence mapping, we wish to construct
the appropriate transformation function δ.

ps

qs

pt

qt

�path

δ

Given a set of output registration-mapping rules Rs and a set of input
registration-mapping rules Rt, the correspondence mapping M between Rs and
Rt is exactly the result of the semantic join of Rs with Rt (written Rs ��sem Rt),
which we defined as follows. If qs ↔ p1 ∈ Rs and qt ↔ p2 ∈ Rt, then qs �→ qt ∈
Rs ��sem Rt if and only if p1 �path p2. The expression p1 �path p2 holds if p1 is a
contextual subpath of p2, that is, if the concept denoted by p1 is a subconcept of
the concept denoted by p2, and the context of p1 is a subcontext of the context
of p2. We formally define the �path relation for a simple semantic-path language
in the next section.

As shown in Figure 6, we use a set of correspondence mappings M to generate
a data transformation that can convert valid source data to valid target data. We
note that correspondence mappings may be underspecified, that is, there may
be more than one possible data transformation based on the correspondence
mapping.

An Ontology-Driven Framework for Data Transformation 9

In general, we require registration mappings to be well-formed, that is, each
query and contextual path is well-formed. We also make the following assump-
tions concerning registration mappings. We note that the complexity of enforc-
ing the following properties depends on the languages used to express structural
types, structural queries, semantic types, and contextual paths.

– Consistent with respect to cardinality constraints. A registration
mapping is consistent with respect to cardinality constraints if, based on
the rules of the mapping, the structural-type cardinality constraints imply
the semantic-type cardinality (i.e., value restriction) constraints. Note that
if the cardinality constraints between the structural and semantic types are
inconsistent, the generated data transformation program may not be correct.

– Partially complete. A registration mapping is considered structurally com-
plete if every data item required by a structural type is registered with some
contextual path in the semantic type. Similarly, a registration mapping is se-
mantically complete if every required concept in a semantic type (according
to cardinality constraints) is registered by some data item in an instance of
the structural type. We require all input registration mappings to be struc-
turally complete. We also require all output registration mappings to be
semantically complete with respect to the input registration mapping. That
is, the output registration mapping should map data items to the needed
concepts of the input registration mapping.

4 A Framework Implementation for XML-based Services

In this section, we describe an instantiation of the framework defined in Section 3
in which XML is used to interchange data between services. We define a subset of
XML Schema [BM01, TBMM01] for the structural-type system, a simple XPath-
based query language, a contextual-path language, and the contextual subpath
relationship for contextual paths.

4.1 XML-based Structural Types

We consider a subset of XML Schema for expressing structural types, which
is very close to Document Type Definitions (DTDs), but with XML datatypes
[BM01]. In particular, a structural-type consists of one or more element defini-
tions, one of which is a distinguished root element. For simplicity, we do not
consider attributes. Instead, we use the common assumption that attributes are
modeled as simple elements containing text values (where attribute names are
often prefixed with the ‘@’ symbol).

A structural type takes the form root e=cm or elem e=cm, where e is an
element tag name and cm is the content model for e. Every structural type has
exactly one root-element definition (which is distinguished by the root qualifier).
A structural type may also have any number of additional element definitions
(which are distinguished by the elem qualifier).

10 Shawn Bowers and Bertram Ludäscher

root population = (sample)*
elem sample = (meas, lsp)
elem meas = (cnt, acc)
elem cnt = xsd:integer
elem acc = xsd:double
elem lsp = xsd:string

<population>
<sample>

<meas>
<cnt>44,000</cnt>
<acc>0.95</acc>

</meas>
<lsp>Eggs</lsp>

</sample>
…

<population>

structType(P2) :

instance of structType(P2) :

root cohortTable = (measurement)*
elem measuremnt = (phase, obs)
elem phase = xsd:string
elem obs = xsd:integer

<cohortTable>
<measurement>

<phase>Eggs</cnt>
<obs>44,000</acc>

</measurement>
<measurement>

<phase>Instar I</cnt>
<obs>3,513</acc>

</measurement>
…

<cohortTable>

structType(P3) :

instance of structType(P3) :

Fig. 7. Example structural types and instances for port P2 (left) and port P3

(right).

We permit datatype and regular-expression content models. For example, the
expression elem cnt = xsd:integer restricts cnt elements to contain integer
values (where xsd:integer is an XML-Schema datatype). A content model is
defined using standard DTD regular-expression syntax. For example, the element
definition elem sample = (meas,lsp) states that a sample element consists of
a meas element followed by a lsp element. We require each element definition to
be nested under the root element either directly, as a subelement, or indirectly,
through any number of intermediate subelements.

To illustrate, we assume that ports P2 and P3 in Figure 1 have the structural-
type definitions given in the top of Figure 7. The structural type of P2 is shown
on the top-left and the structural type of P3 is shown on the top-right. Sam-
ple instances (XML documents) are given below each corresponding structural
type. As shown, the structural types are not subtypes, that is, P2 � P3. In
general, subtyping in XML is based on datatype compatibility (for example,
xsd:negativeInteger is a subtype of xsd:integer) and various rules concern-
ing content models (for example, the content model (a,b,c) is a subtype of the
content model (a|b|c)* for element definitions a, b, and c).

4.2 Structural-Type Queries and Contextual Paths

We define a structural-type query qxp for XML using a subset of XPath [CD99].
A query qxp is expressed using the following syntax. We note that the fragment
of XPath we consider is similar to tree patterns [MS02].

An Ontology-Driven Framework for Data Transformation 11

qxp = /p
p = n | p/p | p/text() | p[q]
q = p | p=v

As shown, n represents an element tag name and v represents a text value
(that is, PCDATA). The expression /text() selects the PCDATA content of an
element.

A query is expressed as a simple path that always starts from the root element
type defined in the XML structural type. A query returns either fragments (that
is, sub-trees) of a document, or using the text() operator, a set of data values.
In addition, we permit simple qualifiers q, which select sub-trees that contain a
particular set of subelements, possibly with a specific data value.

The language we consider for expressing contextual paths is defined as fol-
lows. A contextual path defined over port P takes the form semType(P).r1.r2...rn

for n ≥ 0, where r1 to rn are valid properties defined for the semantic type of P .
A contextual path always begins from the semantic type of a port. Additionally,
a contextual path always denotes a single concept, which is either the semantic
type of the port or a concept related to the semantic type through properties r1

to rn. Given a contextual path p, the function leadsTo(p) returns the concept
denoted by the contextual path p.

4.3 Registration and Correspondence Mappings

Figure 8 gives an example input and output registration mapping for ports
P2 and P3 of Figure 6 (using the structural types for P2 and P3 defined in
Figure 7). Assuming we wish to connect port P2 to port P3, we first use the input
registration mapping Rs and the output registration mapping Rt of Figure 8 to
generate a correspondence mapping. Recall that a correspondence mapping M
for Rs and Rt is equivalent to Rs ��sem Rt, which is computed using the semantic
subpath relation �path (see Section 3.3).

We define the semantic subpath relation for our contextual path language as
follows. Let p1 and p2 be the following contextual paths expressed over ports Pa

and Pb, respectively.

p1 = semType(Pa).r11.r12.r1n

p2 = semType(Pb).r21.r22.r2m.

The relation p1 �path p2 is true if and only if m = n, Pa � Pb, and
for 1 ≤ i ≤ n, r1i = r2i and leadsTo(semType(Pa).r11.r1i) � lead-
sTo(semType(Pb).r21.r2i). To illustrate, the correspondence mapping M that
results from applying the semantic join of Rs and Rt (from Figure 8) is shown
in Figure 9.

4.4 Generating Data-Transformation Programs

In general, we want to use correspondence mappings to construct valid target
data instances (that is, XML documents that conform to the target structural

12 Shawn Bowers and Bertram Ludäscher

P2 output registration-mapping rules (qs ↔ p):

/population/sample ↔ semType(P2)
/population/sample/meas/cnt ↔ semType(P2).itemMeasured
/population/sample/meas/cnt/text() ↔ semType(P2).itemMeasured.hasCount
/population/sample/meas/acc ↔ semType(P2).hasProperty
/population/sample/meas/acc/text() ↔ semType(P2).hasProperty.hasValue
/population/sample/lsp/text() ↔ semType(P2).hasContext.appliesTo

P3 input registration-mapping rules (p ↔ qt):

/cohortTable/measurement ↔ semType(P3)
/cohortTable/measurement/obs ↔ semType(P3).itemMeasured
/cohortTable/measurement/obs/text() ↔ semType(P3).itemMeasured.hasCount
/cohortTable/measurement/phase/text() ↔ semType(P3).hasContext.appliesTo

Fig. 8. Example registration mappings for ports P2 and P3.

/population/sample �→/cohortTable/measurement

/population/sample/meas/cnt �→/cohortTable/measurement/obs

/population/sample/meas/cnt/text() �→/cohortTable/measurement/obs/text()

/population/sample/lsp/text() �→/cohortTable/measurement/phase/text()

Fig. 9. Correspondence mapping that results from connecting ports P2 and P3.

type) from valid source data instances. The correspondence mapping from Fig-
ure 9 provides the following guidelines for developing such a mapping. Each pop-
ulation sample (/population/sample) should be used to generate a cohort table
measurement (/cohortTable/measurement), where each sample’s measurement
count (meas/cnt) corresponds to an observation in the measurement element of
the cohort table (obs), and each sample’s life stage property (lsp/text()) cor-
responds to a phase in the measurement element of the cohort table (phase).
Based on the correspondence mapping, the following data transformation (ex-
pressed using XQuery [BCF+03]) should be generated.

<cohortTable>

{ for $s in /population/sample return

<measurement>

{ for $c in $s/meas/cnt return <obs>{$c/text()}</obs> }

{ for $l in $s/lsp return <phase>{$l/text()}</phase> }

</measurement> }

</cohortTable>

To generate the above data transformation, we must make the following
assumptions.

1. Common prefixes refer to the same element. We assume correspon-
dence mapping rules that share a common prefix (in the source or target

An Ontology-Driven Framework for Data Transformation 13

side of the rule) refer to the same element (in the source or target side, re-
spectively). Note that all correspondence rules, by definition, share at least
the root element. For example, the first two correspondence rules in Fig-
ure 9 share the common source prefix /population/sample and target pre-
fix /cohortTable/measurement. Thus, for a /population/sample element
s mapped to a /cohortTable/measurement element m, we assume that each
cnt element c under s is mapped to an obs element o under m.

2. Correspondence rules have compatible cardinality restrictions. By
cardinality restrictions for XML, we mean whether a subelement can occur
zero or more, one or more, zero or one, or exactly once under an element. For
example, the XML fragments selected by the source and target side of the
first correspondence rule in Figure 9 have identical cardinality restrictions.
Namely, a root population element can contain zero or more sample ele-
ments and similarly, a root cohortTable element can contain zero or more
measurement elements. In general, the source restrictions should be equiv-
alent or stricter than the target restrictions. Thus, we do not want to map
multiple source elements to a single target element.

3. Datatypes are compatible. We assume that each correspondence mapping
rule between XML text values is valid. In particular, we assume that the
datatype of the source is a subtype of the target. For example, if cnt was
defined as a double type instead of an integer type, the third correspondence
mapping rule would violate our subtype assumption, because a double is not
a subtype of an integer (where obs requires integer content).

For registration mappings that satisfy the above assumptions and are known
to be partially complete (see Section 3.3), it is straightforward to generate the
appropriate data-transformation program. However, for mappings that are not
partially complete (as given in Section 3.3) or do not have compatible cardinality
restrictions, the resulting correspondence mapping is underspecified. That is,
there may be many potential data transformations that can be generated from
the correspondences. As future work, we want to further explore approaches for
generating data-transformation programs from correspondence mappings, when
the above assumptions do not hold.

5 Related Work

In this paper, we have presented a generic framework for enabling service compo-
sition in scientific workflows. The framework exploits three distinct specifications
for services: structural types, semantic types, and registration mappings (which
link structural and semantic types). We believe that separating these three spec-
ifications is a practical solution for enabling the reuse of legacy services. Also,
under certain assumptions, registration mappings can be used to automatically
generate desired structural transformations, allowing scientists to easily connect
heterogeneous, but semantically similar services to form new workflows.

Although our goal is to integrate workflow services, our framework at-
tempts to solve a different problem than typical data-integration systems

14 Shawn Bowers and Bertram Ludäscher

[Ull97, PB03, LGM01, PS98, PAGM96]. In particular, we want to construct
data transformations that can take valid data under one schema, and convert it
to valid data under another schema. In data integration, the focus is on combin-
ing source data expressed in heterogenous local schemas into an integrated view
under a global schema. Note that some work has explored the use of ontologies
as global schemas for data integration [SSR94, LVL03].

A number of languages have been defined for explicitly expressing data trans-
formations between heterogeneous schemas [KLK91, CDSS98, DK97]. However,
in scientific workflows, we believe it is important to compute data transforma-
tions whenever possible, as opposed to requiring scientists to express transfor-
mations manually, each time a connection is required. We note that a particular
service may be used in a number of workflows, which would require a distinct
data transformation mapping for each desired connection.

Instead, we use registration mappings from structural to semantic types
(where a semantic type is similar to a global schema) to generate correspon-
dence mappings. A number of recent approaches have explored the use of corre-
spondences in data integration and transformation [PS98, PB03, PVM+02]. In
Clio [PVM+02], a user specifies a set of correspondences between items in two
structurally heterogeneous schemas, and using the constraints of the schemas,
the system attempts to fill in, or generate, a complete mapping. Similarly, Pot-
tinger and Bernstein [PB03] use simple correspondences to merge structurally
heterogeneous schemas for data integration.

6 Future Work

We plan to further develop and extend the ontology-driven framework described
here within the context of SEEK. Our next step is to extend Ptolemy with the
XML-based framework described in Section 4. As part of this work, we also
want to explore the relationships between correspondence mappings and the
generation of data-transformation programs. In particular, we are interested in
developing techniques to help generate data transformations for underspecified
correspondence mappings and to extend the approach to support additional
semantic conversions, for example, to automatically perform unit conversion.
We also believe a more complex structural-type query language may be required
for complex structural conversions, and intend to extend the simple XPath-based
approach presented here as needed. Finally, we plan to investigate how the use of
different computation models and workflow scheduling algorithms can influence,
and help generate, data transformations.

References

[ABH+02] Anupriya Ankolenkar, Mark Burstein, Jerry R. Hobbs, Ora Lassila,
David L. Martin, Drew McDermott, Sheila A. McIlraith, Srini Narayanan,
Massimo Paolucci, Terry R. Payne, and Katia Sycara. DAML-S: Web
service description for the semantic web. In The First International Se-
mantic Web Conference (ISWC), June 2002.

An Ontology-Driven Framework for Data Transformation 15

[BCD+02] Shuvra S. Bhattacharyya, Elaine Cheong, John Davis II, Mudit Goel,
Christopher Hylands, Bart Kienhuis, Edward A. Lee, Jie Liu, Xiao-
jun Liu, Lukito Muliadi, Steve Neuendorffer, John Reekie, Neil Smyth,
Jeff Tsay, Brian Vogel, Winthrop Williams, Yuhong Xiong, and Haiyang
Zheng. Heterogeneous concurrent modeling and design in java. Technical
Report Memorandum UCB/ERL M02/23, EECS, University of Califor-
nia, Berkeley, August 2002.

[BCF+03] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniel Florescu,
Jonathon Robie, and Jérôme Siméon, editors. XQuery 1.0: An XML
Query Language. W3C Working Draft. World Wide Web Consortium
(W3C), November 2003. http://www.w3.org/TR/2003/WD-xquery-
20031112/.

[BG03] Dan Brickley and R.V. Guha, editors. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. W3C Working Draft. World Wide Web Con-
sortium (W3C), February 2003. http://www.w3.org/TR/2003/WD-rdf-
schema-20030123/.

[BHT96] Michael Begon, John L. Harper, and Colin R. Townsend. Ecology: Indi-
viduals, Populations, and Communities. Blackwell Science, 1996.

[BM01] Paul V. Biron and Ashok Malhotra, editors. XML Schema Part 2:
Datatypes. W3C Recommendation. World Wide Web Consortium (W3C),
May 2001. http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[BN03] Franz Baader and Werner Nutt. Basic description logics. In F. Baader,
D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, edi-
tors, The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press, 2003.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weerawarana, editors. Web Services Description Language (WSDL)
1.1. W3C Note. World Wide Web Consortium (W3C), March 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[CD99] James Clark and Steve DeRose, editors. XML Path Language Version 1.0.
W3C Recommendation. World Wide Web Consortium (W3C), November
1999. http://www.w3.org/TR/1999/REC-xpath-19991116.

[CDSS98] Sophie Cluet, Claude Delobel, Jérôme Siméon, and Katarzyna Smaga.
Your mediators need data conversion! In Proceedings of the SIGMOD
International Conference on Management of Data, pages 177–188. ACM
Press, 1998.

[DK97] Susan B. Davidson and Anthony Kosky. WOL: A language for database
transformations and constraints. In Proceedings of the 13th International
Conference on Data Engineering (ICDE), pages 55–65. IEEE Computer
Society, 1997.

[KLK91] Ravi Krishnamurthy, Witold Litwin, and William Kent. Language fea-
tures for interoperability of databases with schematic discrepancies. In
Proceedings of the SIGMOD International Conference on Management of
Data, pages 40–49. ACM Press, 1991.

[LGM01] Bertram Ludäscher, Armanath Gupta, and Maryann E. Martone. Model-
based mediation with domain maps. In Proceedings of the 17th Inter-
national Conference on Data Engineering (ICDE), pages 81–90. IEEE
Computer Society, April 2001.

[LP95] Edward A. Lee and Thomas M. Parks. Dataflow process networks. Pro-
ceedings of the IEEE, 83(5):773–801, 1995.

16 Shawn Bowers and Bertram Ludäscher

[LVL03] Fereidoon Sadri Laks V.S. Lakshmanan. Interoperability on XML data.
In Proceedings of the International Semantic Web Conference (ISWC),
volume 2870, pages 146–163. Lecture Notes in Computer Science, 2003.

[Mic03] William K. Michener. Building SEEK: the science environment for eco-
logical knowledge. In DataBits: An electronic newsletter for Information
Managers, 2003. Spring Issue.

[MS02] Gerome Miklau and Dan Suciu. Containment and equivalence for an
XPath fragment. In Proceedings of the 21st Symposium on Principles of
Database Systems (PODS), pages 65–76. ACM Press, June 2002.

[MvH03] Deborah L. McGuinness and Frank van Harmelen, editors. OWL
Web Ontology Language Overview. W3C Candidate Recom-
mendation. World Wide Web Consortium (W3C), August 2003.
http://www.w3.org/TR/2003/CR-owl-features-20030818/.

[PAGM96] Yannis Papakonstantinou, Serge Abiteboul, and Hector Garcia-Molina.
Object fusion in mediator systems. In Proceedings of 22nd International
Conference on Very Large Data Bases (VLDB), pages 413–424. Morgan
Kaufmann, September 1996.

[PB03] Rachel Pottinger and Philip A. Bernstein. Merging models based on given
correspondences. In Proceedings of the 29th International Conference
on Very Large Data Bases (VLDB), pages 826–837. Morgan Kaufmann,
September 2003.

[PS98] Christine Parent and Stefano Spaccapietra. Issues and approaches of
database integration. Communications of the ACM, 41(5):166–178, May
1998.

[PVM+02] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Maricio Hernández, and
Ronald Fagin. Translating Web data. In Proceedings of the 28th Inter-
national Conference on Very Large Data Bases (VLDB), 2002.

[SSR94] Edward Sciore, Michael Siegel, and Arnon Rosenthal. Using semantic
values to falilitate interoperability among heterogeneous information sys-
tems. ACM Transactions on Database Systems, 19(2):254–290, 1994.

[TBMM01] Henry S. Thompson, David Beech, Murray Maloney, and Noah
Mendelsohn, editors. XML Schema Part 1: Structures. W3C
Recommendation. World Wide Web Consortium (W3C), May 2001.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.

[Ull97] Jeffrey D. Ullman. Information integration using logical views. In Pro-
ceedings of the International Conference on Database Theory (ICDT),
volume 1186, pages 19–40. Lecture Notes in Computer Science, 1997.

	Introduction
	Scientific Workflows
	Ontologies for Data Transformation
	A Framework Implementation for XML-based Services
	Related Work
	Future Work

