
The Center for Plasma Edge Simulation Workflow Requirements

Scott A. Klasky1 Bertram Ludaescher2 Manish Parashar3

 Parashar@caip.rutgers.edu Klasky@ornl.gov Ludaesch@ucdavis.edu

Abstract

The Center for Plasma Edge Simulation (CPES) is a
recently funded prototype Fusion Simulation Project,
which is part of the DOE SciDAC program. Our center is
developing a novel integrated predictive plasma edge
simulation framework, which is applicable to existing
magnetic fusion facilities (D3D, NSTX, CMOD) and next
generation burning plasma experiments, e.g. ITER. The
success of this project will be in developing and
understanding new models for the plasma edge in a
kinetic regime with complex geometry.

Because of the multi-scale nature of the problem, we
will study the neoclassical physics time scale kinetically,
and the fast and larger scale MHD modes via a fluid
code. Our approach is to couple these codes via a
scientific workflow system, Kepler-HPC. Kepler-HPC will
enhance Kepler with capabilities such as code coupling
and data redistribution, high volume data transfers and
interactive (and autonomic) monitoring, steering and
debugging, which will be necessary for scientific progress
in this project.

1. Introduction

We are starting to develop new integrated predictive
plasma edge simulation code package, applicable for the
plasma edge region relevant to both existing magnetic
fusion facilities and next-generation burning plasma
experiments, such as the International Thermonuclear
Experimental Reactor (ITER). Timely progress in this
formidable scientific challenge demands a well-
coordinated effort involving experts in the plasma
science, computer science, and applied mathematics areas
– a research approach at the heart of the SciDAC Program
[SciDAC].

 The plasma edge includes the region from the top of
the pedestal to the scrape-off layer and divertor region
bounded by a material wall, see Figure 1. A multitude of
non-equilibrium physical processes on different spatio-
temporal scales present in the edge region demands a
large scale integrated simulation. The low collisionality
of the pedestal plasma, magnetic X-point geometry,
spatially sensitive velocity-hole boundary, non-
Maxwellian nature of the particle distribution function,
and particle source from neutrals, combine to require the
development of a special kinetic transport code, XGC-
NT, for kinetic transport physics, using a particle-in-cell

(PIC) approach on a massively parallel computing
platform. For the study of large scale MHD phenomena,
we will use the M3D code, which is a code used in the
CEMM SciDAC project [M3D]. However, the kinetic and
MHD codes must be integrated together for a self-
consistent simulation as a whole.

Figure 1. The plasma edge

The management of scientific data and information in

a fusion simulation project will be an essential factor for
this project. We are developing Kepler-HPC, a set of
specialized HPC extensions for the Kepler scientific
workflow system [LAB+06], and use it to couple the
kinetic code to the fluid code, and to manage the data
between these codes, along with the monitoring system
which we are building. The workflow system includes
provisions of services for exploring, analyzing and
visualizing data and extracting information and features.

Achieving efficient, flexible and scalable coupling of
physics models and parallel application codes
investigated in this project presents significant
algorithmic, numerical and computational challenges.
From the computational point of view, the coupled
simulations, each typically running on a distinct parallel
system or set of processors with independent (and
possibly dynamic) distributions, need to periodically
exchange information

Specifically, in this project, the kinetic code, XGC-
NT, runs efficiently on thousands of processors [XGC-1].
This code will be weakly coupled to an MHD code, M3D,
which for the type of problems investigated in this

mailto:Klasky@ornl.gov
mailto:ludaesch@ucdavis.edu

project, will run on 64-128 processors. Because of the
nature of the weak coupling, the workflow system must
support hybrid execution combining coarse grain
parallelism (running M3D and XGC-NT simultaneously)
and fine grain parallelism (running each code on MPP’s).
When these codes are coupled, they will pass several 2D-
3D variables from one code to another. The information
exchange will take place about every 600 seconds, but the
exchange should take less than one second. This
constraint is due to the fact that the codes running on the
separate platforms must be “in-synch” with one another.

 The kinetic code in this project will run on 2048+
processors on the Cray XT3 at ORNL. This system is
connected to a 40Gbit link to a 160 processor PIV
infiniband cluster, as shown in Figure 4. A challenging
issue with using this platform is that the XT3
computational nodes do not allow users to run sockets or
threads. This constraint can be addressed by first sending
data from the computational nodes to the I/O nodes using
PORTALS [PORTALS]. The I/O nodes can then
communicate to the infiniband cluster.

Figure 2. Network connectivity between the ORNL

Cray's and our workflow cluster.
Given these constraints, typically used file-based data

movement is likely not a feasible solution and memory to
memory data movement must be investigated. Key
requirements include: (1) interaction/communication
schedules between individual processors executing each
of the coupled simulation codes need to be computed
efficiently, locally, and on-the-fly, without requiring
synchronizations or gathering global information, and
without incurring significant overheads on the
simulations themselves; and (2) data transfers should also
be efficient and should happen directly between the
individual processors of each simulations via the
intermediate IO nodes. Furthermore, specifying these
coupling behaviors between the simulations codes using
popular message-passing abstractions can be cumbersome
and often inefficient, as these systems require matching
sends and receives to be explicitly defined for each
interaction. As the individual simulations become larger,
more dynamic and heterogeneous and their couplings
more complex, implementations using message passing
abstractions can quickly become unmanageable. Clearly,
realizing coupled simulations requires an efficient,
flexible and scalable coupling framework and simple
high-level programming abstractions.

The primary goal of our effort is to simplify and
automate the scientific investigation processes for large
scale parallel codes. The core research issues addressed
include (1) dynamic coupling of constituent models and
simulation codes, (2) adaptive and automated application
workflows, (3) efficient and transparent access to and
transport of distributed data, (4) data analysis and
visualization, and (5) runtime monitoring and interactive
and autonomic control. This research leverages
technologies developed at the Fusion SciDAC’s, PPPL,
the Center for Advanced Information Processing (CAIP),
and the Scientific Data Management (SDM) Center
[SDM] to develop and deploy a framework for adaptive
and automated workflows and integrated data analysis
and visualization. In this paper we describe some aspects
of the underlying scientific workflow system that will be
used in this project and provide an overview of the code
coupling, data redistribution and data transfer components
that are being developed in this project.

2. The Kepler-HPC Workflow System

Kepler [ABB+05, Kep05, LAB+06] is a scientific
workflow system extending the underlying Ptolemy II
system [BLL+04] for heterogeneous modeling and design
with a number of extensions that are necessary in many
scientific applications. Extensions often take the form of
components called actors that are independent of each
other and typically execute as independent threads or
processes. Kepler actors support access to and transport
of distributed data via SRB (Storage Resource Broker),
SRM (Storage Resource Manager), gridFTP, Sabul, BCC,
and local and remote execution of legacy applications
(e.g. via a command-line/shell actor or via web services).
Moreover Kepler features a novel hybrid type system
[BL05] that combines structural and semantic type
information to facilitate scientific workflow design via
controlled vocabularies and community ontologies:
whenever datasets and computational components have
corresponding rich metadata, Kepler can exploit this
information during design and static analysis of a
workflow.

Figure 3. Actor communication in Kepler-HPC.

Director

Consumer Producer

IO ports

Kepler-HPC is a set of specialized extensions to

Kepler to enable high-performance computing
workflows, in particular, for interactive and autonomic
monitoring, steering and debugging, of remote HPC
applications. Like other scientific workflow systems,
Kepler workflows naturally support task parallelism
(parallel branches are executed concurrently), and data
parallelism (provided the individual jobs or codes

“inside” of actors exploit data parallelism). Unlike most
other systems, Kepler also comes with “built-in” support
for data streaming, due to the underlying workflow
execution model for dataflow process networks [LP95].
This feature makes Kepler well-suited for high-end
applications where file-based data transport might not be
feasible. Actors are independent from one another, so that
a data-consuming actor is decoupled from a data-
producing one (cf. Figure 2). The receiver is placed and
controlled by an overall system component called
“director” which can make use of specialized low-level
communication channels such as sockets. Another feature
of the Kepler-HPC architecture is that actors can be used
to set-up, monitor, and steer remote HPC jobs. Below,
we show part of the workflow which we have been
working on. The major codes (XGC-NT, XGC-SOL) run
on thousands of processors, and the M3D code will likely
run on about 100+ processors.

Figure 4. The XGC-M3D workflow

3. Code Coupling

In this project we are developing a coupling
framework. The framework is based on the Seine
geometry-based interaction model [ZP04], which is
motivated by two observations about the targeted
applications: (a) formulations of these scientific and
engineering applications are based on multi-dimensional
geometric discretizations of the problem domain (e.g.,
grid or mesh) and (b) couplings and interactions in these
applications can be defined based on geometric relations
in this discretization (e.g., intersecting or adjacent
regions). Seine provides a geometry-based virtual shared
space interaction abstraction. This abstraction derives
from the tuple space model.

However, instead of implementing a general and
global interactions space (as in the tuple model), Seine
presents an abstraction of transient geometry-based
interaction spaces, each of which is localized to a sub-
region of the overall geometric domain. This allows the
abstraction to be efficiently and scalability implemented
and allows interactions to be decoupled at the application
level. A Seine interaction space is defined to cover a
closed region of the application domain described by an
interval of coordinates in each dimension, and can be

identified by any set of coordinates contained in the
region.
The architecture of the Seine geometry-based coupling
framework is illustrated in Figure 5. It differs from
existing approaches in several ways. First, it provides a
simple but powerful abstraction for interaction and
coupling in the form of the virtual geometry-based shared
space. Processes register geometric regions of interest,
and associatively read and write data associated with the
registered region from/to the space in a decoupled
manner. Second, it supports efficient local computation of
communication schedules using lookups into directory
implemented as a distributed hash table. The index space
of the hash table is directly constructed from the
geometry of the application using Hilbert space filling
curves. Processes register their regions of interest with the
directory layer, and the directory layer automatically
computes communications schedules based on overlaps
between the registered geometric regions. Registering
processes do not need to know of or explicitly
synchronize with other processes during registration and
the computation of communication schedules. Finally, it
supports efficient and low-overhead processor-to-
processor socket-based data streaming and adaptive
buffer management.

Input Files

Job Submission

XGC-NT

Interpolation Stability
monitor

Noise
monitor

Stable?true

M3D

false

Interpolation XGC-SOL

Portal

Figure 5. Architecture of the Seine geometry based
coupling/interaction framework.

Data coupling in memory can be problematic in cases
where the volume of data to be shared is too large. In
such cases, data has to be moved partially to disk, and
effective caching methods have to be deployed. A second,
more compute intensive aspect of data coupling is the
transformation required when output and input data
formats do not match.

In cases where the coupled component codes are not
on the same system, data has to be moved from one
system to another perhaps over a wide area network
[Bhat04]. For example, the XGC and M3D codes
currently require data volumes on the order of megabytes
per minute to be streamed from the memory of one
machine to the memory of another. As computational
speeds increase, these volumes will increase significantly.

The Seine model and the Seine-based coupling
framework is designed to complement existing parallel
programming models and can work in tandem with
systems such as MPI, PVM and OpenMP. The design,
implementation and experimental evaluation of a
prototype implementation of the Seine based coupling
framework based on the DoE Common Component
Architecture (CCA) and enabling coupling within and
across CCA-based simulations are presented in [ZP06].

4. Runtime Monitoring via Workflows

The scale, complexity and dynamism of these
simulations coupled with similar scale and complexity of
emerging parallel/distributed execution environments
requires that these applications be accessed, monitored
and controlled during their execution. This is necessary
for us to ensure the correct and efficient execution of the
simulations. Here, simulation component behaviors and
their compositions can no longer be statically defined.
Further, their performance characteristics can no longer
be derived from a small synthetic run, as they depend on
the state of the simulations and the underlying system.
Algorithms that worked well at the beginning of the
simulation may become suboptimal as the solution
deviates from the space the algorithm was optimized for
or as the execution context changes. This requirement
presents a new set of deployment and runtime
management challenges. Further, as these simulations are
long running and some, XGC-NT, will run as batch jobs,
the monitoring and control activities must be automated
based on user defined policies.

We are investigating programming and runtime
management solutions to support the development and
deployment of applications that can be externally
monitored and interactively or autonomically controlled.
In particular, we are looking into programming and
runtime systems that can support efficient and scalable
implementations of our simulations. We are starting to
design control networks to allow computational elements
to be accessed and managed externally, both interactively
and using automated policies, to support runtime
monitoring, dynamic data injection and simulation
control. Here, we are building on our current and prior
research efforts and software projects including Accord
[Liu06], and Discover [Liu05].

6. References

[ABB+05] I. Altintas, et al., A Framework for the Design
and Reuse of Grid Workflows, Intl. Workshop on
Scientific Applications on Grid Computing, Springer
LNCS 3458, 2005.

[Bhat04] V. Bhat, et al, “High Performance Threaded
Data Streaming for Large Scale Simulations,” in

Proceedings of 5th International Grid Computing
Workshop, IEEE Computer Society Press, 243-250,
November (2004).
[BL05] Actor-Oriented Design of Scientific Workflows,
S. Bowers, B. Ludaescher, Intl. Conf. on Conceptual
Modeling (ER), Klagenfurt, Austria, LNCS, 2005.

[BLL+04] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer,
Y. Zhao, and H. Zheng. Heterogeneous Concurrent
Modeling and Design in Java (Vol 1-3). Technical report,
Dept. of EECS, University of California, Berkeley, 2004.
Technical Memoranda UCB/ERL M04/27, M04/16,
M04/17.

[Kep05] Kepler Scientific Workflow System and Project.
http://kepler-project.org, 2005

[LAB+06] B. Ludaescher, et al. “Scientific Workflow
Management and the Kepler System”, Concurrency and
Computation: Practice & Experience, to appear 2006

[LP95] E. Lee, T. Park, Dataflow Process Networks,
Proceedings of the IEEE, volume 83, pp.773–799, 1995.

[SciDAC] Scientific Discovery through Advanced
Computing http://www.osti.gov/scidac/

[ZP04] L. Zhang, M. Parashar, A Dynamic Geometry-
Based Shared Space Interaction Framework for Parallel
Scientific Applications, 11th Intl. Conf. on High
Performance Computing (HiPC), Bangalore, Springer
LNCS, 2004.

[ZP06] L. Zhang, M. Parashar, Enabling Efficient and
Flexible Coupling of Parallel Scientific Applications,
IEEE Intl. Parallel and Distributed Processing
Symposium, Rhodes Island, Greece, 2006.

[M3D] http://w3.pppl.gov/~jardin/CEMM/

[XGC-NT] C. S. Chang, Seung-Hoe Ku, and H.
Weitzner, “Numerical study of neoclassical plasma
pedestal in a tokamak geometry”, Phys. Plasmas, 11,
2649 (2004).

 [PORTALS] R. Brightwell, et al., “Portals 3.0: Protocol
Building Blocks for Low Overhead Communication,”
Proc. Workshop on Communication Architecture for
Clusters, 2002, pp. 164-73.

[Liu06] H. Liu, M. Parashar, "Accord: A Programming
Framework for Autonomic Applications", IEEE
Transactions on Systems, Man and Cybernetics, Special
Issue on Engineering Autonomic Systems, 2006.

[Liu05] H. Liu, M. Parashar, "Rule-based Monitoring and
Steering of Distributed Scientific Applications",
International Journal of High Performance Computing
and Networking, Vol. 3, No. 4, pp. 272–282, 2005.

[SDM] Scientific Data Management Center.
http://sdmcenter.lbl.gov/

http://kepler-project.org/
http://www.osti.gov/scidac/
http://sdmcenter.lbl.gov/

