Data-flow vs Control-flow

• Fuzzy distinction, yet useful for:
 – specification (language, model, ...)
 – synthesis (scheduling, optimization, ...)
 – validation (simulation, formal verification, ...)
• Rough classification:
 – control:
 • don’t know when data arrive (quick reaction)
 • time of arrival often matters more than value
 – data:
 • data arrive in regular streams (samples)
 • value matters most

Data-flow vs Control-flow

• Specification, synthesis & validation methods tend to emphasize ...
 – for control:
 – event/reaction relation
 – response time
 – (Real Time scheduling for deadline satisfaction)
 – priority among events and processes
 – for data:
 – functional dependency between input and output
 – memory/time efficiency
 – (Dataflow scheduling for efficient pipelining)
 – all events and processes are equal

Process Networks

• Communicating processes with directed flow
 – communication: token “stream” between two processes
 – process: operations on tokens
 – host language: process description
 – coordination language: network description

Kahn process networks (1974)

• special class of process networks
• stream is FIFO with unbounded capacity,
• process:
 – destructive read ("consumption") at process start,
 – non-destructive write ("production") at process end,
 – blocking read — process only executed if data available,
 – non-blocking write.
Kahn Process Networks: Formalism

Sequence (a stream) \(X = [x_1, x_2, \ldots] \)
Prefix ordering \([x_1, x_2] \leq [x_1, x_2, x_3]\)
Increasing chain of seq. \(\chi = [x_0, x_1, \ldots] \) where \(X_0 \subseteq X_1 \)
Least upper bound lub \(\chi \subseteq Y \) where \(X_i \subseteq Y \) for all \(X_i \in \chi \)

\[
\begin{array}{c}
\text{FIFO} \\
\text{process} \\
\text{FIFO} \\
\text{process}
\end{array}
\]

\(X \rightarrow F(X) \rightarrow Y \)

Continuous process \(F(\text{lub } \chi) = \text{lub } F(\chi) \)

Kahn Process Networks: Monotonicity

- Monotonicity
 - \(X \subseteq X' \Rightarrow F(X) \subseteq F(X') \)
- It can be proved that...
 - a continuous process is monotone
 - given a part of the input sequence it may be possible to compute part of the output sequence.

Monotonic does not imply continuous

- Consider \(F: S \rightarrow S \)

\[
F(x) = \begin{cases}
[0] & \text{if } X \text{ is a finite sequence} \\
[0,1] & \text{otherwise}
\end{cases}
\]

Only two outputs are possible, both finite sequences. To show that this is monotone, note that if the sequence \(X \) is infinite and \(X \subseteq X' \), then \(X = X' \), so

\[
F = F(X) \subseteq F(X') = F'(X')
\]

If \(X \) is finite, then \(F = F(X) = [0] \), which is a prefix of all possible outputs. To show that it is not continuous, consider the increasing chain

\[
\chi = \{X_0, X_1, \ldots\} \text{ where } X_0 \subseteq X_1 \subseteq \ldots
\]

where each \(X_i \) has exactly \(i \) elements in it. Then \(\chi \) is infinite, so

\[
F(\chi) = [0,1] = F(X_1) = [0]
\]

Iterative computation of this function is clearly problematic.

A useful property is that a network of monotonic processes itself defines a monotonic process. This property is valid even for process networks with feedback loops, as is formally proven using induction by Petrenko and Shafir-Zelig [79]. It should not be surprising given the results, so far that one can formally show that networks of monotonic processes are continuous.
Non-monotonic Processes

• " Canonical" non-monotonic process: *fair merge*

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>([x_1, x_2, x_3, \ldots])</td>
<td>([x_1, y_1, x_2, y_2, x_3, \ldots])</td>
</tr>
<tr>
<td>([y_1, y_2, y_3, \ldots])</td>
<td>([x_1, y_1, x_2, y_2, x_3, \ldots])</td>
</tr>
</tbody>
</table>

• **Fairness:** every non-empty sequence is processed.

In the previous example, we have:

- \([(x_1, x_2), (y_1, y_2, y_3, \ldots)] \subseteq [(x_1, x_2, x_3, \ldots), (y_1, y_2, y_3, \ldots)]\)

- but

 - \([x_1, y_1, x_2, y_2, x_3, y_3, \ldots]\)
 - \([x_1, y_1, x_2, y_2, y_3, \ldots]\)

• are incomparable

⇒ The process is not monotonic (needs prediction of the future to be really fair).

⇒ The process is not continuous.

In fact the process is not even a (deterministic) function.

Fair Merge

- **Fair merge:**

 - interleave input streams \(X_1\) and \(X_2\) to produce output stream \(Y\).

Least Fixed Point Semantics

Let \(X\) be the set of all sequences.

A network is a mapping \(F\) from the sequences to the sequences (where \(I\) represents the input sequence):

\[X = F(X, I) \]

The behavior of the network is defined as the unique least fixed point of the equation (LFP).

If \(F\) is continuous then the least fixed point exists

\[LFP = \text{LUB}(\{ F^n(\bot, I) : n \geq 0 \}) \]