Transaction Management

- Last time: Logging and Crash Recovery
- Today: Concurrency Control
- Requirements for transactions T to maintain DB consistency (ACID properties):
 - Atomicity: users perceive T as atomic, i.e., all or none of the effects are carried out (system)
 - Consistency: each T run by itself preserves consistency (user)
 - Isolation: "local transaction semantics", i.e., user can understand T as if executed in isolation, although DBMS executes T's concurrently (system)
 - Durability: after successful termination of T, effects are persistent even after system crash (as covered by the failure model) (system)

Concurrence Control

- Multiple transactions run in parallel
- if they run in isolation they are correct
- but what if they run concurrently?
- when does the schedule of execution of some transactions produce a consistent DB?

Example: T1, T2 with constraint A=B

<table>
<thead>
<tr>
<th>Serial Schedule S1</th>
<th>Serial Schedule S2</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read(A)</code></td>
<td><code>read(A)</code></td>
</tr>
<tr>
<td><code>A=10</code></td>
<td><code>A=10</code></td>
</tr>
<tr>
<td><code>B=2</code></td>
<td><code>B=2</code></td>
</tr>
<tr>
<td><code>write(B)</code></td>
<td><code>write(B)</code></td>
</tr>
<tr>
<td><code>*25</code></td>
<td><code>*25</code></td>
</tr>
</tbody>
</table>

Both serial schedules ok (by assumption) and leave DB in a consistent state.

Serializable and Non-Serializable Schedules

<table>
<thead>
<tr>
<th>Bad Schedule</th>
<th>Good Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read(A)</code></td>
<td><code>read(A)</code></td>
</tr>
<tr>
<td><code>A=10</code></td>
<td><code>A=10</code></td>
</tr>
<tr>
<td><code>B=2</code></td>
<td><code>B=2</code></td>
</tr>
<tr>
<td><code>write(B)</code></td>
<td><code>write(B)</code></td>
</tr>
<tr>
<td><code>*25</code></td>
<td><code>*25</code></td>
</tr>
</tbody>
</table>

A simple test of correctness: Can we swap the statements of the schedule so that we produce an equivalent serial schedule? If yes, the schedule is a serializable one, i.e., a “good” one.
Conflicting Actions

- **Transaction** = sequence of actions like Read and Write: ri(X), wi(X) (transaction i reads/writes X)
- Let X≠Y. Swap OK:
 - ri(X); rj(Y) (even if X≠Y)
 - ri(X); wi(Y) and wi(X); rj(Y)
 - wi(X); wi(Y)
- Swap not OK (=conflicting actions):
 - two actions of the same transaction
 - ri(X); wi(X) and wi(X); rj(X)
- Def: S1, S2 are conflict equivalent if S1 can be transformed into S2 using swaps of non-conflicting actions
- Def: S is conflict serializable if it is conflict equivalent to a serial schedule

Good Schedule
Read(A); A := A + 100
Write(A)
Read(B); B := B + 100
Write(B)
Read(A); A := 2 * A
Write(A)
Read(B); B := 2 * B
Write(B)

Bad Schedule
Read(A); A := A + 100
Write(A)
Read(A); A := 2 * A
Write(A)
Read(B); B := B + 100
Write(B)
Read(B); B := 2 * B
Write(B)

How to detect whether S is conflict serializable?

- **Precedence graph** P(S) of schedule S
- **Nodes(S)** = transactions
- **Edges(S)**: Ti → Tj ("Ti takes precedence over Tj") whenever
 - p(X), q(X) are actions in S (Read or Write)
 - p(X) precedes q(X) in S
 - at least one of p(X), q(X) is write

Good Schedule

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read(A)</td>
<td>A := A + 100</td>
</tr>
<tr>
<td>Write(A)</td>
<td></td>
</tr>
<tr>
<td>Read(B)</td>
<td>B := B + 100</td>
</tr>
<tr>
<td>Write(B)</td>
<td></td>
</tr>
<tr>
<td>Read(A)</td>
<td>A := 2 * A</td>
</tr>
<tr>
<td>Write(A)</td>
<td></td>
</tr>
<tr>
<td>Read(B)</td>
<td>B := 2 * B</td>
</tr>
<tr>
<td>Write(B)</td>
<td></td>
</tr>
</tbody>
</table>

Bad Schedule

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read(A)</td>
<td>A := A + 100</td>
</tr>
<tr>
<td>Write(A)</td>
<td></td>
</tr>
<tr>
<td>Read(B)</td>
<td>B := B + 100</td>
</tr>
<tr>
<td>Write(B)</td>
<td></td>
</tr>
<tr>
<td>Read(B)</td>
<td>B := 2 * B</td>
</tr>
<tr>
<td>Write(B)</td>
<td></td>
</tr>
</tbody>
</table>

Testing for Serializability

- P(S) := \{(T1 \rightarrow T2)\}
Testing for Serializability

Lemma: S1, S2 conflict equivalent => P(S1) = P(S2)
Proof: if not P(S1) = P(S2) then there is an edge Ti -> Tj in S1 but not in S2:
=> S1 = ... pi(A) ... qj(A) ... and S2 = ... qj(A) ... pi(A) ...
=> S1, S2 are not conflict equivalent!

• Exercise: show that "<=" does not hold

Theorem: P(S) acyclic <=> S conflict serializable
Proof: if S conflict serializable then ex. serializable, conflict equivalence S' => P(S')=P(S'); note: P(S') is acyclic.
Conversely: P(S) is acyclic => it can be topologically sorted => serial schedule S1

How to Enforce Serializable Schedules?

• (Non-)Option1: run system; record P(S); check afterwards if P(S) was acyclic...

• Option2: Scheduler prevents P(S)'s cycles from occurring

• Two new actions:
 - lock(exclusive): li(X)
 - unlock: ui(X)

• Enforcing serializable schedules
 1) Well-formed transactions:
 Ti: ... li(X) ... pi(X) ... ui(X) ... no unlocks ... no locks
 2) Legal schedules:
 S ... li(X) ... pi(X) ... ui(X) ... "no if X"^n
 3) Two phase (2PL) locking
 Ti: ... li(X) ... pi(X) ... no unlocks ... no locks

if a lock request violates
 protocol the requesting
 transaction goes in wait state

Good Schedule
T1
Read(A);
A:=A+100
Write(A)
Read(A)
A:=2^A
Write(A)
Read(B)
B:=B+100
Write(B)
Read(B)
B:=2*B
Write(B)

Bad Schedule
T1
Read(A);
A:=A+100
Write(A)
Read(A)
A:=2^A
Write(A)
Read(B)
B:=B+100
Write(B)
Read(B)
B:=2*B
Write(B)
Exercise

• What schedules are legal?
• What transactions are well-formed?
 – S1 = l1(A) r1(B) w1(A) l1(B) u1(A) u1(B)
 r1(B) w1(B) u1(B) l1(B) u1(B)
 – S2 = l1(A) r1(A) w1(B) u1(A) u1(B)
 l1(B) r1(B) w1(B) u1(B)
 – S3 = l1(A) r1(A) u1(A) l1(B) w1(B) u1(B)
 l1(B) w1(B) r1(B) u1(B)

Two well-formed transactions on a non 2PL scheduler

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l1(A)</td>
<td>Read(A); A := A + 100</td>
</tr>
<tr>
<td>Write(A); u1(A)</td>
<td></td>
</tr>
<tr>
<td>l1(B)</td>
<td>Read(B)</td>
</tr>
<tr>
<td>Write(B); u1(B)</td>
<td></td>
</tr>
</tbody>
</table>

Two non-serializable 2PL versions of the transactions

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l1(A)</td>
<td>Read(A); A := A + 100</td>
</tr>
<tr>
<td>Write(A); u1(A)</td>
<td></td>
</tr>
<tr>
<td>l1(B)</td>
<td>Read(B)</td>
</tr>
<tr>
<td>Write(B); u1(B)</td>
<td></td>
</tr>
</tbody>
</table>

Two serializable 2PL versions of the transactions

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l1(A)</td>
<td>Read(A); A := A + 100</td>
</tr>
<tr>
<td>Write(A); u1(A)</td>
<td></td>
</tr>
<tr>
<td>l1(B)</td>
<td>Read(B)</td>
</tr>
<tr>
<td>Write(B); u1(B)</td>
<td></td>
</tr>
</tbody>
</table>

Two serializable 2PL versions of the transactions

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l1(A)</td>
<td>Read(A); A := A + 100</td>
</tr>
<tr>
<td>Write(A); u1(A)</td>
<td></td>
</tr>
<tr>
<td>l1(B)</td>
<td>Read(B)</td>
</tr>
<tr>
<td>Write(B); u1(B)</td>
<td></td>
</tr>
</tbody>
</table>

Two non-serializable 2PL versions of the transactions

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l1(A)</td>
<td>Read(A); A := A + 100</td>
</tr>
<tr>
<td>Write(A); u1(A)</td>
<td></td>
</tr>
<tr>
<td>l1(B)</td>
<td>Read(B)</td>
</tr>
<tr>
<td>Write(B); u1(B)</td>
<td></td>
</tr>
</tbody>
</table>

Two serializable 2PL versions of the transactions

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l1(A)</td>
<td>Read(A); A := A + 100</td>
</tr>
<tr>
<td>Write(A); u1(A)</td>
<td></td>
</tr>
<tr>
<td>l1(B)</td>
<td>Read(B)</td>
</tr>
<tr>
<td>Write(B); u1(B)</td>
<td></td>
</tr>
</tbody>
</table>

Two non-serializable 2PL versions of the transactions

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l1(A)</td>
<td>Read(A); A := A + 100</td>
</tr>
<tr>
<td>Write(A); u1(A)</td>
<td></td>
</tr>
<tr>
<td>l1(B)</td>
<td>Read(B)</td>
</tr>
<tr>
<td>Write(B); u1(B)</td>
<td></td>
</tr>
</tbody>
</table>
Theorem: S is 2PL (rules 1,2,3, s.156) => S conflict serializable
First: "shrink" transactions T to a point in time Sh(T), i.e., when they do their first unlock.
Lemma: if Ti \rightarrow Tj in P(S) then Sh(Ti) \leq Sh(Tj).
Proof if Ti \rightarrow Tj then
S = \ldots p(A) \ldots q(A) \ldots \ p.q conflicting actions
By rules 1,2:
S = \ldots p(A) \ldots u(A) \ldots l(A) \ldots q(A) \ldots
By rule 3: Sh(Ti) \leq Sh(Tj)

Lemma: if Ti \rightarrow Tj in P(S) then Sh(Ti) < Sh(Tj).
Proof if Ti \rightarrow Tj then
S = \ldots p(A) \ldots q(A) \ldots \ p.q conflicting actions
By rules 1,2:
S = \ldots p(A) \ldots u(A) \ldots l(A) \ldots q(A) \ldots
By rule 3: Sh(Ti) < Sh(Tj)

Theorem: S is 2PL (rules 1,2,3, s.156) => S conflict serializable
Proof Assume S is 2PL but not conflict serializable
=> P(S) is cyclic: T1 \rightarrow T2 \rightarrow \ldots \ Tn \rightarrow T1
=> (Lemma): Sh(T1) < Sh(T2) < \ldots < Sh(T1).
Contradiction!
=> P(S) is acyclic => S conflict serializable.

Fact: There are serializable schedules that cannot be produced by a 2PL scheduler:
2PL Can Cause Deadlocks

- Correctness: a 2PL transaction can be thought of as executing "instantaneously" at the time of the first unlock.
- But: 2 PL + sequence of lock requests => risk of deadlocks!
- Solutions:
 - detection: after timeout roll back (abort/restart) transaction
 - prevention: impose an order for locking
 - waits-for graph: detect or prevent cycles (and thus deadlocks)

```
T1                        T2
l1(A); Read(A);        l1(B); Read(B);  
A:=A+100              R:=2*B
Write(A);             Write(B);
l2 (B); Read(B)        l1(B); T1 WAIT
B:=2*B                l1(A); T1 WAIT
Write(B);
```

Waits-For Graph

Waits-for graph \(W(S) \) of schedule \(S \):
- **Nodes(\(S \))** = transactions holding or waiting for a lock
- **Edges(\(S \))**: \(T \rightarrow U \) "\(T \) waits for \(U \)" (to unlock...)
 - \(T \) waits for a lock \(l(A) \) that \(U \) holds, and
 - \(T \) cannot get \(l(A) \) unless \(U \) unlocks \(A \)

\(S \) has a deadlock \(\iff \) \(W(S) \) is cyclic:
- transactions in a cycle are deadlocked;
- if \(W(S) \) is acyclic, some transactions have no incoming edges
 - these can complete
 - further transactions have no in-edges, etc.

Deadlock Prevention with Waits-For Graph

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>l(A); r(A)</td>
<td>l(C); r(C)</td>
<td>l(B); r(B)</td>
<td>l(D); r(D)</td>
<td></td>
</tr>
<tr>
<td>l(A); WAIT</td>
<td>l(C); WAIT</td>
<td>l(A); WAIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l(B); WAIT => DEADLOCK => don’t allow WAIT => cycle is prevented</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEADLOCK
Deadlock Prevention by Ordering Elements

- There is an order on the database elements: $A_1 < A_2 < \ldots < A_n$ (e.g., physical address of disk blocks)
- Transactions can request locks only in that order
 \Rightarrow Deadlocks cannot occur:
 Assume $W(S)$ is cyclic: $T_1 \leftarrow T_2 \leftarrow T_3 \leftarrow \ldots \leftarrow T_n \leftarrow T_1$
 $\Rightarrow T_2$ waits for some A_1 held by T_1. T_3 waits for some A_2 held by T_2 etc.
 $\Rightarrow A_2 < A_1$ (since T_2 holds $l(A_2)$ but waits for $l(A_1)$)
 \Rightarrow (similarly) $A_3 < A_2 < A_1 < A_3$ contradiction!
 $\Rightarrow W(S)$ is acyclic \Rightarrow no deadlock

Deadlock Prevention by Timestamps

- Timestamp a transaction when it waits for a lock (keep this deadlock timestamp even for rollback)
- WAIT-DIE (wait for younger)
 - T older: $T \rightarrow U$: let the older T wait
 - U older: $U \leftarrow T$: kill (rollback) the younger, waiting T
- WOUND-WAIT: (wait for older)
 - T older: $T \rightarrow U$: T "wounds" U; rollback younger U
 - U older: $U \leftarrow T$: let younger T wait
- These policies also prevent starvation: older transactions can kill younger ones, but the killed ones keep their timestamp on restart (\Rightarrow will become oldest eventually)

Shared Locks

- So far: exclusive locks only, i.e., T locks before reading since T may write
 \Rightarrow more restrictive than necessary since two reads are ok:
 ... $l_t(A) r_t(A) u_t(A) \ldots$ $l_t(A) r_t(A) u_t(A)$ (T1 or T2 has to wait)
 \Rightarrow use shared locks for concurrent reading on the same object:
 ... $l_s(A) r_s(A) l_t(A) r_t(A) \ldots$ $u_s(A) u_t(A)$ (T1, T2 need not wait)
- Locking operations
 - lock shared/exclusive $l_s(A) / l_x(A)$
 - unlock shared/exclusive $u_s(A) / u_x(A)$
 - unlock (whatever): $u_t(A)$
Shared Locks

• (1) Well-formed transactions
 – read ok for shared locks: $T_i = \ldots$ $r_i(A) \ldots u_i(A) \ldots$
 – write/read ok for exclusive locks: $T_i = \ldots$ $x_i(A) \ldots w_i(A) \ldots$

• What about transactions that read and write the same object A?
 – option 1: request exclusive lock $lx(A)$ in advance
 – option 2: upgrade (need to read, but don’t know about write):
 $T_i = \ldots$ $r_i(A) \ldots u_i(A) \ldots$ $lx_i(A)$ $\ldots w_i(A)$ $wx_i(A)$

 this is like:
 • (i) a 2nd (exclusive) lock on A,
 • (ii) or unlock shared; lock exclusive

Shared Locks (cont’d)

• (1) Well-formed transactions
• (2) Legal schedules
 – $S = \ldots$ $ls(A) \ldots u(A) \ldots$
 – no $ls(A)$
 – $S = \ldots$ $lx(A) \ldots u(A) \ldots$ no $lx(A)ls(A)$

• (3) 2PL as before but for upgrades:
 – upgrades are allowed in the growing phase (in both “views” (i), (ii))
 – common deadlock situation:
 $T_1 = ls(A) \ldots$ $lx(A)$
 $T_2 = ls(A) \ldots$ $lx(A)$
 $S = \ldots$ $lx(A)$ \ldots $u(A)$ \ldots
 – solution: update locks $ul(A)$
 – can upgrade from $lu(A)$ to $lx(A)$ only, but not from $ls(A)$ to $lx(A)$:
 $T_1 = lu(A) \ldots$ $lx(A)$
 $T_2 = lu(A)$ (WAIT) \ldots $lx(A)$

Increment Locks

• Atomic increment action
 $INC(A,k) := \{ \text{Read}(A); A := A + k; \text{Write}(A) \}$

• $INC(A,k)$, $INC(A,y)$ do not conflict

 $A = 7$
 $A = 5 \quad A = 15$
 $A = 17$

 • Consider schedules with increment lock $li(A)$
 – increment lock allows just that, for no read or write:
 e.g., the following can execute without delay:
 $T_1 = ls_1(A); r_1(A); li_1(B); inc_1(B,k); u_1(A); u_1(B)$
 $T_2 = ls_2(A); r_2(A); li_2(B); inc_2(B,k); u_2(A); u_2(B)$

 $A = 7$
 $A = 5 \quad A = 15$
• Conflict serializability can be too restrictive. E.g., schedule $S_1 = T_1 = r_1(A); w_1(A)$
 $T_2 = w_2(A)$;
 $T_3 = w_3(A)$
precedence graph $P(S_1) = T_1 \rightarrow T_2 \rightarrow T_3$
$\Rightarrow S_1$ is not conflict serializable!
• but compare S_1 with the following serial schedule S_2
 $S_1 = r_1(A); w_2(A); w_1(A); w_3(A)$ (not conflict serializable)
 $S_2 = r_1(A); w_1(A); w_2(A); w_3(A)$ ("view equivalent" serial schedule)
• crux: the writes $w_1(A); w_2(A)$ are irrelevant for the outcome, so S_1 and S_2 have the same result

View Serializability

- **Def.:** Schedules S_1, S_2 are **view equivalent** if
 (V1) if in S_1: $w_j(A) \Rightarrow r_i(A)$ "$r_i(A)$ reads value produced by $w_j(A)$"
 then in S_2: $w_j(A) \Rightarrow r_i(A)$
 (V2) if in S_1: $r_i(A)$ reads initial DB value,
 then in S_2: $r_i(A)$ also reads initial DB value
 (V3) if in S_1: T_i does last write on A,
 then in S_2: T_i also does last write on A
- **Def.:** Schedule S_1 is **view serializable** if it is view equivalent to
 some serial schedule
- **Example:**
 $S_1 = r_1(A); w_2(A); w_1(A); w_3(A)$ (not conflict serializable)
 $S_2 = r_1(A); w_1(A); w_2(A); w_3(A)$ ("view equivalent" serial schedule)

View Serializability

Lemma: S conflict serializable implies S view serializable

Proof: swapping non-conflicting actions
 - does not change what transactions read
 - does not change final DB state

- So: conflict serializable \subseteq view serializable \subseteq all schedules
 (note: these inclusions are strict)
- view serializable schedules that are not conflict serializable involve useless write, i.e., as situation like $S = w_2(A) \ldots w_3(A) \ldots \Rightarrow$no reads$\Rightarrow$
Testing for View Serializability

- (1) Add final transaction \(T_f \) that reads all DB (takes care of V2)

 \[S = \ldots w1(A) \ldots w2(A) \ldots r_f(A) \]

- (2) Add initial transaction \(T_b \) that writes all DB (takes care of V3)

 \[S = w_b(A) \ldots r_f(A) \ldots w2(A) \ldots \]

- (3) Create labeled precedence graph of \(S \):

 - (3a) If \(w_i(A) \Rightarrow r_j(A) \) in \(S \), add \(T_i \rightarrow T_j \)

 - (3b) For each \(w_i(A) \Rightarrow r_j(A) \) consider each \(w_k(A) \) \(k \neq b, i, j \)

 - If \(T_i = T_b \land T_j = T_f \) then insert \(T_k \rightarrow T_j \) (for some new \(p \))
 - If \(T_i = T_b \land T_j \neq T_f \) then insert \(T_j \rightarrow T_k \)
 - If \(T_i \neq T_b \land T_j = T_f \) then insert \(T_k \rightarrow T_i \)

- (4) Check if \(LP(S) \) is "acyclic" (if so, \(S \) is view serializable)

 - For each pair of "p" arcs (\(p \neq 0 \)), choose one

Testing for View Serializability: Example

Example: check if \(Q \) is V-S:

\[Q = [\begin{array}{c} \text{r}_1(A) \ w_2(A) \ w_1(A) \ w_3(A) \end{array}] \]

\[Q' = w_b(A) \Rightarrow r_1(A) \ w_2(A) \Rightarrow r_3(A) \ w_1(A) \Rightarrow r_f(A) \]

\[w_2, w_3 \text{ after } r_1 \]

\[w_2, w_1 \text{ before } w_3 \]

\[LP(S) \text{ acyclic!} \]

\(S \text{ is V-S} \)

Testing for View Serializability: Another Example

\[Z = w_b(A) \Rightarrow r_1(A) \ w_2(A) \Rightarrow r_1(A) \ w_1(A) \Rightarrow r_f(A) \]

\[w_1 \text{ after } r_3 \]

or \(w_1 \text{ before } w_2 \)

\[LP(Z) \text{ acyclic, so } Z \text{ is V-S} \]

(\(Z + S \) does indeed do same thing)