

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 120 – 133, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Framework for the Design and Reuse of
Grid Workflows

Ilkay Altintas1, Adam Birnbaum1, Kim K. Baldridge1,2, Wibke Sudholt2,
Mark Miller1, Celine Amoreira2, Yohann Potier2, and Bertram Ludaescher1,3

1 San Diego Supercomputer Center, University of California at San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA

{altintas, birnbaum, kimb, miller, ludaesch}@sdsc.edu
2 Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190,

CH-8057 Zurich, Switzerland
{kimb, wibke, ypotier, amoreira}@oci.unizh.ch

3 Dept. of Computer Science & Genome Center, University of California at Davis,
One Shields Ave, Davis, CA 95616, USA

ludaesch@ucdavis.edu

Abstract. Grid workflows can be seen as special scientific workflows involving
high performance and/or high throughput computational tasks. Much work in
grid workflows has focused on improving application performance through
schedulers that optimize the use of computational resources and bandwidth. As
high-end computing resources are becoming more of a commodity that is
available to new scientific communities, there is an increasing need to also im-
prove the design and reusability “performance” of scientific workflow systems.
To this end, we are developing a framework that supports the design and reuse
of grid workflows. Individual workflow components (e.g., for data movement,
database querying, job scheduling, remote execution etc.) are abstracted into a
set of generic, reusable tasks. Instantiations of these common tasks can be func-
tionally equivalent atomic components (called actors) or composite components
(so-called composite actors or subworkflows). In this way, a grid workflow de-
signer does not have to commit to a particular Grid technology when develop-
ing a scientific workflow; instead different technologies (e.g. GridFTP, SRB,
and scp) can be used interchangeably and in concert. We illustrate the applica-
tion of our framework using two real-world Grid workflows from different sci-
entific domains, i.e., cheminformatics and bioinformatics, respectively.

1 Introduction

With the increase in the volume of scientific data and knowledge, the demand to util-
ize the largest portion thereof in an efficient and simple way has become one of the
main challenges in today’s science. Many scientific domains need computing methods
and resources for continued improvement of the quality of their research. Important
examples include computational problems in bio- and cheminformatics. Technical
challenges also arise through the introduction of different, heterogeneous distributed
network computing systems that make up the Grid [1,2]. While an increasing number
of computational tools for the Grid become available, they are generally difficult to

 A Framework for the Design and Reuse of Grid Workflows 121

use for the domain scientist. Scientific workflow user environments, e.g., Kepler [7],
Taverna [8], and Triana [9], aim at improving this situation by “wrapping” Grid tools
and making them available in a user-friendly visual programming environment.

Grid Workflows can be seen as special scientific workflows that exhibit features of
high-performance computing (HPC) workflows and/or high-throughput computing
(HTC) workflows. While the focus of the former is on maximal peak performance,
e.g., in terms of floating point operations per second (FLOPs), the latter can deliver
large amounts of processing capacity over long periods of time [3]. HTC systems are
effective for problems that deal with the management and tracking of data movements
and the efficient assignment of tasks to resources.

We first discuss the practice of and the challenges in assembling HTC Grid work-
flows, and describe a Grid workflow framework that can help scientists develop HTC
workflows for their research problems (Section 2). This is followed by a discussion of
two real-world use cases from the cheminformatics and bioinformatics domains, re-
spectively (Section 3). We conclude in Section 4 with a brief outlook on future work.

2 Grid-Workflow Framework

With the existing Grid infrastructure, building scientific applications for large-scale
collaborative Grid workflows is complicated. Many scientists do not have the techni-
cal expertise to use the existing Grid components, so they need to recruit additional
Grid expertise to assist them with their applications. One of the main reasons for these
difficulties is that the basic Grid services to authenticate, access, manage, and
discover remote resources are not easily obtained, nor easy to utilize once they are
obtained. The goal of our Grid framework is to design abstract components and tem-
plates that facilitate Grid-based workflow construction, and to integrate multiple such
Grid components into a single system with an intuitive graphical user interface (GUI).

Such a Grid workflow framework can be useful at several levels, e.g. as a model-
ing environment to capture the scientists’ high-level ideas as a model of a scientific
process, to design application-specific data analysis pipelines, or even to control the
actual computational experiments, track the provenance of derived data, etc. The
workflows generated by the system can be saved and reused in other studies. Another
function of such a framework is to interface multiple technologies in one composition
infrastructure, and use them interchangeably (e.g., GridFTP get vs. SRB get vs. scp
etc.) To the best of our knowledge, ours is the first such workflow framework and
system with this capability.

2.1 Grid Workflows: The Ingredients

We summarize below some common Grid service functions and then describe the
abstract components that correspond to these functions in our framework.

Authentication. The Grid community has generated tools for authentication and
authorization via generated proxy certificates. As summarized in [4], certificate man-
agement tools are developed for generating credentials for users and services, for
getting users “signed up” to use a Grid, and for getting users’ Grid credentials to
wherever they are needed in a system. The Globus Toolkit [5] provides software de-

122 I. Altintas et al.

velopment kits for the core security software in Globus-based Grid systems and appli-
cations. These Software Development Kits (SDKs) include libraries and Java APIs for
a certificate-based authentication system that conforms to the Grid Security Infra-
structure (GSI) and that can be used to generate proxy components. The toolkit also
provides a web services implementation of the same package.

As straightforward as it sounds, these tools still require programming in order to be
used in an end-user application. An abstract component in a visual workflow pro-
gramming environment simplifies such programming (see Section 3).

Data Movement. Access and management of remote data are basic functions in dis-
tributed Grid computing. There are several methods for moving data from one loca-
tion to another, e.g., GridFTP, SRB put/get, scp and others. GridFTP is a secure data
transfer protocol optimized for wide-area networks. The SDSC Storage Resource
Broker (SRB) is a client-server middleware that provides a uniform interface for con-
necting to heterogeneous data resources over a network and for accessing replicated
data sets, e.g., based on metadata attributes [6]. While the former two are designed
and optimized for file sharing of very large data over the Grid, sometimes a simple
scp (secure copy) Unix command may be sufficient and easier to use for the scientist.
scp is a shell command that allows users to copy files between systems quickly and
securely, without the need for expertise in Grid systems. Such a tool can be as helpful
in some workflows as any of the other file transfer mechanisms, even for data that
will be used by a Grid job. Most systems provide interfaces to one or more of these
tools. Ideally these methods should be usable interchangeably, depending on the
user’s needs, preferences, and abilities.

Remote Service Execution. Most scientists today are familiar with the use of web-
based resources, and can make their work available through such distributed systems.
However, manual copy/pasting or programming is usually required when using multi-
ple of these resources in a data analysis or transformation pipeline. Often software
developers are needed to write custom workflows that automate large-scale scientific
workflows and processes. The use of generic tools for service-based execution can
simplify the problem somewhat. A service is a component within the Internet comput-
ing model that provides a particular function through a simple remote invocation
mechanism. Through the introduction of Web and Grid services, many new resources
for different scientific domains are becoming available. However, services do not
necessarily “fit together” (in the sense that they can be composed into a chain or pipe-
line of services) unless they have been designed to do so. Hence service composition
(e.g., via “shim services”) is an active field of research and development in scientific
workflow systems [7, 8, 9].

The ssh (secure shell) Unix-command provides a simple way of connecting to a
remote resource and executing a program there. A special actor component for this
command is available in Kepler [7] as an easy way of executing a function on a re-
mote machine, and getting back the results of the execution.

Grid Job Submission. A Grid job is an executable or command that runs on a (typi-
cally remote) Grid resource. The remote resource, also referred to as a ‘contact’ or
‘gatekeeper’, must have a Grid environment such as the Globus toolkit [5] installed to
recognize this submission. Once submitted, a job can run in batch mode or non-batch

 A Framework for the Design and Reuse of Grid Workflows 123

mode. The jobs submitted in batch mode are assigned a job-id, which is returned
immediately and can be used for subsequent monitoring of the submitted job. The
non-batch jobs return the result of the computation once they are finished. Batch
mode submission is useful for jobs that take a long time, such as process-intensive
computations [10]. The jobs to be submitted can be described using the Resource
Specification Language (RSL), a common interchange language to describe resources.

Job Scheduling and Resource Management. In order for a high-throughput applica-
tion to make use of distributed resources, a solution must exist for the scheduling
problem, i.e. there must be a mapping between tasks and resources. Solving this
problem in an ideal system has been shown to be NP-hard [39], and research has
largely focused on the development of scheduling heuristics, which have been built
into the commonly-used high-throughput systems such as Condor [3], Nimrod/G
[11,14], and the AppLeS Parameter Sweep Template (APST) [12]. In building practi-
cal systems, it is difficult to isolate the issues of scheduling from those of managing
the heterogeneity and instability of component subsystems. All three of the aforemen-
tioned high-throughput scheduling tools have the ability to constantly monitor and
adjust to changing load and performance. In addition, they all provide some ability to
monitor the state of the running application, as they all maintain job databases that
may be polled and updated during experiment execution. It is one of our goals in this
work to show how these systems can be leveraged in the construction of Grid work-
flows.

Fault Tolerance. Because Grid workflows depend on distributed computational
resources under diverse controlling authorities, they are exposed to high risk of com-
ponent failure, including failures in computational platforms, network, application
services or the workflow system itself. Many of these issues fall into the domain of
system and network administrators, who must design infrastructure to provide redun-
dant components. In this work, we address only the parts that are under our control; in
particular, the workflow system can retry to connect to failed resource or service after
a certain amount of time. Redundant resources may be either found in a service regis-
try, or may be hard-coded into workflows. The decision on which approach has to be
taken depends on the fail-over policy/strategy of a particular workflow system.

Logging and Provenance. In scientific applications it is often necessary to keep track
of data and processes that were used to produce the results of a computational
experiment or scientific workflow, in particular to facilitate reproducibility. This
provenance information can be associated with a result data set or workflow run,
effectively providing an execution trace of certain crucial provenance information.
Logging services, e.g., of the Globus Toolkit [13], can be customized and integrated
into a scientific workflow system for this purpose. Such services provide interfaces to
modify log filters and monitor and create views over previous logs.

User Interaction and Reporting. Scientific workflows may require user interaction
at runtime, e.g., to determine which data subsets should be routed through which of
several alternate paths of the workflow, or for computational steering. Workflow
engines already maintain information of intermediate steps and execution details of
processes. The challenge is to display that information in a way that it will satisfy the

124 I. Altintas et al.

needs of different users, with different detail levels and provisions for a variety of
different publishing methods.

2.2 Component Composition and Interaction

Kepler [16] is an active cross-project collaboration bringing together several large-
scale NSF/ITR projects (including SEEK [18], GEON [17], and ROADNet [19]), the
DOE/SciDAC SDM project [20], and several other projects including Research Surge
Enabled by Cyberinfrastructure (Resurgence) [21] and Encylopedia of Life (EOL)
[22], to develop an open source scientific workflow system. The emerging Kepler
system allows scientists from different domains (bioinformatics, cheminformatics,
ecoinformatics, geoinformatics, astrophysics etc.) to design and execute scientific
workflows. Scientific workflows can be used to combine data integration, analysis,
and visualization steps into larger, automated "knowledge discovery pipelines" and
"grid workflows" [23, 33].

Kepler is build on top of the mature Ptolemy II system developed at UC Berkley
[24]. Ptolemy II is a system along with a set of APIs for heterogeneous hierarchical
modeling. Not unlike the electrical circuit design, the focus of the Ptolemy II system
is to build models of systems based on the assembly of predesigned components.
These components are called actors [25]:

“An actor is an encapsulation of parameterized actions performed on input data to pro-
duce output data. An actor may be state-less or state-full, depending on whether it has
internal state. Input and output data are communicated through well-defined ports.
Ports and parameters are the interfaces of an actor. A port, unlike methods in Object-
Oriented designs, does not have to have a call-return semantics. The behaviors of a set
of actors are not well-defined without a coordination model. A framework is an envi-
ronment that actors reside in, and defines the interaction among actors.”

The interaction styles of actors are captured by models of computation (MoC). A
MoC defines the communication semantics among ports and the flow of control and
data among actors.

A framework implements a model of computation. Frameworks and actors together
define a system [25]. In our Grid Workflow framework, we define a set of grid actors
in Kepler that work in dataflow-based computation models such as Process Network
(PN) and Synchronous Data Flow (SDF). Directors are responsible for implementing
particular MoCs, and thus they define the “orchestration semantics” workflows. Sim-
ply by changing the director of a workflow, one can change the scheduling and over-
all execution semantics of a workflow, without changing any of the components or
the network topology of the workflow graph.

The theoretical basis for the PN director are Kahn Process Networks. A process
network is a directed graph, comprising a set of nodes (processes) connected by a set
of directed arcs (representing FIFO queues). Each process executes a sequential pro-
gram and is wrapped as a Ptolemy II actor. The one-way FIFO channels are used for
the communication of processes and, in Kahn’s process networks, have unbounded
capacity, i.e., each channel can carry a possibly infinite sequence (a stream) of atomic
data objects (tokens). Since channels have in principle unbounded capacity, writes to
channels are non-blocking, while reads are blocking [26]. The PN domain in Ptolemy
and the director implementing it in Ptolemy (and thus in Kepler) employ an extended

 A Framework for the Design and Reuse of Grid Workflows 125

model due to Lee and Parks [27, 28]. The SDF domain is a special variant of PN in
which a sequential execution order of actors can be statically determined prior to
execution. This results in execution with minimal overhead, as well as bounded mem-
ory usage and a guarantee that deadlock will never occur.

2.3 Abstract Grid Workflow Actors

Grid workflows often exhibit similar flow patterns [29, 30], including the basic work-
flow patterns [31]. A very common scenario is the following: a user needs to copy (or
stage) a set of files from one resource (e.g., the local environment) to a remote re-
source, run a computational experiment on that remote resource, and then fetch the
results back to the local environment or copy them to another resource/database. We
call these types of workflows stage-execute-fetch workflows. A script can implement
a workflow that conforms to this pattern. However, a script does not specify the de-
tails of the scheduling of tasks and communication between the resources while the
workflow is running. Also, scripts are often platform dependent and specific to a
scenario, despite the fact that the pattern can be parameterized and used in many
workflows. Users could more easily specify their own workflows via GUIs or a well-
defined set of reusable components (actors) that can be connected to each other
through some interfaces. The Kepler scientific workflow system, through its modeling
foundation inherited from Ptolemy, provides an environment with such reuseable
building blocks for Grid workflows. Motivated by the need to develop a simple, ex-
tensible, platform independent, and client-controllable grid workflow framework, we
propose the following set of abstract actors that can be used as building blocks for the
construction of Grid workflows.

Authenticate Actor. This component acts as a certificate source for other actors. All
actors that use the same certificate can use the output of this actor. For the Globus
Grid authentication, the actor initializes a proxy that creates a Globus proxy certificate
from an X.509 key and certificate pair, when provided a pass-phrase. For SRB and
remote database actors, this actor is generating the connection and can forward a
connection token to the following steps in the workflow.

Copy Actor. This fundamental actor copies sets of files from one resource to another
resource during workflow execution. The abstract copy actor can be instantiated to a
simple FTP actor, a secure copy (scp) actor, a GridFTP actor, or an SRB-based
put/get actor. For example, a GridFTP actor involves a Globus-grid proxy certificate,
source and destination resources including directories, and a set of file names to be
transferred. Similarly, SRBPut and SRBGet can be used to instantiate the abstract
copy actor. Special variants include:

• Stage Actor. This variant copies files from the local host to a remote host.
• Fetch Actor. This variant retrieves files from the remote host to the local host.

Job Execution Actor. The purpose of this actor is to submit and run a remote job.
Submission methods and clients can include special wrappers for ssh-based execution,
web service-clients, Grid job runner proxies, and actors for Nimrod- and APST-based

126 I. Altintas et al.

submission. Kepler provides a variety of these instantiations, which have proven to be
useful for remote job execution in different scientific application domains [32, 33].

Monitoring Actor. Monitoring actors and tools of our framework are designed to be
scalable depending on user needs. We propose three different levels of monitoring,
namely, light, standard, and heavy. In the standard monitoring level, the user is noti-
fied only if an actor fails to execute. Polling the job database of Nimrod/G or APST is
an example mechanism for checking the state of execution of an actor. The overall
workflow execution monitoring is done via a monitoring subsystem that interacts with
the director. The light monitoring system is one that watches the execution but does
not notify the user about failures until the workflow has finished or stalled. The heavy
monitoring verbosely reports every communication between the workflow entities and
also notifies the user about failures immediately.

Reporting Actor. The reporting actors work in coordination with the other actors to
report regular intermediate results or exceptional conditions such as actor failures.
This actor can also be implemented as a separate utility rather than as a Kepler actor.
It talks to the monitoring unit and director, and allows users to report information
wherever they would like, e.g., at a remote Grid resource, in a provenance database,
or directly on a website.

Filter Actor. Filtering and subsetting data is a very common function. For example
on a tuple stream, or a stream of XML elements, filtering corresponds to a selection
operation σ. In contrast, cutting a certain region of interest from a map image can be
seen as a data subsetting operation. A common requirement in Grid applications is to
filter or subset data at the (usually remote) site of origin before passing it on to subse-
quent processing steps of the workflow.

Storage Actor. Once results are produced, they need to be stored on different re-
sources, file systems, or databases. Sometime this step is preceded by a filtering step
so that only interesting data will be saved. Stored information can include the primary
data flowing through a workflow as well as process and provenance related metadata.
Different incarnations of this actor can be used to save data on a number of storage
devices, e.g. directly to a file system or databases, or indirectly to SRB.

Data Discovery Actor. Previously stored results should be searchable in various
ways, e.g., through simple keyword based search, or more advanced ontology-based
search mechanisms that “understand” how to expand a given search term (or a meta-
data annotation of a dataset). Since discovery of relevant datasets is very common
tasks, the data discovery component is being integrated into the Kepler graphical user
interface (i.e., Vergil, which is Ptolemy’s GUI).

Service Discovery Actor. Kepler provides a web service harvester component for
importing web services (or, more precisely, their interfaces) from a service repository
or website. For the latter, the harvester can search text/html pages or repositories for
appropriate links to WSDL web service descriptions. After parsing and analyzing
these descriptions, the harvested web services appear in Kepler as any other actors; in
particular, their input and output parameters and types are inferred from the WSDL

 A Framework for the Design and Reuse of Grid Workflows 127

descriptions. Different operations from a single web service “package” are grouped
together via the web service name and stored in the Kepler actor library. Once im-
ported, web service actors are given a local LSID and can be annotated using a Kepler
actor classification ontology. In this way, different dynamic view can be created on
the actor library, depending on the chosen “view ontology” and the given search
terms (concept names). Annotations can refer to a (web service) actor as a whole, or
to the specific inputs and outputs of the actor. After the web service import is com-
pleted, actors representing the different operations can be searched, dragged and
dropped onto Kepler’s Vergil design interface, etc. like any other predefined actor.

Transformation and Querying Actors. When chaining together actor components to
form larger workflows, consecutive actors or services do not necessarily “fit to-
gether”. Data transformation actors and query actors can be used as “shims” to bridge
structural and/or format mismatches between the output of a data producing actor and
the input of a subsequent data consuming actor. Kepler provides various data trans-
formation and querying actors, e.g., XSLT and Perl actors for data transformations,
and XQuery and SQL actors for querying.

2.4 A Grid Workflow Pattern: Stage-Execute-Fetch

The abovementioned set of abstract Grid-related actors and their concrete instantia-
tions allow a Kepler user to design and execute Grid workflows using a number of
different tools, e.g., SRB for data handling including replica management, and
Globus, Condor, and Nimrod, for remote execution and scheduling, respectively. In
this way, the most suitable of a number of Grid tools become available to the scientist
in a uniform manner. In addition to employing existing concrete Grid actors or their
abstract counterparts1, our framework for Grid workflows also includes patterns of
Grid workflows. Such patterns correspond to abstract workflows, i.e. which might not
be immediately executable and which involve abstract actors like the ones discussed
above. An abstract actor can be seen as a “stub” or placeholder for a yet to be speci-
fied function, but whose input and output ports have already been pre-configured to
capture the essential arguments of the operation. For example, the abstract copy actor
will contain as inputs at least descriptions of the files/objects to be copied and their
source and target locations. Concrete instantiations might require additional informa-
tion, e.g., one or more authentication or connection tokens to access the various in-
volved resources.

Using Ptolemy’s hierarchical modeling capabilities, combined with the notion of
abstract actors, larger templates of workflow patterns can be represented as abstract
workflows. A very common pattern involves only three core abstract actors, i.e.,
stage, execute, and fetch, and is described as a linear chain of these actors. This Grid
workflow pattern or template can be retrieved from the workflow repository (which is
identical to the service/actor repository, modulo the fact that workflows are composite
actors) and instantiated using suitable concrete actors to make the abstract workflow
executable. The next section discusses in more detail two instantiations of this pattern,
i.e., two real-world scientific workflows from very different domains.

1 At design-time; they have to be substituted/instantiated with concrete ones at runtime.

128 I. Altintas et al.

3 Instantiating the Framework Using the Kepler Workflow
System

The proposed Grid framework and its incarnation in Kepler have proven useful in
different application domains, including those from computational chemistry and
biology described below. Thanks to its generality, the approach and framework are
applicable in other scientific domains as well.

3.1 Use Case 1: GAMESS Workflow for Quantum Chemistry

RESearch sURGe ENabled by CyberinfrastructurE (RESURGENCE) [21] is a project
to develop a general workflow infrastructure for computational chemistry that allows
high-throughput calculations distributed on computational grids. The project was
initiated by the need to make the evolving technologies, such as computational grids
and web services, available to scientists. In addition, such infrastructure provides a
mechanism for researchers to couple different scientific codes within one overall
calculation pipeline, spanning across domain sub-fields, input and output formats, and
computational resources. The goal is thus to build a tool that provides a common user
interface so that users do not have to be concerned with the particulars of grid com-
puting, web services nor their associated underlying code, computational platforms, or
with data file formats. However, the focus is not to generate complete predefined
workflows, but large enough workflow chunks so that scientists can string them to-
gether according to their individual interests. With this purpose in mind, the Resur-
gence project became a part of the Kepler collaboration for developing common sci-
entific workflow systems for a variety of disciplines [30, 34, 35].

The first target of the project is to build a pipeline from the base of Kepler compos-
ite actors, which automatically prepares and executes quantum chemical calculations
for a number of molecules, with the individual input files generated on the fly (see
Figure 1). For this, the General Atomic and Molecular Electronic Structure System
(GAMESS) [36, 37] is employed, a program for ab initio molecular quantum chemis-
try. The program is an important internationally used software tool for the study of
molecular and biomolecular research problems. Using this software, one can make
reliable predictions of the structure, molecular properties and reactivity of molecules,
which are useful for understanding complex problems in the real world. There are
many standardized methods that can be invoked within the software package, and a
very large variety of options and capabilities exist. Results of these computations can
be compared to experimentally determined properties of the same type, used for pre-
dictions of properties before an experiment is performed, or, in some cases provide
information that can not be obtained experimentally. As such, results of these compu-
tations can fill important gaps in our scientific knowledge. The software can be run on
a variety of computer platform types, and many enhancements have been made to
GAMESS both scientifically, as well as in terms of the latest middleware technology
developments. Therefore, the software serves as an excellent testbed and driving ap-
plication for further development of the Kepler system.

 A Framework for the Design and Reuse of Grid Workflows 129

Fig. 1. Development version of the Resurgence GAMESS pipeline during execution

One principle of workflows in the Resurgence project is that the complex file
preparation, transformation and analysis pipeline components should be mainly exe-
cuted on the same machine where Kepler is running, while the highly compute-
intensive molecular calculation pipeline components should be executed on dedicated,
typically remote, compute servers, if possible. This allows access to helper tools that
are often only installed on the central machine, to safeguard intermediate files after
each workflow step and collect all outcomes in one place, but also means that input
and output files have to be transferred back and forth between local and grid ma-
chines. This is of course an instantiation of the general stage-execute-fetch pattern,
refined by other steps, including data transformations. For the preparation of
GAMESS input files, the Open Babel program [38] is used to convert between differ-
ent molecular file formats. For the execution of GAMESS jobs, the Nimrod/G toolkit
[11, 14] is applied. For the future, there are plans to extend the Resurgence interface
to additional molecular modeling software, particularly for the treatment of large
biomolecules by classical mechanics. In addition, input and output data are planned to
be directly read from and stored into molecular databases using concrete instances of
the abstract storage actor.

3.2 Use Case 2: The Encyclopedia of Life/iGAP Workflow for Protein Sequence
Annotation

It is hard to think of a better example of the explosion of data than computational mo-
lecular biology. Biologists are currently hard at work in digesting an over-abundance of

130 I. Altintas et al.

DNA and protein sequence data. One such effort is the Encyclopedia of Life Project
(EOL) [22], the goal of which is to predict the three-dimensional protein structures for
all of the genomes that have been sequenced to date. This is a calculation of such a huge
scale that it requires the use of bleeding-edge grid technology and massively-parallel
computation to access the requisite computational power. In previous work [40], we
built a Workflow Management System daemon (WMSD) to manage the logistics of this
large calculation. WMSD selects sequences from an input database, and continuously
feeds many thousands of tasks to APST. APST manages the low-level complexities of
job submission, heterogeneous resource management, and scheduling.

In the present work, we have integrated this workflow system with Kepler. Our ul-
timate aim is to provide biologists with the ability to set up a flexible pipeline of
analysis tasks, which are then executed on a large scale for a huge number of input
sequences. Since this is a long-running system, a key requirement is the ability to
recover from major system failure – an instance of the monitoring actor. This is par-
tially addressed by the fact that WMSD stores its state in an Oracle database, making
it possible to recover from a failure of APST. In such a case, Kepler enables the auto-
mation of higher-level error recovery mechanisms. For example, after correcting the
problem that caused the jobs to fail, it is easy for a scientist to insert actors to reset
jobs with a “failed” state to “new”, which would cause the WMSD actor to resubmit
these jobs to APST at the next update.

Fig. 2. The Encyclopedia of Life iGAP workflow

In the first implementation of this system, the workflow of tasks to be executed for
each genome sequence is hard-coded into logic in the WMSD. The benefit of Kepler
to date has been primarily in the areas of error recovery and resource management. In
the future, we would like to allow the scientist to specify these workflows using the
full power of the Kepler system. In essence, this would allow users to assemble work-

 A Framework for the Design and Reuse of Grid Workflows 131

flows consisting of “pseudo-actors”, whose sole behavior would be to emit WMSD
configuration files specifying the workflow to be executed in high-throughput mode.

4 Discussion and Outlook

We have described a framework for Grid workflows based on abstractions of com-
mon Grid workflow components such as authentication, data movement, and remote
execution, and monitoring. Abstract workflows, consisting of abstract and possibly
concrete actors provide the workflow designer with common components and work-
flow patterns that can be reused and instantiated to create executable Grid workflows.
A main advantage of this approach is that (a) it frees the designer from making tech-
nology decisions early on in the design process, and (b) at instantiation time, it allows
the user to chose and even combine different concrete technologies such as Globus,
SRB, and Nimrod. In future work we plan to automate the instantiation process of our
framework using a reasoning approach that aims at automating the “wiring” of differ-
ent actor instances, based on their semantic port types [41].

References

1. Berman, F., Wolski, R., Casanova, H., Cirne, W.,Dail, H., Faerman, M., Figueira, S.,
Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A., Zagorodnov,
D. : Adaptive computing on the Grid using AppLeS. Parallel and Distributed Systems,
IEEE Transactions on, Vol. 14, Issue 4, 369-382, April 2003.

2. F. Berman, G. Fox, and A. Hey, editors. Grid Computing: Making the Global Infrastruc-
ture a Reality. John Wiley & Sons, 2003.

3. The Condor Project Homepage: http://www.cs.wisc.edu/condor/
4. GRIDS: Grid Research Integration Deployment and Support Center, The

Grid Ecosystem: Software Components for Grid Systems And Applications:
http://www-unix.grids-center.org/r6/ecosystem

5. The Globus Toolkit: http://www-unix.globus.org/toolkit/
6. Storage Resource Broker: http://www.npaci.edu/DICE/SRB/
7. Kepler Project: http://kepler-project.org
8. Taverna Project: http://taverna.sourceforge.net
9. Triana Project: http://www.trianacode.org/

10. Vladimir, S.: Grid Job submission using the Java CoG Kit, IBM Developer Works
11. Nimrod/G Project: http://www.csse.monash.edu.au/~nimrod/nimrodg/
12. AppLeS Parameter Sweep Template (APST) Project: http://grail.sdsc.edu/projects/apst/
13. Configuring Globus Toolkit Logging Services:

 http://www-unix.globus.org/toolkit/docs/3.2/core/admin/configuringlogging.html
14. Abramson, D., Giddy, J., Kotler, L.: High Performance Parametric Modeling with Nim-

rod/G: Killer Application for the Global Grid?, IPDPS'2000, Mexico, IEEE CS Press, 520-
528, USA, 2000.

15. Schwiegelshohn, U., Yahyapour, R..: Attributes for Communication Between Scheduling
Instances, in Global Grid Forum (GGF), December 2001.

16. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: An Exten-
sible System for Design and Execution of Scientific Workflows, In the 16th Intl. Confer-
ence on Scientific and Statistical Database Management(SSDBM), Santorini Island,
Greece, June 2004.

132 I. Altintas et al.

17. NSF/ITR: GEON: A Research Project to Create Cyberinfrastructure for the Geosciences,
http://www.geongrid.org

18. NSF/ITR: Enabling the Science Environment for Ecological Knowledge (SEEK),
http://seek.ecoinformatics.org

19. ROADNet: Real-time Observatories, Applications and Data Management Network,
http://roadnet.ucsd.edu

20. Scientific Data Management (SDM) Center, http://sdm.lbl.gov/sdmcenter
21. Resurgence Project Home Page: http://www.resurgence.unizh.ch/~resurgence/
22. EOL Project: http://eol.sdsc.edu
23. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: Towards a

Grid-Enabled System for Scientific Workflows, In the Workflow in Grid Systems Work-
shop in GGF10 - The Tenth Global Grid Forum, Berlin, Germany, March 2004.

24. 24.E.A. Lee et al., Ptolemy II project and system, Department of EECS, UC Berkeley,
http://ptolemy.eecs.berkeley.edu/ptolemyII

25. Liu, X., Liu, J., Eker, J., and Lee, E. A.: Heterogeneous Modeling and Design of Control
Systems, in Software-Enabled Control: Information Technology for Dynamical Systems,
Tariq Samad and Gary Balas (eds.), Wiley-IEEE Press, April 2003.

26. G. Kahn, “The Semantics of a Simple Language for Parallel Programming”, Proceedings
of International Federation for Information Processing Congress 74, pp. 471-475, North
Holland Publishing Co., Aug 1974.

27. E.A. Lee and T.M. Parks, “Dataflow Process Networks”, Proceedings of the IEEE, Vol. 83
No. 5, pp. 773-801, May 1995.

28. Hylands, C., Lee, E. A., Liu, J., Liu, X., Neuendorffer, S., Xiong, Y., Zheng, H. (eds.):
Heterogeneous Concurrent Modeling and Design in Java (Volume 3: Ptolemy II Domains),
Technical Memorandum UCB/ERL M03/29, University of California, Berkeley, CA USA
94720, July 16, 2003.

29. van Laszewski, G., Amin, K., Hategan, M., Zaluzec, N., J., Hampton, S., Rossi, A.,: Gri-
dAnt: A Client-Controllable Grid Workflow System, 37th Hawaii International Conference
on System Sciences (HICSS-37), Hilton Waikoloa Village, Island of Hawaii, January
2004.

30. K. K. Baldridge, W. Sudholt, J. P. Greenberg, C. Amoreira, Y. Potier, I. Altintas, A. Birn-
baum, D. Abramson, C. Enticott, S. Garic, "Cluster and Grid Infrastructure for Computa-
tional Chemistry and Biochemistry", in "Parallel Computing for Bioinformatics", A. Y.
Zomaya (Ed.), John Wiley & Sons, submitted for publication

31. van der Aalst, W., M., P. , Barros, A., P., ter Hofstede, A., H., M., and Kiepuszewski, B.:
Advanced Workflow Patterns, in Conference on Cooperative Information Systems, pp. 18–
29, 2000.

32. I. Altintas, E. Jaeger, K. Lin, B. Ludaescher, A. Memon, A Web Service Composition and
Deployment Framework for Scientific Workflows, In the 2nd Intl. Conference on Web
Services (ICWS), San Diego, California, July 2004.

33. B. Ludaescher, I. Altintas, C. Berkely, D. Higgins, E. Jaeger, M. Jones, E.A. Lee., J. Tao,
Y. Zhao, Scientific Workflow Management and the KEPLER System, special issue of
Distributed and Parallel Systems, to appear, 2005.

34. K. K. Baldridge, J. P. Greenberg, W. Sudholt, S. Mock, I. Altintas, C. Amoreira, Y. Potier,
A. Birnbaum, K. Bhatia, M. Taufer, "The Computational Chemistry Prototyping Environ-
ment", Proceedings of the IEEE Special Issue on Grid Computing, in print

35. W. Sudholt, K. K. Baldridge, D. Abramson, C. Enticott, S. Garic, C. Kondric, D. Nguyen,
"Application of grid computing to parameter sweeps and optimizations in molecular mod-
eling", Future Generation Computer Systems 21 (2005) 27-35

 A Framework for the Design and Reuse of Grid Workflows 133

36. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H.,
Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M., Mont-
gomery, J. A., J. Comput. Chem. 1993, 14, 1347-1363

37. GAMESS Home Page: http://www.msg.ameslab.gov/GAMESS/
38. Open Babel: A Package to Decypher Computational Chemistry:

http://openbabel.sourceforge.net/
39. O. H. Ibarra and C. E. Kim, "Heuristic algorithms for scheduling independent tasks on

nonindentical processors," Journal of the ACM, 24(2): 280-289, Apr. 1977.
40. A. Birnbaum, J. Hayes, W. W. Li, M. A. Miller, P. W. Arzberger, P. E. Bourne, H. Casa-

nova. To appear in Proceedings of LNCS, Springer Lecture Notes in Computer Science,
2005.

41. S. Bowers and B. Ludäscher, An Ontology-Driven Framework for Data Transformation in
Scientific Workflows, Intl. Workshop on Data Integration in the Life Sciences (DILS'04),
March 25-26, 2004 Leipzig, Germany, LNCS 2994.

	Introduction
	Instantiating the Framework Using the Kepler Workflow System
	Grid-Workflow Framework
	Grid Workflows: The Ingredients
	Component Composition and Interaction
	Abstract Grid Workflow Actors
	A Grid Workflow Pattern: Stage-Execute-Fetch

	Instantiating the Framework Using the Kepler Workflow System
	Use Case 1: GAMESS Workflow for Quantum Chemistry
	Use Case 2: The Encyclopedia of Life/iGAP Workflow for Protein Sequence Annotation

	Discussion and Outlook
	References

