
Characterizing the Performance-Energy Tradeoff of
Small ARM Cores in HPC Computation

Michael A. Laurenzano†∗, Ananta Tiwari†§, Adam Jundt†, Joshua Peraza†, William A.
Ward, Jr.+, Roy Campbell+, and Laura Carrington†§

†EP Analytics
∗Dept. of Computer Science and Engineering, University of Michigan

§Performance Modeling and Characterization Lab., San Diego Supercomputer Center
+High Performance Computing Modernization Program, U.S. Dept. of Defense

{michaell,ananta.tiwari,adam.jundt,joshua.peraza,
laura.carrington}@epanalytics.com

{william.ward,roy.campbell}@hpc.mil

Abstract. Deploying large numbers of small, low-power cores has been gain-
ing traction recently as a system design strategy in high performance computing
(HPC). The ARM platform that dominates the embedded and mobile computing
segments is now being considered as an alternative to high-end x86 processors
that largely dominate HPC because peak performance per watt may be substan-
tially improved using off-the-shelf commodity processors.

In this work we methodically characterize the performance and energy of HPC
computations drawn from a number of problem domains on current ARM and x86
processors. Unsurprisingly, we find that the performance, energy and energy-delay
product of applications running on these platforms varies significantly across
problem types and inputs. Using static program analysis we further show that
this variation can be explained largely in terms of the capabilities of two pro-
cessor subsystems: single instruction multiple data (SIMD)/floating point and
the cache/memory hierarchy; and that static analysis of this kind is sufficient
to predict which platform is best for a particular application/input pair. In the
context of these findings, we evaluate how some of the key architectural changes
being made for upcoming 64-bit ARM platforms may impact HPC application
performance.

1 Introduction

As large-scale high performance computing (HPC) systems have grown in size and the
scope of problems being solved, reducing their power consumption has become a first-
class problem. Indeed, many argue that power consumption is one of the primary con-
straints on the size of upcoming HPC systems [4][5][20][27][30]. We see this impacting
industry, academia, and government, where substantial effort and resources are being
marshaled to improve energy efficiency in HPC centers. On the other hand, the problems
being solved on HPC systems, ranging from basic research to solving day-to-day prob-
lems in defense and industry, have HPC users demanding more and more performance
out of their systems.

In response to these forces, HPC system architects have sought out designs that
deliver higher performance with lower power budgets. One of the design alternatives that
has gathered much attention along these lines is to use a large number of small, low-power
cores in place of a smaller number of large, power-hungry cores. In particular, ARM
processors, the dominant platform in the embedded and mobile computing domains,



are being considered. The argument for using a large number of ARM cores is twofold.
First, low-power cores are often more energy efficient than high-end cores [17]. Second,
having come from domains which have always been power constrained, ARM designs in
particular have been engineered to be frugal with power; careful attention having been
given to include only those features that are worth the extra power they consume [7].
However, the question remains: are those features well-suited to HPC applications?

Current 32-bit ARM platforms such as ARMv7 have limitations that preclude their
immediate use in modern HPC systems: only 4GB of memory are supported per pro-
cess [15], and the ISA and hardware support for vector math is limited [8]. Ameliorating
these limitations is one of the purposes of ARMv8, a 64-bit version of the ARM archi-
tecture, which is set to be released in early to mid 2014. Among other improvements,
ARMv8 includes the ability to natively address significantly more than 4GB of memory,
along with support for IEEE754 double-precision (DP) math and vectorized DP opera-
tions [14]. Still, it remains unclear whether these improvements will impact the ability
of ARMv8 to deliver satisfactory performance to broad classes of HPC applications, and
to what extent they will improve upon existing ARMv7 processors.

In this work, we characterize the performance and energy of ARM and x86 platforms
by drawing compute kernels and applications from a number of HPC problem domains.
These benchmarks are methodically characterized in terms of their performance and
power on several ARMv7 (32-bit) and x86 processors. We examine performance, energy
and energy-delay product (EDP), finding that these metrics vary by least an order-of-
magnitude on a given implementation, and that they depend on the specific features
of the application being run. We employ static program analysis on the benchmark
kernels to characterize their behavior in terms of memory and floating point operations.
From these characteristics, we develop simple regression models for performance, energy,
and EDP disparities across applications, finding that these are largely explainable as
functions of the memory and floating point characteristics of the compiled application.
Building upon this insight, we present a model for estimating how performance is likely
to change with improvements in the CPU and memory of upcoming 64-bit ARMv8
systems, finding that both have significant impacts on the performance of a broad class
of applications.

The rest of this paper is structured as follows. Section 2 discusses work in the lit-
erature related to this paper. Section 3 explains the experimental methodology used in
this work to assess the performance and power characteristics of HPC applications. Sec-
tion 4 presents a methodical evaluation of two ARM platforms on a number of compute
kernels and application benchmarks, followed by a discussion of the factors underlying
the performance and energy characteristics of the applications and how these character-
istics are likely to be impacted by the introduction of 64-bit ARM platforms. Finally,
Section 5 concludes.

2 Related Work

This section describes the related literature in two areas that intersect with our work:
using ARM cores in HPC and HPC Performance Modeling.

2.1 ARM in High Performance Computing

Rajovic et al. [26] evaluate the performance and energy efficiency of the Tegra 2, Tegra 3,
and Quadro 1000M on a set of HPC microkernels. The Tegra 2 and 3 contain two and four
core ARM Cortex-A9 processors respectively, and the Quadro 1000M is a discrete mobile



GPU. Padoin et al. [24] compare the scalability and energy efficiency of a PandaBoard,
Snowball, and Tegra 2 when running High Performance Linpack. Ou et al. [23] compare
energy and cost efficiency of a PandaBoard containing an ARM Cortex-A9 with an Intel
Core2 Q9400 on three applications: web server throughput, an in-memory database,
and video transcoding. They find that the PandaBoard achieved the greatest energy
efficiency gains in less computationally intensive applications (the in-memory database
in their study). Fürlinger et al. build a cluster of second-generation Apple TV devices
which utilize an ARM Cortex-A8 [13]. They evaluate CPU and memory performance
compared to a BeagleBoard and system performance per watt running High Performance
Linpack compared to systems on the Green500 list.

Blem et al. [7] focus on the specific microarchitectural implementations of ARM and
x86 processors, comparing an ARM Cortex-A8, ARM Cortex-A9, Intel Sandybridge,
and an Intel Atom. By showing that the Atom could achieve similar energy consumption
to the Cortex-A9 when controlling for microarchitectural features, they conclude that
ISA is not major determinant of energy efficiency, instead finding that ARM and x86
implementations are simply different engineering design points.

Our work complements this existing body of literature. Our contribution is to doc-
ument the performance and energy impact ARM cores have on a wide range of HPC
computational benchmarks, as well as to show that the variability in performance and
energy can largely be attributed to FP/SIMD computation and interactions with the
memory subsystem.

2.2 HPC Application Performance Modeling

Kerbyson et al. propose some of the seminal ideas in predictive application perfor-
mance and scalability modeling, showing that it is possible to accurately model the
performance for a single application and that the model depends on specifics of the
implementation of that application [18][19]. Several other works show how to use an
application-independent approach to modeling performance, using a variety of appli-
cation characteristics collected as traces of the running application, then mixing those
with the results of measurement microkernels that are deployed on the system to predict
performance for the application/system pair [10][28]. Snavely et al. [29] show that while
a cycle accurate simulator could be very accurate, it was infeasible for a full-scale HPC
application. Instead, they show that it is possible to tractably predict performance using
a few important features.

Carrington et al. [9] show that simple combinations of metrics are infeasible to use
for precisely predicting HPC application performance. In this work we show that even
simple, static features of HPC applications can be employed to provide useful insights
into the direction and magnitude of their performance and energy characteristics, even
while precise performance prediction with those features may not be feasible.

3 Analysis and Measurement Methodology

The aim of this work is to characterize an extensive set of HPC application benchmarks
in terms of their performance, energy and energy-delay product (EDP) on a several ARM
processor configurations. This section discusses the methodological considerations made
to develop these characterizations. We begin by discussing the performance measurement
methodology, followed by a discussion of a methodology for attributing the wall-level
power draw to the workload running on a system. Last, we describe a set of program
analysis tools and methodologies that are deployed in the evaluation to develop energy
models.



3.1 Performance Measurement

This work evaluates a number of HPC application kernels and benchmarks for perfor-
mance and power. Our approach to measuring performance on application kernels is to
manually insert timing instrumentation around the key computational loops, avoiding
measurement of initialization and finalization code such as parsing arguments, read-
ing files, allocating/freeing memory and output validation. The performance of these
activities is important, yet in benchmark kernels they tend to be greatly over repre-
sented as a fraction of runtime relative to their runtime in full application codes. Many
HPC benchmarking packages such as the NAS Parallel Benchmarks [6], pcubed [21] and
polybench [25] adopt a similar rationale, providing (sometimes multiple) timers around
important phases of computational work.

3.2 Attributing Power to a Workload

The goal of our power measurement methodology is to isolate the power draw consumed
only by the CPUs running the application. To isolate the power draw in this fashion we
measure system-wide power draw during long-running computational kernels at several
core counts, with the purpose of deriving the power contribution only of the cores actively
involved in the computation. We begin with the formulation of system-wide power shown
in Equation 1.

W i
system = i ∗Wactive + (N − i) ∗Widle + Wother (1)

The elements of Equation 1 are i, the number of active cores, W i
system, the measured

power using i active cores and N , the total number of available cores on the system.
The goal of producing an equation in this form is to derive Wactive, the power draw of
a single active core, Widle, the power draw of a single idle core and Wother, the power
draw of all other system components. Because there are three unknowns (Wactive, Widle

and Wother), measurements at three core counts (i = c1, c2, c3) is sufficient to produce
system of equations, shown in Equation 2, to which we can apply any of a number
of numerical techniques to approximate the unknowns. In this work we use Gaussian
elimination. W c1

system

W c2
system

W c3
system

 = Wactive
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This framing of the problem makes several assumptions. First, it assumes that
Wactive, Widle and Wother do not depend on the number of cores that are active. For
this assumption to hold, the workload must be carefully selected so that each additional
running instance of the kernel produces a similar additional power draw increase. This
means ensuring that running instances do not compete with one another for proces-
sor resources like cache and interconnect, which would introduce execution stalls and
reduce circuit-level switching activity. Second, this formulation resolves Wactive, Widle

and Wother only for a particular benchmark. Empirically, however, we found that Widle

and Wother for a particular system are stable across a range of computational kernels,
indicating that these values are relatively independent of the workload running on the
system. Therefore, we utilize this methodology for only a few kernels on each system to
estimate Widle and Wother for the system, allowing us to isolate the power per active core
for any workload by plugging the full system power measurement for that workload
W i

system, along with Widle and Wother, into Equation 1.



3.3 Program Static Analysis Tools

In this work we employ two binary analysis tools to analyze application codes. In partic-
ular, we use the EPAX toolkit [12] to analyze the static properties of ARM binaries and
the PEBIL toolkit [22] on x86 binaries. Static binary analysis is the act of examining a
compiled binary program to extract information about the properties of the code and
data that reside within that program. EPAX and PEBIL accomplish this by reading
the executable from disk, parsing and disassembling its contents, then writing out a file
containing a number of details about the machine-level instructions in the program as
well the relationship between those instructions such as their membership in high-level
structures such as basic blocks, loops, and functions. In this work, we use EPAX on
ARM binaries and PEBIL on x86 binaries to extract a number of features we expect to
be salient to HPC applications, including counts of floating point and vector (SIMD)
operations, along with the counts and properties of memory operations. When possible
to gather at compile-time, we augment the information gathered by EPAX and PEBIL
with information about the sizes of key data structures within the important compu-
tational loops. As we show in Section 4.3, this array of static properties is enough to
make informative predictions about the direction and magnitude of the relative amount
of energy consumed when running the application on ARM and x86 systems.

Intel Sandy Bridge ARM Cortex-A9 ARM Cortex-A15
Name Dell Poweredge T620 Dell Copper nCore BrownDwarf Y-class

Platform x86 64 64-bit ARMv7 32-bit ARMv7 32-bit

Processor 8-core 2.6GHz Xeon E5-2670 4-core 1.6GHz Marvell MV78460 4-core 1.4GHz TI 66AK2E05

D-Cache Shared 20MB L3, Priv. Shared 2MB L2, Priv. 32KB L1 Shared 4MB L2, Priv.

256KB L2, Priv. 32KB L1 32KB L1

Memory 32GB 1333MHz DDR3 4GB 1333MHz DDR3 2GB 1600MHz DDR3

FP/SIMD SSE, AVX VFPv3-D32, no SIMD VFPv4, NEON

Notes Turbo and HT disabled - c66x DSP cores disabled

Table 1. Platform configurations

Type Programs Summary

Compute

Kernels

PolyBench[25] adi, atax, bicg, cholesky, doitgen,

dynprog, fdtd-2d, fdtd-ampl, gemver,

gesummv, grammschmidt, jacobi-2d,

mvt, seidel, symm, trisolv, trmm

Other covcol, dct, dsyr2k, dsyrk,

matmulinit, mm, stencil-3d, strmm,

strsm, swim, tce

linear algebra, data mining,

stencils

Application

Benchmarks

Mantevo[16] miniMD, CoMD, miniGhost

CORAL[1] AMGmk, MILCmk

Trinity[11] miniFE, GTC

molecular dynamics, finite

element, finite difference,

quantum chromodynamics,

plasma physics

Table 2. Benchmarks and applications



4 Evaluation

4.1 Experimental Setup

We utilize three distinct platforms throughout this evaluation, summarized in Table 1.
These test platforms consist of a high-end Intel Sandy Bridge E5-2670, a popular config-
uration among the largest modern supercomputers [2]. We also use two energy-efficient
ARM server platforms: a Cortex-A9 based Dell Copper server and a Cortex-A15 based
nCore BrownDwarf Y-class supercomputer. For power measurement, we use a Yokogawa
WT310 digital power meter [3] to measure AC power draw of the entire system at the
wall. Power measurements for each benchmark run are then isolated using the approach
described in Section 3.2.

On our test platforms we deploy 28 compute kernels and 7 application benchmarks,
summarized in Table 2. Many of the compute kernels are drawn directly from the Polyhe-
dral Benchmark Suite [25], while others are augmented versions thereof or hand-written
compute kernels of our devising. For each compute kernel we generate a total of eight
configurations, consisting of the cross product of double- and single-precision (DP and
SP) versions of the benchmarks and data set sizes that are large enough that they fit into
each of the four levels of the memory hierarchy on all systems (L1 , L2 and L3 Cache1 as
well as main memory). This yields a total of 224 compute kernels. The sizes of the four
data sets were chosen carefully so that both the DP and SP versions fit into the same
level of the memory hierarchy on all systems (SP data types generally consume half the
memory of their DP counterpart). For our particular test platforms, we use 10-15KB of
SP data for L1, 80-100KB of SP data for L2, 700-900KB of SP data for L3 and 50-70MB
of SP data for main memory. The seven application benchmarks are also described in
Table 2, which are drawn from the Mantevo [16], CORAL [1] and NERSC-8 Trinity [11]
benchmark suites and represent applications from among a number of unique computa-
tional domains. For most applications we use both DP and SP versions. The exception
to this is miniMD, for which we were unable to compile the DP version on either of the
ARM platforms. Benchmarks and applications are compiled with gcc, using optimiza-
tion level -O3 and vectorization support flags: -funsafe-math-optimizations -mavx

on the Sandy Bridge and -funsafe-math-optimizations -mfpu=neon2 on both ARM
systems. We pin threads to cores to ensure that no thread migration occurs during any
experimental runs. All performance, power, energy and EDP numbers presented are the
average of three runs.

4.2 Performance and Energy Characterization

We begin the evaluation by presenting performance and energy characterizations of the
compute kernels and benchmark applications on all systems. Figure 1 shows distribu-
tions of the performance 1(a)-1(b), energy 1(c)-1(d) and EDP 1(e)-1(f) for the compute
kernels, grouped according to floating point precision (SP/DP) and which memory level
the kernel exercises (L1/L2/L3/MM) and normalized to the Intel Sandy Bridge system,
where values greater than one for runtime indicate ARM performance suffers relative
to the Sandy Bridge system, and values less than one for energy and EDP identify
benchmarks that are more energy efficient when executed on the ARM systems. Three

1 Neither the Cortex-A9 nor the Cortex-A15 have L3 cache, and thus they have two sizes that
fit into main memory.

2 Without -funsafe-math-optimizations, SIMD NEON instructions will fail to materialize
on the ARM systems because those instructions do not adhere to the IEEE754 standard.
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Fig. 1. Distributions of the runtime (a)-(b), energy (c)-(d) and energy-delay product (e)-(f) for
single-core compute kernels on ARM Cortex-A15 and Cortex-A9, relative to Intel Sandy Bridge.
Distributions are shown as box plots, which highlight the the maximum (upper tail), 75th
percentile (box upper-bound), median (line within box), 25th percentile (box lower-bound) and
minimum (lower tail). Interested readers can find more detailed charts at http://epanalytics.
com/data/euro-par2014/.

http://epanalytics.com/data/euro-par2014/
http://epanalytics.com/data/euro-par2014/


interesting trends can be observed. First, in almost all cases the SP versions of the
kernels show better characteristics on the ARM systems over their DP counterparts,
an issue that should be resolved on future 64-bit ARM systems. Second, there is sub-
stantial variation in runtime even within a particular grouping of kernels, suggesting
that performance, energy and EDP have a substantial software component, rather than
being a simple property of the hardware. Third, the larger the working set, the worse
the efficiency is on the ARM systems. For example, the Cortex-A15 energy results show
that median L1-Cache energy improvement is more than double that of main memory
energy improvement. This suggests that there is room to improve the efficiency of HPC
applications by improving the cache and memory architecture of the ARM platforms.
We refer the interested reader to http://epanalytics.com/data/euro-par2014/ to
find a more detailed treatment of these charts.

In Figure 2, we present similar findings on the performance 2(a), the energy 2(b)
and the energy-delay product 2(c) for the application benchmarks.
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Fig. 2. Runtime (a), energy (b) and energy-delay product (c) for quad-core application bench-
marks on an ARM Cortex-A15 and Cortex-A9, relative to an Intel Sandy Bridge. Note that (c)
is plotted on a log scale.

4.3 Attributing Energy Characteristics to Static Program Features

In Section 3.3, we described two static binary analysis tools, PEBIL for x86 and EPAX
for ARM, which were employed to collect information about the the memory/cache
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Fig. 3. Measured and modeled energy for Cortex-A15 (a)-(b) and Cortex-A9 (c)-(d). A sta-
tistical measure of the variation in kernel energy that is explained by the models (adjusted
R-squared) is (a) 90%, (b) 64%, (c) 80% and (d) 76%.

and floating point/SIMD operations that reside within the key loops of the compute
kernels. Specifically, we collect the counts of instructions, memory operations, floating
point operations, the number of bytes moved per memory operation, and the size of the
key data structure(s) in the loop. We then use multivariate linear regression to build
models of the energy consumption (normalized to Sandy Bridge) of the compute kernels
as a function only of these terms and some of their simple variants (e.g., floating point
ops per instruction), along with 10-fold cross validation on the models. Figure 3 shows
the measured and modeled energy consumption for the Cortex-A15 3(a)-3(b) and the
Cortex-A9 3(c)-3(d), again normalized to the Intel Sandy Bridge.

Two interesting features are apparent from Figure 3. First, we observe that the
models capture a significant fraction of the variation in energy across the compute
kernels. Visually, this can be seen where the shape of the modeled energy points follows
the shape of the measured energy points. A statistical measure of this property is given
by the adjusted R-squared of the model [31]. Adjusted R-squared is the percentage of
variation captured by the model, where a perfect model would capture 100%. The models
shown in Figures 3(a), 3(b), 3(c) and 3(d) have adjusted R-squared measures of 90%,
64%, 80% and 76% respectively. Qualitatively, the models account for the majority of
the energy variation across benchmarks. Second, the models are able to correctly predict
which system uses the least energy to run a particular compute kernel in 210 of the 224
kernels. We take care to note that these models are imprecise, lacking exactness in the
energy prediction of any particular compute kernel. Nevertheless, they are surprisingly
useful for estimating the direction and magnitude of the energy difference between the
ARM and x86 systems.
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Fig. 4. Estimated speedup conferred by CPU and memory speed improvements in 64-bit ARM
systems for (a) compute kernels (b) and application benchmarks. The thick red line shows
the theoretical speedup that would be achieved if scaling by the CPU clock rate increase
(2.6/1.6 = 1.625).

4.4 Implications for 64-bit ARM

Implementations of 64-bit ARM platforms are expected to arrive in early to mid 2014.
It is widely anticipated that 64-bit ARM will improve upon the current 32-bit imple-
mentations by offering higher clock rates, improvements in the memory architecture,
and more complete vector math support, for example by supporting 2-wide DP SIMD
operations and fully adhering to the IEEE754 standard. We estimate the impact of these
factors on performance by examining the relationship those factors have to performance
on the Sandy Bridge system. In particular, we dial down the memory and processor
clock frequencies on the Sandy Bridge system to 800MHz and 1.6GHz respectively to
measure the speedup between the low and high clock rate runs, which represents how
much benefit is conferred to the application by running on hardware which has faster
compute and memory resources. Similarly, we estimate the impact of faster CPU only
by dialing down only the memory. The estimated speedups produced by this approach
are presented in Figure 4, showing in 4(a) that increasing a slow clock rate by a factor of
1.625 confers a speedup of at least 1.625x for a majority (81%) of compute kernels. This
suggests that clock rate increases in 64-bit ARM systems are likely to show substantial
improvements for the performance of many HPC applications. In 4(b), we present the ap-
plication benchmarks speedups when speeding up only the CPU clock rate (blue/dark),
and both the CPU and memory clock rates (orange/light). From these results and the
results in 4(a), we can infer that increases in the speed of the cores, as opposed to the
memory, account for the largest share of the speedups in the applications. We conclude
from these insights that improvements in the clock rates of 64-bit ARM implementations
are likely to have a substantial benefit to HPC applications, while memory speed plays
a significant but quantitatively less important role.

5 Conclusion

Using a large number of small, low-power cores has been gaining ground as a design
strategy to improve the energy efficiency of upcoming HPC systems. As ARM is the
dominant platform in the mobile and embedded computing segments, many believe that



ARM is a viable competitor to the high-end x86 systems that make up a substantial
fraction of large-scale HPC systems today. In this work, we methodically documented
the performance and energy characteristics of a number of HPC computations on sev-
eral current ARM platforms. We found that performance and energy efficiency of the
ARM systems varies by up to an order-of-magnitude and depends on the computational
and memory characteristics of the application. Moreover, we showed that this variabil-
ity can be described as a function of two important processor subsystems: the floating
point/SIMD unit and the cache/memory hierarchy. Finally, we investigated the perfor-
mance implications that 64-bit ARM systems will have, finding that HPC applications
stand to benefit substantially from changes in the CPU and memory subsystems.
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