
An Evaluation of Threaded Models for

a Classical MD Proxy Application

Pietro Cicotti

San Diego Supercomputer Center

University of California, San Diego

pcicotti@sdsc.edu

Susan M. Mniszewski

Los Alamos National Laboratory

smm@lanl.gov

Laura Carrington

San Diego Supercomputer Center

University of California, San Diego

lcarring@sdsc.edu

Abstract—Exascale systems will have many-core nodes, less

memory capacity per core than today’s systems, and a large

degree of performance variability between cores. All these

conditions challenge bulk synchronous SPMD models in which

execution is typically synchronous and communication is based

on buffers and ghost regions.

We explore the design of a multithreaded MD code to

evaluate several tradeoffs that arise when converting an MPI

application into a hybrid multithreaded application, to address

the aforementioned constraints of future architectures.

Using OpenMP and PThreads, we implemented several

variants of CoMD, a molecular dynamics proxy application.

We found that in CoMD, duplicating some of the work to avoid

race conditions is an easier and more scalable solution than

using atomic updates; that data allocation and placement can

be controlled to some extent with a hybrid MPI+threads

approach, though an explicit NUMA API to control locality

may be desirable; and finally that dynamically scheduling the

work within a process can mitigate the impact of performance

variability among cores and preserve most of the performance,

especially when compared to bulk synchronous

implementations such as the MPI reference.

Keywords—computer architecture, parallel processing,

parallel programming, performance analysis, parallel

algorithms, multithreading.

I. INTRODUCTION

At Exascale, the number of cores on a chip will likely be
in the hundreds [1], with an expected 100x increase in
parallelism on chip [2], and possibly thousands in a single
shared-memory unit. One consequence is that the memory
capacity per core will decrease, with density scaling and cost
being the primary limitations of DRAM capacity. As a result,
the memory capacity per core is expected to be 10 times less
than it is in current systems [2]. Data movement will also be
constrained, to conserve both performance and power.
Together, all these conditions challenge the SPMD models in
which communication is often synchronous, and based on
buffers and ghost regions.

Another characteristic of Exascale systems will be
performance variability among cores. Future Near-Threshold
Voltage (NTV) processors will exhibit variability in
performance and fluctuations in leakage and temperature [3],
which combined with the dynamic management of power
and thermal limits, along with error recovery delays, will
create a computing environment with dynamically changing
performance. This sort of variability will have a severe

impact on coarse-grain bulk-synchronous execution models,
which are prevalent in today’s HPC applications.

These variability challenges are better addressed in
multithreaded dynamic execution models, in which data and
work can be easily shared and scheduled between processing
elements [4-6]. Multithreaded execution models present
several opportunities in sharing data and work. As an
exploratory co-design effort, we take into account the aspects
of future systems discussed above, as the motivation to
embed multithreading and dynamic scheduling into an MPI
application, and then compare different algorithmic
formulations to evaluate features, such as atomic floating
operations, and the ability to cope with variable core speed.

In this work, we consider multithreaded programming
models for CoMD, a molecular dynamics proxy application
[7]. We first characterize the performance of the MPI
reference implementation, and then explore the challenges
and the benefits of the multithreaded implementations.
Finally, we compare how the variants adapt on a system in
which core speed is not uniform, in an attempt to mimic the
dynamic environment of future Exascale systems.

The primary contributions of this work are:

 a characterization of CoMD showing the memory
footprint composition and the timing breakdown
when scaling the number of cores,

 several multithreaded implementations and a
comparison of how different algorithms (e.g., force
symmetry vs. work duplication) and implementations
(e.g. mutexes vs. atomic operations) affect the
performance,

 and an evaluation of the ability of the different
variants to adapt dynamically to resource-imbalance
which we emulated by varying the duty cycle of
processor cores.

The paper is organized as follows. Section II provides
some context and a brief overview of related work. Section
III describes the algorithm of CoMD, whereas details of the
implementations are given in Section IV. The experimental
results are presented in Section V. Finally, concluding
remarks and future work are given in Section VI .

II. BACKGROUND AND RELATED WORK

Exascale systems present several challenges for both
computer and software architects. Addressing these
challenges requires a holistic approach. The Department of
Energy (DoE) established three Co-Design centers to ensure

mailto:pcicotti@sdsc.edu
mailto:smm@lanl.gov

that its target workloads can take advantage of future
architectures [8].

The Co-Design center for material in extreme
environments (ExMatEx) [9] developed a number of proxy
applications to explore new algorithms, and to provide
architects and system developers with a functional
description of their workloads.

Molecular Dynamics (MD) is widely used in material
science, chemical physics, and the modeling of
biomolecules. MD is a computer simulation technique for
modeling the physical movement of interacting atoms by
numerically solving Newton’s equations of motion. Forces
between atoms are defined by molecular mechanics force
fields or potentials.

CoMD is a proxy application developed to represent
classical molecular dynamics workloads [10, 11]. CoMD is
based on the MD codes, ddcMD [12] and Scalable Parallel
Short-range Molecular Dynamics (SPaSM) [13], which have
been used to simulate phenomena at unprecedented size and
time scale. CoMD is part of the Mantevo Suite 1.0 [14],
which received the 2013 R&D 100 award. MPI and OpenMP
versions of CoMD are publicly available [15]; OpenCL and
CUDA implementations have been developed for GPUs
along with a version for the Intel Xeon Phi processor.

Other researchers have explored several programming
models using LULESH [16], a shock hydrodynamics proxy
application. The comparison presented and evaluated several
programming models on productivity, performance, and ease
of optimization. While our paper is focused on a detailed
characterization of performance, we address the comparison
with other emerging and high level programming models in
Section VI. In addition, we look at how the programming
models will adapt to future Exascale environments.

III. COMD

CoMD computes short-range forces between atoms
placed in a face-centered-cubic (FCC) lattice. The forces are
evaluated between pairs of atoms whose distance is within a
cutoff distance. The resulting forces are subsequently used to
update atoms’ velocity and position via numerical
integration.

There are three main computational phases in CoMD that
update force, velocity, and the position of atoms. Velocity
and position updates are embarrassingly parallel: each update
depends on a single state variable and can be done on a
single atom in isolation (i.e. the velocity of an atom is
updated according to the force on that atom, and its position
is updated according to its velocity).

The force computation is the most time consuming phase
and it is therefore the focus of most optimizations. A brute
force search for neighboring atoms requires N

2
 distance

calculations (N distances for each of the N atoms) to
determine which atoms fall within the cutoff distance; such
an approach is extremely inefficient. In order to identify
suitable atom pairs, CoMD uses link-cells [17]. The space is
partitioned by applying a regular rectangular decomposition.
The partition has the largest number of cells such that each
cell exceeds in size the cutoff distance, in every dimension;
in this way, the neighbors of an atom need only be searched
within 27 cells (the cell containing the atom and the 26

neighboring cells). By using link-cells, the computational
complexity is reduced to linear in N, since the number of
atoms per link cell is essentially bounded.

Figure 1 illustrates the phases described, the data flowing
between them, and some of the high-level routines in CoMD.
In addition, the figure shows that after the position of the
atoms is updated, a global redistribution routine updates the
content of the cells, both locally on a process and remotely
via ghost cells exchange (more details about the
communication pattern are provided in Section IV.A).

For the force computation two interatomic force models
are available: the Lennard-Jones (LJ) two-body potential and
the many-body Embedded-Atom Model (EAM) potential.
The LJ potential is included for comparison and is a valid
approximation for constant volume and uniform density. The
EAM potential is a more accurate model of cohesion in
simple metals, like copper, and includes the energetics
necessary to model non-uniform density and free surfaces. In
this paper we present results on the EAM potential, for sake
of brevity, although similar results have been obtained on the
LJ potential.

Figure 1: CoMD data-flow graph with EAM potentials. The

variables p, f, r, eP, and eK represent momentum, force, position,

potential energy and kinetic energy data. Green arrows indicate
current timestep data-flow, red arrows indicate data-flow from one

timestep to the next, and blue arrows indicate data transfers that

occurr periodically.

Since the EAM potential cannot be calculated as the sum
of pairwise potentials, the calculation requires three passes.
The first pass computes the pairwise contribution and the
electron density, the second pass computes the embedding
energy and its derivative, and the final pass adds the
embedding energy contribution to the force.

Forces are symmetric between 2 atoms and need only be
calculated once. While this principle presents an opportunity
for reducing the computational workload when the
calculation is parallelized, as in most multithreaded
approaches, race conditions arise if two concurrent pair
evaluations try to simultaneously increment the forces and
energies on the same atom. A tradeoff has to be made
between managing race conditions and duplicating the force
calculations.

IV. EXECUTION MODELS

The reference version of CoMD is implemented using
MPI and OpenMP. In this paper we evaluate the reference
implementations of CoMD, as well as other variants that we

developed using OpenMP and PThreads. All the
multithreaded versions are hybrid, in the sense that they
preserve the MPI execution and inter-process communication
model, although in this study we focus on single node
performance. This section describes all the variants of CoMD
that we evaluated, and their implementation.

A. MPI

The MPI version uses a 3-D spatial Cartesian domain
decomposition to distribute the atoms across processors. The
local domain is split into link cells assuming periodic
boundaries. Atom data consists of position, velocity
(momentum), force, and energy. Additional data is required
for the EAM potential, such as the embedding energy and its
derivative. All local atom data is stored as a structure of
arrays (SoA).

A halo of link cells from replicated adjacent ranks is
needed when computing local forces. Velocities and
positions are advanced per link cell prior to the halo
exchange. The local force computation is sequential and
symmetric between atoms in each link cell and between
atoms in neighboring link cells. Partial results for link cells
are produced relative to the local domain atoms.

During the halo exchange, ghost atom data is
communicated with neighbor ranks. Atom data is composed
of updated halo link cells and migrating atoms. Atom data is
exchanged per time step for LJ and EAM, while EAM
requires an additional force exchange. Atom coordinates are
shifted by the global size when crossing periodic boundaries.
A halo exchange communication pattern consists of sends to
26 neighbor ranks in 6 messages in 3 steps: first between x-
faces, then between y-faces, and finally between z-faces.
This minimizes message count and maximizes message size,
but requires that the message traffic be serialized, since steps
must be processed in order.

B. MPI+OpenMP

There are two OpenMP implementations that we consider
in this study: a reference provided by ExMatEx, and one that
we implemented. Both are very simple and only differ in that
the reference computes the forces between atoms in different
cells twice, to avoid concurrent updates. In both, the outer
loops in the force calculation are preceded by the parallel for
directive to partition and assign the set of local cells to
threads. A reduction aggregates the total energy from all the
threads. In addition, our implementation uses the force
symmetry optimization and avoids race conditions preceding
updates to the force data with the atomic directive.

C. MPI+Pthreads

The PThreads version is similar in design to the OpenMP
implementation: a master thread partitions and assigns the set
of local cells to worker threads. Since the iteration space
does not change between loops (all the outer loops iterate
over the local cells), partition and mapping are static; the
master thread sets the body function and signals the start of
the parallel phase. As with OpenMP, for PThreads we
compare two variants: one that uses force symmetry and one
that doesn’t.

PThreads is a low-level explicit model that gives more
control than OpenMP on implementation details (of course at

the cost of more lines of code and added complexity). In this
work it enabled comparisons between locking mechanisms,
partition strategies, and scheduling policies. In order to
evaluate the cost of concurrent updates we implemented the
update operation in different ways: guarded by a mutex or a
spinlock (a non-yielding mutex), or as pseudo-atomic
operation. The x86 instruction set does not include atomic
floating point operations, and the atomic update is
implemented using a 64bit test_and_swap on the value of the
variable. First the variable is copied into a temporary, then a
copy of the temporary is updated, and finally the copy and
the temporary are used in the test_and_swap to replace the
variable; if the operation does not succeed (the value has
changed in the meantime) the entire sequence needs to be
repeated.

A simple division of the work based on the cell ids may
not always result in an optimal mapping. The ids of local
cells are assigned using a simple enumeration in the three
dimensions. The local space is scanned in all the dimensions
by moving along one dimension until the boundaries are
encountered, and then wrapping around and incrementing the
next dimension, and so on. For example, if the number of
cells is divisible by the number of threads, the space is
partitioned along a single dimension (e.g. divided into
identical planes with a certain thickness). In order to
experiment with different partitions we implemented a
variant that takes parameters to define how to partition the
space within a process and assign cells to threads, similar to
the way the space is decomposed and assigned to different
MPI processes.

D. MPI+ Dynamic Pthreads

Finally, we developed a PThreads variant that
implements a work-stealing policy. In this variant, a bitmap
is used to represent the local cells. As before, each worker
has a range of cells assigned, and starts working on its set of
cells. As work progresses, threads flip bits in the bitmap
accordingly, to indicate work that has been completed or is in
progress. Then, when a thread runs out of work, it starts
scanning the bitmap in search of more work, and when
available cells are found, that work is claimed. After a
complete scan the threads go to sleep waiting for a new
parallel phase.

V. EVALUATION

In this Section we compare the reference MPI version of
CoMD to the multithreaded versions developed. The
comparison is limited to single node runs, to focus on
multithreading and investigate the ability of CoMD to adapt
to variability of core performance within a node.

For the experiments we used a dual processors node with
Intel Xeon processors with 8 cores each (Sandy Bridge E5-
2670), and running at 2.6 GHz. The node has 64GB of
DDR3-1333 memory.

In most cases we used as benchmark problem the default
size of a 20x20x20 lattice, as starting point on one core, and
scaled the problem size accordingly. Since the computation
is extremely regular, we only executed 30 timestep in weak
scaling experiments, but we used the default 100 timestep in
strong scaling to avoid runtimes that were too short. The few

exceptions to this configuration are noted in the respective
sections.

A. Baseline Performance

As a first step of the evaluation we characterized the
reference MPI implementation from a memory usage and
basic performance perspective. Figure 2 shows the memory
footprint when scaling from 1 to 64 cores, and shows also
how the memory space is divided between data representing
the simulated system and that is strictly necessary for the
computation (i.e. local cells, interpolation tables, and global
data), and data that is essentially overhead introduced in the
implementation (i.e. halo cells, halo exchange, EAM
exchange).

The first observation is that the serial version of the
reference has the same exact structure of the parallel MPI
version, and therefore has the same memory footprint. The
only difference is that in the serial version send and receive
primitives are replaced by memory copies. This is interesting
as it shows that after all, ghost cells are useful also in the
serial representation of the code as a way to simplify the
computation on the boundaries. Nevertheless, the space
overhead is high even on one core, and when scaling to 64
cores it approaches 90% of the total memory footprint. In
weak scaling the space overhead does not change because the
same memory footprint is allocated by each process, with
exactly the same breakdown since all the data structures are
equally allocated whether the core is sequential, running on 1
core, or more, and it is simply replicated as the core count
increases. With multithreading, however, the overhead can
be reduced significantly, by virtue of a better surface to
volume ratio and because there is no need to facilitate
communication between threads and replicating the data.

CoMD scales weakly with no loss of performance. As
shown in Figure 3, it also scales strongly with great
efficiency. It is therefore plausible to run at the higher core
counts with great efficiency but exhibit the large memory
overhead demonstrated. A multithreaded approach has the
potential to mitigate that effect and reduce the space
overhead.

Finally, by looking at the time breakdown per function,
we notice how even when strong scaling, the force
computation dominates the computing time, even when
scaling to multiple nodes (experiments scaling to 16k cores
and with fewer atoms per core showed that the force
computation is still responsible for 80% of the total running
time). In the remainder of the paper, we focus on the force
computation.

B. Performance Comparison

Next we compare the MPI version to hybrid MPI
multithreaded versions. We developed multiple versions to
explore the cost trade-offs between using force symmetry
and computing forces twice. In the former case less work is
done but with the overhead of dealing with race conditions
(e.g. omp and pt); in the latter case the force computation is
duplicated but there are no race conditions to deal with (e.g.
ompd and ptd). Figure 4 and Figure 5 show the time spent
computing forces in weak and strong scaling experiments. In
these experiments, the PThreads version (pt) uses force
symmetry and avoids race conditions by guarding the force

Figure 2: Break down of the memory footprint of each process, in

strong scaling.

updates with locks (mutex).
The threaded versions achieve a lower performance than

the reference MPI version, and that is primarily for the
reasons discussed above: either the overhead of managing
race conditions or the extra work done. By looking at the
OpenMP versions we see that there is little difference
between the two strategies, although it appears that as the
number of threads increase, so does the overhead of the
atomic updates and it can become a significant bottleneck on
a larger number of cores. With PThreads the difference is
even greater between the two versions; the atomic updates
using mutexes incur a very high overhead and it gets
significantly worse at 16 threads, when the threads involved
communicate across sockets. Going from 8 to 16 cores, the
multithreaded versions lose some performance due to the
cost of inter-socket communication; this effect is addressed
in Section V.D.

When duplicating the force calculation, the PThreads
outperforms the OpenMP version. In PThreads the threads
operate on an explicitly defined set of cells, and force
duplication is necessary only in interactions between cells
owned by different threads. This advantage diminishes in
strong scaling, as the surface-to-volume ratio decreases and
an increasingly large fraction of forces are computed twice.

Figure 3: Strong scaling performance and timing breakdown.

In Section V.E we address this issue improving the
surface-to-volume ratio.

C. The Overhead in Concurrent Updates

In order to further investigate the overhead in concurrent
updates, we compared the performance of the PThreads
using multiple implementations of the concurrent updates.
Figure 6 shows the execution time for these versions and for
reference the MPI version and the PThreads version with no
force symmetry. In addition, we also compare to a version
that ignores race conditions altogether (nolock), and although
it produces incorrect results, it provides an additional
comparison point showing what would be the performance of
a zero-overhead atomic update.

The cost of locking is directly reflected in the
computation time. Up to 4 cores, the performance of nolock
and pdt is on par with the reference, then coherency and
sharing costs create a performance gap (this effect is
addressed in Section V.D). The other PThreads versions can
be ranked by the cost of the mutual exclusion mechanism
used to implement the atomic updates, with mutexes being
the worse, and the pseudo-atomic instruction implementation
being the best. In the latter case, the overall overhead of the
atomic instruction ranges from 23% to 27% of the force
computation time (with a 25% average) when compared to
the nolock version. Even assuming a zero-overhead atomic
instruction shows no tangible benefit with respect to not
using force symmetry. After all, in the PThreads
implementation only a fraction of the forces are actually
computed twice, and just preserving cache coherency seems
to have a high enough cost to offset the benefit of doing less
work. Duplicating some of the work and avoiding concurrent
updates entirely appears to be an easier and more scalable
solution.

D. The Penalty of Non Uniform Memory Access

In the previous Sections we observed in several occasions
that there is a performance penalty in using both processors.
Each processor controls the four DRAM channels connected
to the socket, and that form a NUMA node. To share data
and implement the coherency protocol, the memory
controllers communicate via the Quick Path Interconnect
(QPI). In contrast, when all the threads of a process execute
on a single processor there is no traffic due to coherency, or
data sharing across the two NUMA nodes; trivially, for a
pure MPI implementation that is always the case.
A simple way to avoid this issue is to execute a process per
socket. The speedup achieved varies depending on the size of
the problem and the version of the code, but in all cases there
is a significant improvement. Table 1 shows the speedup
achieved when running with one process per processor (PTD
Socket) instead of with one process per node (PTD Node).
For both problem sizes there is a substantial performance
improvement. Nevertheless, on 16 cores the PThreads
implementation is still slower than the MPI reference
(approximately a 10% increase in time).

Alternatively, to avoid traffic due sharing, the memory
allocation and data initialization phase should be carefully
designed to ensure that data structures are mapped to NUMA
minimizing intra-socket traffic, which is the case if threads
access only data in the local NUMA node.

Figure 4: Weak scaling comparison between MPI, OpenMP, and

PThreads versions.

Figure 5: Strong scaling comparison between MPI, OpenMP, and

PThreads versions.

Figure 6: Strong scaling comparison between PThreads versions
using different implementations of the atomic updates.

However, this approach adds great complexity to the code,
especially if work is scheduled dynamically; in this case a
static placement would not be a viable solution.

Table 1: Performance comparison between one process (16 treads)

and two processes (8 threads per process) on 16 cores.

Lattice MPI PTD Node PTD Socket Speedup

88x44x44 7.95 9.99 8.75 1.14

22x22x22 1.87 2.55 2.04 1.25

E. The Impact of the Surface-to-Volume Ratio

The PThreads version that achieved the best performance
used force duplication (ptd). The amount of work in this
version is comparable to the amount of work done in the
MPI version. In both cases, the forces are computed twice on
the boundaries of the space assigned to a process or a thread.
However, while the MPI decomposition is controlled by
parameters (the processor grid that defines the space
decomposition is specified at startup), the mapping of cells to
threads is not. In ptd, cells are assigned to threads by id
ranges, which results in sub-optimal mapping. The results of
controlling the mapping to threads are shown in Table 2; the
effect of the improved mapping is reported as 1.05 times
speedup. The ptd version with blocked decomposition and
mapping is comparable in performance to the MPI version,
with just a 5% increase in computation time. That 5%
overhead is essentially the cost of managing threads,
scheduling the work, and maintain coherency within the
processor.

Table 2: Performance comparison between simple and blocked
mapping, on 16 cores.

Lattice MPI PTD Simple PTD Blocked Speedup

88x44x44 7.95 8.75 8.34 1.05

22x22x22 1.87 2.04 1.95 1.05

F. Adapting to Performance Variability

As we head towards Exascale technology, factors such as
feature size scaling, voltage scaling, power capping, and heat
management will create imbalance in core speed, even within
the same chip. It is the anticipation of this imbalance that has
spawned a large growth in programming models and runtime
systems that adapt to this imbalance through dynamic
scheduling. To explore this capability we extended the ptd
version with dynamic scheduling.

The dynamic scheduling is implemented using a map of
cells, to keep track of the progress made by each thread, and
to give faster threads the opportunity to steal work from
slower threads. The granularity of the map determines the
size of the chunks of work managed by the map, which is
defined in number of cells to update.

To simulate uneven core speed we use clock modulation.
With clock modulation, it is possible to arbitrarily slow down
one or more processor cores by reducing the duty cycle [18].
First, we evaluate the cost of dynamic scheduling as a
function of the granularity with the expectation that finer
granularity enables better balancing. Next we investigate the
effect of granularity and its ability to adapt to changes in core
speed, and finally we compare the ability of the different
versions (e.g. MPI, OpenMP, PThreads) to adapt to core
speed changes.

The first experiment was in determining the overhead of
dynamically scheduling work and how that overhead varies
with varying work granularity. With dynamic scheduling,

threads actively acquire a portion of the cells to update and
maintain a shared data structure representing the status of the
cells (i.e. the map of cells); access to the map is synchronized
in the case of race conditions. The ptd version with static and
dynamic scheduling was run on 16 cores with increasingly
coarse granularity. The overhead was calculated as the
increase in the runtime of the dynamic scheduling version
versus the static scheduling version. The overhead is shown
in Table 3. As expected, the overhead depends on the
granularity, but a comparison across the two problem sizes
indicate that it is not just an issue of a constant cost in
accessing the scheduling structures, otherwise in the large
problem size the overhead should be a small fraction of the
computing time as seen in the smaller problem size. What we
observe is the combination of that and the effect of increased
work due to smaller blocks of work with higher surface-to-
volume ratio than in the static version.

The overhead is also dependent on the number of
operations required by updates (although not shown here,
with the LJ potentials, which is less compute intensive, we
measured higher overheads than in the EAM potentials).
More complex potentials with a larger number of terms
would experience a lower overhead.

Table 3: Analysis of overhead as a function of granularity in work
decomposition, on 16 cores.

Lattice Cells Overhead (%)

88x44x44 128 22.5

88x44x44 256 21.5

88x44x44 512 6.8

88x44x44 1024 0.6

22x22x22 1 32.5

22x22x22 8 20.2

22x22x22 16 16.8

22x22x22 32 15.3

22x22x22 64 4.4

Finer granularity enables a more balanced distribution of

the work, but it also incurs higher overhead in scheduling a
larger number of small chunks of work. In the next
experiment we looked at how the granularity affects the
code’s ability to adapt to imbalances in the core speeds. For
the entire execution, one of the 16 cores was configured to
run with a reduced duty cycle. We explored a duty cycle
range from 100% (no variation) down to a 25% duty cycle.
In the experiment we also examine the effects at different
granularity. Figure 7 illustrates how the force time is affected
by core speed imbalance and how granularity affects the
ability to rebalance the workload. By looking at the timing of
the force calculation (bars), we see that the time increases
when the duty cycle decreases, but very slowly. Looking at
the slowdown (lines indicating a speedup lower than 1), we
see that even at the coarsest granularity the slowdown is
small for a running one core at 25% of its speed. Finer
granularities are more effective and enable a better load
balancing, but also incur higher overheads; we observe that
the higher overhead is not compensated by a better balancing

and the coarsest granularity always results in faster
execution.

In the next experiment we examine the ability of the
different versions to adapt to core frequency changes. We
compared three versions of the code: MPI, OpenMP
(executing with dynamic scheduling), and PThreads. The
OpenMP version was executed enabling dynamic scheduling
to adaptively assign portions of the iteration space to threads;
the chunk size was to set 64 which corresponds to the work
granularity in the ptd. Figure 8 shows both the time (bars)
and the slowdown (lines) of the force calculation. The MPI
reference implementation is marginally faster than the ptd if
the cores speed is about the same, but as the difference
exceeds the 12.5% threshold, the PThreads version is faster,
and the gap grows proportionally to the difference in core
speed between the slow core and the others. As seen in the
speedup, the MPI reference does not rebalance the workload
and is synchronous, and therefore it reflects the speed of the
slowest core. The OpenMP version is inferior in
performance compared to the PThreads version; however,
the OpenMP version does balance the work although not as
effectively as the PThreads version.

To conclude, we tested with all the cores at variable
speed. A process controls the duty cycle of each core and
periodically wakes up and changes the duty cycle of all the
cores, by one step (6.25%), randomly choosing the direction
(increment or decrement). The range of the duty cycle is set
from a user selected minimum duty cycle, to 100%. Initially
all cores execute at the speed in the middle of the range;
then, every second the process wakes up and changes the
duty cycle of all cores; since the changes are random, the
average tends to stay in the middle of the range. For the
experiments we selected ranges with the minimum at 87.5%,
75%, 50%, and 6.25%.

The OpenMP version executed with two different
scheduling policies: dynamic (static chunk size of 64 cells,
which is labelled omd) and guided (starting from a chunk of
size 64 and then decreasing the size to fine tune the
balancing, which is labelled omg). The results are shown in
Figure 9, together with the average and average minimum
duty cycle, showing an approximation of the ideal and the
worst case slowdown.

With all cores running at lower speeds it is no surprise
that the performance degrades significantly. The omg version
had ideal balancing for the first two settings, but it degraded
rapidly at lower duty cycle settings, whereas omd has a more
consistent behavior and ends achieving the best balance

VI. CONCLUSIONS AND FUTURE WORK

Exascale systems will have many-core nodes but the
increase in core count will not be matched by the increase in
memory capacity. In addition, the performance of individual
cores will vary, creating load imbalance even in regular
problems. In this paper, we explore some the benefits and
challenges in implementing a multithreaded molecular
dynamics proxy application to address the aforementioned
issues. We focused on tradeoffs between atomic operations
and work duplication, and between work granularity load
balance. In addition, we tried to address the performance
issues that may arise in sharing data within an address space.

Figure 7: Time and speedup in the force calculation at different

granularities for a 22x22x22 lattice on 16 cores. The duty cycle is

changed only on one core.

Figure 8: Time and speedup in the force calculation for different

versions of the code for a 22x22x22 lattice on 16 cores. The duty
cycle is changed only on one core.

Figure 9: Time and speedup in the force calculation for different

versions of the code for a 22x22x22 lattice on 16 cores (500
timesteps). The duty cycle is changed periodically for all the cores.

In CoMD, it is tempting to try and reduce the amount of
computation done (by virtue of force symmetry) and using
some form of synchronized updates, but the overhead of the
synchronization mechanisms limits both the performance and
the scalability of this approach; we observed significant
overheads even when allowing unsynchronized concurrent
updates suggesting that even hardware floating atomic
operations will be inferior to a non-synchronized approach.
Future work will explore a scheduling system to
automatically avoid race conditions while using force
symmetry.

Sharing data even between threads has a cost and the cost
depends on the distance of the computing cores, for example
as we observed by distributing 16 threads on two sockets.
The relative distance between cores will increase with deeper
on-chip memory hierarchies; as a simple way to cope with
traffic between NUMA node we placed one MPI process per
processor; alternative solutions would be APIs to explicitly
control the placement of data structures to NUMA nodes, or
a runtime system that improves locality by integrating data
placement with scheduling.

As the speed of cores varies, adaptive work scheduling
limits the potential performance loss by preventing cores to
be idle while there is work available. As the difference in
cores speed increases these techniques are necessary.
However, striking an optimal balance between overhead and
load balance (controlled for example by the granularity of the
work chunks) is not trivial. Even an adapting policy like the
guided scheduling in OpenMP seemed to fail compared to a
simpler dynamic scheduling with fixed size chunks of work.
Especially when all the cores speed varies, achieving a good
balance does require fine grain work decomposition but that
will negatively affect the overhead. When the difference
between the average core speed and the minimum is not
large, there amount of overhead for load balancing that can
be tolerated is very small and more effective work sharing
mechanisms should be considered. Currently, we are
investigating a CoMD version that uses the OCR runtime
system [19, 20]. This study will explore new algorithms and
architectural features using the runtime system and an
architectural simulator, and take advantage of features of the
runtime system, such as automatic load balancing and
customizable scheduling policies.

Finally, while this study touches on some key aspects of
multithreading on future architectures, further investigation
is required to gain a deeper understanding on the issues
touched, to improve the quality of the prototypes
implemented (especially the scheduling and work
distribution system which is admittedly a primitive
implementation), and to continue the study in other
directions. Other directions that will be investigated include
data movement on node and between nodes, and scaling to
larger number of cores and of nodes.

ACKNOWLEDGMENT
The authors would like to thank Jim Belak and David

Richards for their comments and suggestions.
This material is based upon work supported by the

Department of Energy [Office of Science] under Award
Number DE-SC0008717.

DISCLAIMER
This report was prepared as an account of work sponsored by an agency

of the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

REFERENCES
[1] P. Kogge, “ExaScale Computing Study: Technology Challenges in

Achieving Exascale Systems,” CSE Dept. Tech. Report TR-2008-13
[2] Architectures and Technologies for Extreme Scale Computing, 2009.

[3] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T.

Mudge, “Near-Threshold Computing: Reclaiming Moore's Law
Through Energy Efficient Integrated Circuits,” Proceedings of the

IEEE, vol. 98, no. 2, pp. 253-266, 2010.

[4] L. Dagum, and R. Menon, “OpenMP: an industry standard API for

shared-memory programming,” Computational Science &

Engineering, IEEE, vol. 5, no. 1, pp. 46-55, 1998.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: an efficient multithreaded runtime

system,” SIGPLAN Not., vol. 30, no. 8, pp. 207-216, 1995.

[6] R. A. Alfieri, “An efficient kernel-based implementation of POSIX
threads,” in Proceedings of the USENIX Summer 1994 Technical

Conference on USENIX Summer 1994 Technical Conference -

Volume 1, Boston, Massachusetts, 1994, pp. 5-5.
[7] ExMatEx. "CoMD," http://www.exmatex.org/comd.html.

[8] "Scientific Discovery through Advanced Computing (SciDAC) Co-

Design," http://science.energy.gov/ascr/research/scidac/co-design/.
[9] "DoE Exascale Co-Design Center for Materials in Extreme

Environments (ExMatEx)," http://www.exmatex.org.

[10] J. Mohd-Yusof, CoDesign Molecular Dynamics (CoMD) Proxy App,
LA-UR-12-21782, Los-Alamos National Lab, 2012.

[11] S. Mniszewski, and JamalMohd-Yusof, “CoDesign Molecular
Dynamics (CoMD) Proxy Application,” in PGI OpenACC

WorkShop, 2013.

[12] D. F. Richards, J. N. Glosli, B. Chan, M. R. Dorr, E. W. Draeger, J.-
L. Fattebert, W. D. Krauss, T. Spelce, F. H. Streitz, M. P. Surh, and J.

A. Gunnels, “Beyond homogeneous decomposition: scaling long-

range forces on Massively Parallel Systems,” in Proceedings of the
Conference on High Performance Computing Networking, Storage

and Analysis, Portland, Oregon, 2009, pp. 1-12.

[13] T. C. Germann, K. Kadau, and S. Swaminarayan, “369 Tflop-s
molecular dynamics simulations on the petaflop hybrid

supercomputer ‘Roadrunner’,” Concurr. Comput. : Pract. Exper., vol.

21, no. 17, pp. 2143-2159, 2009.
[14] M. A. Heroux, D. W. Doefler, P. S. Crozier, J. Willenbring, M., C. H.

Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and

R. W. Numrich, Improving Performance via Mini-applications,
Sandia National Laboratory, 2009.

[15] ExMatEx. "CoMD Software," https://github.com/exmatex/CoMD.

[16] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z.
Devito, R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M.

Schulz, and C. H. Still, “Exploring Traditional and Emerging Parallel

Programming Models Using a Proxy Application,” in Proceedings of
the 2013 IEEE 27th International Symposium on Parallel and

Distributed Processing, 2013, pp. 919-932.

[17] R. W. Hockney, S. P. Goel, and J. W. Eastwood, “Quiet high-
resolution computer models of a plasma,” Journal of Computational

Physics, vol. 14, no. 2, pp. 148-158, 2//, 1974.

[18] Intel, "Intel® 64 and IA-32 Architectures Software Developer
Manuals," Software Controlled Clock Modulation, 2014.

[19] "Open Community Runtime,"

 https://01.org/open-community-runtime.
[20] "Traleika Glacier X-Stack Program,"

https://xstackwiki.modelado.org/Traleika_Glacier.

http://www.exmatex.org/comd.html
http://science.energy.gov/ascr/research/scidac/co-design/
http://www.exmatex.org/

