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Abstract—Exascale systems will have many-core nodes, less 

memory capacity per core than today’s systems, and a large 

degree of performance variability between cores. All these 

conditions challenge bulk synchronous SPMD models in which 

execution is typically synchronous and communication is based 

on buffers and ghost regions. 

We explore the design of a multithreaded MD code to 

evaluate several tradeoffs that arise when converting an MPI 

application into a hybrid multithreaded application, to address 

the aforementioned constraints of future architectures. 

Using OpenMP and PThreads, we implemented several 

variants of CoMD, a molecular dynamics proxy application. 

We found that in CoMD, duplicating some of the work to avoid 

race conditions is an easier and more scalable solution than 

using atomic updates; that data allocation and placement can 

be controlled to some extent with a hybrid MPI+threads 

approach, though an explicit NUMA API to control locality 

may be desirable; and finally that dynamically scheduling the 

work within a process can mitigate the impact of performance 

variability among cores and preserve most of the performance, 

especially when compared to bulk synchronous 

implementations such as the MPI reference. 

Keywords—computer architecture, parallel processing, 

parallel programming, performance analysis, parallel 

algorithms, multithreading. 

I. INTRODUCTION 

At Exascale, the number of cores on a chip will likely be 
in the hundreds [1], with an expected 100x increase in 
parallelism on chip [2], and possibly thousands in a single 
shared-memory unit. One consequence is that the memory 
capacity per core will decrease, with density scaling and cost 
being the primary limitations of DRAM capacity. As a result, 
the memory capacity per core is expected to be 10 times less 
than it is in current systems [2]. Data movement will also be 
constrained, to conserve both performance and power. 
Together, all these conditions challenge the SPMD models in 
which communication is often synchronous, and based on 
buffers and ghost regions. 

Another characteristic of Exascale systems will be 
performance variability among cores. Future Near-Threshold 
Voltage (NTV) processors will exhibit variability in 
performance and fluctuations in leakage and temperature [3], 
which combined with the dynamic management of power 
and thermal limits, along with error recovery delays, will 
create a computing environment with dynamically changing 
performance. This sort of variability will have a severe 

impact on coarse-grain bulk-synchronous execution models, 
which are prevalent in today’s HPC applications. 

These variability challenges are better addressed in 
multithreaded dynamic execution models, in which data and 
work can be easily shared and scheduled between processing 
elements [4-6]. Multithreaded execution models present 
several opportunities in sharing data and work. As an 
exploratory co-design effort, we take into account the aspects 
of future systems discussed above, as the motivation to 
embed multithreading and dynamic scheduling into an MPI 
application, and then compare different algorithmic 
formulations to evaluate features, such as atomic floating 
operations, and the ability to cope with variable core speed.  

In this work, we consider multithreaded programming 
models for CoMD, a molecular dynamics proxy application 
[7].  We first characterize the performance of the MPI 
reference implementation, and then explore the challenges 
and the benefits of the multithreaded implementations. 
Finally, we compare how the variants adapt on a system in 
which core speed is not uniform, in an attempt to mimic the 
dynamic environment of future Exascale systems. 

The primary contributions of this work are: 

 a characterization of CoMD showing the memory 
footprint composition and the timing breakdown 
when scaling the number of cores, 

 several multithreaded implementations and a 
comparison of how different algorithms (e.g., force 
symmetry vs. work duplication) and implementations 
(e.g. mutexes vs. atomic operations) affect the 
performance,  

 and an evaluation of the ability of the different 
variants to adapt dynamically to resource-imbalance 
which we emulated by varying the duty cycle of 
processor cores. 

The paper is organized as follows. Section II provides 
some context and a brief overview of related work. Section 
III describes the algorithm of CoMD, whereas details of the 
implementations are given in Section IV. The experimental 
results are presented in Section V. Finally, concluding 
remarks and future work are given in Section VI . 

II. BACKGROUND AND RELATED WORK 

Exascale systems present several challenges for both 
computer and software architects. Addressing these 
challenges requires a holistic approach. The Department of 
Energy (DoE) established three Co-Design centers to ensure 
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that its target workloads can take advantage of future 
architectures [8]. 

The Co-Design center for material in extreme 
environments (ExMatEx) [9] developed a number of proxy 
applications to explore new algorithms, and to provide 
architects and system developers with a functional 
description of their workloads.  

Molecular Dynamics (MD) is widely used in material 
science, chemical physics, and the modeling of 
biomolecules. MD is a computer simulation technique for 
modeling the physical movement of interacting atoms by 
numerically solving Newton’s equations of motion. Forces 
between atoms are defined by molecular mechanics force 
fields or potentials. 

CoMD is a proxy application developed to represent 
classical molecular dynamics workloads [10, 11]. CoMD is 
based on the MD codes, ddcMD [12] and Scalable Parallel 
Short-range Molecular Dynamics (SPaSM) [13], which have 
been used to simulate phenomena at unprecedented size and 
time scale. CoMD is part of the Mantevo Suite 1.0 [14], 
which received the 2013 R&D 100 award. MPI and OpenMP 
versions of CoMD are publicly available [15]; OpenCL  and 
CUDA implementations have been developed for GPUs 
along with a version for the Intel Xeon Phi processor. 

Other researchers have explored several programming 
models using LULESH [16], a shock hydrodynamics proxy 
application. The comparison presented and evaluated several 
programming models on productivity, performance, and ease 
of optimization. While our paper is focused on a detailed 
characterization of performance, we address the comparison 
with other emerging and high level programming models in 
Section VI. In addition, we look at how the programming 
models will adapt to future Exascale environments. 

III. COMD 

CoMD computes short-range forces between atoms 
placed in a face-centered-cubic (FCC) lattice. The forces are 
evaluated between pairs of atoms whose distance is within a 
cutoff distance. The resulting forces are subsequently used to 
update atoms’ velocity and position via numerical 
integration. 

There are three main computational phases in CoMD that 
update force, velocity, and the position of atoms. Velocity 
and position updates are embarrassingly parallel: each update 
depends on a single state variable and can be done on a 
single atom in isolation (i.e. the velocity of an atom is 
updated according to the force on that atom, and its position 
is updated according to its velocity). 

The force computation is the most time consuming phase 
and it is therefore the focus of most optimizations. A brute 
force search for neighboring atoms requires N

2
 distance 

calculations (N distances for each of the N atoms) to 
determine which atoms fall within the cutoff distance; such 
an approach is extremely inefficient. In order to identify 
suitable atom pairs, CoMD uses link-cells [17]. The space is 
partitioned by applying a regular rectangular decomposition. 
The partition has the largest number of cells such that each 
cell exceeds in size the cutoff distance, in every dimension; 
in this way, the neighbors of an atom need only be searched 
within 27 cells (the cell containing the atom and the 26 

neighboring cells). By using link-cells, the computational 
complexity is reduced to linear in N, since the number of 
atoms per link cell is essentially bounded. 

Figure 1 illustrates the phases described, the data flowing 
between them, and some of the high-level routines in CoMD. 
In addition, the figure shows that after the position of the 
atoms is updated, a global redistribution routine updates the 
content of the cells, both locally on a process and remotely 
via ghost cells exchange (more details about the 
communication pattern are provided in Section IV.A).  

For the force computation two interatomic force models 
are available: the Lennard-Jones (LJ) two-body potential and 
the many-body Embedded-Atom Model (EAM) potential. 
The LJ potential is included for comparison and is a valid 
approximation for constant volume and uniform density. The 
EAM potential is a more accurate model of cohesion in 
simple metals, like copper, and includes the energetics 
necessary to model non-uniform density and free surfaces. In 
this paper we present results on the EAM potential, for sake 
of brevity, although similar results have been obtained on the 
LJ potential. 

 
Figure 1: CoMD data-flow graph with EAM potentials. The 

variables p, f, r, eP, and eK represent momentum, force, position, 

potential energy and kinetic energy data. Green arrows indicate 
current timestep data-flow, red arrows indicate data-flow from one 

timestep to the next, and blue arrows indicate data transfers that 

occurr periodically. 

Since the EAM potential cannot be calculated as the sum 
of pairwise potentials, the calculation requires three passes. 
The first pass computes the pairwise contribution and the 
electron density, the second pass computes the embedding 
energy and its derivative, and the final pass adds the 
embedding energy contribution to the force. 

Forces are symmetric between 2 atoms and need only be 
calculated once. While this principle presents an opportunity 
for reducing the computational workload when the 
calculation is parallelized, as in most multithreaded 
approaches, race conditions arise if two concurrent pair 
evaluations try to simultaneously increment the forces and 
energies on the same atom. A tradeoff has to be made 
between managing race conditions and duplicating the force 
calculations. 

IV. EXECUTION MODELS 

The reference version of CoMD is implemented using 
MPI and OpenMP. In this paper we evaluate the reference 
implementations of CoMD, as well as other variants that we 



developed using OpenMP and PThreads. All the 
multithreaded versions are hybrid, in the sense that they 
preserve the MPI execution and inter-process communication 
model, although in this study we focus on single node 
performance. This section describes all the variants of CoMD 
that we evaluated, and their implementation. 

A. MPI 

The MPI version uses a 3-D spatial Cartesian domain 
decomposition to distribute the atoms across processors. The 
local domain is split into link cells assuming periodic 
boundaries. Atom data consists of position, velocity 
(momentum), force, and energy. Additional data is required 
for the EAM potential, such as the embedding energy and its 
derivative. All local atom data is stored as a structure of 
arrays (SoA). 

A halo of link cells from replicated adjacent ranks is 
needed when computing local forces. Velocities and 
positions are advanced per link cell prior to the halo 
exchange. The local force computation is sequential and 
symmetric between atoms in each link cell and between 
atoms in neighboring link cells. Partial results for link cells 
are produced relative to the local domain atoms. 

During the halo exchange, ghost atom data is 
communicated with neighbor ranks. Atom data is composed 
of updated halo link cells and migrating atoms. Atom data is 
exchanged per time step for LJ and EAM, while EAM 
requires an additional force exchange. Atom coordinates are 
shifted by the global size when crossing periodic boundaries. 
A halo exchange communication pattern consists of sends to 
26 neighbor ranks in 6 messages in 3 steps: first between x-
faces, then between y-faces, and finally between z-faces. 
This minimizes message count and maximizes message size, 
but requires that the message traffic be serialized, since steps 
must be processed in order. 

B. MPI+OpenMP 

There are two OpenMP implementations that we consider 
in this study: a reference provided by ExMatEx, and one that 
we implemented. Both are very simple and only differ in that 
the reference computes the forces between atoms in different 
cells twice, to avoid concurrent updates. In both, the outer 
loops in the force calculation are preceded by the parallel for 
directive to partition and assign the set of local cells to 
threads. A reduction aggregates the total energy from all the 
threads. In addition, our implementation uses the force 
symmetry optimization and avoids race conditions preceding 
updates to the force data with the atomic directive. 

C. MPI+Pthreads 

The PThreads version is similar in design to the OpenMP 
implementation: a master thread partitions and assigns the set 
of local cells to worker threads. Since the iteration space 
does not change between loops (all the outer loops iterate 
over the local cells), partition and mapping are static; the 
master thread sets the body function and signals the start of 
the parallel phase. As with OpenMP, for PThreads we 
compare two variants: one that uses force symmetry and one 
that doesn’t. 

PThreads is a low-level explicit model that gives more 
control than OpenMP on implementation details (of course at 

the cost of more lines of code and added complexity). In this 
work it enabled comparisons between locking mechanisms, 
partition strategies, and scheduling policies. In order to 
evaluate the cost of concurrent updates we implemented the 
update operation in different ways: guarded by a mutex or a 
spinlock (a non-yielding mutex), or as pseudo-atomic 
operation. The x86 instruction set does not include atomic 
floating point operations, and the atomic update is 
implemented using a 64bit test_and_swap on the value of the 
variable. First the variable is copied into a temporary, then a 
copy of the temporary is updated, and finally the copy and 
the temporary are used in the test_and_swap to replace the  
variable; if the operation does not succeed (the value has 
changed in the meantime) the entire sequence needs to be 
repeated. 

A simple division of the work based on the cell ids may 
not always result in an optimal mapping. The ids of local 
cells are assigned using a simple enumeration in the three 
dimensions. The local space is scanned in all the dimensions 
by moving along one dimension until the boundaries are 
encountered, and then wrapping around and incrementing the 
next dimension, and so on. For example, if the number of 
cells is divisible by the number of threads, the space is 
partitioned along a single dimension (e.g. divided into 
identical planes with a certain thickness). In order to 
experiment with different partitions we implemented a 
variant that takes parameters to define how to partition the 
space within a process and assign cells to threads, similar to 
the way the space is decomposed and assigned to different 
MPI processes. 

D. MPI+ Dynamic Pthreads 

Finally, we developed a PThreads variant that 
implements a work-stealing policy. In this variant, a bitmap 
is used to represent the local cells. As before, each worker 
has a range of cells assigned, and starts working on its set of 
cells. As work progresses, threads flip bits in the bitmap 
accordingly, to indicate work that has been completed or is in 
progress. Then, when a thread runs out of work, it starts 
scanning the bitmap in search of more work, and when 
available cells are found, that work is claimed. After a 
complete scan the threads go to sleep waiting for a new 
parallel phase. 

V. EVALUATION 

In this Section we compare the reference MPI version of 
CoMD to the multithreaded versions developed. The 
comparison is limited to single node runs, to focus on 
multithreading and investigate the ability of CoMD to adapt 
to variability of core performance within a node. 

For the experiments we used a dual processors node with 
Intel Xeon processors with 8 cores each (Sandy Bridge E5-
2670), and running at 2.6 GHz. The node has 64GB of 
DDR3-1333 memory. 

In most cases we used as benchmark problem the default 
size of a 20x20x20 lattice, as starting point on one core, and 
scaled the problem size accordingly. Since the computation 
is extremely regular, we only executed 30 timestep in weak 
scaling experiments, but we used the default 100 timestep in 
strong scaling to avoid runtimes that were too short. The few 



exceptions to this configuration are noted in the respective 
sections. 

A. Baseline Performance 

As a first step of the evaluation we characterized the 
reference MPI implementation from a memory usage and 
basic performance perspective. Figure 2 shows the memory 
footprint when scaling from 1 to 64 cores, and shows also 
how the memory space is divided between data representing 
the simulated system and that is strictly necessary for the 
computation (i.e. local cells, interpolation tables, and global 
data), and data that is essentially overhead introduced in the 
implementation (i.e. halo cells, halo exchange, EAM 
exchange). 

The first observation is that the serial version of the 
reference has the same exact structure of the parallel MPI 
version, and therefore has the same memory footprint. The 
only difference is that in the serial version send and receive 
primitives are replaced by memory copies. This is interesting 
as it shows that after all, ghost cells are useful also in the 
serial representation of the code as a way to simplify the 
computation on the boundaries. Nevertheless, the space 
overhead is high even on one core, and when scaling to 64 
cores it approaches 90% of the total memory footprint. In 
weak scaling the space overhead does not change because the 
same memory footprint is allocated by each process, with 
exactly the same breakdown since all the data structures are 
equally allocated whether the core is sequential, running on 1 
core, or more, and it is simply replicated as the core count 
increases. With multithreading, however, the overhead can 
be reduced significantly, by virtue of a better surface to 
volume ratio and because there is no need to facilitate 
communication between threads and replicating the data. 

CoMD scales weakly with no loss of performance. As 
shown in Figure 3, it also scales strongly with great 
efficiency. It is therefore plausible to run at the higher core 
counts with great efficiency but exhibit the large memory 
overhead demonstrated. A multithreaded approach has the 
potential to mitigate that effect and reduce the space 
overhead. 

Finally, by looking at the time breakdown per function, 
we notice how even when strong scaling, the force 
computation dominates the computing time, even when 
scaling to multiple nodes (experiments scaling to 16k cores 
and with fewer atoms per core showed that the force 
computation is still responsible for 80% of the total running 
time). In the remainder of the paper, we focus on the force 
computation. 

B. Performance Comparison 

Next we compare the MPI version to hybrid MPI 
multithreaded versions. We developed multiple versions to 
explore the cost trade-offs between using force symmetry 
and computing forces twice. In the former case less work is 
done but with the overhead of dealing with race conditions 
(e.g. omp and pt); in the latter case the force computation is 
duplicated but there are no race conditions to deal with (e.g. 
ompd and ptd). Figure 4 and Figure 5 show the time spent 
computing forces in weak and strong scaling experiments. In 
these experiments, the PThreads version (pt) uses force 
symmetry and avoids race conditions by guarding the force 

 
Figure 2: Break down of the memory footprint of each process, in 

strong scaling. 

updates with locks (mutex). 
The threaded versions achieve a lower performance than 

the reference MPI version, and that is primarily for the 
reasons discussed above: either the overhead of managing 
race conditions or the extra work done. By looking at the 
OpenMP versions we see that there is little difference 
between the two strategies, although it appears that as the 
number of threads increase, so does the overhead of the 
atomic updates and it can become a significant bottleneck on 
a larger number of cores. With PThreads the difference is 
even greater between the two versions; the atomic updates 
using mutexes incur a very high overhead and it gets 
significantly worse at 16 threads, when the threads involved 
communicate across sockets. Going from 8 to 16 cores, the 
multithreaded versions lose some performance due to the 
cost of inter-socket communication; this effect is addressed 
in Section V.D. 

When duplicating the force calculation, the PThreads 
outperforms the OpenMP version. In PThreads the threads 
operate on an explicitly defined set of cells, and force 
duplication is necessary only in interactions between cells 
owned by different threads. This advantage diminishes in 
strong scaling, as the surface-to-volume ratio decreases and 
an increasingly large fraction of forces are computed twice. 

 
Figure 3: Strong scaling performance and timing breakdown. 



In Section V.E we address this issue improving the 
surface-to-volume ratio. 

C. The Overhead in Concurrent Updates 

In order to further investigate the overhead in concurrent 
updates, we compared the performance of the PThreads 
using multiple implementations of the concurrent updates. 
Figure 6 shows the execution time for these versions and for 
reference the MPI version and the PThreads version with no 
force symmetry. In addition, we also compare to a version 
that ignores race conditions altogether (nolock), and although 
it produces incorrect results, it provides an additional 
comparison point showing what would be the performance of 
a zero-overhead atomic update. 

The cost of locking is directly reflected in the 
computation time. Up to 4 cores, the performance of nolock 
and pdt is on par with the reference, then coherency and 
sharing costs create a performance gap (this effect is 
addressed in Section V.D). The other PThreads versions can 
be ranked by the cost of the mutual exclusion mechanism 
used to implement the atomic updates, with mutexes being 
the worse, and the pseudo-atomic instruction implementation 
being the best. In the latter case, the overall overhead of the 
atomic instruction ranges from 23% to 27% of the force 
computation time (with a 25% average) when compared to 
the nolock version. Even assuming a zero-overhead atomic 
instruction shows no tangible benefit with respect to not 
using force symmetry. After all, in the PThreads 
implementation only a fraction of the forces are actually 
computed twice, and just preserving cache coherency seems 
to have a high enough cost to offset the benefit of doing less 
work. Duplicating some of the work and avoiding concurrent 
updates entirely appears to be an easier and more scalable 
solution. 

D. The Penalty of Non Uniform Memory Access 

In the previous Sections we observed in several occasions 
that there is a performance penalty in using both processors. 
Each processor controls the four DRAM channels connected 
to the socket, and that form a NUMA node. To share data 
and implement the coherency protocol, the memory 
controllers communicate via the Quick Path Interconnect 
(QPI). In contrast, when all the threads of a process execute 
on a single processor there is no traffic due to coherency, or 
data sharing across the two NUMA nodes; trivially, for a 
pure MPI implementation that is always the case. 
A simple way to avoid this issue is to execute a process per 
socket. The speedup achieved varies depending on the size of 
the problem and the version of the code, but in all cases there 
is a significant improvement. Table 1 shows the speedup 
achieved when running with one process per processor (PTD 
Socket) instead of with one process per node (PTD Node). 
For both problem sizes there is a substantial performance 
improvement. Nevertheless, on 16 cores the PThreads 
implementation is still slower than the MPI reference 
(approximately a 10% increase in time). 

Alternatively, to avoid traffic due sharing, the memory 
allocation and data initialization phase should be carefully 
designed to ensure that data structures are mapped to NUMA 
minimizing intra-socket traffic, which is the case if threads 
access only data in the local NUMA node. 

 
Figure 4: Weak scaling comparison between MPI, OpenMP, and 

PThreads versions. 

 

 
Figure 5: Strong scaling comparison between MPI, OpenMP, and 

PThreads versions. 

 

 
Figure 6: Strong scaling comparison between PThreads versions 
using different implementations of the atomic updates. 

However, this approach adds great complexity to the code, 
especially if work is scheduled dynamically; in this case a 
static placement would not be a viable solution. 



Table 1: Performance comparison between one process (16 treads) 

and two processes (8 threads per process) on 16 cores. 

Lattice MPI PTD Node PTD Socket Speedup 

88x44x44  7.95  9.99 8.75  1.14 

22x22x22  1.87 2.55 2.04  1.25 

E. The Impact of the Surface-to-Volume Ratio 

The PThreads version that achieved the best performance 
used force duplication (ptd). The amount of work in this 
version is comparable to the amount of work done in the 
MPI version. In both cases, the forces are computed twice on 
the boundaries of the space assigned to a process or a thread. 
However, while the MPI decomposition is controlled by 
parameters (the processor grid that defines the space 
decomposition is specified at startup), the mapping of cells to 
threads is not. In ptd, cells are assigned to threads by id 
ranges, which results in sub-optimal mapping. The results of 
controlling the mapping to threads are shown in Table 2; the 
effect of the improved mapping is reported as 1.05 times 
speedup. The ptd version with blocked decomposition and 
mapping is comparable in performance to the MPI version, 
with just a 5% increase in computation time. That 5% 
overhead is essentially the cost of managing threads, 
scheduling the work, and maintain coherency within the 
processor. 

Table 2: Performance comparison between simple and blocked 
mapping, on 16 cores. 

Lattice MPI PTD Simple PTD Blocked Speedup 

88x44x44  7.95  8.75 8.34  1.05 

22x22x22  1.87 2.04 1.95  1.05 

F. Adapting to Performance Variability 

As we head towards Exascale technology, factors such as 
feature size scaling, voltage scaling, power capping, and heat 
management will create imbalance in core speed, even within 
the same chip. It is the anticipation of this imbalance that has 
spawned a large growth in programming models and runtime 
systems that adapt to this imbalance through dynamic 
scheduling. To explore this capability we extended the ptd 
version with dynamic scheduling. 

The dynamic scheduling is implemented using a map of 
cells, to keep track of the progress made by each thread, and 
to give faster threads the opportunity to steal work from 
slower threads. The granularity of the map determines the 
size of the chunks of work managed by the map, which is 
defined in number of cells to update. 

To simulate uneven core speed we use clock modulation. 
With clock modulation, it is possible to arbitrarily slow down 
one or more processor cores by reducing the duty cycle [18]. 
First, we evaluate the cost of dynamic scheduling as a 
function of the granularity with the expectation that finer 
granularity enables better balancing. Next we investigate the 
effect of granularity and its ability to adapt to changes in core 
speed, and finally we compare the ability of the different 
versions (e.g. MPI, OpenMP, PThreads) to adapt to core 
speed changes. 

The first experiment was in determining the overhead of 
dynamically scheduling work and how that overhead varies 
with varying work granularity. With dynamic scheduling, 

threads actively acquire a portion of the cells to update and 
maintain a shared data structure representing the status of the 
cells (i.e. the map of cells); access to the map is synchronized 
in the case of race conditions. The ptd version with static and 
dynamic scheduling was run on 16 cores with increasingly 
coarse granularity. The overhead was calculated as the 
increase in the runtime of the dynamic scheduling version 
versus the static scheduling version. The overhead is shown 
in Table 3. As expected, the overhead depends on the 
granularity, but a comparison across the two problem sizes 
indicate that it is not just an issue of a constant cost in 
accessing the scheduling structures, otherwise in the large 
problem size the overhead should be a small fraction of the 
computing time as seen in the smaller problem size. What we 
observe is the combination of that and the effect of increased 
work due to smaller blocks of work with higher surface-to-
volume ratio than in the static version. 

The overhead is also dependent on the number of 
operations required by updates (although not shown here,  
with the LJ potentials, which is less compute intensive, we 
measured higher overheads than in the EAM potentials). 
More complex potentials with a larger number of terms 
would experience a lower overhead. 

Table 3: Analysis of overhead as a function of granularity in work 
decomposition, on 16 cores. 

Lattice Cells Overhead (%) 

88x44x44 128 22.5 

88x44x44 256 21.5 

88x44x44 512 6.8 

88x44x44 1024 0.6 

22x22x22 1 32.5 

22x22x22 8 20.2 

22x22x22 16 16.8 

22x22x22 32 15.3 

22x22x22 64 4.4 
 
Finer granularity enables a more balanced distribution of 

the work, but it also incurs higher overhead in scheduling a 
larger number of small chunks of work. In the next 
experiment we looked at how the granularity affects the 
code’s ability to adapt to imbalances in the core speeds. For 
the entire execution, one of the 16 cores was configured to 
run with a reduced duty cycle. We explored a duty cycle 
range from 100% (no variation) down to a 25% duty cycle.  
In the experiment we also examine the effects at different 
granularity. Figure 7 illustrates how the force time is affected 
by core speed imbalance and how granularity affects the 
ability to rebalance the workload. By looking at the timing of 
the force calculation (bars), we see that the time increases 
when the duty cycle decreases, but very slowly. Looking at 
the slowdown (lines indicating a speedup lower than 1), we 
see that even at the coarsest granularity the slowdown is 
small for a running one core at 25% of its speed. Finer 
granularities are more effective and enable a better load 
balancing, but also incur higher overheads; we observe that 
the higher overhead is not compensated by a better balancing 



and the coarsest granularity always results in faster 
execution. 

In the next experiment we examine the ability of the 
different versions to adapt to core frequency changes. We 
compared three versions of the code: MPI, OpenMP 
(executing with dynamic scheduling), and PThreads.  The 
OpenMP version was executed enabling dynamic scheduling 
to adaptively assign portions of the iteration space to threads; 
the chunk size was to set 64 which corresponds to the work 
granularity in the ptd. Figure 8 shows both the time (bars) 
and the slowdown (lines) of the force calculation.  The MPI 
reference implementation is marginally faster than the ptd if 
the cores speed is about the same, but as the difference 
exceeds the 12.5% threshold, the PThreads version is faster, 
and the gap grows proportionally to the difference in core 
speed between the slow core and the others. As seen in the 
speedup, the MPI reference does not rebalance the workload 
and is synchronous, and therefore it reflects the speed of the 
slowest core.  The OpenMP version is inferior in 
performance compared to the PThreads version; however, 
the OpenMP version does balance the work although not as 
effectively as the PThreads version. 

To conclude, we tested with all the cores at variable 
speed. A process controls the duty cycle of each core and 
periodically wakes up and changes the duty cycle of all the 
cores, by one step (6.25%), randomly choosing the direction 
(increment or decrement). The range of the duty cycle is set 
from a user selected minimum duty cycle, to 100%. Initially 
all cores execute at the speed in the middle of the range; 
then, every second the process wakes up and changes the 
duty cycle of all cores; since the changes are random, the 
average tends to stay in the middle of the range. For the 
experiments we selected ranges with the minimum at 87.5%, 
75%, 50%, and 6.25%. 

The OpenMP version executed with two different 
scheduling policies: dynamic (static chunk size of 64 cells, 
which is labelled omd) and guided (starting from a chunk of 
size 64 and then decreasing the size to fine tune the 
balancing, which is labelled omg). The results are shown in 
Figure 9, together with the average and average minimum 
duty cycle, showing an approximation of the ideal and the 
worst case slowdown. 

With all cores running at lower speeds it is no surprise 
that the performance degrades significantly. The omg version 
had ideal balancing for the first two settings, but it degraded 
rapidly at lower duty cycle settings, whereas omd has a more 
consistent behavior and ends achieving the best balance 

VI. CONCLUSIONS AND FUTURE WORK 

Exascale systems will have many-core nodes but the 
increase in core count will not be matched by the increase in 
memory capacity. In addition, the performance of individual 
cores will vary, creating load imbalance even in regular 
problems. In this paper, we explore some the benefits and 
challenges in implementing a multithreaded molecular 
dynamics proxy application to address the aforementioned 
issues. We focused on tradeoffs between atomic operations 
and work duplication, and between work granularity load 
balance. In addition, we tried to address the performance 
issues that may arise in sharing data within an address space. 

 
Figure 7: Time and speedup in the force calculation at different 

granularities for a 22x22x22 lattice on 16 cores. The duty cycle is 

changed only on one core.  

 
Figure 8: Time and speedup in the force calculation for different 

versions of the code for a 22x22x22 lattice on 16 cores. The duty 
cycle is changed only on one core. 

 
Figure 9: Time and speedup in the force calculation for different 

versions of the code for a 22x22x22 lattice on 16 cores (500 
timesteps). The duty cycle is changed periodically for all the cores. 

 



In CoMD, it is tempting to try and reduce the amount of 
computation done (by virtue of force symmetry) and using 
some form of synchronized updates, but the overhead of the 
synchronization mechanisms limits both the performance and 
the scalability of this approach; we observed significant 
overheads even when allowing unsynchronized concurrent 
updates suggesting that even hardware floating atomic 
operations will be inferior to a non-synchronized approach. 
Future work will explore a scheduling system to 
automatically avoid race conditions while using force 
symmetry. 

Sharing data even between threads has a cost and the cost 
depends on the distance of the computing cores, for example 
as we observed by distributing 16 threads on two sockets. 
The relative distance between cores will increase with deeper 
on-chip memory hierarchies; as a simple way to cope with 
traffic between NUMA node we placed one MPI process per 
processor; alternative solutions would be APIs to explicitly 
control the placement of data structures to NUMA nodes, or 
a runtime system that improves locality by integrating data 
placement with scheduling. 

As the speed of cores varies, adaptive work scheduling 
limits the potential performance loss by preventing cores to 
be idle while there is work available. As the difference in 
cores speed increases these techniques are necessary. 
However, striking an optimal balance between overhead and 
load balance (controlled for example by the granularity of the 
work chunks) is not trivial. Even an adapting policy like the 
guided scheduling in OpenMP seemed to fail compared to a 
simpler dynamic scheduling with fixed size chunks of work. 
Especially when all the cores speed varies, achieving a good 
balance does require fine grain work decomposition but that 
will negatively affect the overhead. When the difference 
between the average core speed and the minimum is not 
large, there amount of overhead for load balancing that can 
be tolerated is very small and more effective work sharing 
mechanisms should be considered. Currently, we are 
investigating a CoMD version that uses the OCR runtime 
system [19, 20]. This study will explore new algorithms and 
architectural features using the runtime system and an 
architectural simulator, and take advantage of features of the 
runtime system, such as automatic load balancing and 
customizable scheduling policies. 

Finally, while this study touches on some key aspects of 
multithreading on future architectures, further investigation 
is required to gain a deeper understanding on the issues 
touched, to improve the quality of the prototypes 
implemented (especially the scheduling and work 
distribution system which is admittedly a primitive 
implementation), and to continue the study in other 
directions. Other directions that will be investigated include 
data movement on node and between nodes, and scaling to 
larger number of cores and of nodes. 
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