
A Caching Approach to Reduce Communication
in Graph Search Algorithms

Pietro Cicotti
San Diego Supercomputer Center

University of California, San Diego
pcicotti@sdsc.edu

Laura Carrington
San Diego Supercomputer Center

University of California, San Diego
lcarring@sdsc.edu

Abstract—In many scientific and computational domains,
graphs are used to represent and analyze data. Such graphs
often exhibit the characteristics of small-world networks: few
high-degree vertexes connect many low-degree vertexes.
Despite the randomness in a graph search, it is possible to
capitalize on this characteristic and cache relevant information
in high-degree vertexes. We applied this idea by caching
remote vertex ids in a parallel breadth-first search
implementation, and demonstrated 1.6x to 2.4x speedup over
the reference implementation on 64 to 1024 cores. We
proposed a system design in which resources are dedicated
exclusively to caching, and shared among a set of nodes. Our
evaluation demonstrates that this design has the potential to
reduce communication and improve performance over large
scale systems. Finally, we used a memcached system as the
cache server finding that a generic protocol that does not
match the usage semantics may hinder the potential
performance improvements.

Keywords—computer architecture, accelerator architectures;
parallel processing, parallel algorithm; data system, data
analysis.

I. INTRODUCTION
The exponential growth of data observed in recent years

has fueled the interest in systems and methodologies to
analyze large quantities of data. This new need for systems
that can efficiently solve data-intensive problems has
challenged common design practices and evaluation metrics.

By design, most HPC benchmarks represent classical
HPC workloads and numerical methods. As an example, the
LINPACK benchmark has been used since 1993 to rank the
supercomputer in the Top500 list [1, 2]; the performance
achieved in LINPACK has been used to compare the
capability and performance of machines using this simple
FLOPS-oriented metric. However, this class of benchmarks
provides little insight into the capability of a system to
perform data-intensive computations that characterize
emerging workloads (e.g. cybersecurity, bio and medical
informatics, social networks).

The Graph500 benchmarks address this gap by defining
kernels that are a core part of analytics workloads [3, 4]. In
this study we consider an algorithm and system design for

the breadth-first search (BFS) kernel. The BFS kernel
consists in traversing a graph and constructing a BFS tree
rooted in a randomly chosen vertex. The graph is a scale-free
graph randomly generated by a Kronecker generator [5]. The
graph generated presents the characteristics of a small-world
network, which is a type of graph in which most nodes are
not adjacent, but many have a common adjacent vertex.
Essentially, there is a small subset of high-degree vertexes
(the degree of the vertexes follows a power law distribution).
This kind of graphs occurs in many domains, and numerous
examples can be found in applications including social
networks, computer networks, and gene networks.

In this paper, we propose to use a caching mechanism to
reduce the computation and communication in data-intensive
computations. By taking advantage of the distribution of
edges in the graph, we show that caching can significantly
reduce communication, and consequently the computation
required to process the exchanged information. Despite the
inherent randomness in the data access pattern, the search
repeatedly traverses edges that are incident on a small
number of vertexes (the high-degree vertexes), which in the
case of remotely stored vertexes is an operation that requires
communication. Our solution involves caching the remote
vertexes that have been previously visited, and checking the
cache before initiating any communication. In addition, we
propose to use a dedicated server for the caching, much as a
co-processor shared between different computing nodes.

The primary contributions of this work are:

• a novel BFS implementation that reduces the cost of
communication by using caching,

• an evaluation of the new algorithm,

• a proposed system design in which resources are
dedicated to caching and shared among a localized set
of nodes, and

• an evaluation of the proposed design and a discussion
of the challenges encountered.

The paper is organized as follows. Section II provides a
brief overview of related work. Section III describes the BFS
algorithms that are evaluated in this study. Section III.C
provides more details on the algorithms and all the variants

implemented. In Section V we present the results and
compare the different variants. Finally, conclusions and
future work are presented in Section VI.

II. RELATED WORK
Previous research characterized the performance of the

BFS kernel [6], and explored different optimizations. Several
studies focused on the performance on shared-memory
nodes, for example minimizing the memory footprint of
frequently accessed data (e.g. using bitmaps) [7, 8], or
reducing intra-socket communication [9]. Other work has
been done on distributed BFS managed partitioning as a way
to control load balance and communication [10, 11], or
adopting sparse linear algebra representations to reduce the
storage requirements [12].

Many studies targeted specific architectures, such as
general purpose shared-memory architectures [7, 13-16],
heavily multithreaded shared-memory architectures [17, 18],
accelerators [19-23], and specialized processors [24-26]. In
this work we propose a specialized system design although
the approach is not specific to BFS and generalizes to other
data-intensive algorithms that exhibit similar locality
observed in searching small-world graphs.

Among other optimizations to the BFS algorithm, it has
been proposed to change the search to find new vertexes
adjacent to the frontier, rather than edges crossing the
frontier, to take advantage of the performance characteristics
of the search on small-world graphs and reduce the number
of memory accesses [27]. Similarly, our solution leverages
the characteristics of the computation on small-world graphs
but reduces primarily the inter-node communication.

Our approach complements the optimizations proposed in
previous research by providing a solution that is widely
applicable in reducing the communication cost. By avoiding
unnecessary communication, the proposed algorithm reduces
the cost of communication, both in terms of performance and
energy efficiency. Our idea is also applicable to other search
algorithms and data-intensive workloads exhibiting similar
locality properties. In addition, we propose to implement a
system that couples the general purpose nodes in a system
with reconfigurable resources to accelerate and improve the
energy efficiency of data intensive workloads that exhibit
similar locality properties observed in searching small-world
graphs.

III. VERTEX-CACHING ALGORITHM
In this section we first describe a simple Breadth-First

Search (BFS) algorithm [28], then we detail the parallel
variant of the algorithm, and finally we cover the parallel
variant that uses caching to reduce communication. In the
latter, no assumption is made about the implementation of
the caching mechanism.

A. Breadth-First Search Algorithm (BFS)
Given a graph G, represented by a set of vertexes V and a

set of edges E, and given a source vertex s, a BFS algorithm
searches G starting from s, trying to find all the vertexes that

can be reached. At the same time, it computes the distance of
each vertex v from s, defined as the fewest number of edges
traversed to reach v from s. In practice, by tracking the
previous vertex on the path for each vertex reached, a BFS
also produces a tree rooted in s that contains all the reachable
vertexes and their shortest paths.

Algorithm 1 illustrates a BFS formulation that computes
the BFS tree for a given graph G, but that does not compute
the distance from the source. The tree is stored as a parent
relationship, where each vertex reached has a parent vertex,
and the source s is the root (the root has itself as a parent).
Starting from the source (line 2), a FIFO queue (Q) contains
the vertexes discovered that may have uncovered adjacent
vertexes. Then, as long as there are vertexes in the queue, a
vertex v is removed from the queue (line 4), and then all its
adjacent vertexes w that have not been reached yet (and
therefore have no parent) are added to the queue (line 7); in
addition, v is recorded in the parent vector for each of the
newly reached vertexes (line 8).

The algorithm ends when there are no more vertexes in
the queue. At that point, the parent vector contains a
representation of the discovered BFS tree.

B. Parallel Breadth-First Search (P-BFS)
The BFS algorithm presented in Sec. III.A can be

parallelized with a message passing strategy, as shown in
Algorithm 2. Initially, the set of vertexes V are randomly
generated, distributed to processes, and stored in compressed
Row Storage format (CSR); the parent vector is partitioned
across all the processes according to the vertexes’
distribution. Then, each process runs a slightly modified
instance of the BFS algorithm where first, whenever a
remote vertex is reached, the owner process is notified via a
message that contains the vertex reached and its predecessor
(potentially its parent, line 13). Second, the depth level of the
BFS tree is explicitly marked via a global synchronization
(line 19) to prevent a shorter path via remote vertex to be
ignored in favor of a longer local path that is discovered first
(this scenario can occur if the remote parent notification is
late with respect to the discovery of the local path). The
global synchronization ensures that the processes advance
through depth levels of the tree synchronously avoiding the
scenario described. The global synchronization also detects
global quiescence (all queues are empty) and triggers
termination (lines 19 and 3).

Algorithm 1: Sequential BFS algorithm

BFS(V,E,s)
1 parent[s]=s
2 Q=(s)
3 while(Q≠∅)
4 v=pop(Q)
5 for w ∈ {w|(v,w) ∈ E}
6 if(parent[w] is null)
7 Q=(Q,w)
8 parent[w]=v

C. Vertex-Caching Algorithm (VC-BFS)
In the parallel BFS algorithm, many messages may be

sent to notify a process of different candidate parents for the
same vertex, even from the same process. While the first
message received may effectively add an edge to the BFS
tree, all following messages are redundant and have no
effect.

In addition, in the case of small-world graphs, the edges
are not uniformly distributed across vertexes, but follow a
power law distribution resulting in few popular vertexes, and
many loosely connected vertexes. As a consequence, the
majority of the messages are in fact redundant. Most vertexes
will connect to a small set of vertexes, which with a great
likelihood have already been reached.

To take advantage of this characteristic, we propose to
cache remote vertexes that have been reached, and before
sending a message check and update the cache. If the remote
vertex is in the cache, the message is redundant and there is
no need to send it, otherwise the cache is updated and the
message is sent. As long as the hit rate is high, the
communication traffic is reduced accordingly.

Algorithm 3 illustrates the small difference between the
two algorithms, P-BFS and C-BFS. The added condition that
determines whether or not a message is sent, which is
emphasized in line 12, is dependent on whether the vertex w
is present in the cache; otherwise, if w is not present the
cache is updated with w.

IV. IMPLEMENTATION
In this section we describe the implementation of the

reference, which is a parallel MPI implementation of
Algorithm 2, and three variants that extend Algorithm 2 with
caching, as described in III.C.

A. Reference Implementation
As a reference implementation, we used the MPI

implementation made available by Graph 500 [4]. The
reference implementation closely resembles Algorithm 2,
except that communication is asynchronous, and edges sent
to other processes are coalesced into fewer messages. When
a remote vertex v is reached, the corresponding edge is added
to the coalescing buffer designated to the owner of v; if the
buffer reaches maximum capacity, the message is sent
asynchronously. Incoming messages are often checked for
the following: when an edge is added to a buffer, if a send to
the corresponding owner is pending, and all pending send
and receive operations are also checked for completion. In
addition, before the global synchronization, all the pending
send and receive operations are checked again to ensure no
message is in transit before moving to the next depth level.

B. Local Caching (LC-BFS)
In the local caching variant, each process maintains a

vertex cache in memory. The cache is implemented as a
simple direct mapped cache and does not store any value,
other than the vertex number (i.e. the vertex number is both
tag and value). The cache is implemented using an array of
configurable size, and directly maps a vertex v to an entry in
the array. When checking for a vertex v, if the entry it maps

P-BFS(V,E,s)

1 parent[s]=s
2 Q=(s)
3 while(!alldone)
4 Q’=∅
5 while(Q≠∅)
6 v=pop(Q)
7 for w ∈ {w|(v,w) ∈ E}
8 if(is_local(w))
9 if(parent[w] is null)
10 Q’=(Q’,w)
11 parent[w]=v
12 else
13 send (v,w) to owner(w)
14 Q=Q’
15 for (v,w) in received
16 if(parent[w] is null)
17 Q=(Q,v)
18 parent[w]=v
19 alldone = global_check(Q is ∅)

Algorithm 2: Parallel BFS

C-BFS(V,E,s)

1 parent[s]=s
2 Q=(s)
3 while(!alldone)
4 Q’=∅
5 while(Q≠∅)
6 v=pop(Q)
7 for w ∈ {w|(v,w) ∈ E}
8 if(is_local(w))
9 if(parent[w] is null)
10 Q’=(Q’,w)
11 parent[w]=v
12 else if(cache_miss(w))
13 send (v,w) to owner(w)
14 Q=Q’
15 for (v,w) in received
16 if(parent[w] is null)
17 Q=(Q,v)
18 parent[w]=v
19 alldone = global_check(Q is ∅)

Algorithm 3: Caching BFS

to contains the value v, then it is a hit, otherwise it is a miss
and the current entry is replaced by v. While this
implementation is very simplistic and could be improved by
employing ad-hoc policies and heuristics, it is extremely fast
and a check is completed in only a few instructions.

C. Remote Caching (RC-BFS)
In the remote caching variant, a different server process

maintains the cache. Each MPI process connects via a TCP
socket to a cache server, which can be shared, and queries
the server to check whether a vertex is cached or not. Figure
1 shows a system configuration in which several nodes
connected to the same switch (e.g. all the nodes of a rack)
share a cache server. This design has several benefits: the
cost of maintaining the cache is shared, for example the
memory to allocate the cache is reduced by avoiding
replicating the cache in each process and competing with the
memory required to store the graph; the caching system may
be optimized for that single task; the cache is populated
sooner which would likely result in higher hit rates; and
finally, by physically localizing communication, low-latency
messages are exchanged in place of long-latency messages
going across multiple hops in the interconnect (similarly the
energy cost of communication should be reduced).

The queries are packed in a message according to a
simple protocol. Each message sent to the server contains a
counter indicating the number of edges that follow, to
immediately determine the size of the message, and a
sequence of edges, as shown in Figure 2. On the server, the
destination vertex of each edge received is checked against
the cache (the cache is implemented as in the LC-BFS
variant). For each message received, a response with the
same format is sent back to the client: a counter precedes the
list of edges received whose destination vertex missed in the
cache (in case of no misses, a counter value of zero is sent as
acknowledgment). Upon receipt of the response, a process
scans the message and sends each edge contained to the
owner of the destination vertex.

Figure 2: Message format. The counter field is a 64bit, and it is followed by
pairs of vertex ids (each pair represents an edge). Vertex ids are also 64bit
values.

D. Memcached Caching (MC-BFS)
Memcached is a distributed object caching system widely

used to speedup database queries in web applications [29].
Memcached supports web applications that exhibit temporal
locality, as in web searches, social networks, or media
sharing services with significant popularity/ viral effects, and
by providing quick responses to cached queries.

A memcached server maintains a key-value store
typically accessed via TCP connections. The protocol is
generic and supports keys and values of arbitrary size, and
variants of basic get and set operations (plus other
miscellaneous operations). In the context of this study, the
memcached server is used in a somewhat unusual way
because no value needs to be effectively retrieved, and the
cache is used only to check the presence of a key.

To check for a vertex id, a GETKQ operation is issued
with the vertex id as the key. In response, the server sends
both the value and key if the key is present, or nothing if the
key is not present. Using the quiet version of the operation
(notice the Q in the GETKQ) helps reducing traffic avoiding
failure responses. The requests are then compared to the
responses received, and each get failed (no response) is
treated as a miss. A miss triggers an additional SETQ request
to add the missing vertex id to the cache. A SETQ always
succeeds, and using the quiet version of the operation avoids
a response.

Since the server processes all the requests as a stream,
multiple operations are coalesced within the same message to
minimize the number of round-trips (and therefore minimize
the latency of each operation). Each sequence of requests is
terminated by a NOOP, to ensure that a response is produced
even in the case that all the quiet GETKQ operations trigger
no response. The acknowledgement to the NOOP also
signals the end of the response message. If only a NOOP
acknowledgement is received, then all the requests missed,
and all the vertex ids are added to the cache.

Each SETQ operation has a fixed-size header of 24 bytes,
followed by a 24-byte body containing the key, the value,
and an unused mandatory field. The header identifies the
type of operation, and the size of the key and the value,
which in this case are both 64 bits. The GETKQ operation
has a 24 bytes header followed by the key (vertex id) to be
retrieved. The reply from the server, which is only generated
in the case of a hit, contains a response for each operation.
The reply has a fixed-size header, a 4B mandatory field,
which is ignored, and the retrieved key-value pair. Notice
that for our purpose the key (hence the use of the K variant
of GET) is used to signal which vertex id was a hit in the
cache. The value, however, is irrelevant and it is ignored (the
source vertex id was used as value to simplify validation and
debugging). The format of all the operations used is
illustrated in Figure 3.

We also developed an alternative implementation that
uses the ADD operation and limits each request to a single
round-trip. The ADD operation, with the destination vertex
as the key and the source vertex as the value, succeeds if the
key is not already present: the server responds to the ADD

Figure 1: System configuration with remote caching.

operation with a success or a failure notification, which is
then interpreted as a miss (the key was not present) or a hit
(the key was already present). While this implementation
requires fewer messages, it performed poorly and was
discarded in favor of the GET/SET implementation. There
are two reasons for this poor performance: first, as long as
there is sufficient reuse of the data in cache the GET/SET
implementation rarely requires two round trips, and second
the ADD operation is always more expensive than the GET
(apparently the ADD involves locking internal data
structures regardless of whether the ADD fails or not).

Figure 3: Format of messages, operations and responses.

V. EVALUATION
In this section we evaluate the different variants

presented. For the evaluation we used two systems, a large
system, and a 4-node cluster and a dedicated memcached
appliance.

The large system is Stampede, a cluster hosted at the
Texas Advanced Computing Center (TACC) [30, 31]. The
compute nodes have two 8-core Intel Xeon processors
(Sandy Bridge E5-2680), running at 2.7 GHz, and 32GB of
DRAM (DDR3-1600). The 6400 nodes of the Stampede are
connected via FDR Infiniband, in an oversubscribed 2-level
fat-tree topology. Stampede also features Xeon Phi cards, a
feature we did not use for this study.

The second test system that we used for the experiments
is a 4-node cluster and a memcached system. Each node has
two 4-core Intel Xeon processors (Nehalem E-5530), running
at 2.4 GHz, and 24GB of DRAM (DDR3-1066). The nodes
are connected to a 1Gb Ethernet switch.

The memcached system is a Convey HC2ex [32]. The
Convey system is a host+co-processor system featuring 4
FPGAs. The host has two Intel Xeon processors (E5-2663)
running at 2.6GHz, and 128GB of DRAM (DDR3-1600); the
coprocessor has four FPGA and 32GB of DRAM (SG-
DIMM). The FPGAs are programmed using personalities
that are highly specialized configurations for specific
workloads. In this this study, the FPGAs are programmed
with the memcached personality [33].

A. Local Caching
First we compare LC-BFS to the reference. We ran both

LC-BFS and a reference implementation on Stampede, using
from 64 cores and up to 1024 cores, weakly scaling a graph
with a ratio of 220 vertexes per core (scale 26 to 30, edge
factor of 16), a ratio that is comparable to the that found in
several top results on the Graph 500 list. Once a graph is
generated, the search is repeated 64 times for different
randomly chosen roots and the timing is averaged.

Figure 4 shows the comparison between the reference
implementation, labelled no-cache, with the LC-BFS variant
and different cache sizes. First, the results show a significant
loss of parallel efficiency, which is not unexpected for the
workload, and that is a consequence of the increased
communication and latency (the distance between nodes also
increases) and the congestion generated on the interconnect.
The LC-BFS variants are consistently faster, with an average
speedup of 2.3 for the cache size of 16M vertexes (128MB).

In addition the figure illustrates how the larger the cache
is the larger the speedup; however, it is apparent that as the
problem size grows, the cache needs to be scaled to preserve
the performance benefit. On 1024 cores and 230 vertexes,
many high-degree vertexes are not found in the local cache.
In such cases the performance benefit may be very little.
Nevertheless, even the 2M cache achieves a 1.5 speedup on
1024 cores, indicating that the performance benefit increases
rapidly with the cache size.
Table 1: Cache hit rates and message statistics. The benchmarks runs on
1024 cores, scale 30, and edge factor 16. The column repeated vertexes
indicates how may vertexes received already have a parent in the BFS tree.
The column normalized MPI messages shows the reduction in total
messages exchanged between MPI processes.

Cache
Size

(vertexes)

Cache
Size

(MB)

Cache
Hit Rate

Repeated
Vertexes

(%)

Normalized
MPI

Messages

Speedup

0 0 0.0 98.7 1.00 1.00
220 8 22.3 98.3 0.78 1.02
221 16 29.7 98.2 0.71 1.23
222 32 37.4 97.9 0.63 1.36
223 64 44.2 97.7 0.57 1.47
224 128 49.2 97.4 0.52 1.60

Table 1 shows the hit rate on the local cache, and the
resulting reduction in repeated vertexes and MPI messages
on 1024 cores. Surprisingly, there are a large number of
unnecessary vertexes sent even with caching. Since each
process has its own cache, and because the cache hit rate is
relatively low, several vertexes are still visited multiple times
(e.g. a vertex has been visited either by the owner process or
by another remote process). However, the overall number of
MPI messages is significantly reduced leading to the

Figure 4: Weak Scaling at 220 vertexes per core and edge factor 16.

performance improvements observed. The metric on the
normalized MPI messages shows the number of MPI
messages in LC-BFS normalized with respect to the
reference.

We also compared LC-BFS to the reference in the case of
strong scaling. For these experiments we ran from 128 cores
up to 1024 cores, strong scaling a graph with 228 vertexes
(scale 28, edge factor of 16). As before, the search is
repeated 64 times for different randomly chosen roots and
the timing is averaged.

Even in this case the caching implementation is
significantly faster than the reference, with an average
speedup ranging from 1.6 to 2.5 for cache size respectively
from 1M vertexes to 16M vertexes. Nevertheless, the
reference implementation scales better.

 Table 2 lists the speedup achieved by the reference and
by LC-BFS with different cache sizes. The reference
(column N-C) improves more than the caching variants as
core count increases. The caching variant seem to reach a
performance plateau once it achieves a 2.1 speedup relative
to 128 cores, as observed for the 16M-vertexes cache
configuration (16M-V).
Table 2: Relative speedup to 128 cores on a graph of class 28 and edge
factor 16.

Cores N-C 1M-V 2M-V 4M-V 8M-V 16M-V
256 1.4 1.1 1.3 1.6 1.6 1.7
512 1.9 1.6 1.8 1.9 1.9 2.1

1024 3.0 2.0 2.1 2.1 2.1 2.1

Strong scaling shows that there are two competing
effects: the local subset of vertexes continues to shrink and
the amount of work per process continues to shrink, but at
the same time the cache is less effective as there are fewer
opportunities to fill the cache and successively avoid
communication. Table 3 illustrates this effect in the cache hit
rates and communication statistics in that the cache hit rate
decreases, and so does the effect on communication when the
number of cores increases, as indicated by the fact that the
normalized MPI messages count increases. Despite this

effect of diminishing return, the caching variant is
significantly faster than the reference in every case, and even
when using fewer cores; as an example, with a cache of 16M
vertexes on 256 cores it is 1.4x faster than the reference on
1024 cores.
Table 3: Cache hit rates and message statistics. The benchmarks runs scaling
from 128 cores to 1024 cores, with a graph of scale 28, and edge factor 16.
The column repeated vertexes indicates how may vertexes received already
have a parent in the BFS tree. The column normalized MPI messages shows
the reduction in total messages exchanged between MPI processes. The
speedup is relative to the reference (no-cache).

Cores Cache
Hit Rate

Repeated
Vertexes

(%)

Normalized
MPI

Messages

Speedup

128 69.4 95.4 0.31 2.5
256 64.5 96.0 0.36 3.1
512 58.0 96.7 0.43 2.8

1024 50.4 97.2 0.53 1.7

B. Remote Caching
The second set of experiments aims at evaluating a

different system design in which a dedicated server
maintains the cache. In this case, checking the cache involves
communication with the server.

We compare 5 different configurations on the 4-node test
cluster: the reference implementation, the local caching
variant (LC-BFS) with a cache size of 8M vertexes per
process, the remote caching variant (RC-BFS) with a cache
size of 8M vertexes, and a memcached variant with a cache
size of 128MB; the latter is run against both the standard
software memcached distribution (MC-BFS) and the
accelerated memcached (CY-BFS) that uses the HC2ex
coprocessor.

In this evaluation, a graph of scale 23 is weakly scaled
from 8 cores to 32 cores, with a ratio of 220 vertexes per core.
Figure 6 shows the comparison between the reference
implementation, LC-BFS, and RC-BFS. On 8 cores, for the
reference implementation all the communication is intra-
node, whereas with remote caching an equivalent number of
messages are directed to the cache. The latency gap between
intra-node and inter-node communication is evidently
reflected in the performance gap between the reference and
RC-BFS. LC-BFS improves on the reference but only
marginally, on 8 cores, because the cost of communication is
relatively low. However, as messages cross the node
boundaries the increase in latency is directly reflected in the
performance of the reference. On 16 cores LC-BFS is 3.8x
faster, and on 32 cores is 4.1x faster than the reference. RC-
BFS is slower than the reference, although the gap reduces
rapidly as the portion of off-node communication increases.
The more cores that are utilized, the more messages are
directed off node and the overhead of accessing the cache is
compensated by the reduction in MPI messages. Scaling
further to multi-level network topologies, the latency of the
MPI messages increases, due to the increase in distance
between nodes, and in that case the cost of communication
could be much higher than the cost of accessing the cache; at
large scale, the performance advantage in reducing global
communication with RC-BFS should outweigh the overhead
of accessing the cache.

Figure 5: Strong scaling at 228 vertexes and edge factor 16.

Figure 6: Weak scaling comparison between the reference (no-cache), local
caching with caches size of 8M vertexes (LC-BFS), and remote caching with
a cache size of 8M vertexes (RC-BFS). The graph has 220 vertexes per core
and edge factor 16.

Table 4 further supports this hypothesis by showing that
remote caching achieves greater reduction in communication
than local caching. By sharing the cache, each process avoids
communication by also considering the vertexes discovered
by other processes. In addition, as the problem size grows the
local cache is less effective in reducing communication,
because the chances of traversing a vertex visited by another
process increases, but that is not the case for a shared cache.
Table 4: Communication reduction in local and remote caching.

Cores Normalized
MPI

Messages in
LC-BFS

Normalized
MPI

Messages
in RC-BFS

8 0.07 0.02
16 0.12 0.02
32 0.18 0.02

Using memcached on the server resulted in a
performance degradation. The tests with the RC-BFS
implementation exposed some performance loss due to the
communication with the server. In RC-BFS, the same
number of MPI messages that the reference would generate
are directed to the server, while the MPI messages are greatly
reduced. The overall number of messages is not reduced, and
performance gains are possible only if the latency of a query
to the server is less than the latency of a point-to-point MPI
message. This is not the case on the test cluster, and in fact, a
large fraction of the MPI messages are intra-node and the
latency is even smaller than that of communicating with the
server. Nevertheless, the communication protocol is simple
enough that the performance loss observed is contained
within 32% on 32 cores. However, with memcached there
are several issues that hinder performance. The protocol is
much more general than the simple protocol used in RC-
BFS, adding complexity to the otherwise minimal
implementation of BFS, and that costs some processing time
both on the computing processes and the server. More

importantly, the protocol does not include operations that
match usage model well like: checking whether a key is
present involves one or two round-trip messages, and
additional processing of the response messages.

The result is that memcached becomes a bottleneck and
the performance observed is much worse than that of the
reference (up to 2 orders of magnitude for the 32 cores test).
We also observed slight differences in the effectiveness in
reducing communication between the standard and the
accelerated version, likely due to differences in allocating
and using the space specified as the cache size. The
difference in communication reduction penalizes the
accelerated version that on 8 cores is slower than the
standard version. Compared to the standard memcached, the
accelerated version achieves a 2.5x speedup on 8 cores, and a
1.2x speedup on 16 and 32 cores. Table 5 shows the speedup
and the normalized MPI messages for the remote caching
variants. As mentioned, differences in the way the cache
capacity is utilized are reflected in less reduction in the
communication. In memcached, 128MB are used to store the
keys, values, and additional extra data. Since both keys and
values are 8B ids, the cache can contain less than 8M
vertexes, which is the capacity of the cache used in RC-BFS.
Table 5: Communication reduction in remote caching, and with memcached.

Cores Normalized
MPI

Messages in
RC-BFS

Normalized
MPI

Messages in
MC-BFS

Normalized
MPI

Messages in
CY-BFS

Speedup of
CY-BFS

over
MC-BFS

8 0.02 0.11 0.11 2.5
16 0.02 0.19 0.19 1.2
32 0.02 0.29 0.29 1.2

VI. CONCLUSIONS AND FUTURE WORK
Often, data-intensive applications access data randomly

but with some inherent locality. This is the case, for example,
in searches on small-world graphs, in which a few high-
degree vertexes are frequently traversed. This paper shows
that it is possible to leverage this characteristic by caching
information about the frequently accessed vertexes and avoid
communication, and perhaps also computation.

In this study we implemented this approach in a BFS
benchmark used by Graph 500 to rank systems by their
ability to execute data-intensive workloads. By caching high-
degree vertexes, a parallel BFS implementation can avoid the
communication cost otherwise incurred when sending
messages that are disregarded by the receiving process.

Results with an in-memory cache implementation have
shown great performance improvement when compared to
the reference implementation. Both in weak scaling and
strong scaling, from 64 cores to 1024 cores, the speedup
observed ranges from 1.6x to 2.4x for a cache of 16M
vertexes in capacity. Message counters embedded in the code
also demonstrate that the number of MPI messages is greatly
reduces, with almost a 50% reduction on 1024 cores.

We have shown that a remote-caching system has several
advantages over an in-memory implementation, including a
much higher hit rate and potentially can be more effective in
reducing communication. However, remote caching does not

reduce the overall number of messages, and the overhead of
accessing a remote caching system needs to be compensated
by reducing more expensive point-to-point communication;
this would be the case in large scale systems. In this case, the
nodes within a building block (e.g. a rack) would share a
cache, and avoid expensive communication across the entire
system. In addition, the shared caching may become a
bottleneck is servicing a large number of neighbors; how to
find a suitable ratio of caching systems per nodes should be
investigated.

Using existing caching systems may be challenging.
General protocols whose operations do not match the
semantics of the intended usage lead to an inefficient
implementation and hinder performance. As a consequence,
even accelerated implementations that can sustain high
throughput workloads suffer a performance penalty when
compared to simple ad-hoc caching implementations.

Future work will focus on validating our results with
remote caching at scale, and on different search algorithms.
In addition, we will address the inefficiencies of the protocol
by implementing ad-hoc extensions to memcached and the
corresponding personality for the co-processor.

ACKNOWLEDGMENT
This work was supported by the UC Laboratory Fees research

program and used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science
Foundation grant number ACI-1053575. This work used resources
generously provided by Convey Computer.

REFERENCES
[1] "Top 500," www.top500.org.
[2] J. J. Dongarra, and H. D. Simon, High Performance Computing in the

U.S. 1995- An Analysis on the Basis of the TOP500 List, University of
Tennessee, 1995.

[3] R. C. Murphy, K. B. Wheeler, B. W. Barret, and J. A. Ang, "Introducing
the Graph 500."

[4] "Graph 500," www.graph500.org.
[5] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z.

Ghahramani, “Kronecker Graphs: An Approach to Modeling
Networks,” J. Mach. Learn. Res., vol. 11, pp. 985-1042, 2010.

[6] T. Suzumura, K. Ueno, H. Sato, K. Fujisawa, and S. Matsuoka,
“Performance characteristics of Graph500 on large-scale distributed
environment,” in Proceedings of the 2011 IEEE International
Symposium on Workload Characterization, 2011, pp. 149-158.

[7] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable Graph
Exploration on Multicore Processors,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, 2010, pp. 1-11.

[8] F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R. Choudhury,
and Y. Sabharwal, “Breaking the speed and scalability barriers for graph
exploration on distributed-memory machines,” in Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis, Salt Lake City, Utah, 2012, pp. 1-
12.

[9] Z. Cui, L. Chen, M. Chen, Y. Bao, Y. Huang, and H. Lv, “Evaluation
and Optimization of Breadth-First Search on NUMA Cluster,” in
Proceedings of the 2012 IEEE International Conference on Cluster
Computing, 2012, pp. 438-448.

[10] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and
U. Catalyurek, “A Scalable Distributed Parallel Breadth-First Search
Algorithm on BlueGene/L,” in Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, 2005, pp. 25.

[11] E. Chow, K. Henderson, and A. Yoo, Distributed breadth-First Search
with 2-D Partitioning, LLNL, 2005.

[12] J. Gilbert, S. Reinhardt, and V. Shah, "High-Performance Graph
Algorithms from Parallel Sparse Matrices," Applied Parallel
Computing. State of the Art in Scientific Computing, Lecture Notes in
Computer Science B. Kågström, E. Elmroth, J. Dongarra and J.
Waśniewski, eds., pp. 260-269: Springer Berlin Heidelberg, 2007.

[13] Y. Xia, and V. K. Prasanna, "Topologically Adaptive Parallel Breadth-
First Search on Multicore Processors."

[14] G. Cong, and D. A. Bader, “Designing irregular parallel algorithms with
mutual exclusion and lock-free protocols,” J. Parallel Distrib. Comput.,
vol. 66, no. 6, pp. 854-866, 2006.

[15] G. Cong, G. Almasi, and V. Saraswat, “Fast PGAS Implementation of
Distributed Graph Algorithms,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2010, pp. 1-11.

[16] D. A. Bader, G. Cong, and J. Feo, “On the Architectural Requirements
for Efficient Execution of Graph Algorithms,” in Proceedings of the
2005 International Conference on Parallel Processing, 2005, pp. 547-
556.

[17] D. Mizell, and K. Maschhoff, “Early experiences with large-scale Cray
XMT systems,” in Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, 2009, pp. 1-9.

[18] D. A. Bader, and K. Madduri, “Designing Multithreaded Algorithms for
Breadth-First Search and st-connectivity on the Cray MTA-2,” in
Proceedings of the 2006 International Conference on Parallel
Processing, 2006, pp. 523-530.

[19] D. P. Scarpazza, O. Villa, and F. Petrini, “Efficient Breadth-First Search
on the Cell/BE Processor,” IEEE Trans. Parallel Distrib. Syst., vol. 19,
no. 10, pp. 1381-1395, 2008.

[20] E. Saule, and Ü. V. Catalyurek, “An Early Evaluation of the Scalability
of Graph Algorithms on the Intel MIC Architecture,” in Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, 2012, pp. 1629-1639.

[21] L. Luo, M. Wong, and W.-m. Hwu, “An effective GPU implementation
of breadth-first search,” in Proceedings of the 47th Design Automation
Conference, Anaheim, California, 2010, pp. 52-55.

[22] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient Parallel Graph
Exploration on Multi-Core CPU and GPU,” in Proceedings of the 2011
International Conference on Parallel Architectures and Compilation
Techniques, 2011, pp. 78-88.

[23] P. Harish, and P. J. Narayanan, “Accelerating large graph algorithms on
the GPU using CUDA,” in Proceedings of the 14th international
conference on High performance computing, Goa, India, 2007, pp. 197-
208.

[24] O. Mencer, Z. Huang, and L. Huelsbergen, “HAGAR: Efficient Multi-
context Graph Processors,” in Proceedings of the Reconfigurable
Computing Is Going Mainstream, 12th International Conference on
Field-Programmable Logic and Applications, 2002, pp. 915-924.

[25] M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T. E.
Uribe, T. F. J. Knight, and A. DeHon, “GraphStep: A System
Architecture for Sparse-Graph Algorithms,” in Proceedings of the 14th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, 2006, pp. 143-151.

[26] C. Computer, "Convey Computer Announces Graph 500 Performance,"
2011.

[27] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
breadth-first search,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, Salt
Lake City, Utah, 2012, pp. 1-10.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms: MIT Press, 2001.

[29] B. Fitzpatrick, “Distributed caching with memcached,” Linux J., vol.
2004, no. 124, pp. 5, 2004.

[30] "Texas Advanced Computing Center," https://www.tacc.utexas.edu/.
[31] TACC, “Stampede, Dell PowerEdge C8220 Cluster with Intel Xeon Phi

coprocessors.”
[32] C. Computer, “The HC series.”
[33] C. Computer, “Convey launches Hybrid-Core Memcached Appliance,”

2013.

