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Abstract—In many scientific and computational domains, 
graphs are used to represent and analyze data. Such graphs 
often exhibit the characteristics of small-world networks: few 
high-degree vertexes connect many low-degree vertexes. 
Despite the randomness in a graph search, it is possible to 
capitalize on this characteristic and cache relevant information 
in high-degree vertexes. We applied this idea by caching 
remote vertex ids in a parallel breadth-first search 
implementation, and demonstrated 1.6x to 2.4x speedup over 
the reference implementation on 64 to 1024 cores. We 
proposed a system design in which resources are dedicated 
exclusively to caching, and shared among a set of nodes. Our 
evaluation demonstrates that this design has the potential to 
reduce communication and improve performance over large 
scale systems. Finally, we used a memcached system as the 
cache server finding that a generic protocol that does not 
match the usage semantics may hinder the potential 
performance improvements. 

Keywords—computer architecture, accelerator architectures; 
parallel processing, parallel algorithm; data system, data 
analysis. 

I. INTRODUCTION 
The exponential growth of data observed in recent years 

has fueled the interest in systems and methodologies to 
analyze large quantities of data. This new need for systems 
that can efficiently solve data-intensive problems has 
challenged common design practices and evaluation metrics. 

By design, most HPC benchmarks represent classical 
HPC workloads and numerical methods. As an example, the 
LINPACK benchmark has been used since 1993 to rank the 
supercomputer in the Top500 list [1, 2]; the performance 
achieved in LINPACK has been used to compare the 
capability and performance of machines using this simple 
FLOPS-oriented metric. However, this class of benchmarks 
provides little insight into the capability of a system to 
perform data-intensive computations that characterize 
emerging workloads (e.g. cybersecurity, bio and medical 
informatics, social networks). 

The Graph500 benchmarks address this gap by defining 
kernels that are a core part of analytics workloads [3, 4]. In 
this study we consider an algorithm and system design for 

the breadth-first search (BFS) kernel. The BFS kernel 
consists in traversing a graph and constructing a BFS tree 
rooted in a randomly chosen vertex. The graph is a scale-free 
graph randomly generated by a Kronecker generator [5]. The 
graph generated presents the characteristics of a small-world 
network, which is a type of graph in which most nodes are 
not adjacent, but many have a common adjacent vertex. 
Essentially, there is a small subset of high-degree vertexes 
(the degree of the vertexes follows a power law distribution). 
This kind of graphs occurs in many domains, and numerous 
examples can be found in applications including social 
networks, computer networks, and gene networks. 

In this paper, we propose to use a caching mechanism to 
reduce the computation and communication in data-intensive 
computations. By taking advantage of the distribution of 
edges in the graph, we show that caching can significantly 
reduce communication, and consequently the computation 
required to process the exchanged information. Despite the 
inherent randomness in the data access pattern, the search 
repeatedly traverses edges that are incident on a small 
number of vertexes (the high-degree vertexes), which in the 
case of remotely stored vertexes is an operation that requires 
communication. Our solution involves caching the remote 
vertexes that have been previously visited, and checking the 
cache before initiating any communication. In addition, we 
propose to use a dedicated server for the caching, much as a 
co-processor shared between different computing nodes. 

The primary contributions of this work are: 

• a novel BFS implementation that reduces the cost of 
communication by using caching, 

• an evaluation of the new algorithm, 

• a proposed system design in which resources are 
dedicated to caching and shared among a localized set 
of nodes, and 

• an evaluation of the proposed design and a discussion 
of the challenges encountered. 

The paper is organized as follows. Section II provides a 
brief overview of related work. Section III describes the BFS 
algorithms that are evaluated in this study. Section III.C 
provides more details on the algorithms and all the variants 



implemented. In Section V we present the results and 
compare the different variants. Finally, conclusions and 
future work are presented in Section VI. 

II. RELATED WORK 
Previous research characterized the performance of the 

BFS kernel [6], and explored different optimizations. Several 
studies focused on the performance on shared-memory 
nodes, for example minimizing the memory footprint of 
frequently accessed data (e.g. using bitmaps)  [7, 8], or 
reducing intra-socket communication [9]. Other work has 
been done on distributed BFS managed partitioning as a way 
to control load balance and communication [10, 11], or 
adopting sparse linear algebra representations to reduce the 
storage requirements [12]. 

Many studies targeted specific architectures, such as 
general purpose shared-memory architectures [7, 13-16], 
heavily multithreaded shared-memory architectures [17, 18], 
accelerators [19-23], and specialized processors [24-26]. In 
this work we propose a specialized system design although 
the approach is not specific to BFS and  generalizes to other 
data-intensive algorithms that exhibit similar locality 
observed in searching small-world graphs. 

Among other optimizations to the BFS algorithm, it has 
been proposed to change the search to find new vertexes 
adjacent to the frontier, rather than edges crossing the 
frontier, to take advantage of the performance characteristics 
of the search on small-world graphs and reduce the number 
of memory accesses [27]. Similarly, our solution leverages 
the characteristics of the computation on small-world graphs 
but reduces primarily the inter-node communication. 

Our approach complements the optimizations proposed in 
previous research by providing a solution that is widely 
applicable in reducing the communication cost. By avoiding 
unnecessary communication, the proposed algorithm reduces 
the cost of communication, both in terms of performance and 
energy efficiency. Our idea is also applicable to other search 
algorithms and data-intensive workloads exhibiting similar 
locality properties. In addition, we propose to implement a 
system that couples the general purpose nodes in a system 
with reconfigurable resources to accelerate and improve the 
energy efficiency of data intensive workloads that exhibit 
similar locality properties observed in searching small-world 
graphs. 

III. VERTEX-CACHING ALGORITHM 
In this section we first describe a simple Breadth-First 

Search (BFS) algorithm [28], then we detail the parallel 
variant of the algorithm, and finally we cover the parallel 
variant that uses caching to reduce communication. In the 
latter, no assumption is made about the implementation of 
the caching mechanism. 

A. Breadth-First Search Algorithm (BFS) 
Given a graph G, represented by a set of vertexes V and a 

set of edges E, and given a source vertex s, a BFS algorithm 
searches G starting from s, trying to find all the vertexes that 

can be reached. At the same time, it computes the distance of 
each vertex v from s, defined as the fewest number of edges 
traversed to reach v from s. In practice, by tracking the 
previous vertex on the path for each vertex reached, a BFS 
also produces a tree rooted in s that contains all the reachable 
vertexes and their shortest paths. 

Algorithm 1 illustrates a BFS formulation that computes 
the BFS tree for a given graph G, but that does not compute 
the distance from the source. The tree is stored as a parent 
relationship, where each vertex reached has a parent vertex, 
and the source s is the root (the root has itself as a parent). 
Starting from the source (line 2), a FIFO queue (Q) contains 
the vertexes discovered that may have uncovered adjacent 
vertexes. Then, as long as there are vertexes in the queue, a 
vertex v is removed from the queue (line 4), and then all its 
adjacent vertexes w that have not been reached yet (and 
therefore have no parent) are added to the queue (line 7); in 
addition, v is recorded in the parent vector for each of the 
newly reached vertexes (line 8). 

The algorithm ends when there are no more vertexes in 
the queue. At that point, the parent vector contains a 
representation of the discovered BFS tree.  

 
 

B. Parallel Breadth-First Search (P-BFS) 
The BFS algorithm presented in Sec. III.A can be 

parallelized with a message passing strategy, as shown in 
Algorithm 2. Initially, the set of vertexes V are randomly 
generated, distributed to processes, and stored in compressed 
Row Storage format (CSR); the parent vector is partitioned 
across all the processes according to the vertexes’ 
distribution. Then, each process runs a slightly modified 
instance of the BFS algorithm where first, whenever a 
remote vertex is reached, the owner process is notified via a 
message that contains the vertex reached and its predecessor 
(potentially its parent, line 13). Second, the depth level of the 
BFS tree is explicitly marked via a global synchronization 
(line 19) to prevent a shorter path via  remote vertex to be 
ignored in favor of a longer local path that is discovered first 
(this scenario can occur if the remote parent notification is 
late with respect to the discovery of the local path). The 
global synchronization ensures that the processes advance 
through depth levels of the tree synchronously avoiding the 
scenario described. The global synchronization also detects 
global quiescence (all queues are empty) and triggers 
termination (lines 19 and 3).  

Algorithm 1: Sequential BFS algorithm 

BFS(V,E,s) 
1 parent[s]=s 
2 Q=(s) 
3 while(Q≠∅) 
4  v=pop(Q) 
5  for w ∈ {w|(v,w) ∈ E} 
6   if(parent[w] is null) 
7         Q=(Q,w) 
8    parent[w]=v 
 
 
 
 
 
 
 



 
 

C. Vertex-Caching Algorithm (VC-BFS) 
In the parallel BFS algorithm, many messages may be 

sent to notify a process of different candidate parents for the 
same vertex, even from the same process. While the first 
message received may effectively add an edge to the BFS 
tree, all following messages are redundant and have no 
effect. 

In addition, in the case of small-world graphs, the edges 
are not uniformly distributed across vertexes, but follow a 
power law distribution resulting in few popular vertexes, and 
many loosely connected vertexes. As a consequence, the 
majority of the messages are in fact redundant. Most vertexes 
will connect to a small set of vertexes, which with a great 
likelihood have already been reached. 

To take advantage of this characteristic, we propose to 
cache remote vertexes that have been reached, and before 
sending a message check and update the cache. If the remote 
vertex is in the cache, the message is redundant and there is 
no need to send it, otherwise the cache is updated and the 
message is sent. As long as the hit rate is high, the 
communication traffic is reduced accordingly. 

Algorithm 3 illustrates the small difference between the 
two algorithms, P-BFS and C-BFS. The added condition that 
determines whether or not a message is sent, which is 
emphasized in line 12, is dependent on whether the vertex w 
is present in the cache; otherwise, if w is not present the 
cache is updated with w. 

 
 

IV. IMPLEMENTATION 
In this section we describe the implementation of the 

reference, which is a parallel MPI implementation of 
Algorithm 2, and three variants that extend Algorithm 2 with 
caching, as described in III.C. 

A. Reference Implementation 
As a reference implementation, we used the MPI 

implementation made available by Graph 500 [4]. The 
reference implementation closely resembles Algorithm 2, 
except that communication is asynchronous, and edges sent 
to other processes are coalesced into fewer messages. When 
a remote vertex v is reached, the corresponding edge is added 
to the coalescing buffer designated to the owner of v; if the 
buffer reaches maximum capacity, the message is sent 
asynchronously. Incoming messages are often checked for 
the following: when an edge is added to a buffer, if a send to 
the corresponding owner is pending, and all pending send 
and receive operations are also checked for completion. In 
addition, before the global synchronization, all the pending 
send and receive operations are checked again to ensure no 
message is in transit before moving to the next depth level.  

B. Local Caching (LC-BFS) 
In the local caching variant, each process maintains a 

vertex cache in memory. The cache is implemented as a 
simple direct mapped cache and does not store any value, 
other than the vertex number (i.e. the vertex number is both 
tag and value). The cache is implemented using an array of 
configurable size, and directly maps a vertex v to an entry in 
the array. When checking for a vertex v, if the entry it maps 

P-BFS(V,E,s) 

1 parent[s]=s 
2 Q=(s) 
3  while(!alldone) 
4  Q’=∅ 
5  while(Q≠∅) 
6   v=pop(Q) 
7   for w ∈ {w|(v,w) ∈ E} 
8    if(is_local(w)) 
9     if(parent[w] is null) 
10      Q’=(Q’,w) 
11     parent[w]=v 
12    else 
13     send (v,w) to owner(w) 
14  Q=Q’ 
15  for (v,w) in received 
16    if(parent[w] is null) 
17    Q=(Q,v) 
18    parent[w]=v 
19  alldone = global_check(Q is ∅) 
 

Algorithm 2: Parallel BFS 

C-BFS(V,E,s) 

1 parent[s]=s 
2 Q=(s) 
3  while(!alldone) 
4  Q’=∅ 
5  while(Q≠∅) 
6   v=pop(Q) 
7   for w ∈ {w|(v,w) ∈ E} 
8    if(is_local(w)) 
9     if(parent[w] is null) 
10      Q’=(Q’,w) 
11     parent[w]=v 
12    else if(cache_miss(w)) 
13     send (v,w) to owner(w) 
14  Q=Q’ 
15  for (v,w) in received 
16    if(parent[w] is null) 
17    Q=(Q,v) 
18    parent[w]=v 
19  alldone = global_check(Q is ∅) 
 

Algorithm 3: Caching BFS 



to contains the value v, then it is a hit, otherwise it is a miss 
and the current entry is replaced by v. While this 
implementation is very simplistic and could be improved by 
employing ad-hoc policies and heuristics, it is extremely fast 
and a check is completed in only a few instructions. 

C. Remote Caching (RC-BFS) 
In the remote caching variant, a different server process 

maintains the cache. Each MPI process connects via a TCP 
socket to a cache server, which can be shared, and queries 
the server to check whether a vertex is cached or not. Figure 
1 shows a system configuration in which several nodes 
connected to the same switch (e.g. all the nodes of a rack) 
share a cache server. This design has several benefits: the 
cost of maintaining the cache is shared, for example the 
memory to allocate the cache is reduced by avoiding 
replicating the cache in each process and competing with the 
memory required to store the graph; the caching system may 
be optimized for that single task; the cache is populated 
sooner which would likely result in higher hit rates; and 
finally, by physically localizing communication, low-latency 
messages are exchanged in place of long-latency messages 
going across multiple hops in the interconnect (similarly the 
energy cost of communication should be reduced). 

 
 

The queries are packed in a message according to a 
simple protocol. Each message sent to the server contains a 
counter indicating the number of edges that follow, to 
immediately determine the size of the message, and a 
sequence of edges, as shown in Figure 2. On the server, the 
destination vertex of each edge received is checked against 
the cache (the cache is implemented as in the LC-BFS 
variant). For each message received, a response with the 
same format is sent back to the client: a counter precedes the 
list of edges received whose destination vertex missed in the 
cache (in case of no misses, a counter value of zero is sent as 
acknowledgment). Upon receipt of the response, a process 
scans the message and sends each edge contained to the 
owner of the destination vertex. 

 
Figure 2: Message format. The counter field is a 64bit, and it is followed by 
pairs of vertex ids (each pair represents an edge). Vertex ids are also 64bit 
values. 

D. Memcached Caching (MC-BFS) 
Memcached is a distributed object caching system widely 

used to speedup database queries in web applications [29]. 
Memcached supports web applications that exhibit temporal 
locality, as in web searches, social networks, or media 
sharing services with significant popularity/ viral effects, and 
by providing quick responses to cached queries. 

A memcached server maintains a key-value store 
typically accessed via TCP connections. The protocol is 
generic and supports keys and values of arbitrary size, and 
variants of basic get and set operations (plus other 
miscellaneous operations). In the context of this study, the 
memcached server is used in a somewhat unusual way 
because no value needs to be effectively retrieved, and the 
cache is used only to check the presence of a key. 

To check for a vertex id, a GETKQ operation is issued 
with the vertex id as the key. In response, the server sends 
both the value and key if the key is present, or nothing if the 
key is not present. Using the quiet version of the operation 
(notice the Q in the GETKQ) helps reducing traffic avoiding 
failure responses. The requests are then compared to the 
responses received, and each get failed (no response) is 
treated as a miss. A miss triggers an additional SETQ request 
to add the missing vertex id to the cache. A SETQ always 
succeeds, and using the quiet version of the operation avoids 
a response. 

Since the server processes all the requests as a stream, 
multiple operations are coalesced within the same message to 
minimize the number of round-trips (and therefore minimize 
the latency of each operation). Each sequence of requests is 
terminated by a NOOP, to ensure that a response is produced 
even in the case that all the quiet GETKQ operations trigger 
no response. The acknowledgement to the NOOP also 
signals the end of the response message. If only a NOOP 
acknowledgement is received, then all the requests missed, 
and all the vertex ids are added to the cache. 

Each SETQ operation has a fixed-size header of 24 bytes, 
followed by a 24-byte body containing the key, the value, 
and an unused mandatory field. The header identifies the 
type of operation, and the size of the key and the value, 
which in this case are both 64 bits. The GETKQ operation 
has a 24 bytes header followed by the key (vertex id) to be 
retrieved. The reply from the server, which is only generated 
in the case of a hit, contains a response for each operation. 
The reply has a fixed-size header, a 4B mandatory field, 
which is ignored, and the retrieved key-value pair. Notice 
that for our purpose the key (hence the use of the K variant 
of GET) is used to signal which vertex id was a hit in the 
cache. The value, however, is irrelevant and it is ignored (the 
source vertex id was used as value to simplify validation and 
debugging). The format of all the operations used is 
illustrated in Figure 3. 

We also developed an alternative implementation that 
uses the ADD operation and limits each request to a single 
round-trip. The ADD operation, with the destination vertex 
as the key and the source vertex as the value, succeeds if the 
key is not already present: the server responds to the ADD 

Figure 1: System configuration with remote caching. 



operation with a success or a failure notification, which is 
then interpreted as a miss (the key was not present) or a hit 
(the key was already present). While this implementation 
requires fewer messages, it performed poorly and was 
discarded in favor of the GET/SET implementation. There 
are two reasons for this poor performance: first, as long as 
there is sufficient reuse of the data in cache the GET/SET 
implementation rarely requires two round trips, and second 
the ADD operation is always more expensive than the GET 
(apparently the ADD involves locking internal data 
structures regardless of whether the ADD fails or not).  

 
Figure 3: Format of messages, operations and responses. 

 

V. EVALUATION 
In this section we evaluate the different variants 

presented. For the evaluation we used two systems, a large 
system, and a 4-node cluster and a dedicated memcached 
appliance. 

The large system is Stampede, a cluster hosted at the 
Texas Advanced Computing Center (TACC) [30, 31]. The 
compute nodes have two 8-core Intel Xeon processors 
(Sandy Bridge E5-2680), running at 2.7 GHz, and 32GB of 
DRAM (DDR3-1600). The 6400 nodes of the Stampede are 
connected via FDR Infiniband, in an oversubscribed 2-level 
fat-tree topology. Stampede also features Xeon Phi cards, a 
feature we did not use for this study. 

The second test system that we used for the experiments 
is a 4-node cluster and a memcached system. Each node has 
two 4-core Intel Xeon processors (Nehalem E-5530), running 
at 2.4 GHz, and 24GB of DRAM (DDR3-1066). The nodes 
are connected to a 1Gb Ethernet switch. 

The memcached system is a Convey HC2ex [32]. The 
Convey system is a host+co-processor system featuring 4 
FPGAs. The host has two Intel Xeon processors (E5-2663) 
running at 2.6GHz, and 128GB of DRAM (DDR3-1600); the 
coprocessor has four FPGA and 32GB of DRAM (SG-
DIMM). The FPGAs are programmed using personalities 
that are highly specialized configurations for specific 
workloads. In this this study, the FPGAs are programmed 
with the memcached personality [33]. 

A. Local Caching 
First we compare LC-BFS to the reference. We ran both 

LC-BFS and a reference implementation on Stampede, using 
from 64 cores and up to 1024 cores, weakly scaling a graph 
with a ratio of 220 vertexes per core (scale 26 to 30, edge 
factor of 16), a ratio that is comparable to the that found in 
several top results on the Graph 500 list. Once a graph is 
generated, the search is repeated 64 times for different 
randomly chosen roots and the timing is averaged. 

Figure 4 shows the comparison between the reference 
implementation, labelled no-cache, with the LC-BFS variant 
and different cache sizes. First, the results show a significant 
loss of parallel efficiency, which is not unexpected for the 
workload, and that is a consequence of the increased 
communication and latency (the distance between nodes also 
increases) and the congestion generated on the interconnect. 
The LC-BFS variants are consistently faster, with an average 
speedup of 2.3 for the cache size of 16M vertexes (128MB). 

 
 

In addition the figure illustrates how the larger the cache 
is the larger the speedup; however, it is apparent that as the 
problem size grows, the cache needs to be scaled to preserve 
the performance benefit. On 1024 cores and 230 vertexes, 
many high-degree vertexes are not found in the local cache. 
In such cases the performance benefit may be very little. 
Nevertheless, even the 2M cache achieves a 1.5 speedup on 
1024 cores, indicating that the performance benefit increases 
rapidly with the cache size.   
Table 1: Cache hit rates and message statistics. The benchmarks runs on 
1024 cores, scale 30, and edge factor 16. The column repeated vertexes 
indicates how may vertexes received already have a parent in the BFS tree. 
The column normalized MPI messages shows the reduction in total 
messages exchanged between MPI processes. 

Cache 
Size 

(vertexes) 

Cache 
Size 

(MB) 

Cache 
Hit Rate 

Repeated 
Vertexes 

(%) 

Normalized 
MPI 

Messages 

Speedup 

0 0 0.0 98.7 1.00 1.00 
220 8 22.3 98.3 0.78 1.02 
221 16 29.7 98.2 0.71 1.23 
222 32 37.4 97.9 0.63 1.36 
223 64 44.2 97.7 0.57 1.47 
224 128 49.2 97.4 0.52 1.60 

 

Table 1 shows the hit rate on the local cache, and the 
resulting reduction in repeated vertexes and MPI messages 
on 1024 cores. Surprisingly, there are a large number of 
unnecessary vertexes sent even with caching. Since each 
process has its own cache, and because the cache hit rate is 
relatively low, several vertexes are still visited multiple times 
(e.g. a vertex has been visited either by the owner process or 
by another remote process). However, the overall number of 
MPI messages is significantly reduced leading to the 

Figure 4: Weak Scaling at 220 vertexes per core and edge factor 16. 



performance improvements observed. The metric on the 
normalized MPI messages shows the number of MPI 
messages in LC-BFS normalized with respect to the 
reference. 

We also compared LC-BFS to the reference in the case of 
strong scaling. For these experiments we ran from 128 cores 
up to 1024 cores, strong scaling a graph with 228 vertexes 
(scale 28, edge factor of 16). As before, the search is 
repeated 64 times for different randomly chosen roots and 
the timing is averaged. 

Even in this case the caching implementation is 
significantly faster than the reference, with an average 
speedup ranging from 1.6 to 2.5 for cache size respectively 
from 1M vertexes to 16M vertexes. Nevertheless, the 
reference implementation scales better. 

 
 

 Table 2 lists the speedup achieved by the reference and 
by LC-BFS with different cache sizes. The reference 
(column N-C) improves more than the caching variants as 
core count increases. The caching variant seem to reach a 
performance plateau once it achieves a 2.1 speedup relative 
to 128 cores, as observed for the 16M-vertexes cache 
configuration (16M-V). 
Table 2: Relative speedup to 128 cores on a graph of class 28 and edge 
factor 16. 

Cores N-C 1M-V 2M-V 4M-V 8M-V 16M-V 
256 1.4 1.1 1.3 1.6 1.6 1.7 
512 1.9 1.6 1.8 1.9 1.9 2.1 

1024 3.0 2.0 2.1 2.1 2.1 2.1 
 

Strong scaling shows that there are two competing 
effects: the local subset of vertexes continues to shrink and 
the amount of work per process continues to shrink, but at 
the same time the cache is less effective as there are fewer 
opportunities to fill the cache and successively avoid 
communication. Table 3 illustrates this effect in the cache hit 
rates and communication statistics in that the cache hit rate 
decreases, and so does the effect on communication when the 
number of cores increases, as indicated by the fact that the 
normalized MPI messages count increases. Despite this 

effect of diminishing return, the caching variant is 
significantly faster than the reference in every case, and even 
when using fewer cores; as an example, with a cache of 16M 
vertexes on 256 cores it is 1.4x faster than the reference on 
1024 cores. 
Table 3: Cache hit rates and message statistics. The benchmarks runs scaling 
from 128 cores to 1024 cores, with a graph of scale 28, and edge factor 16. 
The column repeated vertexes indicates how may vertexes received already 
have a parent in the BFS tree. The column normalized MPI messages shows 
the reduction in total messages exchanged between MPI processes. The 
speedup is relative to the reference (no-cache). 

Cores Cache 
Hit Rate 

Repeated 
Vertexes 

(%) 

Normalized 
MPI 

Messages 

Speedup 

128 69.4 95.4 0.31 2.5 
256 64.5 96.0 0.36 3.1 
512 58.0 96.7 0.43 2.8 

1024 50.4 97.2 0.53 1.7 

B. Remote Caching 
The second set of experiments aims at evaluating a 

different system design in which a dedicated server 
maintains the cache. In this case, checking the cache involves 
communication with the server. 

We compare 5 different configurations on the 4-node test 
cluster: the reference implementation, the local caching 
variant (LC-BFS) with a cache size of 8M vertexes per 
process, the remote caching variant (RC-BFS) with a cache 
size of 8M vertexes, and a memcached variant with a cache 
size of 128MB; the latter is run against both the standard 
software memcached distribution (MC-BFS) and the 
accelerated memcached (CY-BFS) that uses the HC2ex 
coprocessor. 

In this evaluation, a graph of scale 23 is weakly scaled 
from 8 cores to 32 cores, with a ratio of 220 vertexes per core. 
Figure 6 shows the comparison between the reference 
implementation, LC-BFS, and RC-BFS. On 8 cores, for the 
reference implementation all the communication is intra-
node, whereas with remote caching an equivalent number of 
messages are directed to the cache. The latency gap between 
intra-node and inter-node communication is evidently 
reflected in the performance gap between the reference and 
RC-BFS. LC-BFS improves on the reference but only 
marginally, on 8 cores, because the cost of communication is 
relatively low. However, as messages cross the node 
boundaries the increase in latency is directly reflected in the 
performance of the reference. On 16 cores LC-BFS is 3.8x 
faster, and on 32 cores is 4.1x faster than the reference. RC-
BFS is slower than the reference, although the gap reduces 
rapidly as the portion of off-node communication increases. 
The more cores that are utilized, the more messages are 
directed off node and the overhead of accessing the cache is 
compensated by the reduction in MPI messages. Scaling 
further to multi-level network topologies, the latency of the 
MPI messages increases, due to the increase in distance 
between nodes, and in that case the cost of communication 
could be much higher than the cost of accessing the cache; at 
large scale, the performance advantage in reducing global 
communication with RC-BFS should outweigh the overhead 
of accessing the cache. 

Figure 5: Strong scaling at 228 vertexes and edge factor 16. 



 
Figure 6: Weak scaling comparison between the reference (no-cache), local 
caching with caches size of 8M vertexes (LC-BFS), and remote caching with 
a cache size of 8M vertexes (RC-BFS). The graph has 220 vertexes per core 
and edge factor 16. 

 

Table 4 further supports this hypothesis by showing that 
remote caching achieves greater reduction in communication 
than local caching. By sharing the cache, each process avoids 
communication by also considering the vertexes discovered 
by other processes. In addition, as the problem size grows the 
local cache is less effective in reducing communication, 
because the chances of traversing a vertex visited by another 
process increases, but that is not the case for a shared cache.  
Table 4: Communication reduction in local and remote caching. 

Cores Normalized 
MPI 

Messages in 
LC-BFS 

Normalized 
MPI 

Messages 
in RC-BFS 

8 0.07 0.02 
16 0.12 0.02 
32 0.18 0.02 

 

Using memcached on the server resulted in a 
performance degradation. The tests with the RC-BFS 
implementation exposed some performance loss due to the 
communication with the server. In RC-BFS, the same 
number of MPI messages that the reference would generate 
are directed to the server, while the MPI messages are greatly 
reduced. The overall number of messages is not reduced, and 
performance gains are possible only if the latency of a query 
to the server is less than the latency of a point-to-point MPI 
message. This is not the case on the test cluster, and in fact, a 
large fraction of the MPI messages are intra-node and the 
latency is even smaller than that of communicating with the 
server. Nevertheless, the communication protocol is simple 
enough that the performance loss observed is contained 
within 32% on 32 cores. However, with memcached there 
are several issues that hinder performance. The protocol is 
much more general than the simple protocol used in RC-
BFS, adding complexity to the otherwise minimal 
implementation of BFS, and that costs some processing time 
both on the computing processes and the server. More 

importantly, the protocol does not include operations that 
match usage model well like: checking whether a key is 
present involves one or two round-trip messages, and 
additional processing of the response messages. 

The result is that memcached becomes a bottleneck and 
the performance observed is much worse than that of the 
reference (up to 2 orders of magnitude for the 32 cores test). 
We also observed slight differences in the effectiveness in 
reducing communication between the standard and the 
accelerated version, likely due to differences in allocating 
and using the space specified as the cache size. The 
difference in communication reduction penalizes the 
accelerated version that on 8 cores is slower than the 
standard version. Compared to the standard memcached, the 
accelerated version achieves a 2.5x speedup on 8 cores, and a 
1.2x speedup on 16 and 32 cores. Table 5 shows the speedup 
and the normalized MPI messages for the remote caching 
variants. As mentioned, differences in the way the cache 
capacity is utilized are reflected in less reduction in the 
communication. In memcached, 128MB are used to store the 
keys, values, and additional extra data. Since both keys and 
values are 8B ids, the cache can contain less than 8M 
vertexes, which is the capacity of the cache used in RC-BFS. 
Table 5: Communication reduction in remote caching, and with memcached. 

Cores Normalized 
MPI 

Messages in 
RC-BFS 

Normalized 
MPI 

Messages in 
MC-BFS 

Normalized 
MPI 

Messages in 
CY-BFS 

Speedup of 
CY-BFS 

over 
MC-BFS 

8 0.02 0.11 0.11 2.5 
16 0.02 0.19 0.19 1.2 
32 0.02 0.29 0.29 1.2 

VI. CONCLUSIONS AND FUTURE WORK 
Often, data-intensive applications access data randomly 

but with some inherent locality. This is the case, for example, 
in searches on small-world graphs, in which a few high-
degree vertexes are frequently traversed. This paper shows 
that it is possible to leverage this characteristic by caching 
information about the frequently accessed vertexes and avoid 
communication, and perhaps also computation. 

In this study we implemented this approach in a BFS 
benchmark used by Graph 500 to rank systems by their 
ability to execute data-intensive workloads. By caching high-
degree vertexes, a parallel BFS implementation can avoid the 
communication cost otherwise incurred when sending 
messages that are disregarded by the receiving process. 

Results with an in-memory cache implementation have 
shown great performance improvement when compared to 
the reference implementation. Both in weak scaling and 
strong scaling, from 64 cores to 1024 cores, the speedup 
observed ranges from 1.6x to 2.4x for a cache of 16M 
vertexes in capacity. Message counters embedded in the code 
also demonstrate that the number of MPI messages is greatly 
reduces, with almost a 50% reduction on 1024 cores. 

We have shown that a remote-caching system has several 
advantages over an in-memory implementation, including a 
much higher hit rate and potentially can be more effective in 
reducing communication. However, remote caching does not 



reduce the overall number of messages, and the overhead of 
accessing a remote caching system needs to be compensated 
by reducing more expensive point-to-point communication; 
this would be the case in large scale systems. In this case, the 
nodes within a building block (e.g. a rack) would share a 
cache, and avoid expensive communication across the entire 
system. In addition, the shared caching may become a 
bottleneck is servicing a large number of neighbors; how to 
find a suitable ratio of caching systems per nodes should be 
investigated. 

Using existing caching systems may be challenging. 
General protocols whose operations do not match the 
semantics of the intended usage lead to an inefficient 
implementation and hinder performance. As a consequence, 
even accelerated implementations that can sustain high 
throughput workloads suffer a performance penalty when 
compared to simple ad-hoc caching implementations. 

Future work will focus on validating our results with 
remote caching at scale, and on different search algorithms. 
In addition, we will address the inefficiencies of the protocol 
by implementing ad-hoc extensions to memcached and the 
corresponding personality for the co-processor. 
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