
1

Efficient Speed (ES): Adaptive DVFS and Clock
Modulation for Energy Efficiency

Pietro Cicotti∗† Ananta Tiwari∗† Laura Carrington∗†

∗Performance Modeling and Characterization (PMaC) Laboratory,
San Diego Supercomputer Center

†EP Analytics, Inc.
{pietro.cicotti, ananta.tiwari, laura.carrington}@epanalytics.com

Abstract—Meeting the 20MW power envelope sought for
exascale is one of the greatest challenges in designing those class
of systems. Addressing this challenge requires over-provisioned
and dynamically reconfigurable system with fine-grained control
on power and speed of the individual cores. In this paper,
we present EfficientSpeed (ES), a library that improves energy
efficiency in scientific computing by carefully selecting the speed
of the processor. The run-time component of ES adjusts the speed
of the processor (via DVFS and clock modulation) dynamically
while preserving the desired level of the performance. These
adjustments are based on online performance and energy mea-
surements, user-selected policies that dictate the aggressiveness
of adjustments, and user-defined performance requirements. Our
results quantify the best energy savings that can be achieved by
controlling the speed of the processor, with today’s technology,
at the cost of negligible performance degradation. We then
demonstrate that ES is effective in automatically calibrating the
speed of execution in real applications, saving energy and meeting
the desired performance goal. We evaluate ES on GAMESS, an
ab initio quantum chemistry package. We show that ES respects
the stipulated 5% performance loss bound and achieves 16%
decrease in energy required to complete the execution while
running with a power draw that is 18% lower.

I. INTRODUCTION

A simple extrapolation based on today’s Joules per FLOP
ratio suggests that a 20 fold increase in energy efficiency
is required to meet the 20MW power budget seeked for
exascale [4]. In addition to the improvements in the design
of hardware, software-based techniques to dynamically recon-
figure hardware to exactly match (within the limits of the
hardware) a given workload’s demands are needed to bridge
this massive gap in energy efficiency.

Computing systems are often inefficient because they are
designed as a one-size fits all, and must perform on a wide
variety of workloads. A more energy efficient mode of opera-
tion is to identify system subcomponents that are not heavily
exercised and put them on lower power or speed states. While
promising, this solution is challenging to implement because
a given scientific application can have large number of com-
putational phases that put vastly different levels of stress on
different subcomponents. Care must also be taken with respect
to the negative repercussions of changing hardware parameters
– e.g., changing CPU clock frequency can save power but that
change can also impact performance negatively when applied

blindly. Decisions to reconfigure hardware, therefore, has to be
dynamic and has to carefully consider the tradeoffs between
multiple competing goals.

In this paper, we present EfficientSpeed (ES), a library
that exposes a series of customizable energy optimization
policies to improve energy efficiency in scientific computing
while preserving most of the performance. The library-based
approach allows for HPC programmers to directly indicate
(via source code modifications) which computational phases or
loops within their application will likely be good candidates
for energy efficiency optimizations. The same library-based
approach also allows for binary instrumentation toolkits to
insert ES calls directly into the binary around phase entry and
exit points, which is the method that we utilize in this paper.
The programmers and application scientists have the option to
express performance expectations (with respect to the base or
default hardware configuration), which are strictly met by ES
policies.

ES utilizes two methods to reconfigure hardware for better
energy efficiency – Dynamic Voltage and Frequency Scaling
(DVFS), which is a way to transition the CPU to a low
power state (associated with lower frequency), and clock
modulation, which is a way to control the clock duty cycle
(without affecting the clock frequency). ES first establishes
performance baselines for given computational phases by
observing those phases’ executions at base or default speed.
ES then selects the best CPU speed to run various phases
using various reconfiguration policies. ES takes advantage of
the iterative behavior of most scientific codes by evaluating
new hardware configurations for some iterations.

In this paper, we make the following contributions:
• We first demonstrate how application-driven hardware

reconfiguration can save energy by performing a compre-
hensive study to show the full potential of this strategy.
This study establishes an upper-bound on how much
improvement in energy efficiency can be achieved using
ES’s optimization policies.

• We present ES library – library that comprises of a
series customizable hardware reconfiguration recipes that
improve energy efficiency while meeting the performance
goals set by the users.

• We evaluate the policies exposed by ES in a large scale
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chemistry code, GAMESS, and show 16% energy savings
while only registering less than 5% loss in performance.

The paper is organized as follows. The next section de-
scribes related research, which is followed by the description
of design and implementation of the ES library in Section III.
Section IV describes our experimental test-bed and the evalu-
ation results are presented in Section V. Section VI provides
concluding remarks.

II. RELATED WORK

Using DVFS and clock modulation as key techniques to
improve energy efficiency is a well-studied topic. We divide
the discussion of the related projects into two classes – intra-
node and inter-node techniques. Inter-node DVFS schemes [9],
[18] identify MPI inter-node load imbalance or the time spent
blocked in MPI routines and use that information to lower
the clock frequency of the hardware running the slacking
or blocking MPI ranks, since overloaded ranks bottleneck
the application progress. Sundriyal et. al propose runtime
procedures that target MPI collective operations [21] and
strategies that group several point-to-point communications
and apply DVFS and clock modulation at per-group level
aiming to reduce the overhead of repeated application of DVFS
and clock modulation [22]. ES takes an intra-node approach
and the approaches taken by the aforementioned projects are
complementary to ours.

Intra-node technique looks for opportunities to scale down
CPU frequency, and therefore power draw, for application
phases which lack computational work (e.g., phases where
CPU spends significant time in waiting for the data motion
from memory to complete). Ge et al. [11] explore the oppor-
tunities to reduce energy consumption by running memory-
bound applications either at statically selected CPU frequency
for the entire execution or at subroutine-specific frequencies.
ES’s approach dynamically selects clock speed for various
phases in a given application.

Laurenzano et al. [16] compare computational signatures
(e.g., cache behavior and arithmetic intensity) of different
phases in a given application against signatures collected for
an extensive set of micro-benchmarks to guide the dynamic
clock frequency selections. This method is prone to making
incorrect decisions for computations with properties that are
not specifically accounted for in the construction of micro-
benchmarks. Green Queue [23] uses sophisticated binary
analysis and tracing tools to demarcate computational phases
in an application. Based on modeled power and measured
performance, each phase is assigned a static frequency to run
on. Application binary is then instrumented to adjust CPU
clock frequency at phase entry and exit points. ES takes a
dynamic approach to changing CPU clock frequency and can
be used within Green Queue to drive the optimization process.

Freeh et al. [10] manually divide a given program into
phases by analyzing program profile. Phase boundaries are
based on a memory pressure metric – operations per cache
miss. Each of the identified phases is then run on all of the
available frequencies to determine the most energy efficient
frequency for that phase. For an application with L loops,

finding the optimal clock frequencies using this approach
requires O(L) runs of the application. Complex applications
may have many phases rendering this method impractical,
motivating ES’s approach of optimizing all phases in a single
execution.

A number of projects use power and energy models trained
on hardware counter data [6], [8], [17], [20] to determine
optimal frequency settings for an application. Often these
approaches are time interval-based. Time interval-based ap-
proaches take observations about the application from pre-
vious intervals to estimate the time/power requirements and
workload of upcoming intervals. These estimations are mostly
based on hardware counters aggregated in the previous in-
tervals — cache accesses counters [12], MIPS (Millions of
Instructions per Second) [13] and CPU stall cycles [14]. Time
interval-based approaches can run into suboptimal behavior
when pre-defined time-intervals do not line up with changes
in application behavior. ES’s strategy of using user-specified
or automatically discovered loops avoids this issue.

III. DESIGN AND IMPLEMENTATION

In this Section, we describe the design and implementation
of ES. ES is a library that can be used to insert hooks
around different computational phases of large-scale scientific
applications and utilize highly customizable energy efficiency
optimization policies to reduce the energy footprint of applica-
tions while respecting the performance requirements stipulated
by the users. Energy efficiency optimization is done using
hardware configuration mechanisms that control the speed of
CPU (DVFS and clock modulation).

One of the key components of ES is its application pro-
grammer interface (API), which consists of a global state (GS)
data structures, initialization and finalization functions, phase
boundary (entering and exiting) demarcation functions, and
core speed search policies. ES’s internal state is not visible
to the program. While initialization and finalization functions
are required at the beginning and at the end of a program
execution, the phase boundary functions delimit the execution
phases to be controlled and optimized by ES and interleave
the control flow between the ES and the application.

A program can be instrumented manually, by explicitly
invoking the library functions, inserting pragma directives, or
via binary instrumentation. In this paper we consider user-
guided binary instrumentation as way to instrument a program
with ES. Binary instrumentation is convenient because it does
not require access to the source code, or recompiling. In
addition, by integrating ES with a mature framework for bi-
nary instrumentation [15], application profiling and trace data
analytics [5], we have simplified the process for identifying
candidate loops that can be treated as larger computing phases.
The description of the automatic instrumentation framework
and the phase selection process are outside the scope of this
paper.

The remainder of this Section is organized as follows
– Section III-A describes the ES policies and parameters
that control the search for the optimal speed, Section III-B
describes the GS data structure, and Section III-C describes
the functions of ES and the API.
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A. Search Policies
ES provides its users fine-grained control over several fea-

tures through the specification of environment variables. User
can specify 1) performance targets (or bounds on performance
loss due to the reduction in CPU speed) for each of the
candidate phases, 2) optimization target (whether to optimize
for power, energy or energy delay product), 3) policy to use in
order to adjust the CPU speed and 4) a default or base speed
for phases that are not controlled by ES.

1) Performance Target: When searching an optimal speed
while meeting a given performance target, ES will select
the lowest speed that meets that target. The speed selected,
assuming that the power draw monotonically increases with
speed, should give the lowest power draw within the desired
performance range. In addition, if energy measurements are
possible via the Running Average Power Limit (RAPL) coun-
ters [7], ES can use dynamic measurements to optimize for
power, energy consumption, and energy delay product (EDP).

The performance target, expressed in Instructions Per Cycle
(IPC), for each of the candidate phases can be provided by the
user via a configuration file or discovered at run time. In the
latter case, all phases are first executed at full CPU speed
and the performance measured is used as the reference. Once
the reference performance for a phase is defined, the speed
for that phase is adjusted according to the selected policy. To
tolerate performance variability, it is also possible to average
the performance measurements collected over a user-selected
number of iterations.

For performance comparisons, ES transforms the IPC met-
ric into Instructions Per Second (IPS) metric. IPS captures
performance independently of the clock speed, or the duration
of the phase. IPS metric can, therefore, be used to compare
performance across different speed settings and different ex-
ecutions of the same phase and users do not need to specify
different performance targets for different instances of a phase
or for different inputs.

IPS is obtained at runtime from IPC hardware counters and
frequency (cycles per second). When entering a phase, ES
starts instruction and cycle counters, and when leaving the
phase the counters are read to compute IPC for the phase. IPC
is then scaled according to the current speed and converted
to IPS. As in discovering the performance target, the moving
average of IPS can be used when comparing performance with
the reference target.

2) Optimization Target: Online energy measurements via
the RAPL counters make it possible to optimize for power
energy, and energy delay product (EDP) while respecting the
performance target specified by the users. To compare perfor-
mance of a given phase against some specified target, energy
and EDP must be transformed so that the values compared are
independent of the instance of the phase. Therefore, energy is
compared as energy per instruction, and EDP is compared as
EDP per instruction, which is equivalent to energy divided by
IPS.

The search for the optimal speed finds a local minimum in
power, energy, or EDP. Ideally, the local minimum is also an
absolute minimum, although in practice other events and the
state of the system (e.g. temperature) affect the power draw

and as a result, power, energy, and EDP are not always concave
or monotonic. Nevertheless, ES adjusts the speed to descend
the curve toward a minimum which, in most cases, is a close
approximation of the absolute minimum (more in Section V).

3) Adjustment: ES exploits the iterative nature of scientific
applications to adjust the speed. For a given phase, the
measured performance from previous timestep or iteration is
compared against the target performance and the CPU speed
for the next timestep is adjusted accordingly towards the
optimization goal, before entering the phase. This adjustment
may vary depending on the selected policy. If it is determined
that performance target cannot be met at lower speed settings,
the phase is marked as such (or deactivated) and removed from
further consideration. The granularity of adjustment for other
phases can be as fine as single speed step (e.g., going from
2.6GHz to 2.5GHz CPU clock frequency on our test system),
or it can be proportional to the how far the current performance
of the phase in consideration is from the specified target.

4) Base Performance: When exiting a phase, there is the
option of resetting the speed to a different level and ES offers
three possible choices – do nothing, reset the speed to the level
detected when entering the phase, or set the speed to a user-
specified base level. The first option (do nothing) can help
minimize the overhead by avoiding frequent speed changes,
and the implicit assumption is that most of the running time is
spent in executing phases that are controlled by ES. However,
in some cases, a significant amount of time is spent outside
of these phases and in such cases, it is better to either reset
the speed to the value encountered when entering the phase,
assuming a pre-existing speed setting, or to set the speed to a
user-defined level that can represent an optimal value for most
of the program.

B. The Global-State Data Structure

ES library maintains a global data structure where it stores
the configuration and the state of the library, including phase-
specific data. The configuration stored in the GS, for example,
includes the selected policies for adjusting the CPU speed
setting while searching the optimal speed. The configuration
of such policies is established when ES is initialized and is
stored in the global state data structure. In addition, the GS
is used to store the current speed setting and the base speed
setting. Other global settings include whether or not the library
produces any output, and the verbosity of the output.

For each instrumented phase, the GS also incudes a dedi-
cated structure. The dedicated structure is used to maintain per-
phase state information, including whether the phase is active
or not1, the last performance measurements as are required to
compute the moving average, the base performance, and the
latest selection of the optimal speed setting. While most of the
GS does not change after the initialization, phase specific state
information is continually updated during execution, according
to the search policy in place and the measurements.

1A phase can be deactivated if it is determined that it is best to run that
phase at the max speed.
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C. The Application Programmer Interface (API)

There are four functions to control and interact with ES–
initialization and finalization functions to start and gracefully
terminate the runtime system of ES, and phase boundary
functions to signal the beginning and the end of a computing
phase. Together, these functions control the speed of the
application ensuring that the desired performance level is
maintained while trying to reduce power draw and energy
consumption.

The initialization function reads the configuration from
environment variables and optionally from an input file, and
then allocates and initializes the GS. The finalization function
simply frees allocated resources and resets frequency and mod-
ulation to the maximum. If selected, the finalization function
also outputs the final speed settings and statistics (i.e. steps to
find the optimal speed).

When entering a computing phase, ES configures the speed
of the core according to the state of the phase and the selected
policy, and then starts the performance measurement. Upon
exiting the computing phase, the achieved performance is
recorded and fed to the policy controller that updates the state
of the phase and adjusts the selection of the speed for the
next occurrence of the phase. Finally, depending on the policy
in place, ES may reset the speed to the base or to the speed
detected when entering the phase.

IV. EXPERIMENTAL SETUP

The testbed system is a dual-processor node with two 8-
core Intel Xeon E5-2650v2 processors (Ivy Bridge). Each core
has a 64KB L1 cache (32 KB Icache + 32KB Dcache), a
256KB combined L2 cache, and a 20MB shared LLC. The
two processor are connected to 64GB of DDR3 DRAM. The
system is configured with Hyper-Threading and Turbo Boost
disabled for all the experiments. Each of the processors can
be independently clocked at maximum 2.60GHz frequency
and minimum 1.20GHz (at 100 MHz increments). Processor
clock frequency is changed using the cpufreq-utils pack-
age [1] that is available with many popular Linux distributions.
Clock modulation can be done at per-core level by writing to
specific Model Specific Registers (MSR). For our testbed, we
have 16 different modulation levels (i.e. 6.25% to 100% duty
cycle, at 6.25% increments).

To measure the power draw of the system and evaluate
energy efficiency we used the WattsUp? Pro power meter [2],
which measures the AC power being consumed by the en-
tire system. The device can produce power readings at one
second intervals and the readings can be accessed via a USB
connection.

We evaluate the effect of CPU speed variation several
benchmarks. First we run the benchmarks, testing the perfor-
mance variation and power draw at each speed, then we run
the benchmarks under the control of ES. Finally, we evaluate
ES on GAMESS, an ab initio quantum chemistry package.
The tests are listed in Table I.

The set of micro-benchmarks includes the STREAM bench-
marks (copy, add, scale, triad), a naive matrix-matrix multi-
plication, and the computation of the mean value of a vector.

Micro-Benchmarks
Name Description

Stream Copy double precision x=y
Stream Add double precision z=x+y
Stream Scale double precision z=ax
Stream Triad double precision z=ax+y

MatMul double precision C=A×B
Mean double precision a=avg(x)

NPB Benchmarks
Name Description

BT class B Block Tri-diagonal Solver
CG class C Conjugate Gradient
FT class C 3D Fast Fourier Transform
LU class C LU Factorization
MG class C Multi-Grid solver
SP class B Scalar Penta-diagonal solver

Applications
Name Description

GAMESS ab initio quantum chemistry

TABLE I: Benchmarks and Applications used for ES’s evalu-
ation

These micro-benchmarks range from a 2:0 ratio of memory
operations to floating point operations, for copy, to a 1:2 ratio,
for mean (each value read is scaled by 1

n directly).
We selected 6 of NPB benchmarks that are most relevant

for fluid dynamics computations [3]: BT, CG, FT, LU, MG,
and SP. BT solves a problem of multiple independent systems
of non-diagonally dominant, block tridiagonal equations; CG
uses a conjugate-gradient method to compute an approxi-
mation of the smallest eigenvalue of a sparse, symmetric
positive definite matrix; FT solves partial differential equations
using FFTs; LU solves a sparse system using Symmetric
Successive Over Relaxation (SSOR); and the MG benchmark
is a simplified multigrid calculation.

Finally we applied ES to GAMESS [19], an ab initio
quantum chemistry package with a large set of capabilities
for obtaining wave functions, applying correlation treatments,
and computing derivatives. For our evaluation, we used an
input that performs the MP2 energy and gradient calculations
of substituted silatrane, the 1-trichloromethylsilatrane (TCMS)
molecule (more details about the input can be found in [22]).

V. RESULTS

This section presents our evaluation results. In Section V-A,
we test and quantify the effect of varying the processor speed.
Then, in Section V-B we show the results of running GAMESS
under the control of ES.

A. DVFS and Clock Modulation

We first measure the impact of varying the processor speed
on energy and performance. We establish a baseline that can
be used to evaluate the accuracy of ES in selecting the optimal
speed configuration. In these experiments the speed is set at
the start of execution of the application, and the application
runs without any ES instrumentation. This process is repeated
for each speed setting, the results of which are shown in Figure
1.
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Figure 1 shows the average power draw of all the bench-
marks, over a range of speed settings. Each series represents a
different set of experiments – 1) running all the benchmarks in
some pre-established order before increasing processor speed
(labeled POWER in the figure), 2) running each benchmark for
every speed (POWER ORD), and 3) running benchmarks with
a 5 minutes delay between runs (this configuration, labeled
COOL, is used for the experiments in the remainder of the
paper). In addition, the first two sets are repeated by holding
the system fans at maximum speed as opposed to letting the
system control the fan speeds (POWER FAN and POWER
FAN ORD respectively). From these results, we demonstrate
variability in power due to factors other than the processor
speed – temperature and other components of the system (e.g.
fans) affect the overall power draw in unpredictable ways.
For example, the fans can cause increase of the power draw
by almost 20W. The order of execution, which affects the
temperature and overall state of the system, also affects the
power draw. As a result, letting the system rest between
benchmarks reduces the power draw in most cases. Finally,
we observe that DVFS and clock modulation are affected
differently by the state of the system. When using DVFS,
the average power draw grows regularly with respect to CPU
speed, and selecting the lowest speed within a performance
range is good approximation in finding the lowest power draw.
When using clock modulation we observed more variability
in the power draw, and dynamic readings of the power draw
enable a more accurate selection when regulating the speed
via clock modulation.

Figure 2 shows the power draw of each benchmark, nor-
malized to the maximum speed, for a range of DVFS (Figure
2(a)) and clock modulation configurations (Figure 2(b)). On
the individual benchmark plots, it becomes apparent that the
power draw increases with great similarity between bench-
marks, but it also reveals that between 1.9GHz and 2.2GHz,
there is in most cases a dip. Similarly, there is a dip between
62.5% and 81.25% duty cycle, which overlaps with to the
speed range roughly corresponding to the 1.9GHz and 2.2GHz
range. We attribute this anomaly to the system and mostly
likely to stepped changes in the fans activity.

The other metric that determines the efficiency of the system
is execution time. Figure 3 shows the slowdown suffered with
respect to the maximum CPU speed. For reference, the figure
also shows the ideal slowdown, which is linear with respect
to the speed. As expected, since processors are not 100%
utilized due to stalls of various nature, the performance loss
observed is always less than the decrease in speed. The change
in efficiency can be inferred from the slowdown. While the
CPU speed configuration is changed in discrete and uniform
steps, the actual performance does not change linearly and
in general, the improvement in performance decreases as the
speed increases. We also observe that the performance loss
is monotonic, but does present significant variations on the
slope, and those variations, combined with the irregularities
in the power draw are reflected in energy consumption and
EDP.

Figure 4 shows the energy consumption of each bench-
mark, normalized to the maximum CPU speed, for a range

(a) DVFS

(b) Clock Modulation

Fig. 1: Average power draw of the benchmarks, over a range
of CPU speed settings.

of DVFS (Figure 4(a)) and clock modulation configurations
(Figure 4(b)). In almost all of the benchmarks, as the speed
increases the energy consumption decreases to a minimum
and then increases again. As long as the processor is not
utilized efficiently (e.g. stalls on memory waits), lowering
the speed (and therefore the power draw) results in lower
energy consumption. When the processor is used efficiently
by the code, lowering the speed does not improve the relative
performance (e.g. IPC) and increases the running time (hence
energy consumption); in addition, even if the processor power
draw is reduced proportionally to the increase in running time,
there is a constant component of the overall system power
draw (e.g., idle or static power) that does not decrease. The
combined effect of the irregularities observed in the power
draw and slowdown is that in some cases there are multiple
local minimums within the same benchmark; however, there
is either little or no difference between minimums, or they are
separated by a significant performance difference. Therefore,
the search for an energy-optimal configuration at a given
performance should always succeed.

Finally, to take into account both energy and performance,
we consider EDP as the metric of efficiency. Intuitively, if
a decrease (or increase) in energy consumption corresponds
to a decrease (or increase)) in performance of equal amount,
then EDP does not change; but if a decrease (or increase) in
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energy corresponds to a decrease (or increase) in performance
of a smaller amount EDP increases indicating lower efficiency,
and a decrease in EDP indicates higher efficiency. Similarly
to energy, for the most part EDP exhibits a concave curve, as
shown in Figure 5. In addition, since in EDP the contribution
of time is squared (and therefore the performance curve which
is more regular has more weight), the EDP curve is smoother
and presents mostly absolute minimums.

Selecting the most energy efficient configuration has differ-
ent outcomes depending on the optimization goal. We consider
the following optimization goals: lowest power, energy, and
EDP within a 5%, 10%, 20%, and 30% performance loss
and overall (indicated as ∞ performance threshold). For
each of those goals, Table II shows the average variation in
performance, power draw, energy consumption, and EDP.

Tolerating a large slowdown has in practice little impact
on the energy saved and EDP because in most cases, the
biggest energy savings are gained at speeds close to the top
speed. In fact, in most applications there is no change in the
selection when tolerating larger than 5% or 10% slowdowns:
because the additional speed configurations do not result in
reduced energy consumption. Most of the energy reduction
is achieved within a 5% performance degradation, in which
case optimizing for EDP seems to be a better overall choice.

(a) DVFS

(b) Clock Modulation

Fig. 2: Power draw of each benchmark, normalized to the max-
imum CPU speed, for a range of DVFS and clock modulation
configurations.

(a) DVFS

(b) Clock Modulation

Fig. 3: Performance loss with respect to the maximum CPU
speed.

However, because of the differences between applications, the
difference in energy saved by different optimization goals in
some cases is larger than indicated by the average (e.g. in the
mean and SP benchmarks, the lowest energy saving is 2% (out
of 5%) and 1% (out of 3%) larger for optimal energy than
for optimal EDP, within a 5% performance threshold). The
difference in energy saving between the optimal energy and the
optimal EDP configuration increases for all the benchmarks
towards lower speeds. We also notice slight advantage in
using DVFS over clock modulation due the finer granularity
of DVFS.

B. GAMESS

In this section we demonstrate the use of ES on GAMESS.
To instrument GAMESS we used binary instrumentation to
collect statistics on loops and functions, and identified four
phases: the direct 4-index transformation (subroutine partran),
the computation of the contributions to the 1-particle density
matrices (subroutine mkvvo), the Z Vector solver (subroutine
zvectr), the computation of the 2-particle gradient (subrou-
tine pjkdmp2), and the DDI data server loop (subroutine
DDI_Server). In GAMESS, for each process that computes
chemistry calculations, there is an associated “data server”
process that services data requests from the distributed arrays.
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Opt. Performance Avg. Avg. Power Avg. Energy Avg. EDP
Metric Thresh. Speedup Variation(%) Variation(%) Variation(%)

DVFS/Mod DVFS/Mod DVFS/Mod DVFS/Mod
Power ∞ 0.74/0.73 -24/-24 7/7 57/56
Power 30% 0.84/0.84 -18/-18 -2/-2 18/17
Power 20% 0.86/0.87 -17/-16 -3/-4 13/11
Power 10% 0.93/0.93 -13/-11 -6/-4 1/3
Power 5% 0.96/0.97 -11/-8 -7/-5 -3/-2

Energy ∞ 0.96/0.94 -11/-11 -7/-6 -3/0
Energy 30% 0.96/0.94 -11/-11 -7/-6 -3/0
Energy 20% 0.96/0.94 -11/-11 -7/-6 -3/0
Energy 10% 0.96/0.97 -10/-8 -7/-6 -4/-3
Energy 5% 0.97/0.98 -10/-7 -7/-5 -4/-4

EDP ∞ 0.98/0.99 -8/-6 -6/-5 -5/-4
EDP 30% 0.98/0.99 -8/-6 -6/-5 -5/-4
EDP 20% 0.98/0.99 -8/-6 -6/-5 -5/-4
EDP 10% 0.98/0.99 -8/-6 -6/-5 -5/-4
EDP 5% 0.98/0.99 -8/-6 -6/-5 -5/-4

TABLE II

(a) DVFS

(b) Clock Modulation

Fig. 4: The energy consumption of each benchmark, normal-
ized to the maximum speed, for a range of DVFS and clock
modulation configurations.

A 16-core run of GAMESS will, therefore, have 8 compute
processes and 8 data servers.

To establish the performance baseline, we first run
GAMESS by manually setting the frequency on the cores.
Table III shows the results on frequencies from 2.6GHz to
2.2GHz, below which we consider the slowdown unacceptable.

(a) DVFS

(b) Clock Modulation

Fig. 5: EDP of each benchmark, normalized to the maximum
speed, for a range of DVFS and clock modulation configura-
tions.

In all cases, the odd cores run at the lowest frequency: data
server processes of GAMESS are mapped to those cores
and running at the lowest speed does not affect the overall
performance. The results show that at 2.4GHz and 2.3GHz
the performance penalty is within 5%, and at 2.2GHz, per-
formance is just below 10%. If we were to tolerate a 5%
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Manual - Performance Baseline Experiments
Frequency (MHz) Performance Power Energy EDP

2600 100.00 100.00 100.00 100.00
2500 98.90 86.71 87.68 88.66
2400 95.46 85.45 89.51 93.77
2300 91.93 84.37 91.77 99.82
2200 88.37 83.11 94.04 106.42
Overhead Analysis: Settings from file

Frequency (MHz) Performance Power Energy EDP
2600 100.00 100.00 100.00 100.00
2500 98.90 87.23 88.20 89.18
2400 96.14 85.82 89.27 92.85
2300 91.93 84.56 91.98 100.05
2200 88.43 83.67 94.62 107.00

ES Auto
Performance thresh Performance Power Energy EDP

0.05 96.90 81.47 84.07 86.76
0.10 92.44 80.81 87.42 94.57
0.15 90.76 80.07 88.22 97.21
0.20 87.22 79.97 91.69 105.11

TABLE III: GAMESS Results

performance penalty, there is a potential power draw reduction
of almost 15%, energy consumption saving of 12%, and an
EDP improvement of 11%. Energy and EDP are however
more sensitive to the performance variation and increase at
any frequency lower than 2.4GHz.

ES also allows manual selection of CPU speed; users can
provide the settings for different phases in a configuration file.
We use this feature to evaluate whether ES and our approach
of using binary instrumentation to insert ES API calls into the
binary adds any noticeable overhead. The second set of results
in Table III (labeled “Overhead Analysis: Settings from file”)
presents the outcome of this overhead analysis. We observe
no noticeable overhead and the savings achieved are approxi-
mately the same as the performance baseline experiments that
we described above.

We then allow ES to automatically search for and find the
right CPU speed configuration (given different performance
loss thresholds) for different phases; results are labeled as “ES
Auto” in Table III. Depending on the slowdown tolerated, ES
achieves higher savings than the manual solution because of its
ability to adjust the speed per-phase. ES achieves a 20% power
draw reduction within a 10% performance penalty, and an
18% power draw reduction within a 5% performance penalty.
Similarly, ES improves on energy and EDP.

VI. CONCLUSION

We presented ES, a library that dynamically adjusts the pro-
cessor speed to lower the power draw, the energy consumption,
or the EDP of an application while preserving performance
within the desired range.

On the benchmarks suite ES reduced the average power
draw by 11%, the average energy consumption by 10%,
and the average EDP by 8%, all within a 5% performance
penalty. Tolerating higher penalties increases the savings fur-
ther, though in general the return diminishes at larger penalties.

We applied ES to GAMESS, a widely used quantum chem-
istry package, and demonstrated how ES can dynamically

adjust the speed, with little overhead, and lower the power
draw obtaining a 18% reduction. More importantly, we demon-
strated the effectiveness of optimizing computation phases
independently, showing that ES improved the savings achieved
by statically setting the speed for the whole computation.

The analysis to discover and select suitable computation
phases in large production codes is difficult and labor in-
tensive. Future work will focus on developing a framework
to automate the discovery and instrumentation of application
phases. Other extensions of the library will include controlling
(or at least receiving feedback from) other system devices,
such as memory, and to establish policies and manage the
power budget assigned to an application.
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