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Abstract— DRAM technology has several shortcomings in 

terms of performance, energy efficiency and scaling. Several 

emerging memory technologies have the potential to compensate 

for the limitations of DRAM when replacing or complementing 

DRAM in the memory sub-system. In this paper, we evaluate the 

impact of emerging technologies on HPC and data-intensive 

workloads modeling a 5-level hybrid memory hierarchy design. 

Our results show that 1) an additional level of faster DRAM 

technology (i.e. EDRAM or HMC) interposed between the last 

level cache and DRAM can improve performance and energy 

efficiency, 2) a non-volatile main memory (i.e. PCM, STTRAM, 

or FeRAM) with a small DRAM acting as a cache can reduce the 

cost and energy consumption at large capacities, and 3) a 

combination of the two approaches, which essentially replaces 

the traditional DRAM with a small EDRAM or HMC cache 

between the last level cache and the non-volatile memory, can 

grant capacity and improved performance and energy efficiency. 

We also explore a hybrid DRAM-NVM design with a partitioned 

address space and find that this approach is marginally 

beneficial compared to the simpler 5-level design. Finally, we 

generalize our analysis and show the impact of emerging 

technologies for a range of latency and energy parameters. 

Keywords—component; formatting; style; styling; insert (key 

words) 

I. INTRODUCTION 

It is anticipated that DRAM technology will be inadequate 

for future large scale systems due to a number of factors. First, 

the evolution of DDR DRAM has not been able to keep up 

with the bandwidth demand of multicore processors (i.e. the 

memory wall [1]) and this gap in the performance of CPU and 

memory sub-systems will only increase further for future 

many-core systems [2]. Second, there is a growing capacity 

gap due to the limited scaling of DRAM, power, and cost 

limitations [3, 4]. Finally, at the current DDR3 power-

performance level of approximately 600 MW/GB/s, in an 

Exascale system, the memory alone would draw 600MW [2]. 

Consequently, advancements in memory technology are 

sought in all the significant metrics of performance, 

power/energy efficiency, density, and scaling [2]. 

A number of memory technologies are emerging as viable 

alternatives that address one or more of these shortcomings of 

DRAM. Volatile memories are one such technology, which 

have retention times comparable to DRAM (order of 

nanosecond) and also need frequent refresh, similarly to 

DRAM. They are based on DRAM cell technology but 

improve on the architecture and the interface to deliver higher 

performance and energy efficiency than DRAM [5, 6]. Also 

emerging as a technology solution are non-volatile memories 

(NVM), which have much longer retention times than DRAM 

(order of years), are based on new cell technologies and offer 

improvements mostly towards capacity [7]. 

A significant body of research has explored the use of 

NVM technologies as storage and as an alternative to DRAM, 

with many research efforts focusing on the feasibility and 

design of the NVM devices, the architecture of hybrid 

memory systems, data and access partitioning between DRAM 

and NVM, and high level interfaces to NVM (see Section 

II.B). 

In this paper we evaluate the impact of emerging 

technologies to identify opportunities for complementing 

DRAM to improve the overall performance and energy-

efficiency of the memory system. Our work focuses on 

understanding the impact of these technologies on High 

Performance Computing (HPC) and data intensive 

applications, and uses this understanding to define the 

performance and energy efficiency levels that memory 

technologies have to satisfy to be viable solutions. In 

particular, we consider using volatile technologies as a last 

level cache (LLC) and non-volatile technologies as main 

memory; in the former case, the focus is on improving 

performance and energy efficiency, in the latter case the focus 

is on increasing the capacity while still preserving 

performance and energy efficiency. 

One concern with NVM is its asymmetry in read-write 

performance and energy consumption (writes are typically 

slow and energy demanding operations). To address this we 

also investigate a hybrid main memory system with DRAM 

and NVM. The hybrid design supports a partitioned address 

space, in which frequently accessed and updated objects are 

stored in DRAM, while the rest are stored in NVM. 

We evaluate these technologies on a set of HPC and data-

intensive workloads. Our evaluations are based on 



performance and energy models that leverage online 

simulations of the memory hierarchy during the execution of 

the workload. 

We make the following contributions: 

 We evaluate 5-level memory hierarchies that employ 
eDRAM and HMC as LLC, 

 we evaluate 5-level memory hierarchies that employ 
PCM, STT-RAM, and FeRAM as main memory, 

 we evaluate 5-level memory hierarchies that employ 
eDRAM and HMC as LLC and PCM, STT-RAM, 
and FeRAM as main memory, 

 we evaluate a hybrid DRAM-NVM  design and 
propose a methodology for partitioning the address 
space, and 

 we generalize our results and present a performance 
and energy heat map to assess what is the potential 
impact of emerging memory technologies on 
performance and energy efficiency. 

The rest of the paper is organized as follows: Section II 

presents the characteristics of some emerging memory 

technologies and covers related work. Section III discusses the 

methodology and the models used for this study. Section V 

presents and discusses the results. Section VI concludes the 

paper with our conclusions and future work. 

II. BACKGROUND/RELATED WORK  OF HYBRID 

MEMORY 

Recently emerging memory technologies have garnered a 

lot of attention, following the wide adoption of flash NAND 

memory, as potential alternatives to DRAM. This section 

describes the characteristics of some of the emerging 

technologies that we evaluate in this paper, and provides an 

overview of related work. 

A. Characteristics of future memory technologies 

DDR DRAM technology is challenged by the difficulties 

in performance, scaling, and energy efficiency, while SRAM 

scaling is constrained by increasing leakage power. Recently, 

various emerging memory technologies have begun to address 

some of these challenges. 

Volatile memory technologies, such as Embedded DRAM 

(eDRAM) [5] and Hybrid Memory Cube (HMC) [6] address 

the performance and energy inefficiency of DDR DRAM 

technology. eDRAM is DRAM embedded on the processor 

chip. Hybrid Memory Cube is a three-dimensional architecture 

that uses through-silicon vias to effectively reduce the distance 

traveled by signals, increasing the density of the memory and 

significantly increasing the performance achieved. 

A wealth of non-volatile memory technologies have 

emerged as storage class memories to replace hard disk drives.  

Due to the fact that their performance is approaching that of 

DRAM and their ability for larger capacity makes several of 

these technologies (e.g. NAND Flash, STTRAM, PCM, 

FeRAM, ReRAM [8]) potential alternatives to DRAM in 

future large scale systems. 

NAND Flash memory is the most mature and widely 

adopted type of non-volatile memory [9]. However, flash 

memory is organized for bank read and writes and its low 

performance and high energy consumption, especially for 

write operations, make it a storage–class solution but not 

viable for main memory. 

Phase-Change memory (PCM) technology uses 

chalcogenide alloy layer that change phase between crystalline 

(low-resistance) and amorphous (high resistance) [10-15]. The 

phase change is achieved by heat induced via high current 

(slowly or abruptly cut-off for a transition to crystalline or 

amorphous, respectively). PCM has very high capacity but is 

characterized by asymmetric performance with large latency 

and high energy consumption for write operations. PCM also 

suffers from low endurance, and though this may be 

compensated by wear leveling, it does incur some overhead 

that adds variability in performance. 

Spin-Torque-Transfer (STT) memory is a type of magnetic 

RAM that uses a “spin-valve” to achieve two distinct 

resistance states in a magnetic tunnel junction [16, 17]. The 

change of state is achieved by the spin transfer torque effect of 

polarized current. Despite having asymmetric performance, 

with write latencies quite larger than DRAM, STTRAM has 

good performance, lower energy requirements than most non-

volatile memories, and high endurance. 

Ferro-Electric memory (FeRAM) functions by storing a 

charge in a ferroelectric layer [18-20]. FeRAM is similar to 

DRAM in terms of performance and combines high endurance 

with non-volatility. FeRAM may require higher energy per 

operation than DRAM. 

Some of the emerging non-volatile memories have limited 

endurance (memory cells wear out with updates), exhibit 

asymmetric read and write performance, and may require high 

currents, especially for write operations. Nevertheless, these 

are opportunities to address shortcomings of DRAM 

improving on performance, capacity, energy efficiency, with 

an additional benefit of non-volatility. We do not consider 

other less mature technologies, although our study is general 

enough to be applicable and provide insight to the impact of 

other technologies with different performance and energy 

characteristics. 

B. Hybrid memory design 

Memory systems that integrate DRAM with other 

technologies have the potential to fill the gaps in DRAM’s 

performance and energy efficiency. 

Previous work on non-volatile memories focused on 

storage-class devices connected via SATA or PCIe interfaces, 

and flash memory has been used as fast scratch storage in 

HPC production systems [21, 22]. Flash has also been 

considered as a fast swap device to effectively extend the size 

of physical memory [23]. 

With the emergence of faster non-volatile memory, the 

focus shifted to future systems and to the role of NVM as an 

integral part of the main memory, or as fast checkpoint 

memory [24]. Others have focused on the architecture and 

implementation of the device and the performance on basic 



benchmarks [10-14, 16, 25]. STT-RAM has also been 

investigated as potential last level cache [26]. 

To address the asymmetric performance and energy 

characteristics of NVM, pervious work explored the potential 

of carefully placing data on DRAM or NVM in hybrid 

memory system [27], comparing different policies for 

migrating data between the different modules [28], and 

finding data objects compatibility with the different modules 

by comparing different policies for migrating data between the 

different modules [29]. In contrast, we start by evaluating the 

potential of hybrid designs and ad-hoc placement policies 

assuming the existence of an oracle capable of statically 

partitioning the virtual address space, and at the same time we 

compare hybrid systems to a simpler hierarchical design that 

does not need partitioning policies. 

With respect to previous work, our work goes beyond the 

evaluation of a single technology and attempts to evaluate, 

compare, and combine different technologies using the same 

methodology. More importantly, we attempt to generalize our 

results to provide insight on the impact of performance and 

energy costs as these technologies mature and others emerge. 

Finally, we consider several data-intensive workloads to 

stress the system and the capacity aspects, using much larger 

memory footprints than in previous studies [29]. 

III. METHODOLOGY 

In this section we describe the memory hierarchy designs 

that we used in the evaluation, and provide details on the 

motivation for these designs.  We explain the simulation 

framework we developed to collect data movement statistics 

for the different designs, and the performance models that we 

employ to gauge their impact.  

A. Design Space 

In this work we explored four main memory designs with 

multiple configurations. We use an Intel Xeon processor 

(Sandy Bridge architecture) with 64B cache lines, a 32KB L1 

(8-way associative), a 256KB L2 (8-way associative), and a 

20MB L3 (20-way associative) as the reference system and 

memory configuration. We assumed DRAM to be large 

enough to contain the memory footprint of each individual 

benchmark.  

For all the designs, the same L1, L2, and L3 cache 

configurations are used. The four designs used for this work 

are 4-Level Cache, NVM as Main Memory, NVM+DRAM, 

and 4- Level Cache as NVM. The details of these designs are 

as follows:   
4-Level Cache (4LC): this design uses eDRAM and Hybrid 
Memory Cube (HMC) as Last Level Cache (LLC), with HMC 
being off-chip. Missed references in the LLC are simply 
directed towards DRAM. Both eDRAM and HMC are 
expected to be integrated in the hardware design and to be 
managed by the on-chip logic and the memory controller. Their 
presence is entirely transparent to the system software and the 
application. The DRAM is assumed to be large enough to 
handle the memory requirements of the application. This 
design offers an opportunity to use better performing and more 

efficient LLC before DRAM, by employing a technology that 
is denser than on chip SRAM, and that is faster than DRAM. 

NVM-as-Main-Memory (NMM): this design uses NVM as 
main memory and DRAM as a cache. This design aims to 
decrease DRAM size and hence reduce refresh energy. In 
addition, by employing DRAM as a cache, a significant portion 
of NVM memory accesses are filtered to limit the negative 
impact on performance and dynamic energy consumption of 
typical NVM technologies. Also in this case, since DRAM is 
an off-chip cache, it is transparent to the software. For this 
design we consider PCM, STTRAM, and FeRAM as the NVM 
technology options. 

NVM+DRAM (NDM): To take into account the characteristics 
of NVM technologies, such as asymmetric performance and 
energy required for write operations, this design uses both 
NVM and DRAM as a partitioned main memory in which data 
objects are placed where they best fit. This design attempts to 
determine if an application can take advantage of the 
differences between NVM and DRAM, and leverage the 
capacity and low static power of NVM while minimizing its 
impact on performance and dynamic energy.  

4LCNVM: The designs in 4LC and NMM each offer 

opportunities to decrease latency and increase capacity 

respectively. To combine those benefits we evaluate a system 

with no DRAM, but rather an eDRAM/HMC cache followed 

by an NVM main memory.  

 

In each of the hybrid memory hierarchy designs that we 

presented above, with the exception of the NDM design, we 

use emerging memory technology integrated in the memory 

sub-system, and that as such it is employed transparently to 

the software stack, and in particular to the applications. For 

the NDM design, the underlying assumption is that a 

compiler-based and runtime approach can define the address 

range partitioning to enforce the desired partitioning. Our 

study does not propose any specific solution but, as an oracle, 

explores the potential benefit of the design for an optimal 

partitioning. 

 

 Table 1: Characteristics of different memory technologies 

Memory 

Technology 

Read 

delay 

(ns) 

Write 

delay 

(ns) 

Read 

energy 

(pJ/bit) 

Write 

energy 

(pJ/bit) 

RAM 10 10 10 10 

PCM 21 100 12.4 210.3 

STTRAM 35 35 58.5 67.7 

FeRAM 40 65 12.4 210 

eDRAM 4.4 4.4 3.11 3.09 

HMC 0.18 0.18 0.48 10.48 
 

 

To model the performance and energy consumption of the 

proposed designs, we rely on published characterization 

parameters for the relevant memory technologies. For caches, 

DRAM and eDRAM, we acquired parameters from CACTI 

[30], a memory modeling tool. The HMC characteristics were 

obtained from experimental data obtained on a prototype [6]. 



The characteristics of PCM and STTRAM are obtained from 

the 2013 ITRS report [8], whereas characteristics of  FeRAM 

were obtained from published literature [18]. The 

characteristics of all memory technologies used in our study 

are summarized in Table 1. 

B. Simulation 

In order to model the performance and energy of a given 

application on each of our designs, we need the data 

movement statistics (e.g. hit/miss rates, loads/stores, etc.). In 

order to capture these statistics for a target design we 

developed a simulation framework based on PEBIL [31], a 

binary instrumentation tool that automatically instruments all 

the memory references of an application and captures its 

memory address stream. The address stream is then fed to a 

cache simulator for the target design with the output being the 

cache statistics of the target design (e.g. hits/misses & 

loads/stores to each level of memory). The raw address stream 

of an HPC application can be unmanageable. By processing 

the address stream during the execution, our framework 

avoids the need to store and process full memory trace offline 

and results in significant space and time cost reduction. 

In order to model the effects of the asymmetric 

performance in non-volatile memories, we extended our 

simulation framework to differentiate between loads and 

stores. In the initial design, the simulator was only able to 

count cache references (hits and misses); our extensions added 

the ability to also track memory references due to dirty cache 

lines evictions. All the memory references are fed to the cache 

simulator for the target system that differentiates between 

loads and stores and keeps track of dirty cache lines. At the 

last level of cache, simple evictions are essentially ignored, 

whereas in the case of dirty cache lines such evictions cause a 

write back to the main memory. Assuming a write-back 

policy, dirty cache lines eventually make their way to the main 

memory and count as write operations; every other access to 

fetch a cache lines is counted as a read operation. Hence, with 

the current cache simulation framework, we can simulate 

memory hierarchies to obtain hits and misses and loads and 

stores at each existing level for our proposed designs.  

C. Performance Modelling 

We now describe our performance and energy models that 

combine technology specific characterization parameters and 

application specific data movement statistics to evaluate each 

of the proposed memory hierarchy designs. Performance is 

estimated by comparing the wall clock time measured on the 

reference system, to the estimated wall clock time of a given 

configuration. Equation (1) illustrates how the runtime of the 

target design is determined by scaling the runtime of the 

reference system (Tref) by the ratio of the average memory 

access time (AMAT) of the proposed hierarchy (AMATdesign) 

to that of the reference (AMATref).   

 

1)               
          

       
  

In order to calculate the AMAT of both the reference and 

design system the cache statistics from the data movement 

simulator built on top of PEBIL along with the access times in 

Table 1 were used in Equation (2). In order to calculate the 

AMAT for an application the number of loads and stores to 

each level of the hierarchy (Li) is captured in the simulation 

framework for a given design. This count (e.g. StoresLi) 

multiplied by the access time for that level (e.g. 

StoresAccessTimeLi) is the time spent accessing data from that 

level. By summing this time for each level where N represents 

the number of level for both loads and stores we get the total 

access time. To calculate the average we just divide this time 

by the total number of references.  

 

2)     
∑                     

 
                                           

                          
 

 

In modeling the energy consumed for a particular design 

the sum of dynamic and static energy for all the levels in the 

memory hierarchy is calculated. Dynamic energy is the 

product of the energy for a load or store and the number of 

loads and stores for each level of the memory hierarchy for a 

level, as shown in equation (3)). Static energy is estimated as 

product of time (T) and static power of the memory hierarchy 

illustrated in equation (4)). The static power is calculated as 

sum of static power of each level of cache and the refresh 

power of DRAM/eDRAM in the memory hierarchy. The static 

power of the caches were obtained from CACTI and 

background (e.g. static) power of DRAM was obtained from 

[32]. We assume that the NVM memory technologies do not 

have any static power. The static/refresh power used is shown 

in Table 1. 
 

3)               
∑                     

  
  

             

                                 

4)                            

 

In order to compare different designs that achieve 

comparable improvements we use Energy delay product 

(EDP). EDP for an application is defined as product of energy 

consumed (e.g. Dynamic Energy + Static Energy) multiplied 

by time taken for the application (Tref), and represents the 

overall gain by taking both performance and energy into 

account. For example, two configurations would be equivalent 

in terms of EDP if one is faster but uses a proportionally 

higher amount of energy. 

IV. EXPERIMENTAL SETUP 

In order to evaluate our designs we first created a set of 

configurations within each design to explore. We also selected 

a set of applications and benchmarks to represent HPC and 

data intensive workloads.  

A. Design Configurations 

For this work there were four designs defined above as 

4LC, NMM, NDM, and 4LCNVM. Within each design we 



defined a configuration space to investigate. 4LC and 

4LCNVM configuration space is described in Table 2. For 

these designs, we explored configurations with changes in the 

eDRAM capacity and the page size.  

 

Table 2: eDRAM /HMC configurations (capacity per core) 

Design name eDRAM capacity (MB) Page size(B) 

EH1 16 64 

EH2 16 128 

EH3 16 256 

EH4 16 512 

EH5 16 1024 

EH6 16 2048 

EH7 8 2048 

EH8 8 2048 

 

For the NMM design we used a series of configurations 

with changes in the DRAM capacity and the page size. Table 

3 details these DRAM configurations.  For the NDM design 

we explored a DRAM of size 512MB. 

 

Table 3: NMM configurations (capacity per core) 

Design Name DRAM-capacity (MB) Page-size (KB) 

N1 128 4 

N2 256 4 

N3 512 4 

N4 512 2 

N5 512 1 

N6 512 0.512 

N7 512 0.256 

N8 512 0.128 

N9 512 0.064 

B. Workload 

To explore the designs and their configurations we 

developed a test workload comprised of applications and 

benchmarks to represent an HPC and data intensive workload.  

The benchmarks were chosen from NPB [33] and  CORAL 

[34] benchmarks. The NAS Parallel Benchmarks (NPB) is a 

collection of kernels and pseudo-applications that represent 

computation and data movement in computational fluid 

dynamics workloads. The NPB benchmarks used were CG—

conjugate gradient solver with irregular memory access and 

communication and two pseudo applications BT -- Block Tri-

diagonal solver and SP-- Scalar Penta diagonal solver. All of 

them are class –D workloads, which have memory footprint of 

0.8-2GB per core. CORAL is a suite of benchmarks that 

represent DOE workloads, and comprises of benchmarks of 

scalable scientific, throughput, data centric workloads. From 

CORAL suite we have selected a) AMG2013, parallel 

algebraic multigrid solver for linear systems arising from 

problem on unstructured grids, which involves updating points 

of the grid according to a fixed pattern; b) Graph500-- a 

scalable breadth-first on undirected Kronecker graphs as a 

kernel to represent graph algorithm performance; c) Hash-- a 

data-centric benchmark which is used to evaluate the 

performance of the architecture integer operations, specifically 

for hashing, and for memory-intensive genomics applications. 

We have also used bioinformatics application Velvet [35]. For 

all iterative benchmarks, we have reduced the number of 

iterations to keep the simulation time within reasonable limits.   

Realistic data intensive workloads are memory bound and 

often problems that do not scale and typically run with a large 

memory footprint. To ensure that the memory systems for the 

designs were properly exercised and mimicked data intensive 

workloads we used problem sizes resulting in a large memory 

footprint. In addition, these workloads are best suited to 

understand the benefits of NVM in future many-core systems, 

where the per-core memory capacity will be limited, and 

NVM can provide greater capacity than DRAM. 

Table 4 details the runtime commands, memory 

footprint/core, and execution time on the reference system of 

each benchmark and application.  

 

Table 4: Characteristics of the benchmark 

Suite Benchmarks Footprint 

/Core (GB) 

Time 

(s) 

Inputs 

NPB BT 1.69 36.0 Class: D 

NPB LU 0.8  Class: C 

CORAL Graph500 4 157.0 "-s 22 -e 4" 

CORAL Hashing-2 4 389.6 "-m 30M -n 

50K" 

CORAL AMG2013 3 156.3 "-r 72 72 72 -P 1 

1 1 -pooldist 1" 

CORAL CG 1.5 54.8 Class: D 

Application Velvet 4 116.5 Default 

V. RESULTS 

We evaluated the different memory hierarchy 

configurations (shown in Table 2 and Table 3) on all of the 

benchmarks. The key parameters which were investigated 

were page-size and DRAM capacity and their impact on run 

time and total energy savings/overhead. Energy Delay Product 

has been used to compare the configurations experimented in 

a given design.  

In Figure 1 and Figure 2 we show the runtime and energy 

consumed by applications in NMM design, respectively 

normalized to the base case that has 3 on chip SRAM caches 

followed by a DRAM big enough to support necessary 

memory footprint. For the initial configuration N1, we observe 

time overhead of 5% and total energy overhead of 12%. 

Increase in DRAM capacity results in increase in hit rate, 

which causes decrease in total access time (~2%) and dynamic 

energy (~10%) but increase in static energy (~5%) because of 

increase in DRAM capacity. The decrease in page-size causes 

less contiguous data to be present/more data to be fetched, as 

needed. The impact of decreasing the page size causes an 

increase in access time (~2.5%), and decreases the dynamic 

energy (~4%) —since less bits will be accessed, but increases 

the static energy (~1%) since static energy is also proportional 

to the access time. However, when the page size is decreased 

from 4KB to 2KB, the access time and hence the leakage 

energy decreases, which suggests that the data access pattern 

is more suited to 2KB pages (i.e., the amount of contiguous 



data brought in by 4KB is not utilized efficiently). Among the 

configurations tested, N5 has least time overhead while N6 

has most energy savings. Both N5 and N6 have DRAM size of 

512MB, but page size is 1024B for N5 and 512B for N6; a 

t5he larger page size seem to favor performance but the 

smaller page size favors energy efficiency. However, if we 

consider EDP, N6 is more efficient than N5. 

 

 

Figure 1: Average of normalized run time of all 

benchmarks for NMM 
 

 

Figure 2: Average of normalized energy of different 

benchmarks for NMM 
 

Similar experiments were made with capacity and page 

size of eDRAM/HMC for 4LC and 4LCNVM. The time and 

energy savings/overhead for 4LC is shown in Figure 3 and 

Figure 4 respectively. We observe that the run time decreases 

by approximately 2% and using a page-size comparable with 

the cache line size results in large energy savings (~17%). 

Increasing the page size results in an increase of dynamic and 

hence total energy consumption while the time taken 

fluctuates within a band of 2% from that of base configuration 

and hence leakage energy follows a similar pattern. 

The time and energy savings/overhead for 4LCNVM is 

shown in Figure 5 and Figure 6, respectively. We observe that 

a page-size comparable with line size of last level cache 

results in significant energy savings (~57%). Increases page 

size result in increases in dynamic and hence total energy 

consumption. Increasing page size has a behavior similar to 

the same change in 4LC design. In both 4LC and 4LCNVM, 

the configuration with the least overhead in time and most 

saving in energy is EH1. EH1 has eDRAM/HMC size of 

16MB and page size of 64B. 

 

Figure 3: Average of normalized run time of different 

benchmarks for 4LC 
 

 
Figure 4: Average of normalized total energy of different 

benchmarks for 4LC 
 

For the NDM design, the data placement is determined by 

identifying, in the application, a contiguous range of addresses 

that accounts for the bulk of the memory references. We have 

identified address ranges referenced by different basic blocks, 

and then merged ranges close to each other. Typically we 

found 2 or 3 address ranges in each workload. Then, in order 

to evaluate merit in splitting the address space between 

different memory technologies, we placed an address range to 

NVM at a time, and the rest to DRAM. Among the 

permutations tested, only few of the address ranges associated 

with NVM were frequently accessed; the best performance of 

these permutations is shown in Figure 7 and Figure 8. In rest 

of the permutations the memory accesses were concentrated in 

DRAM and hence the performance of the memory hierarchy is 

similar to that of base case and is not included in the figure.  
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Figure 5: Average of normalized run time of all 

benchmarks for 4LCNVM 

 

 
Figure 6: Average of normalized total energy of all 

benchmarks for 4LCNVM 

 

 
Figure 7: Average of normalized run time of all 

benchmarks for NDM design 

 

In the NDM design, all the workloads have time overhead 

in the range, 5 to 63%, across different technologies. In the 

workloads, Velvet, Hashing, AMG and Graph500 we observe 

energy savings while in the case of BT, SP there is energy 

overhead. The former set of workloads has significant static 

energy as compared to dynamic energy while in the latter set 

the dynamic and static energy is comparable. When a NVM 

based device is used, the dynamic energy is likely to increase 

because of increase in access time with respect to DRAM but 

static energy is expected to decrease. Hence only the 

workloads which have relatively large static energy have 

energy savings in the hybrid design. 

 

 
Figure 8: Average of normalized total energy of all 

benchmarks for NDM design 

Figure 9 and Figure 10 visualize the impact of higher 

latency and energy per operation. Figure 9 is a heat map of the 

average slowdown caused by higher latency, whereas Figure 

10 is a heat map that shows average energy consumption. The 

maps are generated using the execution profile of all the 

benchmarks for the NMM design (512MB DRAM, 512B page 

size) and scale DRAM latency and energy costs with respect 

to DRAM. 

Through this heat map we can appreciate the impact of 

read/write latency. We observe that in general read operations 

dominate, and an increase in read latency has higher impact 

than an increase in write latency. For example, a 5x increase 

in read results in 5% runtime penalty, whereas a similar 

increase in write latency results in only 1% runtime penalty. 

We also observe that the performance penalty is very limited, 

with a 17% performance penalty for a 20x increase in both 

read and write latency. 

 

 
Figure 9 : Heat-map of normalized runtime of NMM as a 

function of read and write latency 

 

Similar inferences can be made on the impact of read and 

write energy. Up to a 9x increase in  write energy and 2x 

increase in read energy yields less or the same energy 

consumption of DRAM. As before, the dominance of read 
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operations puts more weight on the cost of the read operations. 

Finally, unlike for performance, small increases in energy cost 

over DRAM are compensated by the lower static energy of 

NVM and result in energy savings so there are several energy 

saving configurations with higher dynamic energy cost per 

operation than DRAM. 

 

 

 
Figure 10: Heat-map of normalized energy consumed by 

NMM as a function of read and write latency 

 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we present a first step in building a 

simulation framework to evaluate hybrid memory technology 

on data intensive applications. Using our simulation 

framework we modeled different memory technologies and 

hybrid memory architectures.  

We evaluated four different designs of fast volatile 

memory (eDRAM/HMC) and dense and non-volatile 

(PCM/STTRAM/FeRAM) memory. Our NVM designs shows 

that a simple hierarchy of NVM following DRAM can provide 

energy saving of as much as 21%, with an overhead of 7% in 

runtime. Our 4LC design shows that faster technology as 

fourth level cache before DRAM provides modest savings in 

runtime and energy. Combining the two further improves the 

overall energy reduction to as much as 47% without any 

overhead in runtime. In all these three designs, the memory 

hierarchy is extended vertically by adding an extra level, 

integrated into the memory sub-system, and that does not 

require software support to be utilized.     

Finally, we explored a hybrid hierarchy where DRAM and 

denser NVM form a partitioned address space. We found that 

for applications with a large memory footprint (and therefore  

incurring significant DRAM static energy costs) there is a 

potential average 42% savings in total energy, but at the cost 

of an average overhead of 25% in runtime, suggesting that the 

this solution, which is also more complex, is not as promising 

as the other designs. Further investigation should explore 

dynamic partitioning, that may change between computation 

phases, and take access patterns into account. 

In our work, we focused on testing the potential of 

integrating emerging memory technologies in the memory 

hierarchy. We have not factored in the cost (e.g. total cost of 

ownership) or wearing, which is typical of NVM. 

Future work will continue testing new applications, and 

focus on improving the modeling validating the results with an 

emulation platform. 
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