
Evaluation of emerging memory technologies for

HPC, data intensive applications

Amoghavarsha Suresh

San Diego Supercomputing Center

La Jolla, CA, USA

amoghavs@sdsc.edu

Pietro Cicotti

San Diego Supercomputing Center

La Jolla, CA, USA

pcicotti@sdsc.edu

Laura Carrington

San Diego Supercomputing Center

La Jolla, CA, USA

lcarring@sdsc.edu

Abstract— DRAM technology has several shortcomings in

terms of performance, energy efficiency and scaling. Several

emerging memory technologies have the potential to compensate

for the limitations of DRAM when replacing or complementing

DRAM in the memory sub-system. In this paper, we evaluate the

impact of emerging technologies on HPC and data-intensive

workloads modeling a 5-level hybrid memory hierarchy design.

Our results show that 1) an additional level of faster DRAM

technology (i.e. EDRAM or HMC) interposed between the last

level cache and DRAM can improve performance and energy

efficiency, 2) a non-volatile main memory (i.e. PCM, STTRAM,

or FeRAM) with a small DRAM acting as a cache can reduce the

cost and energy consumption at large capacities, and 3) a

combination of the two approaches, which essentially replaces

the traditional DRAM with a small EDRAM or HMC cache

between the last level cache and the non-volatile memory, can

grant capacity and improved performance and energy efficiency.

We also explore a hybrid DRAM-NVM design with a partitioned

address space and find that this approach is marginally

beneficial compared to the simpler 5-level design. Finally, we

generalize our analysis and show the impact of emerging

technologies for a range of latency and energy parameters.

Keywords—component; formatting; style; styling; insert (key

words)

I. INTRODUCTION

It is anticipated that DRAM technology will be inadequate

for future large scale systems due to a number of factors. First,

the evolution of DDR DRAM has not been able to keep up

with the bandwidth demand of multicore processors (i.e. the

memory wall [1]) and this gap in the performance of CPU and

memory sub-systems will only increase further for future

many-core systems [2]. Second, there is a growing capacity

gap due to the limited scaling of DRAM, power, and cost

limitations [3, 4]. Finally, at the current DDR3 power-

performance level of approximately 600 MW/GB/s, in an

Exascale system, the memory alone would draw 600MW [2].

Consequently, advancements in memory technology are

sought in all the significant metrics of performance,

power/energy efficiency, density, and scaling [2].

A number of memory technologies are emerging as viable

alternatives that address one or more of these shortcomings of

DRAM. Volatile memories are one such technology, which

have retention times comparable to DRAM (order of

nanosecond) and also need frequent refresh, similarly to

DRAM. They are based on DRAM cell technology but

improve on the architecture and the interface to deliver higher

performance and energy efficiency than DRAM [5, 6]. Also

emerging as a technology solution are non-volatile memories

(NVM), which have much longer retention times than DRAM

(order of years), are based on new cell technologies and offer

improvements mostly towards capacity [7].

A significant body of research has explored the use of

NVM technologies as storage and as an alternative to DRAM,

with many research efforts focusing on the feasibility and

design of the NVM devices, the architecture of hybrid

memory systems, data and access partitioning between DRAM

and NVM, and high level interfaces to NVM (see Section

II.B).

In this paper we evaluate the impact of emerging

technologies to identify opportunities for complementing

DRAM to improve the overall performance and energy-

efficiency of the memory system. Our work focuses on

understanding the impact of these technologies on High

Performance Computing (HPC) and data intensive

applications, and uses this understanding to define the

performance and energy efficiency levels that memory

technologies have to satisfy to be viable solutions. In

particular, we consider using volatile technologies as a last

level cache (LLC) and non-volatile technologies as main

memory; in the former case, the focus is on improving

performance and energy efficiency, in the latter case the focus

is on increasing the capacity while still preserving

performance and energy efficiency.

One concern with NVM is its asymmetry in read-write

performance and energy consumption (writes are typically

slow and energy demanding operations). To address this we

also investigate a hybrid main memory system with DRAM

and NVM. The hybrid design supports a partitioned address

space, in which frequently accessed and updated objects are

stored in DRAM, while the rest are stored in NVM.

We evaluate these technologies on a set of HPC and data-

intensive workloads. Our evaluations are based on

performance and energy models that leverage online

simulations of the memory hierarchy during the execution of

the workload.

We make the following contributions:

 We evaluate 5-level memory hierarchies that employ
eDRAM and HMC as LLC,

 we evaluate 5-level memory hierarchies that employ
PCM, STT-RAM, and FeRAM as main memory,

 we evaluate 5-level memory hierarchies that employ
eDRAM and HMC as LLC and PCM, STT-RAM,
and FeRAM as main memory,

 we evaluate a hybrid DRAM-NVM design and
propose a methodology for partitioning the address
space, and

 we generalize our results and present a performance
and energy heat map to assess what is the potential
impact of emerging memory technologies on
performance and energy efficiency.

The rest of the paper is organized as follows: Section II

presents the characteristics of some emerging memory

technologies and covers related work. Section III discusses the

methodology and the models used for this study. Section V

presents and discusses the results. Section VI concludes the

paper with our conclusions and future work.

II. BACKGROUND/RELATED WORK OF HYBRID

MEMORY

Recently emerging memory technologies have garnered a

lot of attention, following the wide adoption of flash NAND

memory, as potential alternatives to DRAM. This section

describes the characteristics of some of the emerging

technologies that we evaluate in this paper, and provides an

overview of related work.

A. Characteristics of future memory technologies

DDR DRAM technology is challenged by the difficulties

in performance, scaling, and energy efficiency, while SRAM

scaling is constrained by increasing leakage power. Recently,

various emerging memory technologies have begun to address

some of these challenges.

Volatile memory technologies, such as Embedded DRAM

(eDRAM) [5] and Hybrid Memory Cube (HMC) [6] address

the performance and energy inefficiency of DDR DRAM

technology. eDRAM is DRAM embedded on the processor

chip. Hybrid Memory Cube is a three-dimensional architecture

that uses through-silicon vias to effectively reduce the distance

traveled by signals, increasing the density of the memory and

significantly increasing the performance achieved.

A wealth of non-volatile memory technologies have

emerged as storage class memories to replace hard disk drives.

Due to the fact that their performance is approaching that of

DRAM and their ability for larger capacity makes several of

these technologies (e.g. NAND Flash, STTRAM, PCM,

FeRAM, ReRAM [8]) potential alternatives to DRAM in

future large scale systems.

NAND Flash memory is the most mature and widely

adopted type of non-volatile memory [9]. However, flash

memory is organized for bank read and writes and its low

performance and high energy consumption, especially for

write operations, make it a storage–class solution but not

viable for main memory.

Phase-Change memory (PCM) technology uses

chalcogenide alloy layer that change phase between crystalline

(low-resistance) and amorphous (high resistance) [10-15]. The

phase change is achieved by heat induced via high current

(slowly or abruptly cut-off for a transition to crystalline or

amorphous, respectively). PCM has very high capacity but is

characterized by asymmetric performance with large latency

and high energy consumption for write operations. PCM also

suffers from low endurance, and though this may be

compensated by wear leveling, it does incur some overhead

that adds variability in performance.

Spin-Torque-Transfer (STT) memory is a type of magnetic

RAM that uses a “spin-valve” to achieve two distinct

resistance states in a magnetic tunnel junction [16, 17]. The

change of state is achieved by the spin transfer torque effect of

polarized current. Despite having asymmetric performance,

with write latencies quite larger than DRAM, STTRAM has

good performance, lower energy requirements than most non-

volatile memories, and high endurance.

Ferro-Electric memory (FeRAM) functions by storing a

charge in a ferroelectric layer [18-20]. FeRAM is similar to

DRAM in terms of performance and combines high endurance

with non-volatility. FeRAM may require higher energy per

operation than DRAM.

Some of the emerging non-volatile memories have limited

endurance (memory cells wear out with updates), exhibit

asymmetric read and write performance, and may require high

currents, especially for write operations. Nevertheless, these

are opportunities to address shortcomings of DRAM

improving on performance, capacity, energy efficiency, with

an additional benefit of non-volatility. We do not consider

other less mature technologies, although our study is general

enough to be applicable and provide insight to the impact of

other technologies with different performance and energy

characteristics.

B. Hybrid memory design

Memory systems that integrate DRAM with other

technologies have the potential to fill the gaps in DRAM’s

performance and energy efficiency.

Previous work on non-volatile memories focused on

storage-class devices connected via SATA or PCIe interfaces,

and flash memory has been used as fast scratch storage in

HPC production systems [21, 22]. Flash has also been

considered as a fast swap device to effectively extend the size

of physical memory [23].

With the emergence of faster non-volatile memory, the

focus shifted to future systems and to the role of NVM as an

integral part of the main memory, or as fast checkpoint

memory [24]. Others have focused on the architecture and

implementation of the device and the performance on basic

benchmarks [10-14, 16, 25]. STT-RAM has also been

investigated as potential last level cache [26].

To address the asymmetric performance and energy

characteristics of NVM, pervious work explored the potential

of carefully placing data on DRAM or NVM in hybrid

memory system [27], comparing different policies for

migrating data between the different modules [28], and

finding data objects compatibility with the different modules

by comparing different policies for migrating data between the

different modules [29]. In contrast, we start by evaluating the

potential of hybrid designs and ad-hoc placement policies

assuming the existence of an oracle capable of statically

partitioning the virtual address space, and at the same time we

compare hybrid systems to a simpler hierarchical design that

does not need partitioning policies.

With respect to previous work, our work goes beyond the

evaluation of a single technology and attempts to evaluate,

compare, and combine different technologies using the same

methodology. More importantly, we attempt to generalize our

results to provide insight on the impact of performance and

energy costs as these technologies mature and others emerge.

Finally, we consider several data-intensive workloads to

stress the system and the capacity aspects, using much larger

memory footprints than in previous studies [29].

III. METHODOLOGY

In this section we describe the memory hierarchy designs

that we used in the evaluation, and provide details on the

motivation for these designs. We explain the simulation

framework we developed to collect data movement statistics

for the different designs, and the performance models that we

employ to gauge their impact.

A. Design Space

In this work we explored four main memory designs with

multiple configurations. We use an Intel Xeon processor

(Sandy Bridge architecture) with 64B cache lines, a 32KB L1

(8-way associative), a 256KB L2 (8-way associative), and a

20MB L3 (20-way associative) as the reference system and

memory configuration. We assumed DRAM to be large

enough to contain the memory footprint of each individual

benchmark.

For all the designs, the same L1, L2, and L3 cache

configurations are used. The four designs used for this work

are 4-Level Cache, NVM as Main Memory, NVM+DRAM,

and 4- Level Cache as NVM. The details of these designs are

as follows:
4-Level Cache (4LC): this design uses eDRAM and Hybrid
Memory Cube (HMC) as Last Level Cache (LLC), with HMC
being off-chip. Missed references in the LLC are simply
directed towards DRAM. Both eDRAM and HMC are
expected to be integrated in the hardware design and to be
managed by the on-chip logic and the memory controller. Their
presence is entirely transparent to the system software and the
application. The DRAM is assumed to be large enough to
handle the memory requirements of the application. This
design offers an opportunity to use better performing and more

efficient LLC before DRAM, by employing a technology that
is denser than on chip SRAM, and that is faster than DRAM.

NVM-as-Main-Memory (NMM): this design uses NVM as
main memory and DRAM as a cache. This design aims to
decrease DRAM size and hence reduce refresh energy. In
addition, by employing DRAM as a cache, a significant portion
of NVM memory accesses are filtered to limit the negative
impact on performance and dynamic energy consumption of
typical NVM technologies. Also in this case, since DRAM is
an off-chip cache, it is transparent to the software. For this
design we consider PCM, STTRAM, and FeRAM as the NVM
technology options.

NVM+DRAM (NDM): To take into account the characteristics
of NVM technologies, such as asymmetric performance and
energy required for write operations, this design uses both
NVM and DRAM as a partitioned main memory in which data
objects are placed where they best fit. This design attempts to
determine if an application can take advantage of the
differences between NVM and DRAM, and leverage the
capacity and low static power of NVM while minimizing its
impact on performance and dynamic energy.

4LCNVM: The designs in 4LC and NMM each offer

opportunities to decrease latency and increase capacity

respectively. To combine those benefits we evaluate a system

with no DRAM, but rather an eDRAM/HMC cache followed

by an NVM main memory.

In each of the hybrid memory hierarchy designs that we

presented above, with the exception of the NDM design, we

use emerging memory technology integrated in the memory

sub-system, and that as such it is employed transparently to

the software stack, and in particular to the applications. For

the NDM design, the underlying assumption is that a

compiler-based and runtime approach can define the address

range partitioning to enforce the desired partitioning. Our

study does not propose any specific solution but, as an oracle,

explores the potential benefit of the design for an optimal

partitioning.

 Table 1: Characteristics of different memory technologies

Memory

Technology

Read

delay

(ns)

Write

delay

(ns)

Read

energy

(pJ/bit)

Write

energy

(pJ/bit)

RAM 10 10 10 10

PCM 21 100 12.4 210.3

STTRAM 35 35 58.5 67.7

FeRAM 40 65 12.4 210

eDRAM 4.4 4.4 3.11 3.09

HMC 0.18 0.18 0.48 10.48

To model the performance and energy consumption of the

proposed designs, we rely on published characterization

parameters for the relevant memory technologies. For caches,

DRAM and eDRAM, we acquired parameters from CACTI

[30], a memory modeling tool. The HMC characteristics were

obtained from experimental data obtained on a prototype [6].

The characteristics of PCM and STTRAM are obtained from

the 2013 ITRS report [8], whereas characteristics of FeRAM

were obtained from published literature [18]. The

characteristics of all memory technologies used in our study

are summarized in Table 1.

B. Simulation

In order to model the performance and energy of a given

application on each of our designs, we need the data

movement statistics (e.g. hit/miss rates, loads/stores, etc.). In

order to capture these statistics for a target design we

developed a simulation framework based on PEBIL [31], a

binary instrumentation tool that automatically instruments all

the memory references of an application and captures its

memory address stream. The address stream is then fed to a

cache simulator for the target design with the output being the

cache statistics of the target design (e.g. hits/misses &

loads/stores to each level of memory). The raw address stream

of an HPC application can be unmanageable. By processing

the address stream during the execution, our framework

avoids the need to store and process full memory trace offline

and results in significant space and time cost reduction.

In order to model the effects of the asymmetric

performance in non-volatile memories, we extended our

simulation framework to differentiate between loads and

stores. In the initial design, the simulator was only able to

count cache references (hits and misses); our extensions added

the ability to also track memory references due to dirty cache

lines evictions. All the memory references are fed to the cache

simulator for the target system that differentiates between

loads and stores and keeps track of dirty cache lines. At the

last level of cache, simple evictions are essentially ignored,

whereas in the case of dirty cache lines such evictions cause a

write back to the main memory. Assuming a write-back

policy, dirty cache lines eventually make their way to the main

memory and count as write operations; every other access to

fetch a cache lines is counted as a read operation. Hence, with

the current cache simulation framework, we can simulate

memory hierarchies to obtain hits and misses and loads and

stores at each existing level for our proposed designs.

C. Performance Modelling

We now describe our performance and energy models that

combine technology specific characterization parameters and

application specific data movement statistics to evaluate each

of the proposed memory hierarchy designs. Performance is

estimated by comparing the wall clock time measured on the

reference system, to the estimated wall clock time of a given

configuration. Equation (1) illustrates how the runtime of the

target design is determined by scaling the runtime of the

reference system (Tref) by the ratio of the average memory

access time (AMAT) of the proposed hierarchy (AMATdesign)

to that of the reference (AMATref).

1)

In order to calculate the AMAT of both the reference and

design system the cache statistics from the data movement

simulator built on top of PEBIL along with the access times in

Table 1 were used in Equation (2). In order to calculate the

AMAT for an application the number of loads and stores to

each level of the hierarchy (Li) is captured in the simulation

framework for a given design. This count (e.g. StoresLi)

multiplied by the access time for that level (e.g.

StoresAccessTimeLi) is the time spent accessing data from that

level. By summing this time for each level where N represents

the number of level for both loads and stores we get the total

access time. To calculate the average we just divide this time

by the total number of references.

2)
∑

In modeling the energy consumed for a particular design

the sum of dynamic and static energy for all the levels in the

memory hierarchy is calculated. Dynamic energy is the

product of the energy for a load or store and the number of

loads and stores for each level of the memory hierarchy for a

level, as shown in equation (3)). Static energy is estimated as

product of time (T) and static power of the memory hierarchy

illustrated in equation (4)). The static power is calculated as

sum of static power of each level of cache and the refresh

power of DRAM/eDRAM in the memory hierarchy. The static

power of the caches were obtained from CACTI and

background (e.g. static) power of DRAM was obtained from

[32]. We assume that the NVM memory technologies do not

have any static power. The static/refresh power used is shown

in Table 1.

3)
∑

4)

In order to compare different designs that achieve

comparable improvements we use Energy delay product

(EDP). EDP for an application is defined as product of energy

consumed (e.g. Dynamic Energy + Static Energy) multiplied

by time taken for the application (Tref), and represents the

overall gain by taking both performance and energy into

account. For example, two configurations would be equivalent

in terms of EDP if one is faster but uses a proportionally

higher amount of energy.

IV. EXPERIMENTAL SETUP

In order to evaluate our designs we first created a set of

configurations within each design to explore. We also selected

a set of applications and benchmarks to represent HPC and

data intensive workloads.

A. Design Configurations

For this work there were four designs defined above as

4LC, NMM, NDM, and 4LCNVM. Within each design we

defined a configuration space to investigate. 4LC and

4LCNVM configuration space is described in Table 2. For

these designs, we explored configurations with changes in the

eDRAM capacity and the page size.

Table 2: eDRAM /HMC configurations (capacity per core)

Design name eDRAM capacity (MB) Page size(B)

EH1 16 64

EH2 16 128

EH3 16 256

EH4 16 512

EH5 16 1024

EH6 16 2048

EH7 8 2048

EH8 8 2048

For the NMM design we used a series of configurations

with changes in the DRAM capacity and the page size. Table

3 details these DRAM configurations. For the NDM design

we explored a DRAM of size 512MB.

Table 3: NMM configurations (capacity per core)

Design Name DRAM-capacity (MB) Page-size (KB)

N1 128 4

N2 256 4

N3 512 4

N4 512 2

N5 512 1

N6 512 0.512

N7 512 0.256

N8 512 0.128

N9 512 0.064

B. Workload

To explore the designs and their configurations we

developed a test workload comprised of applications and

benchmarks to represent an HPC and data intensive workload.

The benchmarks were chosen from NPB [33] and CORAL

[34] benchmarks. The NAS Parallel Benchmarks (NPB) is a

collection of kernels and pseudo-applications that represent

computation and data movement in computational fluid

dynamics workloads. The NPB benchmarks used were CG—

conjugate gradient solver with irregular memory access and

communication and two pseudo applications BT -- Block Tri-

diagonal solver and SP-- Scalar Penta diagonal solver. All of

them are class –D workloads, which have memory footprint of

0.8-2GB per core. CORAL is a suite of benchmarks that

represent DOE workloads, and comprises of benchmarks of

scalable scientific, throughput, data centric workloads. From

CORAL suite we have selected a) AMG2013, parallel

algebraic multigrid solver for linear systems arising from

problem on unstructured grids, which involves updating points

of the grid according to a fixed pattern; b) Graph500-- a

scalable breadth-first on undirected Kronecker graphs as a

kernel to represent graph algorithm performance; c) Hash-- a

data-centric benchmark which is used to evaluate the

performance of the architecture integer operations, specifically

for hashing, and for memory-intensive genomics applications.

We have also used bioinformatics application Velvet [35]. For

all iterative benchmarks, we have reduced the number of

iterations to keep the simulation time within reasonable limits.

Realistic data intensive workloads are memory bound and

often problems that do not scale and typically run with a large

memory footprint. To ensure that the memory systems for the

designs were properly exercised and mimicked data intensive

workloads we used problem sizes resulting in a large memory

footprint. In addition, these workloads are best suited to

understand the benefits of NVM in future many-core systems,

where the per-core memory capacity will be limited, and

NVM can provide greater capacity than DRAM.

Table 4 details the runtime commands, memory

footprint/core, and execution time on the reference system of

each benchmark and application.

Table 4: Characteristics of the benchmark

Suite Benchmarks Footprint

/Core (GB)

Time

(s)

Inputs

NPB BT 1.69 36.0 Class: D

NPB LU 0.8 Class: C

CORAL Graph500 4 157.0 "-s 22 -e 4"

CORAL Hashing-2 4 389.6 "-m 30M -n

50K"

CORAL AMG2013 3 156.3 "-r 72 72 72 -P 1

1 1 -pooldist 1"

CORAL CG 1.5 54.8 Class: D

Application Velvet 4 116.5 Default

V. RESULTS

We evaluated the different memory hierarchy

configurations (shown in Table 2 and Table 3) on all of the

benchmarks. The key parameters which were investigated

were page-size and DRAM capacity and their impact on run

time and total energy savings/overhead. Energy Delay Product

has been used to compare the configurations experimented in

a given design.

In Figure 1 and Figure 2 we show the runtime and energy

consumed by applications in NMM design, respectively

normalized to the base case that has 3 on chip SRAM caches

followed by a DRAM big enough to support necessary

memory footprint. For the initial configuration N1, we observe

time overhead of 5% and total energy overhead of 12%.

Increase in DRAM capacity results in increase in hit rate,

which causes decrease in total access time (~2%) and dynamic

energy (~10%) but increase in static energy (~5%) because of

increase in DRAM capacity. The decrease in page-size causes

less contiguous data to be present/more data to be fetched, as

needed. The impact of decreasing the page size causes an

increase in access time (~2.5%), and decreases the dynamic

energy (~4%) —since less bits will be accessed, but increases

the static energy (~1%) since static energy is also proportional

to the access time. However, when the page size is decreased

from 4KB to 2KB, the access time and hence the leakage

energy decreases, which suggests that the data access pattern

is more suited to 2KB pages (i.e., the amount of contiguous

data brought in by 4KB is not utilized efficiently). Among the

configurations tested, N5 has least time overhead while N6

has most energy savings. Both N5 and N6 have DRAM size of

512MB, but page size is 1024B for N5 and 512B for N6; a

t5he larger page size seem to favor performance but the

smaller page size favors energy efficiency. However, if we

consider EDP, N6 is more efficient than N5.

Figure 1: Average of normalized run time of all

benchmarks for NMM

Figure 2: Average of normalized energy of different

benchmarks for NMM

Similar experiments were made with capacity and page

size of eDRAM/HMC for 4LC and 4LCNVM. The time and

energy savings/overhead for 4LC is shown in Figure 3 and

Figure 4 respectively. We observe that the run time decreases

by approximately 2% and using a page-size comparable with

the cache line size results in large energy savings (~17%).

Increasing the page size results in an increase of dynamic and

hence total energy consumption while the time taken

fluctuates within a band of 2% from that of base configuration

and hence leakage energy follows a similar pattern.

The time and energy savings/overhead for 4LCNVM is

shown in Figure 5 and Figure 6, respectively. We observe that

a page-size comparable with line size of last level cache

results in significant energy savings (~57%). Increases page

size result in increases in dynamic and hence total energy

consumption. Increasing page size has a behavior similar to

the same change in 4LC design. In both 4LC and 4LCNVM,

the configuration with the least overhead in time and most

saving in energy is EH1. EH1 has eDRAM/HMC size of

16MB and page size of 64B.

Figure 3: Average of normalized run time of different

benchmarks for 4LC

Figure 4: Average of normalized total energy of different

benchmarks for 4LC

For the NDM design, the data placement is determined by

identifying, in the application, a contiguous range of addresses

that accounts for the bulk of the memory references. We have

identified address ranges referenced by different basic blocks,

and then merged ranges close to each other. Typically we

found 2 or 3 address ranges in each workload. Then, in order

to evaluate merit in splitting the address space between

different memory technologies, we placed an address range to

NVM at a time, and the rest to DRAM. Among the

permutations tested, only few of the address ranges associated

with NVM were frequently accessed; the best performance of

these permutations is shown in Figure 7 and Figure 8. In rest

of the permutations the memory accesses were concentrated in

DRAM and hence the performance of the memory hierarchy is

similar to that of base case and is not included in the figure.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N1 N2 N3 N4 N5 N6 N7 N8 N9

PCRAM

STTRAM

FeRAM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N1 N2 N3 N4 N5 N6 N7 N8 N9

PCRAM

STTRAM

FeRAM

0

0.2

0.4

0.6

0.8

1

1.2

EH1 EH2 EH3 EH4 EH5 EH6 EH7 EH8

eDRAM

HMC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

EH1 EH2 EH3 EH4 EH5 EH6 EH7 EH8

eDRAM

HMC

Figure 5: Average of normalized run time of all

benchmarks for 4LCNVM

Figure 6: Average of normalized total energy of all

benchmarks for 4LCNVM

Figure 7: Average of normalized run time of all

benchmarks for NDM design

In the NDM design, all the workloads have time overhead

in the range, 5 to 63%, across different technologies. In the

workloads, Velvet, Hashing, AMG and Graph500 we observe

energy savings while in the case of BT, SP there is energy

overhead. The former set of workloads has significant static

energy as compared to dynamic energy while in the latter set

the dynamic and static energy is comparable. When a NVM

based device is used, the dynamic energy is likely to increase

because of increase in access time with respect to DRAM but

static energy is expected to decrease. Hence only the

workloads which have relatively large static energy have

energy savings in the hybrid design.

Figure 8: Average of normalized total energy of all

benchmarks for NDM design

Figure 9 and Figure 10 visualize the impact of higher

latency and energy per operation. Figure 9 is a heat map of the

average slowdown caused by higher latency, whereas Figure

10 is a heat map that shows average energy consumption. The

maps are generated using the execution profile of all the

benchmarks for the NMM design (512MB DRAM, 512B page

size) and scale DRAM latency and energy costs with respect

to DRAM.

Through this heat map we can appreciate the impact of

read/write latency. We observe that in general read operations

dominate, and an increase in read latency has higher impact

than an increase in write latency. For example, a 5x increase

in read results in 5% runtime penalty, whereas a similar

increase in write latency results in only 1% runtime penalty.

We also observe that the performance penalty is very limited,

with a 17% performance penalty for a 20x increase in both

read and write latency.

Figure 9 : Heat-map of normalized runtime of NMM as a

function of read and write latency

Similar inferences can be made on the impact of read and

write energy. Up to a 9x increase in write energy and 2x

increase in read energy yields less or the same energy

consumption of DRAM. As before, the dominance of read

0

0.2

0.4

0.6

0.8

1

1.2

1.4

EH1 EH2 EH3 EH4 EH5 EH6 EH7 EH8

eDRAM

HMC

0

0.5

1

1.5

2

EH1 EH2 EH3 EH4 EH5 EH6 EH7 EH8

eDRAM

HMC

0

0.5

1

1.5

2

PCRAM

STTRAM

FeRAM

0

0.5

1

1.5

2

PCRAM

STTRAM

FeRAM

operations puts more weight on the cost of the read operations.

Finally, unlike for performance, small increases in energy cost

over DRAM are compensated by the lower static energy of

NVM and result in energy savings so there are several energy

saving configurations with higher dynamic energy cost per

operation than DRAM.

Figure 10: Heat-map of normalized energy consumed by

NMM as a function of read and write latency

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a first step in building a

simulation framework to evaluate hybrid memory technology

on data intensive applications. Using our simulation

framework we modeled different memory technologies and

hybrid memory architectures.

We evaluated four different designs of fast volatile

memory (eDRAM/HMC) and dense and non-volatile

(PCM/STTRAM/FeRAM) memory. Our NVM designs shows

that a simple hierarchy of NVM following DRAM can provide

energy saving of as much as 21%, with an overhead of 7% in

runtime. Our 4LC design shows that faster technology as

fourth level cache before DRAM provides modest savings in

runtime and energy. Combining the two further improves the

overall energy reduction to as much as 47% without any

overhead in runtime. In all these three designs, the memory

hierarchy is extended vertically by adding an extra level,

integrated into the memory sub-system, and that does not

require software support to be utilized.

Finally, we explored a hybrid hierarchy where DRAM and

denser NVM form a partitioned address space. We found that

for applications with a large memory footprint (and therefore

incurring significant DRAM static energy costs) there is a

potential average 42% savings in total energy, but at the cost

of an average overhead of 25% in runtime, suggesting that the

this solution, which is also more complex, is not as promising

as the other designs. Further investigation should explore

dynamic partitioning, that may change between computation

phases, and take access patterns into account.

In our work, we focused on testing the potential of

integrating emerging memory technologies in the memory

hierarchy. We have not factored in the cost (e.g. total cost of

ownership) or wearing, which is typical of NVM.

Future work will continue testing new applications, and

focus on improving the modeling validating the results with an

emulation platform.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation (NSF) under NSF OCI award 0951583 entitled
“I/O Modeling EAGER” and Intel Corporation. This work
used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National
Science Foundation grant number ACI-1053575.

REFERENCES

[1] W. A. Wulf and S. A. McKee, "Hitting the Memory

Wall: Implications of the Obvious," Computer

Architecture News, vol. 23, pp. 20-24, 1995.

[2] P. Kogge, "ExaScale Computing Study: Technology

Challenges in Achieving Exascale Systems," CSE Dept.

Tech. Report TR-2008-13, 2008.

[3] W. Chairs, R. Stevens, and A. White, "Workshop on

Architectures and Technology for Extreme Scale

Computing," 2009.

[4] M. Pavlovic, Y. Etsion, and A. Ramirez, "On the

memory system requirements of future scientific

applications: Four case-studies," in Workload

Characterization (IISWC), 2011 IEEE International

Symposium on, 2011, pp. 159-170.

[5] J. Barth, W. Reohr, P. Parries, et al., "A 500MHz

Random Cycle 1.5ns-Latency, SOI Embedded DRAM

Macro Featuring a 3T Micro Sense Amplifier," in Solid-

State Circuits Conference, 2007. ISSCC 2007. Digest of

Technical Papers. IEEE International, 2007, pp. 486-

617.

[6] J. Jeddeloh and B. Keeth, "Hybrid memory cube new

DRAM architecture increases density and performance,"

in VLSI Technology (VLSIT), 2012 Symposium on, 2012,

pp. 87-88.

[7] M. H. Kryder and K. Chang Soo, "After Hard Drives-

What Comes Next?," Magnetics, IEEE Transactions on,

vol. 45, pp. 3406-3413, 2009.

[8] ITRS. (2013). 2013 International Technology Roadmap

for Semiconductors. Available:

http://www.itrs.net/Links/2013ITRS/Home2013.htm

[9] H. Niijima, "Design of a solid-state file using flash

EEPROM," IBM J. Res. Dev., vol. 39, pp. 531-545,

1995.

[10] R. A. Bheda, J. A. Poovey, J. G. Beu, et al., "Energy

efficient Phase Change Memory based main memory for

future high performance systems," in Green Computing

Conference and Workshops (IGCC), 2011 International,

2011, pp. 1-8.

[11] B. C. Lee, E. Ipek, O. Mutlu, et al., "Architecting phase

change memory as a scalable dram alternative,"

presented at the Proceedings of the 36th annual

international symposium on Computer architecture,

Austin, TX, USA, 2009.

[12] M. K. Qureshi, J. Karidis, M. Franceschini, et al.,

"Enhancing lifetime and security of PCM-based Main

http://www.itrs.net/Links/2013ITRS/Home2013.htm

Memory with Start-Gap Wear Leveling," in

Microarchitecture, 2009. MICRO-42. 42nd Annual

IEEE/ACM International Symposium on, 2009, pp. 14-

23.

[13] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, "Scalable

high performance main memory system using phase-

change memory technology," presented at the

Proceedings of the 36th annual international symposium

on Computer architecture, Austin, TX, USA, 2009.

[14] Z. Wangyuan and L. Tao, "Exploring Phase Change

Memory and 3D Die-Stacking for Power/Thermal

Friendly, Fast and Durable Memory Architectures," in

Parallel Architectures and Compilation Techniques,

2009. PACT '09. 18th International Conference on,

2009, pp. 101-112.

[15] D. H. Yoon, J. Chang, R. S. Schreiber, et al., "Practical

nonvolatile multilevel-cell phase change memory,"

presented at the Proceedings of the International

Conference on High Performance Computing,

Networking, Storage and Analysis, Denver, Colorado,

2013.

[16] E. Kultursay, M. Kandemir, A. Sivasubramaniam, et al.,

"Evaluating STT-RAM as an energy-efficient main

memory alternative," in Performance Analysis of

Systems and Software (ISPASS), 2013 IEEE

International Symposium on, 2013, pp. 256-267.

[17] P. Zhou, B. Zhao, J. Yang, et al., "Energy reduction for

STT-RAM using early write termination," presented at

the Proceedings of the 2009 International Conference on

Computer-Aided Design, San Jose, California, 2009.

[18] K. Hoya, D. Takashima, S. Shiratake, et al., "A 64Mb

Chain FeRAM with Quad-BL Architecture and 200MB/s

Burst Mode," in Solid-State Circuits Conference, 2006.

ISSCC 2006. Digest of Technical Papers. IEEE

International, 2006, pp. 459-466.

[19] H. Shiga, D. Takashima, S. Shiratake, et al., "A 1.6 GB/s

DDR2 128 Mb Chain FeRAM With Scalable Octal

Bitline and Sensing Schemes," Solid-State Circuits,

IEEE Journal of, vol. 45, pp. 142-152, 2010.

[20] D. Takashima, H. Shiga, D. Hashimoto, et al., "A

scalable shield-bitline-overdrive technique for 1.3V

Chain FeRAM," in Solid-State Circuits Conference

Digest of Technical Papers (ISSCC), 2010 IEEE

International, 2010, pp. 262-263.

[21] P. Cicotti, J. Bennet, S. strande, et al., "Evaluation of I/O

technologies on a flash-based I/O sub-system for HPC,"

presented at the Workshop on Architecture and Systems

for Big Data, Galveston Island, TX, 2011.

[22] P. Cicotti, M. Norman, R. Sinkovits, et al., "Gordon: A

Novel Architecture for Data Intensive Computing," in

On the road to Exascale Computing: Contemporary

Architectures in High Performance Computing, J. S.

Vetter, Ed., ed: Chapman & Hall/CRC Press, 2013.

[23] A. Badam and V. S. Pai, "SSDAlloc: hybrid SSD/RAM

memory management made easy," presented at the

Proceedings of the 8th USENIX conference on

Networked systems design and implementation, Boston,

MA, 2011.

[24] S. Kannan, A. Gavrilovska, K. Schwan, et al.,

"Optimizing Checkpoints Using NVM as Virtual

Memory," in Parallel & Distributed Processing

(IPDPS), 2013 IEEE 27th International Symposium on,

2013, pp. 29-40.

[25] B. Giridhar, M. Cieslak, D. Duggal, et al., "Exploring

DRAM organizations for energy-efficient and resilient

exascale memories," presented at the Proceedings of the

International Conference on High Performance

Computing, Networking, Storage and Analysis, Denver,

Colorado, 2013.

[26] J. Wang, X. Dong, and Y. Xie, "OAP: an obstruction-

aware cache management policy for STT-RAM last-level

caches," presented at the Proceedings of the Conference

on Design, Automation and Test in Europe, Grenoble,

France, 2013.

[27] L. E. Ramos, E. Gorbatov, and R. Bianchini, "Page

placement in hybrid memory systems," presented at the

Proceedings of the international conference on

Supercomputing, Tucson, Arizona, USA, 2011.

[28] M. Pavlovic, N. Puzovic, and A. Ramirez, "Data

placement in HPC architectures with heterogeneous off-

chip memory," in Computer Design (ICCD), 2013 IEEE

31st International Conference on, 2013, pp. 193-200.

[29] L. Dong, J. S. Vetter, G. Marin, et al., "Identifying

Opportunities for Byte-Addressable Non-Volatile

Memory in Extreme-Scale Scientific Applications," in

Parallel & Distributed Processing Symposium (IPDPS),

2012 IEEE 26th International, 2012, pp. 945-956.

[30] N. Muralimanohar, R. Balasubramonian, and N. P.

Jouppi, "CACTI 6.0: A Tool to Model Large Caches,"

Published in International Symposium on

Microarchitecture2007.

[31] M. Laurenzano, M. Tikir, L. Carrington, et al., "PEBIL:

Efficient Static Binary Instrumentation for Linux.,"

presented at the IEEE International Symposium on

Performance Analysis of Systems and Software

(ISPASS), White Plains, NY, 2010.

[32] Micron. System Power Calculators. . Available:

http://www.micron.com/products/support/power-calc

[33] D. H. Bailey, E. Barszcz, J. T. Barton, et al., "The NAS

parallel benchmarks—summary and preliminary results,"

presented at the Proceedings of the 1991 ACM/IEEE

conference on Supercomputing, Albuquerque, New

Mexico, USA, 1991.

[34] O. Ridge, Argonne, and Livermore. CORAL: Benchmark

Codes. Available: https://asc.llnl.gov/CORAL-

benchmarks/

[35] D. R. Zerbino and E. Birney., "Velvet: algorithms for de

novo short read assembly using de Bruijn graphs,"

Genome Research vol. 18, pp. 821-829.

http://www.micron.com/products/support/power-calc

