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ABSTRACT

The analysis and understanding of large-scale application behavior is critical for effec-
tively utilizing existing HPC resources and making design decisions for upcoming sys-
tems. In this work we utilize the information about the behavior of an MPI application
at a series of smaller core counts to characterize its behavior at a much larger core count.
Our methodology first captures the application’s behavior via a set of features that are
important for both performance and energy (cache hit rates, floating point intensity,
ILP, etc.). We then find the best statistical fit from among a set of canonical functions in
terms of how these features change across a series of small core counts. The models for
a given feature can then be utilized to generate an extrapolated trace of the application
at scale. The accuracy of the extrapolated traces is evaluated by calculating the error of
the extrapolated trace relative to an actual trace for two large-scale applications, UH3D
and SPECFEM3D. The accuracy of the fully extrapolated traces is further evaluated
by comparing the results of building performance models using both the extrapolated
trace along with an actual trace in order to predict application performance. For these
two full-scale HPC applications, performance models built using the extrapolated traces
predicted the runtime with absolute relative errors of less than 5%.

Keywords: Performance Modeling, Workload Characterization, Trace Extrapolation

1. Introduction

Application performance models are vital in understanding the complex interac-

tions between applications and High Performance Computing (HPC) systems. These

models can aid in determining how future technologies could improve performance

and power efficiency. As HPC systems grow in scale, complexity and costs, it is

important that design and deployment decisions for the next generation systems

rely on solid foundations provided by performance models.

Two of the major goals of performance modeling are to reduce the time-to-

solution for strategic applications and to aid in the design of future systems. The for-
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mer can be best achieved if the performance sensitivity of applications to attributes

of the system are carefully understood and quantified. This enables users to develop

and tune their applications for a particular system and scale, often achieving far

better performance for their efforts. Given current and projected architectural scale

and complexity, time-to-solution of scientific simulations increasingly depends on

subtle, complex machine/code interactions. Understanding and modeling this com-

plexity is a prerequisite to designing and tuning applications to achieve substantial

fractions of peak hardware performance at large scale. In addition, system archi-

tects can benefit from quantitative descriptions of application resource demands to

inform the design process. Design tradeoffs can be evaluated in terms of how they

are likely to affect a workload, or perhaps customization can be explored in order

to improve workload performance.

Historically, performance models have indeed been used to improve system de-

signs, inform procurements, and guide application tuning. Unfortunately, producing

performance models at large scale has often been very laborious and required large

amounts of time and expertise. These constraints have limited the use of perfor-

mance models to a small cadre of experienced developers. This is because state-of-

the-art application performance prediction and modeling techniques depend heavily

on application characterizations. These characterizations, which consist of low-level

details of how an application interacts with and exercises the underlying hardware

subcomponents, are expensive to construct in terms of both time and space; time

because the process of measuring fine-grained application behavior often is possi-

ble only at significant runtime expense and space because characterization data

typically is gathered per process and thread, generating large amounts of data

and thereby creating post-processing and book-keeping challenges. While signifi-

cant progress has been made to reduce time and space overheads [1], characterizing

application execution at scale still poses significant difficulties, which will only be

exacerbated as the degree of node-level parallelism and the scale of supercomputers

grows.

This paper presents a methodology to address the challenge of constructing large-

scale (or large core count) application characterizations by extrapolating the applica-

tion behavior characterization data collected at a series of smaller core counts. We

first identify a set of application features that are important for both performance

and energy (e.g., cache hit rates, floating point intensity, data dependencies, ILP,

etc.). Our extrapolation methodology finds the best statistical fit from among a set

of canonical functions in terms of how each of those features changes across a series

of small core counts. The statistical models for each of these application features

then form a basis for generating a fully extrapolated trace of the application at per

instruction level at scale. We explore two different techniques for trace extrapolation

and present their results.

By utilizing trace extrapolation to generate the trace file at the higher core

count the methodology avoids the large cost of trace collection, enabling analysis

and understanding of large-scale behavior using data that can be collected cheaply.
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The extrapolated trace can be used in a modeling framework to investigate the

application’s behavior at the larger core counts to gain insight into the challenges

of running at scale.

The extrapolated traces are first validated by comparing them to actual collected

traces at the same core count. The sensitivity of the trace file elements is then

explored to determine the acceptable level of error. In addition to evaluate the

overall accuracy of the approach in generating large-scale performance models, it

was incorporated into the PMaC performance modeling framework. The framework

was then used to generate performance models for each application using both the

extrapolated trace and the actual collected trace at a large core count for two HPC

applications: SPECFEM3D GLOBE [2] and UH3D [3].

This remainder of this paper is organized as follows: Section 3 describes the

PMaC performance modeling framework, which is designed to automate modeling

the performance and energy of large scale parallel applications. Section 4 details the

two techniques used in our trace extrapolation methodology, along with its incorpo-

ration into the PMaC framework. Section 5 covers the error sensitivity in the method

and Section 6 describes the results of applying the extrapolation methods in order

to model the performance of two large scale applications: SPECFEM3D GLOBE

and UH3D. Finally, Section 8 concludes.

2. Related Work

Performance models have been used to improve system designs, inform procure-

ments, and guide application tuning [4, 5, 6, 7]. A variety of different approaches

to developing performance models have been explored in the literature. Kerbyson

et al. [8, 9] utilize detailed application-specific knowledge to construct performance

models. These models are highly accurate, however, the mostly manual modeling

exercise has to be largely repeated when the structure of the code or the algorith-

mic implementation changes. Vetter et al. [10] combine analytical and empirical

modeling approaches to incrementally construct realistic and accurate performance

models. Code modification must be made in the form of adding annotations or

“modeling assertions” around key application constructs, which limits the scalabil-

ity of this approach for large scale HPC applications that have many thousands of

lines of code. Various other researchers [11, 12, 13, 14] have also used application-

specific approaches to generate performance models, however in general they are

difficult to automate and generalize because they require extensive guidance from

domain experts.

An alternate approach to application-specific model construction is the trace-

driven approach [15, 16, 17, 18]. The basic guiding principle of this approach consists

of probing the target architecture with a set of carefully constructed microbench-

marks to learn fine-grained details pertaining to the performance of important sys-

tem components like the CPU, memory and network subsystems’ and then mapping

that knowledge to different computation and communication phases within an ap-
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plication. Unlike the application-specific approach, trace-driven modeling is easy to

automate and generalize. However, one of the drawbacks of trace-driven modeling

is the increased time, space and effort associated with collecting and storing ap-

plication trace data. Reducing the trace collection overhead by extrapolating large

traces from smaller traces is the focus of this paper.

There has also been some work done on predicting the scalability of HPC appli-

cations based on execution observations made from smaller core count runs. Barnes

et al. [19] use regression-based approaches on training data consisting of execution

observations with different input sets on a small subset of the processors and use

the models to predict performance on a larger number of processors. Others [20, 21]

have used machine learning and piecewise polynomial regression to model input pa-

rameter sensitivity of HPC applications. The aforementioned modeling techniques

are application-specific and the training configurations for regression and machine

learning are drawn from the input parameter space. Our method extrapolates low-

level measurable features of applications’ computation phases at smaller core counts

to predict execution time at larger core counts and therefore is more generalizable.

Finally, we note work done in communication trace extrapolation. Wu et al. [22]

synthetically generate the application communication trace for large numbers of

nodes by extrapolating traces from a set of smaller traces. The work presented

in this paper is for scaling an application’s computation behavior, which can be

complemented by communication trace extrapolation.

3. The PMaC Prediction Framework

The PMaC prediction framework is designed to accurately model parallel applica-

tions on HPC systems. In order to model a parallel application, the framework is

composed of two models – a computation model and a communication model. The

computation model focuses on the work done on the processor in between commu-

nication events, while the communication model deals with modeling communica-

tion events. Below a brief description is provided but for a detailed description of

the framework please see previous work [17][16][23][24] on the subject. The PMaC

prediction framework is comprised of three primary components: an application

signature, a machine profile, and a convolution method. The machine profile is a

description of the rates at which a machine can perform certain fundamental oper-

ations through simple benchmarks or projections. These simple benchmarks probe

the target machine to measure the behavior of different kinds of memory access

patterns, arithmetic operations, and communications events, at various working set

sizes and message sizes.

The application signature, which is collected via PMaC’s application tracing

tools [25][26], includes detailed information about the operations required by an ap-

plication, its data locality properties and its message sizes. The machine profile and

application signature are combined using a convolution method – a mapping of the

operations required by the application (the application signature) to their expected
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behavior on the target machine (the machine profile). This mapping takes place in

the PSiNS simulator that replays the entire execution of the HPC application on

the target/predicted system in order to calculate a predicted runtime of the appli-

cation on the target system. The models generated by the framework have shown

good accuracy (usually less than 15% absolute relative error) when predicting exe-

cution time for full-scale applications running production datasets on existing HPC

systems [27][28].

In this paper we extend the computation model within the PMaC framework.

Recall that the computation model focuses on the work done on the processor or

core in between communication events, details of which are captured as part of the

application signature. Extrapolating the application signature collected at a series

of small core counts to the application signature for a large core count and using

the extrapolated signature to predict application execution time at the large core

count are the key contributions made by this work.

3.1. Application Signatures and Machine Profiles

Fig. 1. Measured bandwidth as function of cache hit rates for Opteron

For the computation model there are two main classes of operations that nor-

mally comprise a majority of the run time: arithmetic operations and memory oper-

ations. Arithmetic operations are floating-point and other math operations; memory

operations are load and store memory references. Memory time modeling typically,

but not always, dominates the computation model’s run time. Because references

from different locations and access patterns can perform orders of magnitude better

or worse than others, to accurately model memory time we need to determine not

only the number of bytes that need to be loaded or stored but also the locations

and access patterns of those references. For example, a stride-one load access pat-

tern from L1 cache can perform significantly faster than a random-stride load from

main memory. Figure 1 is an example of a surface created using the MultiMAPS
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benchmark [15] for a two cache level Opteron processor. MultiMAPS probes a given

system to generate a series of memory bandwidth measurements across a variety of

stride and working set sizes, which in Figure 1 is reflected by varying cache hit rates

on the x and y axes. The MultiMAPS surface for a processor is used as a compo-

nent of the machine profile within the PMaC modeling framework, and allows the

computation behavior to be modeled as a function of differing memory behaviors

of different sections of an application.

To capture the properties of memory behavior for an application, we utilize a tool

implemented using the PEBIL binary instrumentation platform [25] to instrument

every memory access in the application for trace collection. PEBIL works directly

on the compiled and linked executable so that the automation of this complex

instrumentation step is very straightforward and easy, even on large-scale HPC ap-

plications. After PEBIL instruments the executable/binary to capture the memory

address from each memory reference, this instrumented executable is run on a base

system and the address stream of the application is processed on-the-fly through

a cache simulator which mimics the structure of the system being predicted (the

target system). Figure 2 gives an example of this. It shows that each process (or

MPI task) in a parallel application has its own memory addresses instrumented to

generate a memory address stream. The address stream of a single process can gen-

erate over 2 TB of data per hour so to alleviate this space requirement the address

stream is processed while the application is running through the cache simulator in

order to produce a summary trace file for each MPI task.

Fig. 2. Application signature collection, built on-the-fly using the memory address stream of the
running application

This trace file contains, for each basic block of the application, information

about: 1) the location of the block in the source code and executable, 2) number

of floating-point operations and their type, 3) number of memory references and

whether they are loads or stores, 4) size of its memory references in bytes, and 5)

the expected cache hit rates for those references on the target system. It is these hit
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rates that provide key information about the runtime behavior of the application’s

memory references and enable accurate predictions of their performance via their

corresponding data on the MultiMAPS surface (part of the machine profile).

The set of trace files from all MPI ranks constitutes the application signature

on the target system at that particular core count. It is important to note that

the application signature is collected on a base system which need not be the same

as the target system. The base system is some system that the application can

run using the same parallelization mode (e.g., MPI or hybrid MPI/OpenMP) that

will be used on the target system. The framework enables the application to be

traced on the base system, supplying the memory address stream of the running

application to a cache simulator for the target system, enabling the framework

to predict the performance of the application on the target system. This means

that an application signature for a target system can be generated without having

access to the target system. Therefore, a model for the application running on

the target system can be generated without ever having ported the application to

the system, or without the existence of a target system. Performance predictions

generated in this fashion are known as cross-architectural predictions. For this work

the application characterizations were gathered on a CRAY XT5.

3.2. Modeling Computational Behavior

In the computation model the majority of the time usually comes from the memory

time – the time required to move data through the memory hierarchy. Arithmetic

time is also modeled but memory time tends to dominate in the cases we studied. A

detailed description of the memory time calculation can be found at Tikir et al. [27].

The form of the memory time equation is:

memory time =

allBBs∑

i

(memory refi,j × size of ref)

memory BWj

(1)

In Equation 1, the summation denotes that we take a sum of the predicted memory

time for all the basic blocks in the application. The denominator memory BWj is

the memory bandwidth if the jth type of memory reference on a target system.

size of ref is the size in bytes of the reference and memory refi,j is the number

of memory references for basic block i of the jth type. Where a block falls on the

MultiMAPS curve – its working set and access pattern as expressed through its

cache hit rate – is encompassed in its type.

Equation 1 shows that the memory time of an application is calculated as the

sum of the memory time for all basic blocks within the application. Floating point

time is modeled in a similar way with some overlap of memory and floating-point

work. The majority of the computation time is in moving data throughout the

memory hierarchy and thus the focus of this presentation moving forward will be in

accurately capturing the information required for the calculation of memory time.
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In Equation 1 the parameter memory refi,j refers to memory references for

basic block i of the jth type, which also contains information relating to its cache

hit rates. In the application signature this information is represented for a single

basic block by the simulated cache hit rates for the target system along with its

data footprint size. This memory-related information, the floating-point operation

data, and the remaining parameters in Equation 1 make up a feature vector for a

given basic block. Each basic block for a given MPI task or core is represented by

a feature vector which contains (1) amount and composition of floating point work

(FPops), (2) number of memory operations (Mops), (3) size of memory operations

(Msize), (4) cache hit rates in all levels of the target system (L1hr, L2hr, L3hr) and

(5) working set size (WSsize). An example representation of the feature vector for

a basic-block is as follows:

<FPops, Mops, Msize, L1hr, L2hr, L3hr, WSsize>

A collection of feature vectors for all the basic blocks that were executed by each

MPI task make up the final signature for the given application. The PSiNS simulator

consumes these feature vectors and for each basic block, utilizes Equation 1 to

compute the corresponding memory and floating-point time. Memory bandwidth

for each block is found at the appropriate location on the MultiMaps curve for the

target system. The result of this exercise is the predicted computation time for the

application on the target system.

4. Trace Extrapolation

The goal of this work is to develop a methodology that can generate an application

signature for a large core count (e.g., 8192 cores) given the application signatures

of a series of smaller core count executions (e.g. 1024, 2048, and 4096 cores) of the

application. The methodology will eliminate the cost of collecting application signa-

tures at high core counts. An application signature consists of a series of trace files,

one file for each MPI task. In this work we explore two methods of extrapolating the

trace files. The end goal of both the methods is the same – for each of the smaller

core counts, derive a single trace data file that represents the work done by appli-

cation’s computational units (e.g., basic blocks and instructions). The first method

involves extrapolating the trace data from the MPI task that consumed the most

computational time, i.e., the task that has the most impact on the overall execu-

tion. The slowest running task is identified using a lightweight MPI profiling library

based on the PSiNSTracer package [26]. Given that each MPI application is viewed

only in terms of its longest running MPI task, the application signature of each

smaller core count is comprised as a single trace file that represents the work done

on the most computationally demanding MPI task. The second method involves

extrapolating a centroid trace file from each of the smaller core counts; e.g., for a

given basic block and a given core count, the centroid feature vector is generated

by simply calculating the average of each element in the feature vector across all

MPI tasks. The centroid trace file attempts to represent an average computational
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Fig. 3. Extrapolating individual elements within a basic block’s prediction vector

behavior of all the tasks rather than the task contributing to the most computation.

For applications where the work is evenly distributed the centroid trace file will not

differ greatly from any of the individual task trace files.

Our discussions thus far on application signatures and how they are collected

and processed have mostly focused on per basic block level characterizations. For

this work, however, the signatures include more detailed information to enable ex-

trapolation studies and therefore contain data at per instruction level, i.e., the trace

files contain data for each instruction of all basic blocks executed by each of the

MPI tasks.

Once the trace files are processed to generate single trace file for each of the

smaller core count executions (either via the centroid trace file or the most compu-

tationally intensive task’s trace file), the next step is to utilize these representative

trace files to generate an extrapolated trace file for a larger core count. When an

application is strongly scaled, each element in the instruction feature vector could

exhibit different scaling behavior. Some elements might remain constant as the

number of cores increase while others might scale according to some function (e.g.,

logarithmic or linear) with the number of cores. To identify how each behavior scales

as core count increases, each element of the feature vector needs to be treated sep-

arately in order to extrapolate the behavior of a particular property of a particular

instruction. An example of this is shown in Figure 3 for a single instruction with

four elements of its feature vector, where each element is extrapolated on its own.

Figure 3 shows how each element in an instruction feature vector for the 3 core

counts is used to extrapolate those values at the larger core count, illustrating the

principle behind our trace extrapolation methodology. Four functions of various

canonical form are fitted to each individual element of each feature vector and the

best of those fits is used to extrapolate that element for the vector. We use the

following four canonical forms in this work:

b+a*ln(x) Logarithmic Model

bexp(x) Exponiental Model

constant Constant Model

ax + b Linear Model

(where a, b are fitted parameters and x is number of cores).

Once the value of each element of a vector has been extrapolated for the higher
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Fig. 4. Linear Model captures the scaling behavior of the L2 Hit Rate.

target core count then the vector is recorded in a new synthetic trace file. Thus, the

single trace file for three core counts are used as input, which is used to generate

a fourth trace file for a core count of a specified size. Note that using more than

three core counts could improve the quality of the fit but it became evident during

testing that three generally provided adequate accuracy.

Figure 4 and Figure 5 show that for each element in the feature vector of an

instruction a different model captures the behavior as the core count is increased.

In Figure 4 the measured L2 hit rate for a single instruction is plotted versus the

core count along with the model fit for each of the four canonical forms. As the core

count increases the hit rate increases also, which is best described by the linear form.

Each element in the feature vector of a given instruction can have different behavior

and require and best be described by a different form. Figure 5 plots the behavior

of the memory operations for a single instruction as the core count increases. For

this operation the log model clearly has the best fit.

The framework is designed to take each element of an instruction’s feature vector

and choose a model that best fits its behavior and use the model to generate the

vector at the higher core count. This process is used for all the instructions of an

MPI task to generate a synthetic application signature at the higher core count. The

synthetic signature (or trace) is used to predict performance of the full application.

For most of the extrapolated elements this method of model fitting showed good

accuracy (absolute relative error <20%). Most of the elements that had higher er-
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Fig. 5. Logarithmic Model captures the scaling behavior of the number of memory operations.

ror in the fit were from instructions that didn’t have a significant influence on the

overall runtime. This influence was determined by the ratio of memory operations

the instruction had to the total number of memory instructions and for those in-

structions without memory operations, floating-point operations were used. The

percentage deemed to have influence was anything over 0.1%. For the applications

used within this work, every extrapolated element within all of the influential in-

structions had an absolute relative error of less than 20%.

We further explored the use of the number of canonical forms by analyzing which

form was chosen the most and if using less forms would result in more error. Of

the four forms, logarithmic was chosen to fit the best the most number of times,

followed by linear, constant, and exponential.

We also explored which form, if used for all elements of the vector, resulted in

the best fit across all the elements in the feature vector. In this case, the form with

the best fit was the logarithmic, followed by linear, constant, and exponential. The

size of error and the number of elements with larger errors grows considerably when

we utilize just a single form. The largest error seemed to come from fits of the L1

hit rate data. This could be attributed to the fact that for some instructions the

L1 hit rate values changed dramatically as the application was strong scaled and

data moved all the way from main memory into L1 cache. These explorations with

using fewer forms were meant to rationalize our extrapolation framework’s use of

different fitting forms for different elements in the feature vector. We do suspect
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that increasing the number of forms used within this methodology has a strong

chance of driving down the error further, though this is a matter for future work.

5. Feature Vector Error Sensitivity

To reduce the error in extrapolation and of the performance models developed using

the synthetic traces, we need to further understand which elements of the feature

vector are most sensitive to error. Given those elements, we can begin to make

progress towards reducing the extrapolation error by, for example, adding more

canonical forms to model highly sensitive elements.

Our error sensitivity experiments utilized a full-scale HPC application –UH3D,

which is a global code to model the Earth’s magnetosphere developed at UCSD that

treats the ions as particles and the electrons as a fluid. We first ran the collected

trace for UH3D through PMaC performance prediction framework to determine

the predicted time, which served as the reference time. We then introduced error

into the elements of some or all of the feature vectors of the trace file. Recall from

Section 3 that the feature vector consists of the following 7 elements:

<FPops,Mops,Msize,L1hr,L2hr,L3hr,WSsize>

The error sensitivity was explored one element at a time in a series of experi-

ments. The predicted runtime of the modified (or error-injected) trace was compared

to the reference predicted runtime to determine the effect the introduced error has

on the overall prediction. The error was introduced by randomly changing the value

by + or − 25%. In addition, the frequency of the error, or the percentage of the

vectors subjected to the error was also investigated. The frequencies investigated

were 5%, 25%, 50%, and 100%. Since the error value was non-systematic (i.e. + or

− 25%) and could thus result in error cancellation, we further looked at applying a

systematic error where the value was always reduced by 25%.

Table 1 shows the prediction error when introducing the 25% error into the five

main elements of the vector. These are the elements that are part of calculating

computational time in the prediction framework. The table shows that error in the

floating-point element does not have a huge affect on the prediction error. This is

to be expected – time spent in data motion tends to dominate the execution time

and floating point calculations often overlap with data movement. The significance

of the memory time can be seen in the prediction error number when the number

of memory operations are subjected to a systematic error injection; non-systematic

errors cancel each other out. For the systematic error of −25%, the runtime is

reduced by that exact amount.

Of the three cache hit rates, L1 hit rate is most sensitive to error. The reason

for this is in the way that the memory BWj variable is calculated in the prediction

framework. This variable is composed of three sub-components where each sub-

component represents a level of cache and is calculated as a function of the number

of missed references (and hit rate) from the previous level and the hits at current

level of cache. The effect this has on error sensitivity can be seen in Table 1. The
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effect is also a function of where the data for the application is in the memory sub-

system. The table illustrates that for UH3D application the data is in the upper

levels of cache, therefore when error is introduced into the L3 hit rate it has very

little affect. This is because the amount of data moved from L3 and main-memory

is determined by the number of elements missed in L2. Since the hit rate for L2 is

100% for most of the vectors in the trace file, any error introduced into the L3 hit

rate element has little to no effect.

Table 1. Prediction errors for UH3D when 25% error introduced.

Element 5% 25% 50% 100% 100%†

Memory Ops -0.1% -0.1% -0.1% 0.1% -25.0%

FP ops 0.0% 0.2% 0.2% 0.0% -0.2%

L1 hit rate -0.7% -5.0% -7.6% -19.3% -44.8%

L2 hit rate 0.1% -3.0% -6.0% -12.4% -34.6%

L3 hit rate 0.0% -1.0% -1.5% -2.4% -10.2%

†Systematic error of -25%

The exploration of the error sensitivity revealed that the hit rate elements in the

vector result in the largest prediction error. Table 1 illustrates that the location of

the data in the memory sub-system also have an effect on the error sensitivity. In

addition, even the most sensitive elements (e.g., L1 hit rate) with a fairly large (e.g.,

25%) error have to have a systematic error in every vector in order to introduce more

than 20% error in the prediction. This bodes well for the extrapolation methodology

described in the previous section which introduced less than 20% error for only a

few of the vectors and elements.

6. Results

After exploring the sensitivity of error for the methodology we test the accuracy

for extrapolating the traces by performing the extrapolation utilizing both the sin-

gle trace file and the centroid trace file methods. We then use those extrapolated

traces within the PMaC prediction framework to predict the performance of two

full-scale HPC applications: SPECFEM3D [2] and UH3D [3]. SPECFEM3D is a

spectral-element application enabling the simulation of global seismic wave prop-

agation in 3D anelastic, anisotropic, rotating and self-gravitating Earth models at

unprecedented resolution.

Each application was scaled using strong scaling, where the data set size is held

constant as the core count is increased. The effect of this on the computational work

is that, as the core count increases, the work and data footprint per core begins to

decrease for most computational phases in the application. We collected application

traces at a large count (6144 for SPECFEM3D and 8192 for UH3D) and in addition

built an extrapolated trace using three smaller core counts for each application. The

accuracy of the extrapolated traces were then tested by comparing the results of

using the extrapolated trace to predict performance versus using a traditional trace

to predict application performance for a target system. Table 2 shows the results
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of the predictions for the extrapolated traces using the single trace (Extrap-S)

and centroid (Extrap-C) trace as well as the traditional collected trace (Coll). The

extrapolated traces using the single trace file method produce runtime predictions

with absolute relative errors from the correct runtime of less than 5%, while the

centroid trace file method had higher error rates <11%. The error in the centroid

trace method could be attributed to the averaging of computational work of all the

MPI tasks. For both applications the spread of computational work per task varied

by about 7-8%, indicating that both applications have balanced work distribution

among tasks.

Table 2. Prediction errors for SPECFEM3D and UH3D

using extrapolated and collected application traces.

Application Core Trace Predicted % Error
Count Type Runtime (s)

SPECFEM3D 6144 Extrap-S 139 1%

SPECFEM3D 6144 Extrap-C 127 11%

SPECFEM3D 6144 Coll. 139 1%

UH3D 8192 Extrap-S 537 5%

UH3D 8192 Extrap-C 523 8%

UH3D 8192 Coll. 536 5%

For SPECFEM3D, the three core counts used to generate the extrapolated traces

were 96, 384, and 1536. All traces were collected on Kraken, a Cray XT5 system at

the National Institute for Computational Sciences (NICS). Traces from these small

core count runs were used to generate an extrapolated trace for SPECFEM3D

at 6144 cores using both the single trace file (slowest runner) and centroid trace

file methods. Extrapolated trace for 6144 cores was then used within the PMaC

modeling framework to predict the performance of the application on the Phase

I BlueWaters system. In order to test the accuracy of the extrapolated traces in

predicting performance, a set of actual trace files were collected at 6144 cores and

were similarly used to predict the performance. In Table 2, we compare the per-

formance predictions made using synthetic traces and actual traces. The prediction

made using the traces generated using the single trace file method are comparable

to that made using an actual trace. The accuracy in predicting the real measured

time is also very close – predicted run time of 139 seconds using single file synthetic

traces compared to the real measured runtime is 143 seconds.

For UH3D, the three core counts used to generate the synthetic extrapolated

traces were: 1024, 2048, and 4096. These traces were also run through the same

procedure as described above for SPECFEM3D to generate extrapolated trace files

at 8192 cores using the two methods. Actual trace files were also collected at 8192

to determine the prediction accuracy of using collected trace files versus synthetic

trace files. The results are again shown in Table 2: the extrapolated trace using

the single trace file method produces a runtime prediction of 537 seconds, which is

close to the prediction produced using the actual collected trace (536 seconds). The
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centroid trace file method exhibits a slightly larger prediction error of 8% with a

run time prediction of 523 seconds, where the measured runtime is 566 seconds.

For both applications the method of extrapolation provides an accurate applica-

tion signature. This allows such signatures to confidently be used in the exploration

of how the computation and data layout is affected when scaling to larger core

counts on a particular target system. An example of this can be seen in Table 3,

which shows the cache hit rates of a given basic block on the target system for a

variety of core counts. The table shows that as the core count increases the data

slowly moves into the L3 and L2 cache indicated by the increase in the hitrate for

those cache levels.

Table 3. Changes in cache hitrates of target system as core count increases

Core Count L1 HR L2 HR L3 HR

1024 87.4 87.5 87.5

2048 87.4 87.5 90.7

4096 87.4 88.4 91.6

8192 87.4 89.0 95.0

The same investigative process can be approached another way to investigate

how the application would behave on two target systems whose memory hierarchies

differ in some way. Table 4 illustrates this by showing the L1 cache hit rate for two

systems which have identical L2 and L3 caches but which differ in their L1 cache

size (12KB vs. 56KB). The table illustrates the capabilities of using this to explore

the optimal cache structure for a given application and core count, all without the

system even existing because the trace data is collected on a base system that is

not the target system. The table shows a particular basic-block that doesn’t change

its behavior (i.e. L1 hitrate) when the core count is increased, thus the data for this

particular computation is not affected by the strong scaling. But if the size of L1

is increased from 12KB to 56KB then the data for the computation moves into L1

cache.

Table 4. Application trace data (L1 hitrate)

for single basic-block of SPECFEM3D for two target systems

System 96 cores 384 cores 1536 cores 6144 cores

A (12 KB L1) 85.6 85.6 85.8 85.8

B (56 KB L1) 99.6 99.6 99.6 99.6

7. Future Work

Future research will add more canonical forms (e.g., polynomial) in the extrap-

olation of the instruction feature vector elements to improve the accuracy of the

extrapolation. This will be guided by the error sensitivity analysis of the feature vec-

tor elements. Applying this methodology to weak-scaled problems is also of interest,

and may pose additional challenges to our methodology.

An application signature consists of a series of trace files – for a run at 1024
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cores the prediction framework uses 1024 trace files, one for each MPI task. In

generating synthetic trace files from 1024, 2048, and 4096 core trace files we need

to generate 8192 trace files. The challenge in extrapolating the individual trace files

is determining how the work distribution per core changes as the application strong

scales (a fixed problem size across multiple core counts). One approach would be to

identify groups of MPI tasks that do similar work and adapt the grouping as one

scales to a larger number of cores. The current work explored two methods – using

the slowest running task’s prediction vector as a base to scale the data in the trace

files and creating a centroid trace to represent all task’s work for a given core count.

While each method proved to be fairly accurate we believe that we can improve the

accuracy of the synthetic traces by using clustering algorithms. These algorithms

could be used to first cluster MPI-tasks with similar properties and then use the

“centroid” file from each cluster as a base to extrapolate data in the centroid trace

files.

Furthermore, the methodology proposed in this work lays a strong foundation

for determining how application input parameters affect application behavior. For

example, one could attempt to determine how working set size of a computational

phase is affected by the size or composition of an input file. To start to address this,

a plausible approach is to employ the same scaling and extrapolating strategies used

in this work to capture and model how changes in input set parameters changes the

feature vectors of the application.

8. Conclusion

In this work we proposed a methodology for extrapolating the computational be-

havior of large-scale HPC applications by capturing the details of computational

behavior at a series of smaller core counts. We then used one of the four canonical

functions (linear, logarithmic, exponential or constant) to best describe how each

element in an instruction level feature vector (e.g., cache hit rates) changes as the

application scales. We explored two techniques to represent the application’s be-

havior at each core count – single trace file for the slowest running MPI task and

the centroid trace . Both techniques were shown to produce accurate extrapolated

application traces for two full-scale HPC applications, SPECFEM3D and UH3D, by

comparing the results of using the extrapolated traces against using actual collected

traces in order to predict the performance of those applications at scale using the

PMaC performance prediction framework. The sensitivity of the elements in the

trace file were investigated to reveal that the cache hit rates were most sensitive.

Extrapolating application traces is critical not only for understanding how an appli-

cation scales on a particular system, but also can be useful for detecting the impact

of incremental or major changes in the hardware being used to run the application.
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