
1

Inferring Large-scale Computation Behavior via
Trace Extrapolation

Laura Carrington Michael A. Laurenzano Ananta Tiwari
Performance Modeling and Characterization (PMaC) Laboratory

University of California, San Diego
San Diego Supercomputer Center

San Diego, California 92093
{lcarring, michaell, tiwari}@sdsc.edu

Abstract—Understanding large-scale application behavior is
critical for effectively utilizing existing HPC resources and
making design decisions for upcoming systems. In this work we
present a methodology for characterizing an MPI application’s
large-scale computation behavior and system requirements using
information about the behavior of that application at a series of
smaller core counts. The methodology finds the best statistical fit
from among a set of canonical functions in terms of how a set
of features that are important for both performance and energy
(cache hit rates, floating point intensity, ILP, etc.) change across
a series of small core counts. The statistical models for each of
these application features can then be utilized to generate an
extrapolated trace of the application at scale. The fidelity of the
fully extrapolated traces is evaluated by comparing the results
of building performance models using both the extrapolated
trace along with an actual trace in order to predict application
performance at using each. For two full-scale HPC applications,
SPECFEM3D and UH3D, the extrapolated traces had absolute
relative errors of less than 5%.

I. INTRODUCTION

Each new generation of High Performance Computing
(HPC) systems is designed based on experience with existing
systems and projections about how future technologies and
applications will interact with each other. As HPC systems
grow in scale, complexity and costs, it is important that
these design and deployment decisions for the next generation
systems rely on solid foundations. Application performance
models provide such foundations.

Two of the major goals of performance modeling are to
reduce the time-to-solution for strategic applications and to
aid in the design of future systems. The former can be best
achieved if the performance sensitivity of applications to at-
tributes of the system are carefully understood and quantified.
This enables users to develop and tune their applications
for a particular system and scale, often achieving far better
performance for their efforts. Given current and projected
architectural scale and complexity, time-to-solution of sci-
entific simulations increasingly depends on subtle, complex
machine/code interactions. Understanding and modeling this
complexity is a prerequisite to designing and tuning ap-
plications to achieve substantial fractions of peak hardware
performance at large scale. In addition, system architects can
benefit from quantitative descriptions of application resource
demands to inform the design process. Design tradeoffs can be

evaluated in terms of how they are likely to affect a workload,
or perhaps customization can be explored in order to improve
workload performance.

Historically, performance models have indeed been used to
improve system designs, inform procurements, and guide ap-
plication tuning. Unfortunately, producing performance mod-
els at large scale has often been very laborious and required
large amounts of time and expertise. These constraints have
limited the use of performance models to a small cadre of ex-
perienced developers. This is because state-of-the-art applica-
tion performance prediction and modeling techniques depend
heavily on application characterization. These characteriza-
tions, which consist of low-level details of how an application
interacts with and exercises the underlying hardware subcom-
ponents, are expensive to construct in terms of both time and
space; time because the process of measuring fine-grained ap-
plication behavior often is possible only at significant runtime
expense and space because characterization data typically is
gathered per process and thread, generating large amounts of
characterization data and thereby creating post-processing and
book-keeping challenges. While significant progress has been
made to reduce time and space overheads [1], characterizing
application execution at scale still poses significant difficulties,
which will only be exacerbated as the degree of node-level
parallelism and the scale of supercomputers grows.

This paper presents a methodology to address the chal-
lenge of developing large-scale application characterization
and modeling by extrapolating it from application behavior
characterization data collected at a series of smaller core
counts. We first identify a set of basic block features that are
important for both performance and energy (e.g., cache hit
rates, floating point intensity, data dependencies, ILP, etc.).
Our extrapolation methodology finds the best statistical fit
from among a set of canonical functions in terms of how
each of those features changes across a series of small core
counts. The statistical models for each of these application
features then form a basis for generating a full extrapolated
trace of the application at per basic block level at scale. This
methodology avoids collection of the most costly data (that
at larger core counts), instead inferring large-scale behavior
using data that can be collected cheaply. This new larger
core count generated data can be used to model application
behavior at the larger core counts to gain insight into the

2

challenges that may be faced as the application scales. To
evaluate this approach, it been incorporated into the PMaC
performance modeling framework. The framework was then
used to generate performance models for each application
using both the extrapolated trace at some large core count and
the actual collected trace from that core count for two large
scale applications: SPECFEM3D GLOBE [2] and UH3D [3].

The rest of this paper is organized as follows: Section
III describes the PMaC performance modeling framework,
which is designed to automate modeling the performance
and energy of large scale parallel applications. Section IV
details the trace extrapolation methodology, along with its
incorporation into the PMaC framework. Section V describes
the results of applying the extrapolation methods in order
to model the performance of two large scale applications:
SPECFEM3D GLOBE and UH3D. Finally, Section VII con-
cludes.

II. RELATED WORK

Performance models have been used to improve system de-
signs, inform procurements, and guide application tuning [4],
[5], [6], [7]. A variety of different approaches to developing
performance models have been explored in the literature.
Kerbyson et al. [8], [9] utilize detailed application-specific
knowledge to construct performance models. These models
are highly accurate, however, the mostly manual modeling
exercise has to be largely repeated when the structure of the
code or the algorithmic implementation changes. Vetter et
al. [10] combine analytical and empirical modeling approaches
to incrementally construct realistic and accurate performance
models. Code modification must be made in the form of adding
annotations or “modeling assertions” around key application
constructs, which limits the scalability of this approach for
large scale HPC applications that have many thousands of
lines of code. Various other researchers [11], [12], [13], [14]
have also used application-specific approaches to generate
performance models, however in general they are difficult
to automate and generalize because they require extensive
guidance from domain experts.

An alternate approach to application-specific model con-
struction is the trace-driven approach [15], [16], [17], [18]. The
basic guiding principle of this approach consists of probing
the target architecture with a set of carefully constructed
microbenchmarks to learn fine-grained details pertaining to
the performance of important system components like the
CPU, memory and network subsystems and then mapping
that knowledge to different computation and communication
phases within an application. Unlike the application-specific
approach, trace-driven modeling is easy to automate and
generalize. However, one of the drawbacks of trace-driven
modeling is the increased time, space and effort associated
with collecting and storing application trace data. Reducing
the trace collection overhead by extrapolating large traces from
smaller traces is the focus of this paper.

There has also been some work done on predicting the
scalability of HPC applications based on execution observa-
tions made from smaller core count runs. Barnes et al. [19]

use regression-based approaches on training data consisting
of execution observations with different input sets on a small
subset of the processors and use the models to predict perfor-
mance on a larger number of processors. Others [20], [21] have
used machine learning and piecewise polynomial regression
to model input parameter sensitivity of HPC applications. The
aforementioned modeling techniques are application-specific
and the training configurations for regression and machine
learning are drawn from the input parameter space. Our
method extrapolates low-level measurable features of appli-
cations’ computation phases at smaller core counts to predict
execution time at larger core counts and therefore is more
generalizable.

Finally, we note work done in communication trace extrap-
olation. Wu et al. [22] synthetically generate the application
communication trace for large numbers of nodes by extrapo-
lating traces from a set of smaller traces. The work presented
in this paper is for scaling an application’s computation
behavior, which can be complemented by communication trace
extrapolation.

III. THE PMAC PREDICTION FRAMEWORK

The PMaC prediction framework is designed to accurately
model parallel applications on HPC systems. In order to model
a parallel application, the framework is composed of two mod-
els – a computation model and a communication model. The
computation model focuses on the work done on the processor
in between communication events, while the communication
model deals with modeling communication events. Below a
brief description is provided but for a detailed description of
the framework please see previous work [17][16][23][24] on
the subject. The PMaC prediction framework is comprised of
three primary components: an application signature, a machine
profile, and a convolution method. The machine profile is
a description of the rates at which a machine can perform
certain fundamental operations through simple benchmarks
or projections. These simple benchmarks probe the target
machine to measure the behavior of different kinds of memory
access patterns, arithmetic operations, and communications
events, at various working set sizes and message sizes.

The application signature, which is collected via PMaC’s
application tracing tools [25][26], includes detailed informa-
tion about the operations required by an application, its data
locality properties and its message sizes. The machine profile
and application signature are combined using a convolution
method – a mapping of the operations required by the appli-
cation (the application signature) to their expected behavior on
the target machine (the machine profile). This mapping takes
place in the PSiNS simulator that replays the entire execution
of the HPC application on the target/predicted system in order
to calculate a predicted runtime of the application on the target
system. The models generated by the framework have shown
good accuracy (usually less than 15% absolute relative error)
when predicting execution time for full-scale applications
running production datasets on existing HPC systems [27][28].

In this paper we extend the computation model within the
PMaC framework. Recall that the computation model focuses

3

on the work done on the processor or core in between com-
munication events, details of which are captured as part of the
application signature. Extrapolating the application signature
collected at a series of small core counts to the application
signature for a large core count then using the extrapolated
signature to predict application execution time at the large
core count is the key contribution made by this work.

A. Application Signatures and Machine Profiles

Fig. 1. Measured bandwidth as function of cache hit rates for Opteron

For the computation model there are two main classes
of operations that normally comprise a majority of the run
time: arithmetic operations and memory operations. Arith-
metic operations are floating-point and other math operations;
memory operations are load and store memory references.
Memory time modeling typically, but not always, dominates
the computation model’s run time. Because references from
different locations and access patterns can perform orders of
magnitude better or worse than others, to accurately model
memory time we need to determine not only the number of
bytes that need to be loaded or stored but also the locations and
access patterns of those references. For example, a stride-one
load access pattern from L1 cache can perform significantly
faster than a random-stride load from main memory. Figure 1
is an example of a surface created using the MultiMAPS
benchmark [15] for a two cache level Opteron processor.
MultiMAPS probes a given system to generate a series of
memory bandwidth measurements across a variety of stride
and working set sizes, which in Figure 1 is reflected by
varying cache hit rates on the x and y axes. The MultiMAPS
surface for a processor is used as a component of the machine
profile within the PMaC modeling framework, and allows the
computation behavior to be modeled as a function of differing
memory behaviors of different sections of an application.

To capture the properties of memory behavior for an appli-
cation, we utilize a tool implemented using the PEBIL binary
instrumentation platform [25] to instrument every memory
access in the application for trace collection. PEBIL works
directly on the compiled and linked executable so that the au-
tomation of this complex instrumentation step is very straight-
forward and easy, even on large-scale HPC applications. After
PEBIL instruments the executable/binary to capture the mem-
ory address from each memory reference, this instrumented

executable is run on a base system and the address stream
of the application is processed on-the-fly through a cache
simulator which mimics the structure of the system being
predicted (the target system). Figure 2 gives an example of
this. It shows that each process (or MPI task) in a parallel
application has its own memory addresses instrumented to
generate a memory address stream. The address stream of a
single process can generate over 2 TB of data per hour so to
alleviate this space requirement the address stream is processed
while the application is running through the cache simulator
in order to produce a summary trace file for each MPI task.

This trace file contains, for each basic block of the ap-
plication, information about: 1) the location of the block in
the source code and executable, 2) number of floating-point
operations and their type, 3) number of memory references
and whether they are loads or stores, 4) size of its memory
references in bytes, and 5) the expected cache hit rates for
those references on the target system. It is these hit rates
that provide key information about the runtime behavior
of the application’s memory references and enable accurate
predictions of their performance via their corresponding data
on the MultiMAPS surface (part of the machine profile).

The set of trace files from all MPI ranks constitutes the
application signature on the target system at that particular
core count. It is important to note that the application signature
is collected on a base system which need not be the same as the
target system. The base system is some system that the appli-
cation can run using the same parallelization mode (e.g., MPI
or hybrid MPI/OpenMP) that will be used on the target system.
The framework enables the application to be traced on the base
system, supplying the memory address stream of the running
application to a cache simulator for the target system, enabling
the framework to predict the performance of the application on
the target system. This means that an application signature for
a target system can be generated without having access to the
target system. Therefore, a model for the application running
on the target system can be generated without ever having
ported the application to the system, or without the existence
of a target system. Performance predictions generated in this
fashion are known as cross-architectural predictions. For this
work the application characterizations were gathered on a
CRAY XT5.

B. Modeling Computational Behavior

In the computation model the majority of the time usually
comes from the memory time – the time required to move
data through the memory hierarchy. Arithmetic time is also
modeled but memory time tends to dominate in the cases we
studied. A detailed description of the memory time calculation
can be found at Tikir et al. [27]. The form of the memory time
equation is:

memory time =
allBBs∑

i

(memory refi,j × size of ref)

memory BWj
(1)

In Equation 1, the summation denotes that we take a sum
of the predicted memory time for all the basic blocks in the

4

Fig. 2. Application signature collection, built on-the-fly using the memory address stream of the running application

application. The denominator memory BWj is the memory
bandwidth if the jth type of memory reference on a target
system. size of ref is the size in bytes of the reference and
memory refi,j is the number of memory references for basic
block i of the jth type. Where a block falls on the MultiMAPS
curve – its working set and access pattern as expressed through
its cache hit rate – is encompassed in its type.

Equation 1 shows that the memory time of an application is
calculated as the sum of the memory time for all basic blocks
within the application. Floating point time is modeled in a
similar way with some overlap of memory and floating-point
work. The majority of the computation time is in moving data
throughout the memory hierarchy and thus the focus of this
presentation moving forward will be in accurately capturing
the information required for the calculation of memory time.

In Equation 1 the parameter memory refi,j refers to
memory references for basic block i of the jth type, which
also contains information relating to its cache hit rates. In
the application signature this information is represented for
a single basic block by the simulated cache hit rates for the
target system along with its data footprint size. This memory-
related information, the floating-point operation data, and the
remaining parameters in Equation 1 make up a feature vector
for a given basic block. Each basic block for a given MPI task
or core is represented by a feature vector which contains (1)
amount and composition of floating point work, (2) number of
memory operations, (3) size of memory operations, (4) cache
hit rates in all levels of the target system and (5) working set
size.

A collection of feature vectors for all the basic blocks that
were executed by each MPI task make up the final signature
for the given application. The PSiNS simulator consumes these
feature vectors for the basic blocks then for each basic block,
utilizes Equation 1 to compute the corresponding memory
and floating-point time. Memory bandwidth for each block is
found at the appropriate location on the MultiMaps curve for
the target system. The result of this exercise is the predicted
computation time for the application on the target system.

IV. TRACE EXTRAPOLATION

The goal of this work is to develop a methodology that is
capable of generating the application signature for a large core
count (e.g. 8192 cores) of application run given the application
signatures of a series of smaller core counts (e.g. 1024, 2048,
and 4096 cores) in order to eliminate the cost of collecting an
application signature at the high core count. An application
signature consists of a series of trace files, one file for each
MPI task. For this work we focus on extrapolating the trace
data from the MPI task that consumed the most computational
time, this is because this task tends to have the most impact
on overall execution time. This task is identified using a
lightweight MPI profiling library based on the PSiNSTracer
package [26].

Given that each application is viewed only in terms of its
longest MPI task, the application signature of each smaller
core count is comprised as a single trace file which represents
the work done on the most computationally demanding MPI
task. As described in Section III-B, this trace file is a collection
of information about each basic block executed by the task. For
this work the trace file includes more detailed information for
extrapolation and therefore contains data for each instruction
of all basic blocks executed by the task. Recall that this
data is represented by a feature vector. When an application
is strongly scaled, each property within each basic block
of the application might exhibit different scaling behavior.
Some properties might remain constant as the number of cores
increase while others might scale according to some function
(e.g., logarithmic or linear) with the number of cores. To
identify how each behavior scales as core count increases, each
element of the feature vector needs to be treated separately in
order to extrapolate the behavior of a particular property of a
particular instruction. An example of this is shown in Figure 3
for a single instruction with four elements of its feature vector,
where each element is extrapolated on its own.

Figure 3 shows how each element of the instruction for the 3
core counts is used to extrapolate those values at the larger core
count, illustrating the principle behind our trace extrapolation
methodology: functions of various canonical form are fitted to
each individual element of each feature vector and the best of

5

Fig. 3. Extrapolating individual elements within a basic block’s prediction
vector

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1000 2000 3000 4000 5000 6000 7000 8000 9000

L2
 H

it
R

at
e

Cores

Linear Model

measured
Log - model
Exp - model

Linear - model
Constant - model

Fig. 4. Linear Model captures the scaling behavior of the L2 Hit Rate.

those fits is used.
We use four canonical forms in this work: constant, linear,

exponential and logarithmic. The trace files for three core
counts are used as input, which is used to generate a fourth
trace file for a core count of a specified size. Note that using
more than three core counts could improve the quality of the
fit but it became evident during testing that three generally
provided adequate accuracy.

Figure 4 and Figure 5 show that for each element in the
feature vector of an instruction a different model captures
the behavior as the core count is increased. In Figure 4 the
measured L2 hit rate for a single instruction is plotted vs.
the core count along with the model fit for each of the four
canonical forms. As the core count increases the hit rate
increases also, which happens to best be described by the
linear form. Each element in the feature vector of a given
instruction can have different behavior and best be described
by a different form. Figure 5 plots the behavior of the memory
operations for a single instruction as the core count increases.
For this operation the log model clearly has the best fit.

The framework is designed to take each element of an
instructions feature vector for a single instruction and find
the model that best fits its behavior and use this to generate
the vector at the higher core count. This process is used for
all the elements of an instruction’s feature vector for all the
instructions of an MPI task to generate synthetic application
signature at the higher core count to be used to predict
performance of the full application.

For most of the extrapolated elements this method of

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r

of
 M

em
or

y
O

pe
ra

tio
ns

Cores

Log Model

measured
Log - model
Exp - model

Linear - model
Constant - model

Fig. 5. Logarithmic Model captures the scaling behavior of the number of
memory operations.

model fitting showed good accuracy. Most of the elements
that had higher error in the fit were from instructions that
didn’t have a significant influence on the overall runtime. This
influence was determined by the ratio of memory operations
the instruction had to the total number of memory instructions
and for those instructions without memory operations, floating-
point operations were used. The percentage deemed to have
influence was anything over 0.1%. For the applications used
within this work, every extrapolated element within all of the
influential instructions had an absolute relative error of less
than 20%. We suspect that increasing the number of forms
used within this methodology has a strong chance of driving
down this error further, though this is a matter for future
research.

V. RESULTS

We test the accuracy of our methodology for extrapolating
traces by performing the extrapolation and then using those
extrapolated traces within the PMaC prediction framework to
predict the performance of two full-scale HPC applications:
SPECFEM3D [2] and UH3D [3]. SPECFEM3D is a spectral-
element application enabling the simulation of global seis-
mic wave propagation in 3D anelastic, anisotropic, rotating
and self-gravitating Earth models at unprecedented resolution.
UH3D is a global code to model the Earth’s magnetosphere
developed at UCSD that treats the ions as particles and the
electrons as a fluid.

Each application was scaled using strong scaling, where the
data set size is held constant as the core count is increased.
The effect of this on the computational work is that, as
the core count increases, the work and data footprint per
core begins to decrease for most computational phases in the
application. We collect an application trace at some large count
(6144 for SPECFEM3D and 8192 for UH3D), then build an
extrapolated trace using three smaller core counts for each
application. The accuracy of the extrapolated traces are then
tested by comparing the results of using the extrapolated trace
and a traditional trace to produce application performance
predictions for a target system. As shown in Table I, the

6

extrapolated traces produce runtime predictions with absolute
relative errors from the correct runtime of less than 5%.

Appliation Core Trace Predicted % Error
Count Type Runtime (s)

SPECFEM3D 6144 Extrap. 139 1%
SPECFEM3D 6144 Coll. 139 1%

UH3D 8192 Extrap. 537 5%
UH3D 8192 Coll. 536 5%

TABLE I
PREDICTION ERRORS FOR SPECFEM3D AND UH3D USING

EXTRAPOLATED AND COLLECTED APPLICATION TRACES.

For SPECFEM3D the three core counts used to generate
the extrapolated trace were 96, 384, and 1536. All traces
were collected on Kraken, a Cray XT5 system at the National
Institute for Computational Sciences (NICS). Traces at these
small core counts were collected on Kraken and then used
to generate an extrapolated trace for SPECFEM3D at 6144
cores. The trace for 6144 cores was then supplied to the
PMaC modeling framework to predict the performance of the
Phase I BlueWaters system. In order to test the accuracy of the
extrapolated trace, another set of trace files were collected at
6144 cores and were similarly used to predict the performance
of the Phase I NCSA BlueWaters system. The performance
predictions for the two are shown in Table I; their differences
are insignificant and both methods produce the same predicted
run time of 139 seconds where the real measured runtime is
143 seconds.

For UH3D the three core counts used to generate the
synthetic extrapolated trace were: 1024, 2048, and 4096. These
traces were also run through the same procedure as described
above for SPECFEM3D to generate an extrapolated trace file
at 8192 cores. Trace files were also collected at 8192 to
determine the prediction accuracy of using collected trace files
verses generated trace files. The results are again shown in
Table I: the extrapolated trace produces a runtime prediction
of 537 seconds, which is very close to the prediction produced
using the collected trace (536 seconds).

For both applications the method of extrapolation provides
an accurate application signature. This allows such signatures
to confidently be used in the exploration of how the compu-
tation and data layout is affected when scaling to larger core
counts on a particular target system. An example of this can
be seen in Table II, which shows the cache hit rates of a
given basic block on the target system for a variety of core
counts. The table shows that as the core count increases the
data slowly moves into the L3 and L2 cache indicated by the
increase in the hitrate for those cache levels.

Core Count L1 HR L2 HR L3 HR
1024 87.4 87.5 87.5
2048 87.4 87.5 90.7
4096 87.4 88.4 91.6
8192 87.4 89.0 95.0

TABLE II
CHANGES IN CACHE HITRATES OF TARGET SYSTEM AS CORE COUNT

INCREASES

The same investigative process can be approached another
way to investigate how the application would behave on two
target systems whose memory hierarchies differ in some way.

Table III illustrates this by showing the L1 cache hit rate
for two systems which have identical L2 and L3 caches but
which differ in their L1 cache size (12KB vs. 56KB). The
table illustrates the capabilities of using this to explore the
optimal cache structure for a given application and core count,
all without the system even existing because the trace data is
collected on a base system that is not the target system. The
table shows a particular basic-block that doesn’t change its
behavior (i.e. L1 hitrate) when the core count is increased,
thus the data for this particular computation is not affected
by the strong scaling. But if the size of L1 is increased from
12KB to 56KB then the data for the computation moves into
L1 cache.

System 96 cores 384 cores 1536 cores 6144 cores
A (12 KB L1) 85.6 85.6 85.8 85.8
B (56 KB L1) 99.6 99.6 99.6 99.6

TABLE III
APPLICATION TRACE DATA (L1 HITRATE) FOR SINGLE BASIC-BLOCK OF

SPECFEM3D FOR TWO TARGET SYSTEMS.

VI. FUTURE WORK

Future research will add more canonical forms (e.g., poly-
nomial) in the extrapolation of the basic block elements
to improve the accuracy of the extrapolation. Applying this
methodology to weak-scaled problems is also of interest, and
may pose additional challenges to our methodology. We also
applied the methodology only to the trace file for the longest-
running MPI task within an application run, which may not
be sufficient to capture how application trace data scales.

An application signature is made of a series of trace files
– for a run at 1024 cores the prediction framework uses 1024
trace files, one for each MPI task. In generating synthetic trace
files from 1024, 2048, and 4096 core trace files we need to
generate 8192 trace files. The challenge in extrapolating the
individual trace files is determining how the work distribution
per core changes as the application strong scales (a fixed
problem size across multiple core counts). Meaning is there
groups of tasks that do similar work and as you scale the
number of cores the size of the group (e.g. the number of MPI
tasks in the group) also scales. The current work just uses the
slow running task’s prediction vector as a base to scale the data
in the trace files. However, we believe that we can improve the
accuracy of the synthetic traces by using clustering algorithms.
These algorithms could be used to first cluster MPI-tasks with
similar properties and then use the “centroid” file from each
cluster as a base to extrapolate data in the centroid trace files.

Furthermore, the methodology proposed in this work has
laid a strong foundation for determining how application input
parameters affect application behavior. For example, one could
attempt to determine how working set size of a computational
phase is affected by the size or composition of an input file.
To start to address this, a plausible approach is to employ the
same scaling and extrapolating strategies used in this work
to capture and model how changes in input set parameters
changes the feature vectors of the application.

7

VII. CONCLUSION

In this work we proposed a methodology for extrapolating
the computational behavior of large-scale HPC applications by
capturing the details of computational behavior at a series of
smaller core counts then using one of a small set of canoni-
cal functions (linear, logarithmic, exponential or constant) to
describe how each of a set of important features changes
as the application scales. This methodology was shown to
produce accurate extrapolated application traces for two full-
scale HPC applications, SPECFEM3D and UH3D, by compar-
ing the results of using the extrapolated traces against using
collected traces in order to predict the performance of those
applications at scale using the PMaC performance prediction
framework. Extrapolating application traces in this fashion is
critical not only for understanding how an application scales
on a particular system, but also can be useful for detecting the
impact of incremental or major changes in the hardware being
used to run the application.

ACKNOWLEDGEMENTS

This work was supported by NCSA’s Blue Waters project
(NSF OCI 07-25070 and the State of Illinois). This research
was supported by an allocation of advanced computing re-
sources provided by the National Science Foundation. The
computations were performed on Kraken at the National In-
stitute for Computational Sciences http://www.nics.tennessee.
edu/.

REFERENCES

[1] M. A. Laurenzano, J. Peraza, A. Tiwari, L. Carrington, W. Ward, and
R. Campbell, “A static binary instrumentation threading model for fast
memory trace collection,” International Workshop on Data-Intensive
Scalable Computing Systems, 2012.

[2] “SPECFEM 3D Globe,” http://www.geodynamics.org/cig/software/
specfem3d-globe.

[3] H. Karimabadi, H. X. Vu, B. Loring, Y. Omelchenko, M. Tatineni,
A. Majumdar, U. Ayachit, and B. Geveci, “Petascale global kinetic sim-
ulations of the magnetosphere and visualization strategies for analysis
of very large multi-variate data sets,” 5th international conference of
numerical modeling of space plasma flows, 2010.

[4] D. Bailey and A. Snavely, “Performance modeling: Understanding the
present and predicting the future,” 2005.

[5] A. Hoisie, D. J. Kerbyson, C. L. Mendes, D. A. Reed, and A. Snavely,
“Special section: Large-scale system performance modeling and analy-
sis,” Future Generation Comp. Syst., vol. 22, no. 3, pp. 291–292, 2006.

[6] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang, S. Pakin, and
J. Sancho, “Using performance modeling to design large-scale systems,”
Computer, vol. 42, no. 11, pp. 42 –49, nov. 2009.

[7] D. Kerbyson, A. Vishnu, K. Barker, and A. Hoisie, “Codesign challenges
for exascale systems: Performance, power, and reliability,” Computer,
vol. 44, no. 11, pp. 37 –43, nov. 2011.

[8] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman,
and M. Gittings, “Predictive performance and scalability modeling
of a large-scale application,” in Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM), ser. Supercomputing ’01.
New York, NY, USA: ACM, 2001, pp. 37–37. [Online]. Available:
http://doi.acm.org/10.1145/582034.582071

[9] D. J. Kerbyson and P. W. Jones, “A performance model of the
parallel ocean program,” Int. J. High Perform. Comput. Appl.,
vol. 19, no. 3, pp. 261–276, Aug. 2005. [Online]. Available:
http://dx.doi.org/10.1177/1094342005056114

[10] S. Alam and J. Vetter, “A framework to develop symbolic performance
models of parallel applications,” in Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, april 2006, p. 8 pp.

[11] J. Brehm, P. H. Worley, and M. Madhukar, “Performance modeling
for spmd message-passing programs,” Concurrency - Practice and
Experience, vol. 10, no. 5, pp. 333–357, 1998.

[12] H. Shan, E. Strohmaier, J. Qiang, D. H. Bailey, and K. Yelick,
“Performance modeling and optimization of a high energy colliding
beam simulation code,” in Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, ser. SC ’06. New York, NY, USA:
ACM, 2006. [Online]. Available: http://doi.acm.org/10.1145/1188455.
1188557

[13] K. Barker, K. Davis, and D. Kerbyson, “Performance modeling in
action: Performance prediction of a cray xt4 system during upgrade,” in
Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on, may 2009, pp. 1 –8.

[14] T. Hoefler, “Bridging performance analysis tools and analytic perfor-
mance modeling for HPC,” in Proceedings of the 2010 conference on
Parallel processing, ser. Euro-Par 2010. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 483–491.

[15] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha, “A framework for performance modeling and
prediction,” in Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, ser. Supercomputing ’02. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2002, pp. 1–17. [Online]. Available:
http://dl.acm.org/citation.cfm?id=762761.762785

[16] L. Carrington, A. Snavely, X. Gao, and N. Wolter, “A performance
prediction framework for scientific applications,” in ICCS Workshop on
Performance Modeling and Analysis (PMA03, 2003, pp. 926–935.

[17] L. Carrington, M. Laurenzano, A. Snavely, R. L. Campbell, and
L. P. Davis, “How well can simple metrics represent the performance
of hpc applications?” in Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, ser. SC ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 48–. [Online]. Available:
http://dx.doi.org/10.1109/SC.2005.33

[18] S. Sharkawi, D. DeSota, R. Panda, S. Stevens, V. Taylor, and
X. Wu, “Swapp: A framework for performance projections of hpc
applications using benchmarks,” in Proceedings of the 2012 IEEE
26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum, ser. IPDPSW ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 1722–1731. [Online]. Available:
http://dx.doi.org/10.1109/IPDPSW.2012.214

[19] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski,
and M. Schulz, “A regression-based approach to scalability prediction,”
in Proceedings of the 22nd annual international conference on
Supercomputing, ser. ICS ’08. New York, NY, USA: ACM, 2008,
pp. 368–377. [Online]. Available: http://doi.acm.org/10.1145/1375527.
1375580

[20] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,
and S. A. McKee, “Methods of inference and learning for performance
modeling of parallel applications,” in Proceedings of the 12th
ACM SIGPLAN symposium on Principles and practice of parallel
programming, ser. PPoPP ’07. New York, NY, USA: ACM, 2007,
pp. 249–258. [Online]. Available: http://doi.acm.org/10.1145/1229428.
1229479

[21] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An approach
to performance prediction for parallel applications,” in Proceedings of
the 11th international Euro-Par conference on Parallel Processing, ser.
Euro-Par’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 196–205.
[Online]. Available: http://dx.doi.org/10.1007/11549468 24

[22] X. Wu and F. Mueller, “Scalaextrap: trace-based communication
extrapolation for spmd programs,” in Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming, ser.
PPoPP ’11. New York, NY, USA: ACM, 2011, pp. 113–122. [Online].
Available: http://doi.acm.org/10.1145/1941553.1941569

[23] M. A. Laurenzano, M. Meswani, L. Carrington, A. Snavely, M. M. Tikir,
and S. Poole, “Reducing energy usage with memory and computation-
aware dynamic frequency scaling,” in Proceedings of the 17th inter-
national conference on Parallel processing - Volume Part I, ser. Euro-
Par’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 79–90.

[24] A. Tiwari, M. Laurenzano, L. Carrington, and A. Snavely, “Modeling
power and energy usage of hpc kernels,” in Proceedings of the Eighth
Workshop on High-Performance, Power-Aware Computing 2012, ser.
HPPAC ’12, 2012.

[25] M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely, “Pebil: Efficient
static binary instrumentation for linux,” in Performance Analysis of
Systems Software (ISPASS), 2010 IEEE International Symposium on,
march 2010, pp. 175 –183.

[26] M. M. Tikir, M. A. Laurenzano, L. Carrington, and A. Snavely,
“Psins: An open source event tracer and execution simulator for

8

mpi applications,” in Proceedings of the 15th International Euro-
Par Conference on Parallel Processing, ser. Euro-Par ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 135–148. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03869-3 16

[27] M. M. Tikir, L. Carrington, E. Strohmaier, and A. Snavely,
“A genetic algorithms approach to modeling the performance
of memory-bound computations,” in Proceedings of the 2007
ACM/IEEE conference on Supercomputing, ser. SC ’07. New
York, NY, USA: ACM, 2007, pp. 47:1–47:12. [Online]. Available:
http://doi.acm.org/10.1145/1362622.1362686

[28] L. Carrington, D. Komatitsch, M. Laurenzano, M. Tikir, D. Michea,
N. Le Goff, A. Snavely, and J. Tromp, “High-frequency simulations
of global seismic wave propagation using specfem3d globe on 62k
processors,” in High Performance Computing, Networking, Storage and
Analysis, 2008. SC 2008. International Conference for, nov. 2008.

