
PEBIL: Binary Instrumentation for Practical
Data-Intensive Program Analysis

Michael A. Laurenzano† Joshua Peraza§ Laura Carrington† Ananta Tiwari† William A. Ward, Jr.‡ Roy Campbell‡

† Performance Modeling and Characterization Laboratory
San Diego Supercomputer Center

University of California, San Diego
michaell@sdsc.edu, lcarring@sdsc.edu, tiwari@sdsc.edu

§ Dept. of Computer Science and Engineering
University of California, San Diego

jperaza@cse.ucsd.edu

‡ High Performance Computing Modernization Program
United States Department of Defense

william.ward@hpc.mil, roy.campbell@hpc.mil

Abstract—In order to achieve a high level of performance, data
intensive programs such as the real-time processing of surveil-
lance feeds from unmanned aerial vehicles, genomics sequence
comparison or large graph traversal require the strategic applica-
tion of multi/many-core processors and co-processors using a hy-
brid of inter-process message passing (e.g. MPI and SHMEM) and
intra-process threading (e.g. pthreads and OpenMP). To facilitate
program and system design decisions, program runtime behavior
gathered through binary instrumentation is useful because it
enables inspection of the low-level interactions between a data
intensive program and a multi-core processor or many-core co-
processor. This work details two novel mechanisms in the PEBIL
binary instrumentation platform that make it well-suited for
analyzing data-intensive programs by providing (1) support for
fast lookup of instrumentation thread-local storage (ITLS) and
(2) support for the fast enabling and disabling of instrumentation
at runtime as a methodology for supporting sampling. These
features are compared to two other popular binary instrumenta-
tion platforms, Pin and Dyninst, in both analytical and empirical
terms for programs implemented using the popular but disparate
parallelization models MPI and OpenMP. Empirical comparisons
are made for two binary instrumentation applications that are
critical to the analysis of data-intensive programs, basic block
counting and memory address trace collection. These empirical
results show that PEBIL is unrivaled in terms of overhead
for basic block counting, introducing an average of 18% extra
runtime for MPI programs and 116% for OpenMP programs as
opposed to 60% (MPI) and 232% (OpenMP) for Pin and 20%
(MPI) and 14743% (OpenMP) for Dyninst. For memory address
trace collection that makes use of the conventional optimization of
sampling 10% of the memory addresses of a program to reduce
processing time, PEBIL also introduces the lowest overheads of
144% (MPI) and 222% (OpenMP) compared to 313% (MPI)
and 360% (OpenMP) with Pin and 1113% (MPI) and 89075%
(OpenMP) with Dyninst.

I. INTRODUCTION

Understanding the behavior of data-intensive programs is
critical for effectively utilizing existing computing resources
and for understanding and architecting future systems. Pro-
grams that rely on processing large amounts of data abound
– processing surveillance feeds, genomics, social data, mete-
orological and complex physics simulations to name a few.

Meanwhile, data-intensive computing increasingly relies upon
complex models of parallelization in order to achieve higher
levels of throughput. A key technology that enables software
and hardware designers to understand the behavior of data-
intensive programs is binary instrumentation – rewriting or
translating a compiled executable in order to insert extra code
into the program, usually to collect information about the
behavior of the program as it is running. This allows important
behaviors within data-intensive programs, such as execution
patterns or memory behavior, to be examined at very fine levels
of detail.

Binary instrumentation also has applications in other areas
of computer science. It has been used historically and in
recent years to support open source and commercial de-
velopment/debugging support tools as well as a range of
commercial and academic research projects in the areas of
branch prediction analysis [1], cache behavior analysis [2],
speculative execution emulation [3], call graph analysis [4],
undefined value and memory leak detection [5], taint [6] and
other data flow analysis [7], performance optimization [8] and
modeling [9], energy optimization [10] and modeling [11],
thread race detection [12], program porting [13], code cover-
age [14], program fault tolerance [15], and to develop security
attacks [16] and defenses [17].

This work details two novel features of the PEBIL [18]
binary instrumentation platform that position it as a practical
and low-overhead vehicle for the analysis of data-intensive pro-
grams: (1) its mechanism for providing instrumentation thread-
local storage (ITLS) as a means of delivering thread-specific
program analysis in an efficient manner and (2) its mechanism
for enabling and disabling instrumentation at runtime in order
to maximize the effectiveness of sampling as an approach
for relieving data collection and processing overheads. To
highlight these features and to compare PEBIL’s performance
to two other state of the art binary instrumentation platforms,
Pin [19] and Dyninst [20], this work presents experiments
centered around two binary instrumentation applications that
are crucial for understanding data-intensive program behavior
– basic block counting and memory address trace collec-

tion. Basic block counting is useful for learning about the
execution patterns and hot spots of a program, particularly
when combined with static analysis that allows features of
the static executable such as operation counts/types/sizes, data
flow/dependence and control flow relationships to be viewed
in terms of how they fit into dynamic program behavior.
In the context of a data-intensive program, understanding a
program’s behavior is often largely a matter of understanding
how data moves through a system’s memory hierarchy. Binary
instrumentation allows a memory address stream to be cap-
tured and analyzed in any number of ways in order to extract
properties of interest such as cache hit rates, reuse distances,
or spatial/temporal locality information.

Through a series of experiments given in Section IV, the
overhead of PEBIL for basic block counting is shown to be
3.3x smaller than Pin for MPI programs, 2x smaller than
Pin for OpenMP programs, about the same as Dyninst for
MPI programs and 127.1x smaller than Dyninst for OpenMP
programs. For sampling a memory address trace, in Section V
PEBIL is shown to introduce overheads that generally decrease
as a linear function of the amount of the address stream that
is discarded due to sampling. At the conventional sampling
rate of 10% [21][22], PEBIL introduces overheads that are
2.2x smaller than Pin for MPI programs, 1.6x smaller than
Pin for OpenMP programs, 7.7x smaller than Dyninst for
MPI programs and 401.2x smaller than Dyninst for OpenMP
programs.

The rest of this paper is organized as follows: Section II
discusses related work in binary instrumentation and back-
ground information on the binary instrumentation platforms
that are discussed throughout the paper: PEBIL, Pin and
Dyninst. Section III provides a description of the experimental
system, software and benchmark programs used to achieve
the empirical results given throughout the paper. Section IV
provides a description of PEBIL’s mechanisms for providing
instrumentation thread-local storage along with a series of
experiments designed to examine the runtime overhead of that
approach and how that overhead compares to the approaches
of Pin and Dyninst. Section V details PEBIL’s mechanism
for enabling/disabling instrumentation at runtime along with a
series of experiments designed to demonstrate its effectiveness
as a mechanism for providing sampling. Finally, Section VI
concludes.

II. BACKGROUND AND RELATED WORK

Binary instrumentation is a technique that has been utilized
for over twenty years to collect information from running
programs. Early efforts to this effect were dedicated profilers
that performed specific limited functions on a binary. For
example, Pixie [23] was a binary instrumentation tool for MIPS
that instrumented an executable so that it maintained basic
block and conditional branch counters. A few years later, the
qpt [24] tool was written for the MIPS and SPARC platforms,
which was capable of counting basic block executions as well
as collecting the memory address trace of a running program.
Later efforts in binary instrumentation focused on delivering
binary instrumentation capabilities as a platform or toolkit, on
top of which programmers could write their own customized
program analysis tools. The earliest of these toolkits were the
Executable Editing Library (EEL) [25] (generalized from the

qpt tools) and ATOM [26], a binary instrumentation toolkit
written for the Alpha AXP platform. Binary instrumentation
continues to enjoy popularity among researchers on modern
computing platforms like PowerPC [27] and the x86 family,
which is the platform targeted by PEBIL. As a platform that
has remained popular for several decades, x86 invariably has
been the target of many binary instrumentation toolkits. Of
these, the Valgrind [28] and DynamoRIO [29] projects deserve
mention, though are not examined in detail in this work
because they distinguish themselves in terms of functionality
at the cost of runtime overhead. The remainder of this section
describes several of those projects: PEBIL, Pin and Dyninst,
which are the representatives of three different approaches
to binary instrumentation that, based on previously published
results, are most likely to introduce low runtime overheads for
tools like basic block counting and memory address tracing.

A. Background on PEBIL

PEBIL is a platform for developing tools to instrument
ELF/Linux executables on the x86 and x86 64 platforms. PE-
BIL functions as a static binary rewriter, making modifications
to the program before it executes. PEBIL operates by reading
the binary file, generating and inserting instrumentation, then
writing a modified binary to disk that can be run at any
time. The location and behavior of the inserted instrumentation
code is defined by user-supplied instrumentation tools that
are written using PEBIL’s API. Given this set of user-defined
instrumentation points, PEBIL utilizes a technique called code
patching to integrate the instrumentation code into the pro-
gram’s text/data, generating instrumentation code and data in
a way that ensures that the instrumentation is transparent to
the program. That is, PEBIL inserts instrumentation in such a
way that the running instrumented program preserves the exact
behavior of the original program while running the inserted
instrumentation and collecting information about the program
as a side-effect. More details about preserving transparency
and PEBIL’s instrumentation mechanisms can be found in [18].

PEBIL was designed primarily with the goal of producing
efficient instrumented code, which collects information about
the running program while imposing as little runtime overhead
as possible. Efficiency is paramount because one of the goals
of PEBIL is to allow for data collection on large and long-
running programs, which may run for hours or days and utilize
hundreds or thousands of CPUs. On such resource-intensive
programs, performing program analysis with as little extra
overhead as possible introduces fewer resource constraints
on existing and future systems and reduces its turnaround
time. This drive for efficiency continues to motivate PEBIL’s
development, often resulting in innovations within its design.
This work details two such innovations: how PEBIL provides
access to instrumentation thread-local storage (ITLS) and
PEBIL’s mechanism for enabling and disabling instrumentation
at runtime as a means of efficiently providing sampling.

ITLS is provided to a running multithreaded program by
PEBIL in the form of a hash table that is made available to
each process. Each entry in this hash table is a small pool
of memory that is made available to a particular thread and
can contain that thread’s local data structures or references to
its data structures. A thread’s memory pool can be accessed
quickly by a running thread because PEBIL utilizes a very fast

hash function, allowing the pool’s location to be found from
scratch in as few as three x86 64 instructions. PEBIL also uses
data flow analysis to attempt to find a register in which to cache
this location, allowing it to be reused between instrumentation
points under certain circumstances. Details on this scheme can
be found in earlier work [30] and in Section IV.

To support sampling PEBIL also provides the means to
quickly activate and deactivate any instrumentation point at
any time during a program run. More information about this
mechanism is given in Section V, though it accomplishes
activation and deactivation by embedding information about
instrumentation, such as its location and size, into the instru-
mented binary executable, allowing a runtime support library
to quickly swap nop instructions for instrumentation code
through a single short and shallow function call. While this
mechanism is more limited in functionality than what is
provided by Pin and Dyninst, it allows instrumentation to be
transitioned from one state to the other very quickly. These
quick transitions are advantageous when instrumentation needs
only the active/inactive distinction, which can be the case for
instrumentation involved in producing information that will be
sampled.

B. Background on Dyninst

Dyninst [20] is a dynamic binary instrumentation (DBI)
platform and static rewriter that supports a variety of platforms,
including x86 and x86 64. Like PEBIL, Dyninst uses code
patching to introduce instrumentation into a program. Dyninst
provides no specific support for providing ITLS to a running
thread, though an ad hoc mechanism can be built using its
facilities for writing instrumentation snippets. Instrumentation
snippets are customized hand-written sequences of low-level
statements designed to quickly accomplish routine instrumen-
tation tasks. Within Dyninst, instrumentation snippets can be
written to utilize the identifier of the executing thread in order
to index a data structure that holds the location of every
thread’s ITLS. This support for utilizing the thread identifier in
hand-coded instrumentation is somewhat similar to PEBIL’s in
concept, though while PEBIL uses a single instruction to get
the thread identifier into a register Dyninst uses a much more
elaborate mechanism involving at least two function calls plus
all of the extra code this entails (e.g., including code to protect
registers that are defined by those functions). Dyninst also
lacks a facility for caching the thread identifier or other thread-
related information that might allow instrumentation code to
reuse the location of thread-local data once computed. As
shown in Section IV, these factors combine to introduce very
large overheads when utilizing ITLS within instrumentation
tools developed with Dyninst. Dyninst as a DBI is able to
arbitrarily remove and insert any instrumentation at any time
during the program run. Compared to PEBIL’s simple mecha-
nism of simply turning instrumentation into either an active or
inactive state, this provides far higher degrees of control over
how instrumentation is done. However, this flexibility comes at
a cost of runtime overhead, making it inefficient as the basis
for performing sampling because sampling requires reusing
the same instrumentation in the same locations and must be
inserted and removed frequently.

C. Background on Pin

Pin [19] is a dynamic binary instrumentation platform
developed and maintained by Intel for use on Intel x86,
x86 64, Xscale (no longer supported) and Itanium (no longer
supported) platforms. Pin uses a technique called just in time
(JIT) compilation in order to instrument a running program,
meaning that Pin generates and introduces instrumentation
code into the program just prior to executing that code for
the first time. Pin introduces a number of optimizations into
its basic JIT model in order to improve performance, most
notably utilizing the powerful post-link optimizer Ispike [31]
in order to optimize the sequences of instrumented code that
are generated. Pin provides ITLS to a running thread by storing
its location at all times in some general purpose register that
is stolen from the program. This technique is very effective at
minimizing the overhead of accessing that thread-local data,
particularly in code that has lower levels of register pressure.
Pin’s register stealing approach is possible because of its use
of Ispike, which allows the program to simply be reorganized
around the stolen register where necessary. Pin provides func-
tionally similar support to Dyninst in terms of removing and
reinserting instrumentation during an instrumented program
run, allowing for all instrumentation to be cleared from the
program using PIN_RemoveInstrumentation and for
arbitrary instrumentation to then be generated and inserted
back into the program. Like Dyninst, Pin’s mechanism is far
more rich than what PEBIL provides but comes at a cost of
extra runtime overhead in order to employ it.

III. EXPERIMENTAL SETUP

The remainder of this paper presents a number of empirical
experiments designed to measure the overhead related to
several mechanisms within the binary instrumentation plat-
forms PEBIL, Pin and Dyninst. These experiments are driven
largely by two binary instrumentation applications that are
critical as vehicles for understanding the behavior of data-
intensive programs, basic block counting and memory address
trace collection, and which are important enough that they
comprise the motivation for some of the earliest instances of
binary instrumentation [23][24]. For all instrumentation tools
written using PEBIL, Pin and Dyninst, aggressively optimized
implementations of each are implemented using PEBIL version
2.0.0, Pin 2.12-53271 and Dyninst 7.0.1 respectively. Each
result presented here is the mean of three independent runs
of that particular experiment. For the sake of simplicity in
making comparisons, tools for all three platforms are written
so that they perform no instrumentation for code residing in
shared libraries. Though it also functions as a static rewriter, all
experiments utilize Dyninst’s dynamic binary instrumentation
(DBI) functionality. To avoid unfairly penalizing Dyninst for
this choice, the timers that collect the runtime during all
Dyninst-related experiments are started after the program has
been fully instrumented; the overhead of initially instrumenting
the program is ignored.

All experiments are performed on a dual-socket, 8-core
Intel Xeon X3450. Each core of the X3450 has a 32KB
dedicated L1 cache and 256KB of L2 cache. All four cores
in a socket share 8MB of L3 cache and both sockets on the
board share 16GB of main memory. All of the experiments
are either pure OpenMP or pure MPI; no hybrids are used.

That is, all OpenMP experiments are run using a single process
with some number of threads executing within that process and
all MPI experiments are run with some number of processes,
each of which contains a single thread. For OpenMP and MPI
respectively, 8-way runs are executed so that each thread or
process is pinned to each of the 8 available cores throughout
the entire run of the experiment; 4-way runs are similarly
pinned to logical processors 0 and 2 of both processors
throughout the life of the experiment.

TABLE I: Descriptions of Experimental Programs

Name Description Input Thread/Process
Set Count

BT (NPB) block tri-diagonal solver B 4
CG (NPB) conjugate gradient B 8
DC*(NPB) data cube W 8
EP (NPB) embarrassingly parallel B 8
FT (NPB) 3D fast Fourier Transform B 8
IS (NPB) integer sort C 8
LU (NPB) lower-upper Gauss-Seidel B 8
MG (NPB) multi-grid on mesh sequence B 8
SP (NPB) scalar penta-diagonal solver B 4
HMMER bio. sequence database search glob4/uniprot 8
* OpenMP only.

The benchmarks used through these experiments are the
OpenMP and MPI implementations of version 3.3 of the NAS
Parallel Benchmarks (NPBs) [32], as well as version 3.0 of the
bioinformatics code HMMER [33]. All benchmarks are com-
piled with gcc version 4.4.3. Table I provides brief descriptions
of these programs, their data sets and the process/thread counts
used, which are kept consistent between OpenMP and MPI for
the experiments performed on each program. In all cases, data
collected during the instrumented program run (basic block
counts or memory addresses) is tracked per thread and per
MPI rank.

IV. INSTRUMENTATION THREAD-LOCAL STORAGE

Usefully supporting multithreaded programs within a bi-
nary instrumentation platform involves providing a mechanism
that allows running threads to access instrumentation thread-
local storage (ITLS). As opposed to simply providing thread-
safe access to shared data, providing ITLS allows for the possi-
bility for the information gathered by the instrumentation tool
to be thread-specific, which is useful for discovering potential
imbalances between threads. Beyond this, since each thread
often runs on its own hardware context, per-thread results
can be useful for characterizing how each thread utilizes its
private context (e.g., a branch predictor or L1 cache) without
the involvement of unrelated threads running on different
contexts. The remainder of this section details the PEBIL
model for providing ITLS then employs a series of experiments
based on two binary instrumentation applications, basic block
counting (Section IV-A) and memory address tracing (Section
IV-B), designed to uncover how this threading model compares
empirically to those of both Pin and Dyninst. See Section II for
background on how ITLS is provided within Pin and Dyninst.

PEBIL provides thread-local data structures to an instru-
mented multithreaded program by providing a hook to thread
creation that allows a copy of thread-local data structures to
be generated at the time of thread creation. The data structures

created therein are made accessible though a single table,
shared by all threads within a process, which contains a small
pool of memory for each thread. This memory pool can contain
anything of interest to the thread, but is currently only 32 bytes.
In practice, therefore, this limits the pool to holding simply the
addresses of other interesting thread-local data structures for all
but the simplest instrumentation applications. When collecting
memory address traces, for example, this pool can contain the
address of a buffer that holds unprocessed memory addresses
that have been collected from the program. The remainder of
this section discusses how a thread accesses its private memory
pool at runtime as well as an optimization implemented on
top of that access mechanism that allows the location of the
memory pool to be cached for short periods of time within a
running program.

1) Accessing Instrumentation Thread-Local Storage at
Runtime: Each thread has access to a small pool of private
memory through a shared table that it is provided to each
process in a PEBIL-instrumented multithreaded program. If
TID is the unique identifier for a thread, then the formula
for deriving a thread’s index into this table is given by
the expression (TID >> m)&(2n − 1), where m and n
are parameters that can be customized. This formula yields
IDX ∈ [0, 2n−1], which is simply bits m through m+n−1 of
TID. From the standpoint of efficiency, this method is perfect
since it can generate IDX from scratch in as few as three
x86 64 instructions1, however it will generate identical values
for any threads whose TID is identical in bits m through
m+ n− 1.

In principle there is no guarantee of uniqueness for these
bits. In practice, however, conflicts of this sort have never been
encountered with PEBIL’s current default values of m = 12
and n = 16 when running up to 16 threads per process.
To detect conflicts, PEBIL intercepts all thread create calls,
verifying for each new thread that the IDX of the new thread
does not conflict with the IDX for any other existing thread.
If a conflict is detected, PEBIL generates a runtime error rather
than falling back to a slower mode that can resolve conflicts or
guarantee that they will not occur. In such cases execution can
be retried with different values of m and n, potentially using a
different or larger set of bits of TID to produce IDX in order
to reduce the likelihood of IDX conflicts between threads. It
should be noted that each additional bit used to produce IDX
(that is, each increment of n) doubles the size of the table of
each process’s memory pool, which puts practical limits on
the size of n.

2) Caching the Location of a Thread’s Memory Pool:
Even though the sequence of instructions that computes the
location of a thread’s private memory pool is short, that
sequence may need to be executed very frequently. Detailed
instrumentation applications typically require frequent access
to the memory pool, every basic block for basic block counting
and every memory instruction for memory address tracing.
Instead of requiring the location of the memory pool to be
recomputed every time a thread needs to access thread-local
data, PEBIL attempts to cache the computed location in a
dead register so that it need not be recomputed by every

1In x86 64 a running thread’s unique identifier is stored in %fs:0x10.
IDX can therefore be generated using a sequence which has a mov, a shr,
then an and instruction.

subsequent instrumentation point. To do this, PEBIL currently
examines code at the function level to try to identify whether
any single register is dead throughout the function’s execution.
If no such register is found, PEBIL must generate code that
recomputes the location of the memory pool every time it is
required. However, if such a dead register is available within
a function PEBIL inserts code to compute the location of the
memory pool only at the entry and reentry (that is, immediately
following a call to another function) points of the function.

BT CG DC EP FT IS LU MG SP MEAN
0%

50%

100%

150%

O
ve

rh
ea

d
(%

of
O

ri
gi

na
l

R
un

tim
e) BBCOUNT

BBCOUNT - CACHEITLS

Fig. 1: Overhead for running programs instrumented by PEBIL
for basic block counting, with and without caching the loca-
tion of instrumentation thread-local storage (ITLS) in a dead
register.

Figure 1 shows the runtime overhead of a basic block
counter on the NAS parallel benchmarks both with and without
this optimization. For most benchmarks the optimization leads
to little or no improvement but for DC and EP it is highly
effective, reducing the overhead from 77% to 54% for DC and
from 58% to 15% for EP. Further inspection into this phenom-
ena reveals that for DC and EP, PEBIL is able to employ this
optimization inside functions that are particularly important,
thereby having a relatively large impact on overhead, whereas
it is only employed in relatively unimportant functions in
the other benchmarks. These results suggest that the caching
optimization is effective where applicable, though somewhat
limited in impact primarily due to the fact that a single register
must be found to be dead everywhere in a function. In order to
increase its efficacy, future work within PEBIL should include
extending this optimization, perhaps to relax the requirement
that the same register be dead everywhere within a function or
to involve smaller code structures like loops or basic blocks.

A. Case Study: Basic Block Counting

A basic block is a unit of contiguous code within a program
that has a single entry point and a single exit point, making
basic blocks counts a useful vehicle for performing compiler
optimizations [34][35], building performance models [36][37],
detecting program phases [38], and performing many other
kinds of program analysis. For example, features of program
execution like instruction counts and mixes require only static
analysis combined with basic block execution counts. Basic
block counting is also heavily utilized in previous binary
instrumentation literature [18][19][26][39] as a test of the
overhead of the binary instrumentation platform because it
requires relatively heavy intrusion into the execution of the

program (at every basic block) to perform a very small amount
of work (incrementing a counter), thereby highlighting the
overhead introduced by the platform.

Figures 2 and 3 show the overhead of basic block counting,
expressed as a proportion of the execution time of the original
uninstrumented program runtime for MPI and OpenMP pro-
grams respectively. A value of 0% therefore represents a run
with no slowdown whatsoever, while larger values represent
higher overheads. In Figure 2 the three series labeled PEBIL-
MPI, Pin-MPI and Dyninst-MPI show the overhead of basic
block counting for MPI-parallelized runs of each of the test
programs with PEBIL, Pin and Dyninst respectively. These
results are consistent with other literature performing similar
tests [18][39]: the overheads for PEBIL and Dyninst are low,
averaging 18% and 20% respectively, while the overhead for
Pin is somewhat higher, averaging 60%. This extra overhead
in Pin is largely due to the fact that Pin incurs extra overhead
as the result of its reliance on just-in-time compilation as its
method for introducing instrumentation code into the program.

Figure 3 shows the overhead of basic block counting for
the OpenMP-parallelized versions of the same test programs
from Figure 2 as well as for DC of the NPBs. The average
overhead of basic block counting for multithreaded programs is
116% with PEBIL, 232% with Pin and 14743% with Dyninst.
Furthermore, taking the difference in overhead between the
OpenMP and MPI results as a rough measure of the marginal
overhead required for ITLS support shows that PEBIL and Pin
have significant but reasonable marginal overheads that average
99% and 178% of the runtime of the original program respec-
tively, while the average marginal overhead of providing ITLS
with Dyninst is 14725%. The large overhead with Dyninst is
related to the expensive function call used by Dyninst to gain
acccess to a thread’s identifier, a function call that is executed
at every basic block.

B. Case Study: Memory Trace Collection

This section details a series of experiments that collect
the full memory address traces of running programs, where
the virtual addresses of 100% of all memory accesses made
by the program are collected. Such collection forms the
basis of many types of memory analysis applications – cache
simulation [9][40], reuse distance calculation [41][42], access
locality tracking [43], or compression and storage [44][45] for
later analysis – and is therefore of wide interest within pro-
gram analysis and hardware design. Rather than measure the
effects of undertaking one of these specific memory analysis
applications, all experiments that follow are used to collect
and quickly discard the memory address trace of a program
wherein the virtual addresses are calculated, inserted into
per-process/per-thread buffer, then the buffer is immediately
cleared once it is found to be full.

Figure 4 shows the overhead of collecting full memory
address traces with PEBIL, Pin and Dyninst for MPI programs.
The overheads found in this set of experiments are generally
substantially higher than those found in the basic block count-
ing experiments shown in Figure 2, which is not surprising
given that memory address tracing must execute expensive
effective address calculations at every memory access within
the program as well as buffer maintenance code instead of

BT CG EP FT IS LU MG SP HMMER MEAN
0%

20%

40%

60%

80%

100%
O

ve
rh

ea
d

(%
of

O
ri

gi
na

l
R

un
tim

e) PEBIL - MPI
Pin - MPI

Dyninst - MPI

157%

Fig. 2: Overhead of basic block counting with PEBIL, Pin and Dyninst for MPI-parallelized programs, expressed as a percentage
of the runtime of the uninstrumented program.

BT CG DC EP FT IS LU MG SP HMMER MEAN
0%

200%

400%

600%

O
ve

rh
ea

d
(%

of
O

ri
gi

na
l

R
un

tim
e)

PEBIL - OpenMP
Pin - OpenMP

Dyninst - OpenMP

6133% 24126% 27090% 10287% 12077% 14141% 9782% 14001% 7986% 21807% 14743%

Fig. 3: Overhead of basic block counting with PEBIL, Pin and Dyninst for OpenMP-parallelized programs, expressed as a
percentage of the runtime of the uninstrumented program.

simply incrementing a single counter at every basic block.
For MPI programs the overheads for address trace collection
with PEBIL, Pin and Dyninst are 445%, 343% and 1113% re-
spectively. Note here that unlike basic block counting, Pin has
lower overhead than PEBIL, both of which are substantially
lower than Dyninst. Pin’s improvement relative to the other
platforms can be explained in terms of Pin’s integration with
the powerful post-link optimizer Ispike [31], which allows Pin
to improve its performance relative to the other platforms as
the frequency and complexity of the inserted instrumentation
increases.

Figure 5 shows the overheads of collecting full memory
address traces for OpenMP programs, again demonstrating that
the overheads associated with providing support for multi-
threaded programs are significant but reasonable for PEBIL
and Pin, averaging 703% and 388% respectively. Using the
difference between the OpenMP and MPI overhead for a par-
ticular program as a rough indicator of the marginal overhead
caused by multithreading support shows that PEBIL averages

an additional 302% overhead, Pin averages only 80% addi-
tional overhead and Dyninst averages an additional 79277%
overhead. The likely explanation for Pin’s low marginal over-
head again has to do with Pin being able to optimize instru-
mented code very effectively relative to other platforms as the
amount and complexity of the inserted code increases. Similar
to basic block counting, Dyninst’s high overhead is due to the
frequency and high cost of the operation used by Dyninst to
yield a thread identifier.

V. SUPPORT FOR FAST SAMPLING

To support sampling, PEBIL provides facilities for switch-
ing instrumentation at any point between an active/inactive
state. When inactive, the code at an inactive instrumentation
point behaves as though it was not there – the original
program runs but no side effects occur due to instrumentation.
The instrumented program at that point behaves as though
no instrumentation had been inserted. To facilitate switching
between the active and inactive states, PEBIL prepares the

BT CG EP FT IS LU MG SP HMMER MEAN
0%

400%

800%

1200%

1600%
O

ve
rh

ea
d

(%
of

O
ri

gi
na

l
R

un
tim

e) PEBIL - MPI
Pin - MPI

Dyninst - MPI

2144%

Fig. 4: Overhead of full memory address trace collection with PEBIL, Pin and Dyninst for MPI-parallelized programs, expressed
as a percentage of the runtime of the uninstrumented program. Dyninst was unable to successfully instrument and run HMMER
for memory address trace collection.

BT CG DC EP FT IS LU MG SP HMMER MEAN
0%

400%

800%

1200%

1600%

O
ve

rh
ea

d
(%

of
O

ri
gi

na
l

R
un

tim
e)

PEBIL - OpenMP
Pin - OpenMP

Dyninst - OpenMP

71527% 86168% 51201% 44833% 94450% 75171% 175824% 156209% 50293% 89075%

Fig. 5: Overhead of full memory address trace collection with PEBIL, Pin and Dyninst for OpenMP-parallelized programs,
expressed as a percentage of the runtime of the uninstrumented program. Dyninst was unable to instrument HMMER for
memory address trace collection.

executable by embedding into it information regarding the
location and size of each of its instrumentation points. A
runtime support library can then be used to specify how to
change and set the state of each instrumentation point at any
time during the instrumented program run. This runtime library
activates and deactivates the code at an instrumentation point
by relying on the information embedded into the instrumented
binary by PEBIL, using that information to exchange nop
instructions with the the text comprising the instrumentation
code in order to deactivate and by swapping instrumentation
code back in order to activate.

This technique differs markedly from runtime instrumen-
tation manipulation as it is available in Pin and Dyninst, both
of which are more full featured but more heavyweight. Pin
provides support both for arbitrarily flushing all instrumen-
tation for a program and for any part of the program to be
instrumented at any time, thereby providing a super set of

what PEBIL provides. When functioning as a dynamic binary
instrumentation platform, Dyninst is similar. Instrumentation
can be added to any part of the program at any time, while
instrumentation can be removed at any time from a subset of
instrumentation points. Pin and Dyninst also provide ways to
detach themselves from a running program, which effectively
disables all instrumentation and allows the program to proceed
at its uninstrumented execution speed.

The simple deactivation technique used by PEBIL will
decrease the runtime of the code around an instrumentation
point in such a way that its performance will be close to,
but not exactly, that of the uninstrumented program. This
effect is demonstrated in Figures 6 and 7, which show a
set of experiments on the MPI-parallelized and OpenMP-
parallelized NPBs respectively, measuring the effect of running
a program that is instrumented for basic block counting and,
instead of counting basic block executions throughout the

life of the program, immediately deactivates all points within
the program and allows execution of the program to run its
course. Though completely useless for learning about program
behavior, the disabled basic block counter demonstrates the
difference between running a program with active versus
inactive instrumentation throughout its run. Across the MPI
benchmarks in Figure 6, this introduces an overhead that
averages 2.5% with a maximum of 4.6% while introducing
overheads that average 2.8% (maximum 7.6%) across the
OpenMP benchmarks in Figure 7. These results show that, in
isolation, the performance impact of running with deactivated
instrumentation is very close to that of the uninstrumented
program’s performance.

BT CG EP FT IS LU MG SP MEAN
0%

1%

2%

3%

4%

5%

O
ve

rh
ea

d
(%

of
O

ri
gi

na
l

R
un

tim
e)

BBCOUNT - DISABLE

Fig. 6: Overhead for running PEBIL-instrumented MPI pro-
grams that contain disabled basic block counting instrumenta-
tion.

BT CG EP FT IS LU MG SP MEAN
0%

2%

4%

6%

8%

O
ve

rh
ea

d
(%

of
O

ri
gi

na
l

R
un

tim
e)

BBCOUNT - DISABLE

Fig. 7: Overhead for running PEBIL-instrumented OpenMP
programs that contain disabled basic block counting instru-
mentation.

A. Deactivation for Sampling

Despite the fact that Pin and Dyninst utilize more versa-
tile and full-featured instrumentation manipulation schemes,
these functional advantages come at the price of a relatively
high runtime expense that can render them far less practical
than PEBIL’s simple activation/deactivation scheme when only
simple activation/deactivation is needed. In such instances,
activation/deactivation can be advantageous because it can be
done far more cheaply than fully removing, re-generating then

re-inserting the same code. Memory address trace collection
is a good demonstration of this concept because it is often the
case that sampling is utilized in address trace collection out of a
desire to reduce the overhead of processing memory addresses,
such as running the addresses through a cache simulator.
Within a scheme in which instrumentation can be selectively
activated and deactivated, it becomes possible to deactivate the
code related to calculating effective memory addresses as well
as the code copying those addresses to a buffer, effectively
reducing the cost of collecting the sampled memory address
trace as well. While a full treatment of the issue is out of the
scope of this work, a brief tour of the address trace sampling
literature indicates that very rudimentary sampling [21][22]
can be used to discard at least 90% of a program’s address trace
while sophisticated techniques [46][47] can be used to discard
upwards of 99% of an address stream while maintaining
acceptable levels of accuracy.

The experiments shown in Figures 8 through 16 reflect the
overhead2 of collecting a sampled3 memory address trace using
a sampling technique known as interval-based sampling that
simply discards the last 50%, 90% and 99% of each interval
of 1 billion memory references in the memory address stream.
Each of Figures 8 through 16 are comprised of the results for
a particular program which is parallelized with MPI in part
(a) and OpenMP in part (b). The MPI and OpenMP results
for a particular program are given on identical scales in order
to allow for direct comparisons to be made between them.
For example, Figure 8a shows the results for sampled memory
address trace collection of the MPI implementation of BT and
Figure 8b shows the overheads of sampled memory address
trace collection for the OpenMP implementation of BT.

It is important to point out that 1 billion addresses is a fairly
long sampling period, which, compared to shorter periods
should benefit the platforms that have slower instrumenta-
tion removal/insertion mechanisms because a fewer absolute
number of modifications to the state of instrumentation need
to be made over the run of a particular program. In these
experiments, PEBIL, Pin and Dyninst are employed on each of
the test programs to collect the memory address stream subject
to these various levels of sampling. When the address stream
falls into or out of the sampling window, each of the platforms’
specific instrumentation manipulation techniques are applied in
order to disable/remove all instrumentation related to comput-
ing effective addresses and filling address buffers. Note that
this does not mean disabling all instrumentation code – buffer
maintenance code that counts the number of entries, checks
for buffer fullness and resets the buffer counter is kept active
during the entirety of a sampled run.

The overhead of sampled memory address stream col-
lection with Pin under a removal/insertion regime is given
by the series Pin-DIS, along with a second series Pin-best
that is the minimum of the full trace overhead (given both
by the overheads presented in Figures 4 and 5 and by the
leftmost point, 0% of the address stream discarded, in Figures
8 through 16) and the Pin-DIS overhead at that particular
sampling level. In cases for which removal/insertion does

2In Figures 8 through 16 overhead is expressed as a percentage of the
runtime of the uninstrumented program, given on the y-axis.

3In Figures 8 through 16 sampling rate is expressed as the percentage of
the address stream that is discarded by sampling, given on the x-axis.

25% 50% 75% 100%
0%

500%

1000%

1500%

Address Stream Discarded

PEBIL-best
Pin-best
Pin-DIS

(a) BT/MPI

25% 50% 75% 100%

Address Stream Discarded

(b) BT/OpenMP

Fig. 8: Overhead (y-axis2) of sampled (x-axis3) memory
address tracing with Pin and PEBIL for BT of the NPBs.
Dyninst overheads are 2144% (MPI) and 71527% (OpenMP).

25% 50% 75% 100%
0%

200%

400%

600%

Address Stream Discarded

(a) CG/MPI

25% 50% 75% 100%

Address Stream Discarded

PEBIL-best
Pin-best
Pin-DIS

(b) CG/OpenMP

Fig. 9: Overhead (y-axis2) of sampled (x-axis3) memory
address tracing with Pin and PEBIL for CG of the NPBs.
Dyninst overheads are 1276% (MPI) and 86168% (OpenMP).

25% 50% 75% 100%
0%

100%

200%

Address Stream Discarded

(a) EP/MPI

25% 50% 75% 100%

Address Stream Discarded

PEBIL-best
Pin-best

(b) EP/OpenMP

Fig. 10: Overhead (y-axis2) of sampled (x-axis3) memory
address tracing with Pin and PEBIL for EP of the NPBs.
Dyninst overheads are 464% (MPI) and 44833% (OpenMP).

not improve overhead, the optimal strategy is to collect the
entire memory address trace while processing only the sampled
portion. Since these experiments contain no processing, this
minimum represents the best overhead that can be realized.
Note also that in cases for which Pin-DIS and Pin-best are
identical for all sampling levels, only Pin-best is included.
With Pin the performance effects of removing and reinserting
instrumentation are not straightforward, seemingly a function

25% 50% 75% 100%
0%

200%

400%

600%

Address Stream Discarded

(a) FT/MPI

25% 50% 75% 100%

Address Stream Discarded

PEBIL-best
Pin-best

(b) FT/OpenMP

Fig. 11: Overhead (y-axis2) of sampled (x-axis3) memory
address tracing with Pin and PEBIL for FT of the NPBs.
Dyninst overheads are 853% (MPI) and 94450% (OpenMP).

25% 50% 75% 100%
0%

200%

400%

Address Stream Discarded

(a) IS/MPI

25% 50% 75% 100%

Address Stream Discarded

PEBIL-best
Pin-best

(b) IS/OpenMP

Fig. 12: Overhead (y-axis2) of sampled (x-axis3) memory
address tracing with Pin and PEBIL for IS of the NPBs.
Dyninst overheads are 625% (MPI) and 75171% (OpenMP).

25% 50% 75% 100%
0%

500%

1000%

Address Stream Discarded

PEBIL-best
Pin-best
Pin-DIS

(a) LU/MPI

25% 50% 75% 100%

Address Stream Discarded

(b) LU/OpenMP

Fig. 13: Overhead (y-axis2) of sampled (x-axis3) memory
address tracing with Pin and PEBIL for LU of the NPBs.
Dyninst overheads are 1190% (MPI) and 175824% (OpenMP).

of both the sampling rate as well as the amount of work that
must be done in order to remove and re-insert instrumentation,
which has to do with the size and makeup of the affected
program code. With Pin-best the average overheads are 343%,
335%, 313% and 295% for MPI programs and 388%, 371%,
360% and 355% for OpenMP programs when throwing away
0%, 50%, 90% and 99% of the address stream respectively.
Even choosing the optimal method between Pin-DIS and full

25% 50% 75% 100%
0%

200%

400%

600%

800%

1000%

Address Stream Discarded

PEBIL-best
Pin-best
Pin-DIS

(a) MG/MPI

25% 50% 75% 100%

Address Stream Discarded

(b) MG/OpenMP

Fig. 14: Overhead (y-axis2) of sampled (x-axis3) memory
address tracing with Pin and PEBIL for MG of the NPBs.
Dyninst overheads are 1431% (MPI) and 156209% (OpenMP).

25% 50% 75% 100%
0%

200%

400%

600%

800%

Address Stream Discarded

PEBIL-best
Pin-best
Pin-DIS

(a) SP/MPI

25% 50% 75% 100%

Address Stream Discarded

(b) SP/OpenMP

Fig. 15: Overhead (y-axis2) of sampled (x-axis3) memory
address tracing with Pin and PEBIL for SP of the NPBs.
Dyninst overheads are 919% (MPI) and 50293% (OpenMP).

25% 50% 75% 100%
0%

500%

1000%

1500%

Address Stream Discarded

PEBIL-best
Pin-best
Pin-DIS

(a) HMMER/MPI

25% 50% 75% 100%

Address Stream Discarded

(b) HMMER/OpenMP

Fig. 16: Overhead (y-axis2) of sampled (x-axis3) memory
address tracing with Pin and PEBIL for HMMER. Dyninst
was unable to successfully instrument and run HMMER for
memory address trace collection.

memory address tracing, on average Pin improves only slightly
as larger amounts of the address stream are discarded due to
sampling.

Dyninst never improves under a scheme of removing and
reinserting instrumentation, implying that the best overhead
that can be achieved for any sampling level with Dyninst is

the overhead of full memory address trace collection shown in
Figures 4 and 5. To facilitate comparison, the overhead for each
benchmark is again given in the captions of Figures 8 through
16. These overheads average 1113% for MPI programs and
89075% for OpenMP programs respectively.

With sampling-related instrumentation deactivation, the
overheads for PEBIL improve at all levels of sampling and for
all programs, and the fastest result for a particular sampling
level is the result achieved by deactivation rather than by
simply ignoring the non-sampled parts of the address stream.
These results for PEBIL given by the series PEBIL-best show
that, usually, the improvement in overhead decreases as a linear
function of the amount of the address stream that is discarded
due to sampling. To state it simply, the more of the address
stream one is willing to throw away, the lower the overhead
that can be achieved. Overheads for sampled memory address
trace collection with PEBIL average 445%, 296%, 144% and
101% for MPI programs and 703%, 435%, 222% and 171%
for OpenMP programs when throwing away 0%, 50%, 90%
and 99% of the address stream respectively. PEBIL has lower
overhead than Dyninst for all sampling levels on both MPI
and OpenMP programs. PEBIL also has lower overheads than
Pin on average for all experiments, both for MPI and OpenMP
programs, which discard 90% or more of the address stream
and higher overheads on average on those that discard less
than 90% of the address stream.

Worth noting is the fact that these experiments do not
include processing overheads, so these results should not
be taken to mean that sampling should be abandoned as
a technique for reducing overhead in conjunction with any
instrumentation platform. Independent of the specific instru-
mentation technology used, sampling is still likely to result
in substantial reductions in overhead, particularly for heavy-
weight processing functions of a memory address stream like
reuse distance tracking or multiple cache simulation.

VI. CONCLUSIONS

This work described two novel mechanisms within the
PEBIL binary instrumentation platform that make it useful as a
platform for writing tools that analyze data-intensive programs.
The first is its built-in support for providing the location of
instrumentation thread-local storage (ITLS) to a running thread
by storing it in a process-wide table that each thread accesses
through its unique id. Though a thread can use this mechanism
to access its ITLS in as few as three x86 64 instructions,
PEBIL goes further and attempts to cache the location of a
thread’s ITLS in a dead register in order to further reduce
its overhead. Through a set of experiments in Section IV,
this work measures the overhead of two binary instrumen-
tation applications that are critical for the analysis of data-
intensive programs (basic block counting and memory address
trace collection) across a set of three binary instrumentation
platforms (PEBIL, Pin and Dyninst) and two parallelization
models (MPI and OpenMP). These experiments show that both
PEBIL and Pin maintain reasonable overheads for both basic
block counting and for memory address trace collection while
delivering thread-specific results. For basic block counting
PEBIL’s overheads are shown to be lower than Pin’s, at
absolute levels for MPI and OpenMP programs as well as for
the marginal overhead required to support delivering ITLS.

Because of Pin’s capacity for optimizing heavily instrumented
code well, for full memory address tracing Pin has lower
overhead than PEBIL for MPI and OpenMP programs as well
as for the marginal overhead of adding support for ITLS.

The second facility shown was PEBIL’s support for switch-
ing individual instrumentation points into an active/inactive
state by embedding instrumentation metadata into the instru-
mented binary then using that metadata to direct a runtime
support library to quickly exchange nop instructions into and
out of the program’s text. This facility was evaluated as a
strategy for supporting sampling of the information that is
generated by a program. Section V shows a set of experiments
that employ PEBIL, Pin and Dyninst to sample the memory
address streams of a series of OpenMP and MPI programs at
levels varying between 100% and 1%. These experiments show
that, while functionally more limited than what is provided
by Pin and Dyninst, PEBIL’s facility for quickly switching
instrumentation into active/inactive states is unique in that it
allows runtime overhead to be reduced gracefully as larger
fractions of the memory address stream are discarded due
to sampling. Utilizing this mechanism, PEBIL is able to
achieve overheads for 10%-sampled memory address trace
collection that average 2.2x lower than Pin’s and 7.7x lower
than Dyninst’s for MPI programs and 1.6x lower than Pin’s
and 401.2x lower than Dyninst’s for OpenMP programs.

ACKNOWLEDGEMENTS

The authors acknowledge the support of this project by
the DoD HPCMP’s User Productivity Enhancement, Tech-
nology Transfer, and Training (PETTT) Program (Contract
No:GS04T09DBC0017 though High Performance Technolo-
gies, Inc.). This work was also supported in part by the U.S.
Department of Energy Office of Science through the SciDAC
award titled SUPER (Institute for Sustained Performance,
Energy and Resilience).

REFERENCES

[1] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer,
and B. Zorn. Evidence-based static branch prediction using machine
learning. ACM Transactions on Programming Languages and Systems,
19(1):188–222, 1997.

[2] A. Jaleel, R. Cohn, C. K. Luk, and B. Jacob. CMP$im: A Pin-based
on-the-fly multi-core cache simulator. In Proceedings of the Fourth
Annual Workshop on Modeling, Benchmarking and Simulation, pages
28–36, 2008.

[3] J. Pierce and T. Mudge. The effect of speculative execution on
cache performance. In Proceedings of the Eigth International Parallel
Processing Symposium, pages 172–179. IEEE, 1994.

[4] L. DeRose and F. Wolf. CATCH – A call-graph based automatic tool
for capture of hardware performance metrics for MPI and OpenMP
applications. European Conference on Parallel Processing, pages 167–
176, 2002.

[5] J. Seward and N. Nethercote. Using Valgrind to detect undefined value
errors with bit-precision. In USENIX Annual Technical Conference,
pages 17–30, 2005.

[6] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-grained binary in-
strumentation with applications to taint-tracking. In Proceedings of the
6th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, pages 74–83. ACM, 2008.

[7] N. Nethercote and A. Mycroft. Redux: A dynamic dataflow tracer.
Electronic Notes in Theoretical Computer Science, 89(2):149–170,
2003.

[8] L. Tang, J. Mars, and M. L. Soffa. Compiling for niceness: Mitigating
contention for QoS in warehouse scale computers. In Proceedings
of the 10th Annual International Symposium on Code Generation and
Optimization, pages 1–12. ACM, 2012.

[9] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha. A framework for performance modeling and prediction.
pages 21–21. IEEE, 2002.

[10] M. A. Laurenzano, M. Meswani, L. Carrington, A. Snavely, M. Tikir,
and S. Poole. Reducing energy usage with memory and computation-
aware dynamic frequency scaling. European Conference on Parallel
Processing, pages 79–90, 2011.

[11] A. Tiwari, M. A. Laurenzano, L. Carrington, and A. Snavely. Modeling
power and energy usage of hpc kernels. In 26th International Parallel
and Distributed Processing Symposium Workshops & PhD Forum, pages
990–998. IEEE, 2012.

[12] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: data race
detection in practice. In Proceedings of the Workshop on Binary
Instrumentation and Applications, pages 62–71. ACM, 2009.

[13] L. Carrington, M. M. Tikir, C. Olschanowsky, M. A. Laurenzano,
J. Peraza, A. Snavely, and S. Poole. An idiom-finding tool for increasing
productivity of accelerators. In Proceedings of the International
Conference on Supercomputing, pages 202–212. ACM, 2011.

[14] M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation for
code coverage testing. In ACM SIGSOFT Software Engineering Notes,
volume 27, pages 86–96. ACM, 2002.

[15] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. Connors.
Plr: A software approach to transient fault tolerance for multicore ar-
chitectures. IEEE Transactions on Dependable and Secure Computing,
6(2):135–148, 2009.

[16] B. P. Miller, M. Christodorescu, R. Iverson, T. Kosar, A. Mirgorod-
skii, and F. Popovici. Playing inside the black box: Using dynamic
instrumentation to create security holes. Parallel Processing Letters,
11(02n03):267–280, 2001.

[17] M. Prasad and T. Chiueh. A binary rewriting defense against stack
based buffer overflow attacks. In Proceedings of the USENIX Annual
Technical Conference, pages 211–224, 2003.

[18] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. PEBIL:
Efficient static binary instrumentation for Linux. In International
Symposium on Performance Analysis of Systems & Software, pages 175–
183. IEEE, 2010.

[19] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In ACM SIGPLAN Notices,
volume 40, pages 190–200. ACM, 2005.

[20] B. Buck and J. K. Hollingsworth. An API for runtime code patching.
International Journal of High Performance Computing Applications,
14(4):317–329, 2000.

[21] R. E. Kessler, M. D. Hill, and D. A. Wood. A comparison of trace-
sampling techniques for multi-megabyte caches. IEEE Transactions on
Computers, 43(6):664–675, 1994.

[22] L. Carrington, A. Snavely, X. Gao, and N. Wolter. A performance pre-
diction framework for scientific applications. Computational Science,
pages 701–701, 2003.

[23] M. D. Smith. Tracing with pixie. Computer Systems Laboratory,
Stanford University, 1991.

[24] J. R. Larus and T. Ball. Rewriting executable files to measure program
behavior. Software: Practice and Experience, 24(2):197–218, 1994.

[25] J. R. Larus and E. Schnarr. Eel: Machine-independent executable
editing. In ACM Sigplan Notices, volume 30, pages 291–300. ACM,
1995.

[26] A. Srivastava and A. Eustace. ATOM: A system for building customized
program analysis tools, volume 29. ACM, 1994.

[27] M. M. Tikir, M. A. Laurenzano, L. Carrington, and Snavely A. The
pmac binary instrumentation library for PowerPC/AIX. Workshop on
Binary Instrumentation and Applications, 2006.

[28] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan Notices, 42(6):89–100,
2007.

[29] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design and
implementation of a dynamic optimization framework for windows. In
4th ACM Workshop on Feedback-Directed and Dynamic Optimization,
2001.

[30] M. A. Laurenzano, J. Peraza, L. Carrington, A. Tiwari, W. A. Ward,
and R. Campbell. A static binary instrumentation threading model for
fast memory trace collection. International Workshop on Data-Intensive
Scalable Computing Systems, 2012.

[31] C. K. Luk, R. Muth, H. Patil, R. Cohn, and G. Lowney. Ispike: A post-
link optimizer for the Intel R© Itanium R© architecture. In International
Symposium on Code Generation and Optimization, pages 15–26. IEEE,
2004.

[32] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.
The NAS Parallel Benchmarks – summary and preliminary results. The
ACM/IEEE Conference on Supercomputing, pages 158–165, 1991.

[33] S. R. Eddy. Profile hidden Markov models. Bioinformatics, 14(9):755–
763, 1998.

[34] P. P. Chang, S. A. Mahlke, and W. M. W. Hwu. Using profile
information to assist classic code optimizations. Software: Practice
and Experience, 21(12):1301–1321, 1991.

[35] D. W. Wall. Predicting program behavior using real or estimated
profiles, volume 26. ACM, 1991.

[36] Y. T. S. Li and S. Malik. Performance analysis of embedded software
using implicit path enumeration. In Proceedings of the 32nd Annual
ACM/IEEE Design Automation Conference, pages 456–461. ACM,
1995.

[37] A. Snavely, N. Wolter, and L. Carrington. Modeling application per-
formance by convolving machine signatures with application profiles.
In IEEE International Workshop on Workload Characterization, pages
149–156. IEEE, 2001.

[38] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In ACM SIGARCH
Computer Architecture News, volume 30, pages 45–57. ACM, 2002.

[39] A. R. Bernat and B. P. Miller. Anywhere, any-time binary instrumen-
tation. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools, pages 9–16. ACM, 2011.

[40] W. H. Wang and J. L. Baer. Efficient trace-driven simulation methods
for cache performance analysis. ACM Transactions on Computer
Systems, 9(3):222–241, 1991.

[41] C. Ding and Y. Zhong. Reuse distance analysis. University of Rochester,
Rochester, NY, 2001.

[42] C. Ding and Y. Zhong. Predicting whole-program locality through reuse
distance analysis. In ACM SIGPLAN Notices, volume 38, pages 245–
257. ACM, 2003.

[43] J. Weinberg, M. O. McCracken, E. Strohmaier, and A. Snavely. Quan-
tifying locality in the memory access patterns of hpc applications. In
Proceedings of the ACM/IEEE Conference on Supercomputing, page 50.
IEEE, 2005.

[44] A. Milenkovic and M. Milenkovic. Exploiting streams in instruction
and data address trace compression. In IEEE International Workshop
on Workload Characterization, pages 99–107. IEEE, 2003.

[45] C. Olschanowsky, M. M. Tikir, L. Carrington, and A. Snavely. PSnAP:
accurate synthetic address streams through memory profiles. Languages
and Compilers for Parallel Computing, pages 353–367, 2010.

[46] T. M. Conte, M. A. Hirsch, and W. M. W. Hwu. Combining trace
sampling with single pass methods for efficient cache simulation. IEEE
Transactions on Computers, 47(6):714–720, 1998.

[47] M. A. Laurenzano, B. Simon, A. Snavely, and M. Gunn. Low cost trace-
driven memory simulation using SimPoint. ACM SIGARCH Computer
Architecture News, 33(5):81–86, 2005.

