
Understanding the Performance of Stencil
Computations on Intel's Xeon Phi

Joshua Peraza*

Laura Carrington t
Ananta Tiwarit Michael Laurenzanot

William A. Ward, Jr.+ Roy Campbell+

*University of California, San Diego, CA, USA, jperaza@cse.ucsd.edu
tSan Diego Supercomputer Center, La Jolla, CA, USA, {tiwari. michaell. lcarring}@sdsc.edu

+High Performance Computing Modernization Program,

United States Department of Defense, {william. ward. roy.campbell}@hpc.mil

Abstract-

Accelerators are becoming prevalent in high performance
computing as a way of achieving increased computational ca
pacity within a smaller power budget. Effectively utilizing the
raw compute capacity made available by these systems, however,
remains a challenge because it can require a substantial invest
ment of programmer time to port and optimize code to effectively
use novel accelerator hardware. In this paper we present a
methodology for isolating and modeling the performance of
common performance-critical patterns of code (so-called idioms)
and other relevant behavioral characteristics from large scale
HPC applications which are likely to perform favorably on
Intel Xeon Phi. The benefits of the methodology are twofold:
(1) it directs programmer efforts toward the regions of code
most likely to benefit from porting to the Xeon Phi and (2)
provides speedup estimates for porting those regions of code.
We then apply the methodology to the stencil idiom, showing
performance improvements of up to a factor of 4.7x on stencil
based benchmark codes.

I. INTRODUCTION

The push for increasingly larger supercomputers has
spurred the development of specialized heterogeneous com
puting environments. Limits to power and cooling infrastruc
tures prohibit adding more of the same commodity hardware.
Instead, diversification and specialization of hardware can be
used to increase power efficiency, thereby allowing for in
creased performance within the same power envelope. The po
tential for power efficiency of specialized hardware, however,
can only be realized if it is matched to appropriate workloads,
a feat that often demands great effort by an expert program
mer. An inappropriate or inadequately-ported workload on
an accelerator could result in a significant performance (and
energy) penalty instead of a performance benefit. Therefore,
as HPC systems grow in scale and complexity, the decisions
to port applications must be made using methodologies that
can accurately map software behavior and requirements to the
capabilities of the hardware. Performance models can help un
derstand and quantify performance sensitivity of applications
to attributes of hardware and can provide a solid basis for de
veloping methodologies that can guide computational scientists
in porting and tuning their applications for a heterogeneous
computing environment.

978-1-4799-0898-1/13/$31.00 ©2013 IEEE

In this paper, we develop performance models using id
ioms, a set of frequently used compute and memory access
patterns, as predictors of performance when porting code to an
accelerator. We conduct a detailed study on the performance
of these simple patterns on the target hardware. This study
analyzes the performance of idioms under various software and
hardware configurations - e.g., different working set sizes and
numbers of threads. Our methodology then breaks complex
HPC applications into their constituent idioms and provides
hints about what sections are best candidates for porting based
on what we have learned about how those idioms perform on
target hardware. Our methodology is based on the premise
that applications can be described by their constituent idioms
and that given a sufficiently broad set of idioms, they can
characterize the performance behavior of the application.

This paper uses Intel's Xeon Phi as the target accelerator
and focuses on modeling the performance of stream and stencil
idioms. We use two application kernels - 1. a 7-point stencil
computation that solves a 3-D heat equation and 2. a 3-D 19-
point Poisson solver. We also evaluate our methodology on
a large scale earthquake simulation code - Anelastic Wave
Propagation by Olsen, Day and Cui (AWP-ODC) - a 3-D finite
difference based earthquake simulation code [3].

II. CHARACTERIZING THE XEON PHI

This section describes the experimental platform and idiom
characterization studies designed to understand the perfor
mance behavior of stream and various flavors of stencil idioms.

A. Experimental Platform

We compare performance of idioms on a pair of Xeon
X5680 CPUs (Sandy Bridge), which we refer to as the host,
and a 52 core Intel MIC coprocessor (Xeon Phi). Each Xeon
X5680 has 6 3.3 GHz cores with 2 hardware threads each.
Each core has a 32 KB L1 cache, 256 KB L2 cache, and each
chip has a shared 12 MB L3 cache. Xeon Phi has 52 1 GHz
cores with 4 hardware threads each. Each Xeon Phi core also
has 32 KB of L1 cache and 512 KB of L2 cache. The L2
caches of each core are connected via a ring bus to create a
26 MB shared L3. Xeon Phi also has available 512 bit vector
registers compared to 256 bits on the host.

1.4e+l0

� 1.2e+lO o
.� le+lO

� 8e+-09

§ 6e+09

� 4e+09
�

10 100 1000

4.5e+09 ".-�.".�."�",,--..,,
2 4e+09

.� 3.5e+-09

� 3e+09

� 2.5e+09 /�i
� 2e+09 /.:.

.E 1.5e+09)
� �

0.... le+09 (�.--.

5e+08 ��"-'-�"'-'�"'"'-.......
10 100 1000

�. 3�poil�t slellci(
. ;-.;. .. . ,, \ . ./ i .. L .

l \ I
���-��f-�

O��"-'-�"'-'�"'-""'"

5.5e+09

5e+o9

4.5e+09

4e+09

3.5e+09

3e+09

2.5e+09

2e+09

1.5e+09

le+09

5e+08

1 10 100 1000

. .9-poil I stencil
/\ -..... , ,--

I I
�

.:'
./

_ ..

'!

,

10 100 1000

8e+09

7e+09

6e+09

5e+09

4e+09

3e+09

2e+09

le+09

0

3e+09

2.5e+09

2e+09

1.5e+09

le+09

1 10 100 1000

f 27-po;lIt stenc;1 ,..�

············ · ·········l:/ ···� ···

'�\i i �

10 100 1000

Aj,i=a*Bj,i+{J(Bj.J,i+Bj+I,i
+ Bj,i./+Bj,i+d

(a) I-D 3-pt stencil (b) 2-D 5-pt stencil

(c) 3-D 7-pt stencil
Size (ME) Size (ME) Size (ME)

Fig. 1: Idiom performance as a function of the working set size for the host & Xeon Phi Fig. 2: Different Types of Stencils

B. Characterizing the Idioms

We study of two classes of idioms - streams and sten
cils. Streams consist of a combination of reads and writes
linearly through memory. Streams may have different strides,
typically corresponding to the size of a unit of data. In these
experiments, we use 8 byte doubles. There are many possible
configurations of stencils and we characterize most common
forms here - I-D 3-point stencils, 2-D 5-point stencils, 2-D 9-
point stencils, 3-D 7-point stencils, and 3-D 27-point stencils.
The experimental setup involves offtoading a loop to Xeon Phi
which performs the operation described by the idiom over a
dataset many times. Figures la, lb, lc, ld, Ie, and lf show
the peak performance for the best-perfoffiling thread count for
each idiom at vatious data sizes for both Xeon Phi and the
Sandy Bridge. The performance number shown in each graph
indicates the number of innermost loop iterations per second.
For example, consider the code:

for n�l to NREPS
for x�l to xx, y�l to yy, z�l to zz

A[x] [y] [z] � B[x] [y] [z]
The total number of inner-loop iterations executed would be
N REP S * xx * yy * ZZ. The performance reported would be
this number divided by the time to execute the benchmark.

The results for each of these idioms shows that Xeon
Phi can achieve significant performance benefits at sufficiently
large dataset sizes. The exact point where Xeon Phi's per
formance overtakes the host's performance depends on the
particular idiom, but the greatest benefit is seen when the
dataset falls out of the host's cache and Xeon Phi can take
advantage of its large memory bandwidth.

The stream idiom's performance, shown in Figure la, on
the host is a reflection of the memory hierarchy bandwidths.
Dataset sizes above 32 MB measure main memory bandwidth.
Datasets 16 MB or smaller fit in L3 (24 MB) and datasets 2
MB or smaller fit in L2 (3 MB). Sandy Bridge results for the
stream benchmark (red line in Figure la) show the results we
expect as datasets move to each level of cache. We do not

provide an absolute number for Xeon Phi's peak bandwidth
because achievable bandwidth depends on what cache level is
being used and what idiom is accessing data. An estimate can
be determined by examining the performance at the rightmost
of each idiom's performance graph and multiplying by the
amount of data accessed by the idiom. The stream main
memory bandwidth, for example, was measured to be 82 GB/s
for Xeon Phi compared to 20 GB/s for the host.

The first stencil we characterize is the 3-point stencil,
which is described graphically in Figure 2a. The center of
the stencil is the same as right hand side of a stream idiom
and the other two points are the adjacent items in memory; so,
as can be expected, it performs very similarly to the stream
idiom (see Figure lb). Like the stream idiom, Xeon Phi can
outperform the host when the dataset grows into the L3 cache.

The 5- and 9-point stencils are both 2-D stencils and
perform very similarly to each other. A 5-point stencil is shown
in Figure 2b. A 9-point stencil is similar but with the extra
accesses in each of the two dimensions. They are distinguished
from 3-point stencils in that the host outperforms Xeon Phi
even when the data moves into the L3 cache (see Figures lc
and Ie). Xeon Phi does not outperform the host until the
working set grows into main memory.

As with the 2-D stencils, we measure two types of 3-
D stencils, 7- and 27-point (7-point is shown graphically in
Figure 2c). The 7-point stencil only contains points directly
adjacent to the center in each direction, while the 27-point
stencil contains all the points in the cube surrounding the center
point. The 7 - and 27 -point stencils have lower performance
than the 2-dimensional stencils (see Figures ld and ld). At
the largest data point we measured, a 2 GB working set, the 27-
point stencil saw a significant performance drop off on Xeon
Phi. We speculate that this has to do with reuse of cached data
between subsequent iterations for the 2nd and 3rd dimensions
lessening when the working set grows.

III. IDENTIFYING AND PORTING CODE TO XEON PHI

A full-size application can be daunting to port to an
accelerator. The source code is usually large and may not
be well understood. It is important to have tools available to
guide this process. This section describes our suite of tools
and elaborates how the information that these tools provide
can be used along with the idiom characterizations in the
previous section to locate application hot spots and estimate
the performance of those hot spots when ported to Xeon Phi.

A. Analysis Toolchain

Our tool suite consists of PEBIL[6], a binary instrumenter,
PIR[2], [8] a source code analyzer for identifying idioms, and a
database tool for manipulating and querying trace data. PEBIL
takes as input an application binary; it can disassemble the
binary, analyze it, and insert instrumentation. PEBIL is used
to gather static information such as the types of instructions in
basic blocks and block membership to loops and functions.
PEBIL can also insert code into an application to gather
information at runtime. We utilize various tools built on top
of PEBIL that can be used to study various relevant aspects
of a given application, including a basic block counter and
a cache simulator. PEBIL's basic block counter tool keeps
track of how many times every block in the application is
executed. This can be combined with the static information
to determine application properties such as the total number
and types of instructions executed within different control
units. The cache simulator, which is capable of concurrently
simulating many different cache structures, also keeps track
of the range of addresses accessed by each instruction. This
allows us to determine working set sizes and to distinguish
which instructions are operating on which data structures.

PIR is a source code analyzer implemented as a plugin to
gcc. It searches through source code for idioms and reports
their locations. PIR is configurable with an idiom description
language which allows searching for various definitions of
idioms beyond those already provided. PIR builds abstract
representations of idioms described by the users and compares
them (via feature matching) to the intermediate representations
of the source code produced by gcc.

Our database tool has at its center a sqlite database. It
consumes trace data from several possible sources, including
PEBIL and has interfaces for querying that data in a simple
way. It allows the user to quickly generate custom reports to
summarize traces far too large for direct examination.

B. Methodology

To aid a programmer in porting a code to an accelerator,
our toolchain must first identify the sections of code most
important to the application's performance, and then deter
mine whether those sections might see a performance benefit
after being ported to a specific accelerator. We can locate
performance critical sections of an application using PEBIL's
basic block counter. PEBIL produces a summary of the most
frequently visited blocks and we use this list to focus the
remainder of our analysis. The cache simulator instruments
these most important blocks for analysis and the resulting
traces are passed to our database tool. The database tool
can then produce various types of reports summarizing the

TABLE I: Heat3D and Poisson Characterizations
Benchmark Idiom Component Misses Per Instruction

Streaming write 0.0127
7pt stencil: i-I ,j,k 0.0127

Heat3 D
7pt stencil: ij-I.k 0.0003
7pt stencil: i.j.k+1 0.0003
7pt stencil: i,j+ I ,k 0.0127
7pt stencil: i+ I ,j,k 0.0127

Streaming read 0.00455
Poission Streaming write 0.00455

3-D stencil read 0.01478

application's activity. A loops report will list each loop of the
application, sorted by the number of dynamic instructions and
reports entry counts, block counts, the loops' share of total
instructions executed by the application, types of operations
(e.g. floating point vs memory), and cache hit rates.

The instruction-level report lists each instruction in the
application (eliminating rarely executed instructions), what
loop it belongs to, its source code location, its L3 cache
miss rate per dynamic instruction in its parent loop, the
range of addresses accessed, and the L3 cache miss rate per
instruction for all instructions in the loop. We use this report
to determine what share of memory activity is attributable to
each instruction in each loop and map the instructions back to
source code locations and data structures.

Once instructions and their memory activity are mapped
to source code locations, PIR can be used to help determine
which idioms exist at those source code locations. At this stage,
we have a report describing how much memory activity the
application requires for each type of idiom. We then use this
summary to estimate possible performance benefits using our
characterizations in the previous section as a guide.

IV. RESULTS

In this section, we utilize the tool suite we described in
section III in conjunction with the idiom characterizations
presented in section II to predict the performance of benchmark
applications when ported to Xeon Phi. The first benchmark we
consider is Heat3D - heat equation application benchmark.
The performance of this benchmark is dominated by a single
loop containing a 7-point stencil. Table I summarizes the
memory activity for Heat3D. The rows of the table are broken
down by the components of the stencil. In each row, the
misses per instruction metric indicates the number of L3 cache
misses for memory references in this component per dynamic
instruction executed in the loop. Summing the rows indicates
the total fraction of instructions that caused L3 cache misses.
The streaming write covers writing to the destination array.
The remaining rows of the table indicate the most significant
points of the stencil based on the L3 cache miss rate. There is a
row for each point in the stencil except i,j,k-l and i,j,k. Those
points very rarely miss because they are pulled into cache in
advance by the i,j,k+ 1 point. To clarify, examine the source
code for Heat3D:

1: Ali] Ij] Ik] �
cO*Bli] Ij] Ik] + c1* (Bli] Ij] Ik-1] +

2: Bli-1] Ij] Ik] +
3: Bli] Ij-1] Ik] +
4: Bli] Ij] Ik+1] +
5: Bli] Ij+1] Ik] +
6: Bli+1] lj] lk]);

We have labeled the lines with the rows of Table I they
correspond to. Since this benchmark is a simple 7-point stencil,

we can use the address range information reported for Heat3D
to make a performance prediction. The reports for Heat3D
indicated that a 2 GB dataset was used. Using Figure Id,
which shows the performance on Xeon Phi as a function of
the data set size or range of data accessed, we predict a speedup
of 4.9x. The measured speedup is 4.7x (see Table III).

The next benchmark we evaluate is Poisson. Poisson is
also dominated by a single loop but it contains two idioms
instead of just one as in Heat3D. Poisson contains an IS-point
3-D stencil from one array and a streaming read from another.
Rather than providing a full breakdown by idiom components
as we did with Heat3D, we report all the points for the 3-D
stencil read in a single line that sums all relevant cache misses.
The characterization is shown in Table I.

This particular run of Poisson uses three 700 MB arrays:
one being written to in a stream, one being read from in a
stream, and one being read from in an IS-point stencil. We
estimate that the IS-point stencil is approximately the same as
a 27-point stencil-the only points missing from the IS-point
stencil are single offsets in the first dimension from a point that
does exist in the IS-point stencil, so, they have little impact
on performance. Our idiom characterizations showed that 27-
point stencils (see Figure If) with 500-1000 MB arrays had
speedups of 2.1x to 3.9x. Streams with 500-1000 MB arrays
had speedups of 4.2x to 5.0x (see Figure l a). It is unclear yet
how to combine the performance effects of two simultaneous
idioms, but we expect that it will be some compromise between
the two, 2.1x to 5.0x. The actual speedup as shown in Table III
is 4.0x.

The final application we examine is AWP-ODC, a 3D
Finite Difference based earthquake simulation code [3]. AWP
ODC contains two main loops where most of the computation
occurs. We characterize the first loop in Table II. The charac
terization and performance of the second loop is similar to the
first loop so we omit it. To help us understand how to better
characterize the many ways stencils may be configured, we
provide a detailed breakdown of which idiom components are
causing memory activity. We divide the table into sections by
which arrays are being accessed. Then for each instruction that
contributes significantly (> 10-5 L3 misses per instruction)
to memory activity we indicate which idiom component it
corresponds to as we did with Heat3D. The loop is comprised
of streams and stencils, however, the stencils do not exactly
match the stencils we characterized previously in Section II.
For example, in array 1, there are two I-D stencils. In the
source code, they appear similar to:
1: A[i] [j] [k-2] + A[i] [j] [k-1] +

A[i] [j] [k] + A[i] [j] [k+1]

2: A[i-1] [j] [k] + A[i] [j] [k]
A[i+1] [j] [k] + A[i+2] [j] [k]

The points on line 1 form a 1-0 stencil in the first dimension
which is approximately the same as the 3-point stencils or
streams we have characterized. However, the points on line 2
form a 1-0 stencil in the third dimension. Since these points
are not adjacent in memory, their performance impact is dif
ferent from a stencil in the 1st dimension. We hypothesize that
if array A is sufficiently large in size, the points of this stencil
will be dispersed and behave as 4 concurrent streams. Applying
this hypothesis to the rest of the loop, each row in Table
II indicates a single stream, for a total of 31 simultaneous

3e+09

2.5e+09

" 2e+09 u c:: "
E 1.5e+09

.g " le+09 0..

5e+08

0
5 10 15 20 25 30 35 40 45

Number of Streams

Fig. 3: Performance of multiple simultaneous streams

streams in ten S5 MB arrays. Using this approximation and
our characterizations for streams (see Figure l a), we would
estimate that the loop gets a speedup of 4-6x, however, we
measured the actual speedup to be only l .l 3x.

For Heat3D and Poisson, it was sufficient to compare
the benchmarks directly to relevant idiom characterizations
because they only used one or two idiom instances in the
loop and the characterizations in Section II look at idioms
in isolation. Predicting the speedup for AWP-ODC is a more
difficult problem because we must first understand how to
convolve many idioms together.

Re-examining our characterizations, we see that the 27-
point stencil is a convolution of 9 3-point stencils. The fact that
the 27-point stencil has a very different characterization from
a 3-point stencil further demonstrates the need to better under
stand how smaller idioms interact when they occur together in
a loop. To characterize the effect of many concurrent streams,
we conduct an experiment in which there are many streaming
reads in a large array. We simulate this using a stencil with
many offsets in the 3rd dimension. We use two 500 MB arrays,
one for writing in a stream and one for reading in several
streams and measure the performance on both the Xeon Phi
and the host for various numbers of streams. Figure 3 verifies
the performance degrading effect of having multiple concurrent
streams. The effect is more pronounced on Xeon Phi than the
host. If we estimate the speedup for AWP directly from this
experiment at 31 streams, we would predict a speedup of 2.Sx.
This brings our estimate closer to the measured l .l 3x speedup.

The discrepancy between this new prediction and actual
speedup may be explained by the simplicity of this charac
terization. The experiment is based only on the number of
streams and does not control the amount of reuse that might
take place between the streams. For AWP-ODC, we saw that
there is certainly some reuse of data between points of streams
and stencils operating in the same arrays. For example, for
array 1 in Table II, the i+2,j,k point has the highest L3 miss
rate because it is reading ahead of the other points. The other
points can take advantage of the warm cache if the data is not
evicted between accesses and therefore, they all have a lower
L3 miss rate. This effect is also present in each of the other
arrays. In the future, we plan to extend the characterization to
support controlling the L3 miss rate for each of the streams to
simulate the amount of reuse between points.

In this paper, we have focused primarily on how memory
behavior of applications relates to their performance on Xeon
Phi. To improve the accuracy of our methodology, other
features of Xeon Phi that can have significant impacts on

TABLE II: AWP-ODC Characterization: Loop 1
Array

2
2
2
2

4

6
6
6
6
7

9

10
10
10
10

Idiom Component Misses Per 1,000,000 Lnstructions

L-D stencil in Lst dim
3rd dim stencil: i-lj,k
3rd dim stencil: i+ I ,j,k
3rd dim stencil: i+2,j,k

1-0 stencil in 1st dim
2nd dim stencil: i,j-2,k
2nd dim stencil: i,j-I,k
2nd dim stencil: i,j+l,k

stream
2nd dim stencil: i,j-2,k
2nd dim stencil: i,j-I,k
2nd dim stencil: i,j+ I,k
3rd dim stencil: i-I ,j,k
3rd dim stencil: i+l,j,k
3rd dim stencil: i+2,j,k

L-D stencil in Lst dim
2nd dim stencil: i,j-I,k

2nd dim stencil: i,j,k
2nd dim stencil: i,j+l,k
2nd dim stencil: i,j+2,k
3rd dim stencil: i-2,j,k
3rd dim stencil: i-I ,j,k

3rd dim stencil: i,j,k
3rd dim stencil: i+l,j,k

stream

stream
stream

3-D stencil: i+l,j,k
3-D stencil: i+l,j-L,k

3-D stencil: i,j,k
3-D stencil: i,j-I,k

360
380
380
570

180
200
200
570

L70
[70
150
450
360
270
570

530
200
200
200
570

380
380
380
570
570

570
570

570
L50
360
170

TABLE Ill: Summary of Results
Bencllmark Predicted Speedup Measured Speedup

Heat3D 4.9 4.7
Poisson 2.1-5.0 4.0

AWP-ODC Loop 2.8 1.13

perfonnance (e.g., 512 bit vector registers and 4-way SMT)
have to be considered as well, In particular, the 512 bit vector
registers have the potential to double the perfonnance of vec
torizable code; therefore, being able to detect vectorizability
of code sections will be important in estimating performance
on Xeon Phi. We plan to investigate how these features can
be accommodated within our methodology,

V. RELATED WORK

This work extends our earlier research on using idiom
characterizations and perfonnance models to make assertions
on how well sections of code port to specialized hardware,
Carrington et aL [2] used idiom characterizations to estimate
perfonnance benefits of offloading gather/scatter operations to
FPGAs, Meswani et aL [7] used stream and gather/scatter
idioms to predict perfonnance on GPUs and FPGAs,

Perfonnance models have also been extensively used to
study how codes perfonn on accelerators, Govindaraju et aL [4]
present a memory model that incorporates GPU characteristics
such as smaller cache sizes and apply that model to analyze and
improve the perfonnance of memory intensive kernels, Alam
et aL [1] model the multi-streaming and vector processing
capabilities of the Cray XIE on the NAS Parallel Benchmark's
SP kernel. Hong et aL [5] presented an analytical model for
GPU perfonnance based on parallel memory requests, number
of threads and memory bandwidth,

V I. CONCLUSION

We presented a methodology that uses idiom characteri
zations and the models that represent them to estimate the

perfonnance of computational phases on the MIC architecture,
Our methodology improves the prospects for successfully
porting an HPC application to the Xeon Phi in two ways, First,
programmer effort can be targeted toward sections (functions
or loops) of the application that have the highest contribution
to overall performance and that are mostly likely to benefit
from porting, Second, it allows a programmer to estimate the
benefit of porting a section of code using speedup up estimates
derived from our models,

We focused on the stream and stencil idioms and studied
and modeled the performance of these idioms on Xeon Phi, We
demonstrated how the models can guide decisions on whether
or not it will be valuable to port sections of code to Xeon Phi.

ACKNOWLEDGEMENTS

We acknowledge the support of this project by the
DoD HPCMP's User Productivity Enhancement, Technol
ogy Transfer, and Training (PETTT) Program (Contract
No:GS04T09DBCOOI7 through High Perfonnance Technolo
gies, Inc,), This material is also based upon work supported
by the Air Force Office of Scientific Research under AFOSR
Award No, FA9550-12-1-0476,

REFERENCES

[1] S. R. Alam, N. Bhatia, and J. S. Vetter. An exploration of performance
attributes for symbolic modeling of emerging processing devices. In
R. Perrott, B. Chapman, J. Subhlok, R. Mello, and L. Yang, editors,
High Pe,(ormance Computing and Communications, Lecture Notes in
Computer Science, pages 683-694. Springer Berlin Heidelberg, 2007.

[2] L. Carrington, M. M. Tikir, C. Olschanowsky, M. Laurenzano, J. Peraza,
A. Snavely, and S. Poole. An idiom-finding tool for increasing produc
tivity of accelerators. In Proceedings of the international conference on

Supercomputing, ICS ' l l , pages 202-212, New York, NY, USA, 2011.
[3] Y. Cui, K. Olsen, T. Jordan, K. Lee, 1. Zhou, P. Small, D. Roten, G. Ely,

D. K. Panda, A. Chourasia, J. Levesque, S. M. Day, and P. Maechling.
Scalable earthquake simulation on petascale supercomputers. In High

Performance Computing, Networking, Storage and Analysis (SC), 2010
International Conference for, pages 1-20, 2010.

[4] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A memory
model for scientific algorithms on graphics processors. In Proceedings

of the 2006 ACMIIEEE conference on Supercompltling, SC '06, New
York, NY, USA, 2006. ACM.

[5] S. Hong and H. Kim. An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness. In Proceedings

of the 36th annual international symposium on Computer architecture,
ISCA '09, pages 152-163, New York, NY, USA, 2009. ACM.

[6] M. Laurenzano, M. Tikir, L. Carrington, and A, Snavely. Pebil: Efficient
static binary instrumentation for linux. In Performance Analysis of

Systems Software (ISPASS), 2010 IEEE International Symposium on,

pages 175 -183, march 2010.
[7] M. R. Meswani, L. Carrington, D. Unat, A. Snavely, S. Baden, and

S. Poole. Modeling and predicting performance of high performance
computing applications on hardware accelerators. International Journal

of High Performance Computing Applications, 2012.
[8] C. Olschanowsky, A. Snavely, M. R. Meswani, and L. Carrington. Pir:

Pmac's idiom recognizer. In Proceedings of the 2010 39th International
Conference on Parallel Processing Workshops, ICPPW ' 10, pages 189-
196, Washington, DC, USA, 2010. IEEE Computer Society.

