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Abstract-

Accelerators are becoming prevalent in high performance 
computing as a way of achieving increased computational ca
pacity within a smaller power budget. Effectively utilizing the 
raw compute capacity made available by these systems, however, 
remains a challenge because it can require a substantial invest
ment of programmer time to port and optimize code to effectively 
use novel accelerator hardware. In this paper we present a 
methodology for isolating and modeling the performance of 
common performance-critical patterns of code (so-called idioms) 
and other relevant behavioral characteristics from large scale 
HPC applications which are likely to perform favorably on 
Intel Xeon Phi. The benefits of the methodology are twofold: 
(1) it directs programmer efforts toward the regions of code 
most likely to benefit from porting to the Xeon Phi and (2) 
provides speedup estimates for porting those regions of code. 
We then apply the methodology to the stencil idiom, showing 
performance improvements of up to a factor of 4.7x on stencil
based benchmark codes. 

I. INTRODUCTION 

The push for increasingly larger supercomputers has 
spurred the development of specialized heterogeneous com
puting environments. Limits to power and cooling infrastruc
tures prohibit adding more of the same commodity hardware. 
Instead, diversification and specialization of hardware can be 
used to increase power efficiency, thereby allowing for in
creased performance within the same power envelope. The po
tential for power efficiency of specialized hardware, however, 
can only be realized if it is matched to appropriate workloads, 
a feat that often demands great effort by an expert program
mer. An inappropriate or inadequately-ported workload on 
an accelerator could result in a significant performance (and 
energy) penalty instead of a performance benefit. Therefore, 
as HPC systems grow in scale and complexity, the decisions 
to port applications must be made using methodologies that 
can accurately map software behavior and requirements to the 
capabilities of the hardware. Performance models can help un
derstand and quantify performance sensitivity of applications 
to attributes of hardware and can provide a solid basis for de
veloping methodologies that can guide computational scientists 
in porting and tuning their applications for a heterogeneous 
computing environment. 
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In this paper, we develop performance models using id
ioms, a set of frequently used compute and memory access 
patterns, as predictors of performance when porting code to an 
accelerator. We conduct a detailed study on the performance 
of these simple patterns on the target hardware. This study 
analyzes the performance of idioms under various software and 
hardware configurations - e.g., different working set sizes and 
numbers of threads. Our methodology then breaks complex 
HPC applications into their constituent idioms and provides 
hints about what sections are best candidates for porting based 
on what we have learned about how those idioms perform on 
target hardware. Our methodology is based on the premise 
that applications can be described by their constituent idioms 
and that given a sufficiently broad set of idioms, they can 
characterize the performance behavior of the application. 

This paper uses Intel's Xeon Phi as the target accelerator 
and focuses on modeling the performance of stream and stencil 
idioms. We use two application kernels - 1. a 7-point stencil 
computation that solves a 3-D heat equation and 2. a 3-D 19-
point Poisson solver. We also evaluate our methodology on 
a large scale earthquake simulation code - Anelastic Wave 
Propagation by Olsen, Day and Cui (AWP-ODC) - a 3-D finite 
difference based earthquake simulation code [3]. 

II. CHARACTERIZING THE XEON PHI 

This section describes the experimental platform and idiom 
characterization studies designed to understand the perfor
mance behavior of stream and various flavors of stencil idioms. 

A. Experimental Platform 

We compare performance of idioms on a pair of Xeon 
X5680 CPUs (Sandy Bridge), which we refer to as the host, 
and a 52 core Intel MIC coprocessor (Xeon Phi). Each Xeon 
X5680 has 6 3.3 GHz cores with 2 hardware threads each. 
Each core has a 32 KB L1 cache, 256 KB L2 cache, and each 
chip has a shared 12 MB L3 cache. Xeon Phi has 52 1 GHz 
cores with 4 hardware threads each. Each Xeon Phi core also 
has 32 KB of L1 cache and 512 KB of L2 cache. The L2 
caches of each core are connected via a ring bus to create a 
26 MB shared L3. Xeon Phi also has available 512 bit vector 
registers compared to 256 bits on the host. 
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Fig. 1: Idiom performance as a function of the working set size for the host & Xeon Phi Fig. 2: Different Types of Stencils 

B. Characterizing the Idioms 

We study of two classes of idioms - streams and sten
cils. Streams consist of a combination of reads and writes 
linearly through memory. Streams may have different strides, 
typically corresponding to the size of a unit of data. In these 
experiments, we use 8 byte doubles. There are many possible 
configurations of stencils and we characterize most common 
forms here - I-D 3-point stencils, 2-D 5-point stencils, 2-D 9-
point stencils, 3-D 7-point stencils, and 3-D 27-point stencils. 
The experimental setup involves offtoading a loop to Xeon Phi 
which performs the operation described by the idiom over a 
dataset many times. Figures la, lb, lc, ld, Ie, and lf show 
the peak performance for the best-perfoffiling thread count for 
each idiom at vatious data sizes for both Xeon Phi and the 
Sandy Bridge. The performance number shown in each graph 
indicates the number of innermost loop iterations per second. 
For example, consider the code: 

for n�l to NREPS 
for x�l to xx, y�l to yy, z�l to zz 

A[x] [y] [z] � B[x] [y] [z] 
The total number of inner-loop iterations executed would be 
N REP S * xx * yy * ZZ. The performance reported would be 
this number divided by the time to execute the benchmark. 

The results for each of these idioms shows that Xeon 
Phi can achieve significant performance benefits at sufficiently 
large dataset sizes. The exact point where Xeon Phi's per
formance overtakes the host's performance depends on the 
particular idiom, but the greatest benefit is seen when the 
dataset falls out of the host's cache and Xeon Phi can take 
advantage of its large memory bandwidth. 

The stream idiom's performance, shown in Figure la, on 
the host is a reflection of the memory hierarchy bandwidths. 
Dataset sizes above 32 MB measure main memory bandwidth. 
Datasets 16 MB or smaller fit in L3 (24 MB) and datasets 2 
MB or smaller fit in L2 (3 MB). Sandy Bridge results for the 
stream benchmark (red line in Figure la) show the results we 
expect as datasets move to each level of cache. We do not 

provide an absolute number for Xeon Phi's peak bandwidth 
because achievable bandwidth depends on what cache level is 
being used and what idiom is accessing data. An estimate can 
be determined by examining the performance at the rightmost 
of each idiom's performance graph and multiplying by the 
amount of data accessed by the idiom. The stream main 
memory bandwidth, for example, was measured to be 82 GB/s 
for Xeon Phi compared to 20 GB/s for the host. 

The first stencil we characterize is the 3-point stencil, 
which is described graphically in Figure 2a. The center of 
the stencil is the same as right hand side of a stream idiom 
and the other two points are the adjacent items in memory; so, 
as can be expected, it performs very similarly to the stream 
idiom (see Figure lb). Like the stream idiom, Xeon Phi can 
outperform the host when the dataset grows into the L3 cache. 

The 5- and 9-point stencils are both 2-D stencils and 
perform very similarly to each other. A 5-point stencil is shown 
in Figure 2b. A 9-point stencil is similar but with the extra 
accesses in each of the two dimensions. They are distinguished 
from 3-point stencils in that the host outperforms Xeon Phi 
even when the data moves into the L3 cache (see Figures lc 
and Ie). Xeon Phi does not outperform the host until the 
working set grows into main memory. 

As with the 2-D stencils, we measure two types of 3-
D stencils, 7- and 27-point (7-point is shown graphically in 
Figure 2c). The 7-point stencil only contains points directly 
adjacent to the center in each direction, while the 27-point 
stencil contains all the points in the cube surrounding the center 
point. The 7 - and 27 -point stencils have lower performance 
than the 2-dimensional stencils (see Figures ld and ld). At 
the largest data point we measured, a 2 GB working set, the 27-
point stencil saw a significant performance drop off on Xeon 
Phi. We speculate that this has to do with reuse of cached data 
between subsequent iterations for the 2nd and 3rd dimensions 
lessening when the working set grows. 



III. IDENTIFYING AND PORTING CODE TO XEON PHI 

A full-size application can be daunting to port to an 
accelerator. The source code is usually large and may not 
be well understood. It is important to have tools available to 
guide this process. This section describes our suite of tools 
and elaborates how the information that these tools provide 
can be used along with the idiom characterizations in the 
previous section to locate application hot spots and estimate 
the performance of those hot spots when ported to Xeon Phi. 

A. Analysis Toolchain 

Our tool suite consists of PEBIL[6], a binary instrumenter, 
PIR[2], [8] a source code analyzer for identifying idioms, and a 
database tool for manipulating and querying trace data. PEBIL 
takes as input an application binary; it can disassemble the 
binary, analyze it, and insert instrumentation. PEBIL is used 
to gather static information such as the types of instructions in 
basic blocks and block membership to loops and functions. 
PEBIL can also insert code into an application to gather 
information at runtime. We utilize various tools built on top 
of PEBIL that can be used to study various relevant aspects 
of a given application, including a basic block counter and 
a cache simulator. PEBIL's basic block counter tool keeps 
track of how many times every block in the application is 
executed. This can be combined with the static information 
to determine application properties such as the total number 
and types of instructions executed within different control 
units. The cache simulator, which is capable of concurrently 
simulating many different cache structures, also keeps track 
of the range of addresses accessed by each instruction. This 
allows us to determine working set sizes and to distinguish 
which instructions are operating on which data structures. 

PIR is a source code analyzer implemented as a plugin to 
gcc. It searches through source code for idioms and reports 
their locations. PIR is configurable with an idiom description 
language which allows searching for various definitions of 
idioms beyond those already provided. PIR builds abstract 
representations of idioms described by the users and compares 
them (via feature matching) to the intermediate representations 
of the source code produced by gcc. 

Our database tool has at its center a sqlite database. It 
consumes trace data from several possible sources, including 
PEBIL and has interfaces for querying that data in a simple 
way. It allows the user to quickly generate custom reports to 
summarize traces far too large for direct examination. 

B. Methodology 

To aid a programmer in porting a code to an accelerator, 
our toolchain must first identify the sections of code most 
important to the application's performance, and then deter
mine whether those sections might see a performance benefit 
after being ported to a specific accelerator. We can locate 
performance critical sections of an application using PEBIL's 
basic block counter. PEBIL produces a summary of the most 
frequently visited blocks and we use this list to focus the 
remainder of our analysis. The cache simulator instruments 
these most important blocks for analysis and the resulting 
traces are passed to our database tool. The database tool 
can then produce various types of reports summarizing the 

TABLE I: Heat3D and Poisson Characterizations 
Benchmark Idiom Component Misses Per Instruction 

Streaming write 0.0127 
7pt stencil: i-I ,j,k 0.0127 

Heat3 D 
7pt stencil: ij-I.k 0.0003 
7pt stencil: i.j.k+1 0.0003 
7pt stencil: i,j+ I ,k 0.0127 
7pt stencil: i+ I ,j,k 0.0127 

Streaming read 0.00455 
Poission Streaming write 0.00455 

3-D stencil read 0.01478 

application's activity. A loops report will list each loop of the 
application, sorted by the number of dynamic instructions and 
reports entry counts, block counts, the loops' share of total 
instructions executed by the application, types of operations 
(e.g. floating point vs memory), and cache hit rates. 

The instruction-level report lists each instruction in the 
application (eliminating rarely executed instructions), what 
loop it belongs to, its source code location, its L3 cache 
miss rate per dynamic instruction in its parent loop, the 
range of addresses accessed, and the L3 cache miss rate per 
instruction for all instructions in the loop. We use this report 
to determine what share of memory activity is attributable to 
each instruction in each loop and map the instructions back to 
source code locations and data structures. 

Once instructions and their memory activity are mapped 
to source code locations, PIR can be used to help determine 
which idioms exist at those source code locations. At this stage, 
we have a report describing how much memory activity the 
application requires for each type of idiom. We then use this 
summary to estimate possible performance benefits using our 
characterizations in the previous section as a guide. 

IV. RESULTS 

In this section, we utilize the tool suite we described in 
section III in conjunction with the idiom characterizations 
presented in section II to predict the performance of benchmark 
applications when ported to Xeon Phi. The first benchmark we 
consider is Heat3D - heat equation application benchmark. 
The performance of this benchmark is dominated by a single 
loop containing a 7-point stencil. Table I summarizes the 
memory activity for Heat3D. The rows of the table are broken 
down by the components of the stencil. In each row, the 
misses per instruction metric indicates the number of L3 cache 
misses for memory references in this component per dynamic 
instruction executed in the loop. Summing the rows indicates 
the total fraction of instructions that caused L3 cache misses. 
The streaming write covers writing to the destination array. 
The remaining rows of the table indicate the most significant 
points of the stencil based on the L3 cache miss rate. There is a 
row for each point in the stencil except i,j,k-l and i,j,k. Those 
points very rarely miss because they are pulled into cache in 
advance by the i,j,k+ 1 point. To clarify, examine the source 
code for Heat3D: 

1: Ali] Ij] Ik] � 
cO*Bli] Ij] Ik] + c1* ( Bli] Ij] Ik-1] + 

2: Bli-1] Ij] Ik] + 
3: Bli] Ij-1] Ik] + 
4: Bli] Ij] Ik+1] + 
5: Bli] Ij+1] Ik] + 
6: Bli+1] lj] lk] ); 

We have labeled the lines with the rows of Table I they 
correspond to. Since this benchmark is a simple 7-point stencil, 



we can use the address range information reported for Heat3D 
to make a performance prediction. The reports for Heat3D 
indicated that a 2 GB dataset was used. Using Figure Id, 
which shows the performance on Xeon Phi as a function of 
the data set size or range of data accessed, we predict a speedup 
of 4.9x. The measured speedup is 4.7x (see Table III). 

The next benchmark we evaluate is Poisson. Poisson is 
also dominated by a single loop but it contains two idioms 
instead of just one as in Heat3D. Poisson contains an IS-point 
3-D stencil from one array and a streaming read from another. 
Rather than providing a full breakdown by idiom components 
as we did with Heat3D, we report all the points for the 3-D 
stencil read in a single line that sums all relevant cache misses. 
The characterization is shown in Table I. 

This particular run of Poisson uses three 700 MB arrays: 
one being written to in a stream, one being read from in a 
stream, and one being read from in an IS-point stencil. We 
estimate that the IS-point stencil is approximately the same as 
a 27-point stencil-the only points missing from the IS-point 
stencil are single offsets in the first dimension from a point that 
does exist in the IS-point stencil, so, they have little impact 
on performance. Our idiom characterizations showed that 27-
point stencils (see Figure If) with 500-1000 MB arrays had 
speedups of 2.1x to 3.9x. Streams with 500-1000 MB arrays 
had speedups of 4.2x to 5.0x (see Figure l a). It is unclear yet 
how to combine the performance effects of two simultaneous 
idioms, but we expect that it will be some compromise between 
the two, 2.1x to 5.0x. The actual speedup as shown in Table III 
is 4.0x. 

The final application we examine is AWP-ODC, a 3D 
Finite Difference based earthquake simulation code [3]. AWP
ODC contains two main loops where most of the computation 
occurs. We characterize the first loop in Table II. The charac
terization and performance of the second loop is similar to the 
first loop so we omit it. To help us understand how to better 
characterize the many ways stencils may be configured, we 
provide a detailed breakdown of which idiom components are 
causing memory activity. We divide the table into sections by 
which arrays are being accessed. Then for each instruction that 
contributes significantly (> 10-5 L3 misses per instruction) 
to memory activity we indicate which idiom component it 
corresponds to as we did with Heat3D. The loop is comprised 
of streams and stencils, however, the stencils do not exactly 
match the stencils we characterized previously in Section II. 
For example, in array 1, there are two I-D stencils. In the 
source code, they appear similar to: 
1: A[i] [j] [k-2] + A[i] [j] [k-1] + 

A[i] [j] [k] + A[i] [j] [k+1] 

2: A[i-1] [j] [k] + A[i] [j] [k] 
A[i+1] [j] [k] + A[i+2] [j] [k] 

The points on line 1 form a 1-0 stencil in the first dimension 
which is approximately the same as the 3-point stencils or 
streams we have characterized. However, the points on line 2 
form a 1-0 stencil in the third dimension. Since these points 
are not adjacent in memory, their performance impact is dif
ferent from a stencil in the 1st dimension. We hypothesize that 
if array A is sufficiently large in size, the points of this stencil 
will be dispersed and behave as 4 concurrent streams. Applying 
this hypothesis to the rest of the loop, each row in Table 
II indicates a single stream, for a total of 31 simultaneous 
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Fig. 3: Performance of multiple simultaneous streams 

streams in ten S5 MB arrays. Using this approximation and 
our characterizations for streams (see Figure l a), we would 
estimate that the loop gets a speedup of 4-6x, however, we 
measured the actual speedup to be only l .l 3x. 

For Heat3D and Poisson, it was sufficient to compare 
the benchmarks directly to relevant idiom characterizations 
because they only used one or two idiom instances in the 
loop and the characterizations in Section II look at idioms 
in isolation. Predicting the speedup for AWP-ODC is a more 
difficult problem because we must first understand how to 
convolve many idioms together. 

Re-examining our characterizations, we see that the 27-
point stencil is a convolution of 9 3-point stencils. The fact that 
the 27-point stencil has a very different characterization from 
a 3-point stencil further demonstrates the need to better under
stand how smaller idioms interact when they occur together in 
a loop. To characterize the effect of many concurrent streams, 
we conduct an experiment in which there are many streaming 
reads in a large array. We simulate this using a stencil with 
many offsets in the 3rd dimension. We use two 500 MB arrays, 
one for writing in a stream and one for reading in several 
streams and measure the performance on both the Xeon Phi 
and the host for various numbers of streams. Figure 3 verifies 
the performance degrading effect of having multiple concurrent 
streams. The effect is more pronounced on Xeon Phi than the 
host. If we estimate the speedup for AWP directly from this 
experiment at 31 streams, we would predict a speedup of 2.Sx. 
This brings our estimate closer to the measured l .l 3x speedup. 

The discrepancy between this new prediction and actual 
speedup may be explained by the simplicity of this charac
terization. The experiment is based only on the number of 
streams and does not control the amount of reuse that might 
take place between the streams. For AWP-ODC, we saw that 
there is certainly some reuse of data between points of streams 
and stencils operating in the same arrays. For example, for 
array 1 in Table II, the i+2,j,k point has the highest L3 miss 
rate because it is reading ahead of the other points. The other 
points can take advantage of the warm cache if the data is not 
evicted between accesses and therefore, they all have a lower 
L3 miss rate. This effect is also present in each of the other 
arrays. In the future, we plan to extend the characterization to 
support controlling the L3 miss rate for each of the streams to 
simulate the amount of reuse between points. 

In this paper, we have focused primarily on how memory 
behavior of applications relates to their performance on Xeon 
Phi. To improve the accuracy of our methodology, other 
features of Xeon Phi that can have significant impacts on 



TABLE II: AWP-ODC Characterization: Loop 1 
Array 

2 
2 
2 
2 

4 

6 
6 
6 
6 
7 

9 

10 
10 
10 
10 

Idiom Component Misses Per 1,000,000 Lnstructions 

L-D stencil in Lst dim 
3rd dim stencil: i-lj,k 
3rd dim stencil: i+ I ,j,k 
3rd dim stencil: i+2,j,k 

1-0 stencil in 1st dim 
2nd dim stencil: i,j-2,k 
2nd dim stencil: i,j-I,k 
2nd dim stencil: i,j+l,k 

stream 
2nd dim stencil: i,j-2,k 
2nd dim stencil: i,j-I,k 
2nd dim stencil: i,j+ I,k 
3rd dim stencil: i-I ,j,k 
3rd dim stencil: i+l,j,k 
3rd dim stencil: i+2,j,k 

L-D stencil in Lst dim 
2nd dim stencil: i,j-I,k 

2nd dim stencil: i,j,k 
2nd dim stencil: i,j+l,k 
2nd dim stencil: i,j+2,k 
3rd dim stencil: i-2,j,k 
3rd dim stencil: i-I ,j,k 

3rd dim stencil: i,j,k 
3rd dim stencil: i+l,j,k 

stream 

stream 
stream 

3-D stencil: i+l,j,k 
3-D stencil: i+l,j-L,k 

3-D stencil: i,j,k 
3-D stencil: i,j-I,k 

360 
380 
380 
570 

180 
200 
200 
570 

L70 
[70 
150 
450 
360 
270 
570 

530 
200 
200 
200 
570 

380 
380 
380 
570 
570 

570 
570 

570 
L50 
360 
170 

TABLE Ill: Summary of Results 
Bencllmark Predicted Speedup Measured Speedup 

Heat3D 4.9 4.7 
Poisson 2.1-5.0 4.0 

AWP-ODC Loop 2.8 1.13 

perfonnance (e.g., 512 bit vector registers and 4-way SMT) 
have to be considered as well, In particular, the 512 bit vector 
registers have the potential to double the perfonnance of vec
torizable code; therefore, being able to detect vectorizability 
of code sections will be important in estimating performance 
on Xeon Phi. We plan to investigate how these features can 
be accommodated within our methodology, 

V. RELATED WORK 

This work extends our earlier research on using idiom 
characterizations and perfonnance models to make assertions 
on how well sections of code port to specialized hardware, 
Carrington et aL [2] used idiom characterizations to estimate 
perfonnance benefits of offloading gather/scatter operations to 
FPGAs, Meswani et aL [7] used stream and gather/scatter 
idioms to predict perfonnance on GPUs and FPGAs, 

Perfonnance models have also been extensively used to 
study how codes perfonn on accelerators, Govindaraju et aL [4] 
present a memory model that incorporates GPU characteristics 
such as smaller cache sizes and apply that model to analyze and 
improve the perfonnance of memory intensive kernels, Alam 
et aL [1] model the multi-streaming and vector processing 
capabilities of the Cray XIE on the NAS Parallel Benchmark's 
SP kernel. Hong et aL [5] presented an analytical model for 
GPU perfonnance based on parallel memory requests, number 
of threads and memory bandwidth, 

V I. CONCLUSION 

We presented a methodology that uses idiom characteri
zations and the models that represent them to estimate the 

perfonnance of computational phases on the MIC architecture, 
Our methodology improves the prospects for successfully 
porting an HPC application to the Xeon Phi in two ways, First, 
programmer effort can be targeted toward sections (functions 
or loops) of the application that have the highest contribution 
to overall performance and that are mostly likely to benefit 
from porting, Second, it allows a programmer to estimate the 
benefit of porting a section of code using speedup up estimates 
derived from our models, 

We focused on the stream and stencil idioms and studied 
and modeled the performance of these idioms on Xeon Phi, We 
demonstrated how the models can guide decisions on whether 
or not it will be valuable to port sections of code to Xeon Phi. 
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