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SUMMARY

This article presents Green Queue, a production quality tracing and analysis framework for implementing
application aware Dynamic Voltage-Frequency Scaling (DVFS) for MPI applications in high performance
computing (HPC). Green Queue makes use of both intertask and intratask DVFS techniques. The intertask
technique targets applications where the workload is imbalanced by reducing CPU clock frequency and
therefore power draw for ranks with lighter workloads. The intratask technique targets balanced workloads
where all tasks are synchronously running the same code. The strategy identifies program phases and selects
the energy-optimal frequency for each by predicting power and measuring the performance responses of
each phase to frequency changes. The success of these techniques is evaluated on 1024 cores on Gordon,
a supercomputer at the San Diego Supercomputer Center built using Intel Xeon E5-2670 (Sandybridge)
processors. Green Queue achieves up to 21% and 32% energy savings for the intratask and intertask DVFS
strategies respectively. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As the size of supercomputers increases, so too do their power requirements. With the current move
towards exascale computing, the number of processor cores in a system is ever increasing, imposing
additional power requirements on the system both for operational and cooling purposes. The cost of
powering supercomputers has become substantial. The K computer, currently heading the Top500,
consumes 12.7 MW of power [1]. Using a conservative estimate, $0.10/kWh, the cost of electricity
could reach up to $11 million annually. Over the lifetime of certain supercomputing systems, the
cost of energy can actually exceed the initial hardware cost of the system [2].

Energy efficient computing requires controlling how much energy is committed to a task and
understanding what benefit can be expected in return for completing that task. In many cases this
presents the opportunity to make informed tradeoffs between performance and energy consumption.
In this article, Dynamic Voltage-Frequency Scaling (DVFS) is the mechanism used for controlling
this trade-off. Many researchers have used DVFS to either reduce total energy costs or to cap
dynamic power consumption. DVFS allows the speed of a CPU to be reduced in exchange for
reduced power consumption. The key challenge to using DVFS effectively is to understand what
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2 J. PERAZA ET AL.

the effect on both power and performance will be for a change in CPU frequency. Without this
understanding one could certainly reduce dynamic power consumption, but it may come at the cost
of unacceptable performance loss and possibly even increased energy usage than if no DVFS were
used at all [3].

1.1. Motivation

Validation of this possibility of running into suboptimal energy usage behavior, as well as motivation
for the application aware DVFS techniques explored in this work, is shown in Figure 1. This figure
shows the delay and energy measured for two application kernels, details of which are available in
Section 4, when subjected to each available clock frequency on an Intel Xeon E5-2670 for the entire
application run.
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(a) Frequency scaling results for Sweep3D.
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(b) Frequency scaling results for FT.

Figure 1. The energy usage and runtime delay for two test applications being run at a series of fixed clock
frequencies.

In Figure 1a, Sweep3D [4] shows that reduced clock frequency does not always result in reduced
energy usage. The CPU benefits from a cubic power reduction as clock frequency is reduced linearly,
but the application suffers such a large performance penalty that the additional energy consumed
by other components dwarfs the energy savings of the CPU. In Figure 1b, FT [5] demonstrates
that, while it is possible to save energy via simple frequency scaling, the relationship of clock
frequency to performance and power is not necessarily a simple one. FT achieves a minimum
energy consumption with a fixed CPU clock frequency of 1.3 GHz, which is close to but above
the minimum frequency available on the system. The goal of Green Queue is to use an application’s
specific characteristics identify the clock frequency which minimizes energy consumption for a
particular section of code and then use this ability to customize a dynamic voltage-frequency scaling
for the application.

The focus of this article is on exploring techniques for determining optimal frequency
configurations for pure MPI applications. Optimality in this context refers to the set of CPU clock
frequencies that minimizes total energy consumption for the hardware running an HPC application.
However, other metrics derived from combinations of performance and power, such as energy-
delay product, can be minimized similarly. Resulting from this exploration is Green Queue, a
framework supporting the analysis and instrumentation of MPI programs for DVFS. Green Queue
was evaluated using an array of full scale HPC applications and benchmarks running in various
configurations on a single rack (1024 cores) of Gordon, the latest supercomputer to be installed at
the San Diego Supercomputer Center. Green Queue demonstrates energy savings of up to 21% with
intratask DVFS and up to 32% with intertask DVFS.

1.2. Contributions

The contributions of this work include:
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PMAC’S GREEN QUEUE 3

Detecting and characterizing program phases using interprocedural analysis on application
trace data. A structural phase detection algorithm, as opposed to a time slicing method, allows
phase length and location to adapt to boundaries naturally present in programs, such as loop and
function boundaries. Interprocedural analysis further improves upon this because these boundaries
are not limited to the scope of single loops or functions.

Efficiently determining optimal frequency configurations over all phases in a program.
Selecting an optimal configuration by direct measurement requires several runs for each phase
to locate the optimal frequencies because the length of a phase is short compared to the time
granularity needed to measure power. This work proposes a method of combining power modeling
and performance measurements to predict energy consumption for frequency configurations using
one application run per frequency setting.

A production-quality tracing and analysis framework. Green Queue provides a robust
framework for generating and analyzing application trace data. The production, organization and
processing of application trace data is automatic and largely opaque to the user, managed by a few
simple command line tools. This allows for comprehensive energy management strategies to be
built to leverage a wide array of detailed application statistics, and for those strategies to be easily
utilized.

An evaluation of Green Queue on a full compute rack of Gordon. Gordon is the
latest supercomputer at the San Diego Supercomputer Center built with Intel Xeon E5-2670
(Sandybridge) processors. With 1024 cores per rack, this work demonstrates that DVFS is a viable
strategy for achieving significant energy savings at scale on modern hardware.

Experiments demonstrating the value of application aware DVFS over blind DVFS. This
work demonstrates that application aware DVFS can significantly outperform techniques that do not
respond to the behavior of the application. Green Queue shows increased energy savings coupled
with a decreased performance loss compared to application unaware DVFS.

2. BACKGROUND AND RELATED WORK

DVFS has been explored by many researchers as a mechanism for reducing energy consumption in
HPC workloads. Generally these DVFS strategies have fallen into two broad categories: intertask
and intratask. Green Queue utilizes both intertask and intratask strategies for DVFS, and we discuss
research related to these two strategies seperately.

2.1. Intertask DVFS

Intertask DVFS schemes attempt to identify MPI load imbalance or the time spent blocked in
MPI routines and use that information to selectively lower the clock frequency of the hardware
running the slacking or blocking MPI ranks, since by definition some other rank is the bottleneck
of application progress. Freeh et al. [6] present a runtime system called Jitter which influences
the clock frequencies of the CPUs running iterative codes using observations about the behavior
of previous iterations within a run to predict the likely behavior of upcoming iterations. Their
scheme is introduced to the application by inserting a particular MPI call at the top of the main
loop in the application, then intercepting that call in a Profiling MPI (PMPI) layer. Rountree et al.
take an approach in Adagio [7] which makes runtime clock frequency selection decisions at many
of the “natural” MPI call entry points within the application, while attempting to reduce energy
and minimize runtime delay. Adagio meets these goals, achieving up to 20% energy reductions in
certain MPI applications while maintaining minimal slowdowns. Adagio also makes several other
contributions to the state of the art, most notably it demonstrates that regions of the application
can and should be split across multiple clock frequencies where none of the available frequencies
closely match the ideal frequency.

These schemes demonstrate significant progress toward minimizing the energy required to run
poorly balanced MPI applications, though to our knowledge they have never been shown to work
at scale. Our current approach is simpler than more refined schemes like Jitter and Adagio but is
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demonstrated at scale, which allows it to serve as a proof of concept for using DVFS on parallel
scientific applications running on large number of CPUs in order to reduce their energy impact.
Future work for Green Queue includes incorporating many of the novel concepts introduced by
other works in order to refine our own efforts to exploit MPI imbalances to reap energy savings.

2.2. Intratask DVFS

Intratask DVFS attempts to reduce energy consumption by varying the CPU frequency within a
single task as it moves between program phases. If a region of code is heavily utilizing the memory
subsystem, the CPU may be spending much of its time stalled while waiting for memory requests to
complete. When the memory subsystem becomes the bottleneck, scaling down the CPU frequency
can result in sub-linear performance loss, allowing for a net energy savings.

For much of the past decade of DVFS research, predicting performance loss under DVFS and
comparing it with total system power draw has not been necessary to save energy. Because CPU
power has historically dominated total system power, a decrease in frequency resulted in a net
energy savings, despite linear performance degradation. Consequently, many strategies have been
CPU centric; they focus on estimating memory boundedness and then scaling the CPU aggressively
to some acceptable performance loss. Choi et al. use an analytical model of off-chip vs. on-chip
workloads using hardware counters to estimate cycles per instruction [8]. A similar approach has
been taken by Dhiman et al. [9], Isci et al. [10] and Wu et al. [11].

There are two high level questions any strategy must answer to perform intratask DVFS: when
should the frequency be adjusted and to what frequency? The research discussed so far had similar
solutions to the second question; they use analytical models for the balance of on-chip vs off-chip
workloads then the frequency is scaled to match some target performance loss.

Strategies for solving the first question are somewhat more variable. If we define a phase as a
window in the execution of a program where certain relevant characteristics are homogeneous, this
question becomes one of identifying phases in the application. In the case of DVFS, the homogeneity
of the characteristics during a particular phase implies that there is a single optimal clock frequency
for that phase. The brevity of many particular phases and sheer number of phases in real programs
precludes determining the optimal frequency for all phases experimentally.

Simple strategies for finding phases are reactive. They record hardware counters on time sliced
intervals and re-evaluate the optimal frequency at each based on the assumption that phases exhibit
temporal locality [8][9]. These strategies are well-behaved when phases are longer running than
several time slices. They make the assumption that the properties observed in the previous time
slice are a good predictor for the properties that will occur in the next. However, if phases are short
lived relative to the length of the time slice then the frequency selected for each time slice may be
suboptimal for a substantial fraction of the phase.

Time slicing strategies may also be predictive. Isci et al. use a phase history table to predict what
phase will occur in the next time slice [10]. In this strategy, phases are discretized by equating a
phase to a particular range of values of the frequency determining metric, memory operations per
micro-op. Each range corresponds to one frequency setting. A small number of frequency settings
and coarse grained time slicing, therefore, allow a small enough table to efficiently predict phase
patterns.

Time slicing has the advantage of being amenable to dynamic phase detection, but phases may
be more precisely detected with more information about the program being executed. Wu et al.
achieve this using dynamic compilation to detect phases at the function or loop granularity [11].
The intuition behind this strategy is that programs are structured and phases will tend to be related
to program constructs. In their dynamic compiler framework, Wu et al. instrument the program to
measure memory operations per micro-op at loops and functions and again use an analytical model
to select frequency according to some acceptable performance loss.

The aforementioned strategies are CPU centric. They use DVFS to reduce CPU dynamic power
and ignore total system power. This is acceptable when one assumes that CPU power dominates total
system power draw. Linear reductions in frequency and voltage allow cubic dynamic power savings.
Given this assumption, any reduction in frequency can be expected to lead to a reduction in energy,
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even for entirely CPU bound applications. The primary concern has been estimating performance
loss at each frequency and then scaling down as aggressively as possible within the bounds of some
parametrized acceptable performance loss.

The assumption that CPU power dominates total system power is becoming increasingly dubious
in modern computing systems. As CPU voltage and feature size shrink, so too does the range
of dynamic power and opportunity for power savings via DVFS. Leakage and power from other
components are taking up a larger portion of total system power. Now, the energy cost of a
performance loss due to static power is enough to overtake some dynamic power savings [3][12].
One can no longer simply reduce CPU frequency to save energy because a linear performance
loss times the static power for the whole system dwarfs the energy saved by the CPU alone.
Consequently, saving energy in modern and future systems requires techniques that can accurately
assess the total system power and performance characteristics of an application to make an optimal
power-performance tradeoff.

Freeh et al. use a strategy that accounts for total system power by directly measuring the energy
usage for different frequency configurations [13]. If there are l phases and f available frequencies,
then an exhaustive search requires f runs per phase for a total of f ∗ l runs. This is because the
length of an application phase is often too short for the power to be measured in isolation; power
measurements are affected by the behavior of neighboring phases. The energy-optimal frequency
for a phase is selected by altering the frequency of that single phase for multiple runs and attributing
the difference in energy consumption between runs to that phase. Freeh et al. use a heuristic to
reduce the number of runs to O(l). First, a program is divided into phases using traces which
report operations per cache miss for blocks of code. As with previous strategies, the model assumes
that operations per cache miss correlates strongly with optimal frequency. Frequency selection is
performed for each phase in order of increasing operations per cache miss. For the first phase,
energy consumption is first measured at the highest frequency and then at each lower frequency
until the optimal frequency for that phase is found. All subsequent phases are assumed to have an
optimal frequency equal to or lower than this frequency, reducing the size of the search space.

There are two primary weaknesses with this strategy that Green Queue addresses. First, operations
per miss is not always a good predictor for optimal frequency. Optimal frequency depends on an
applications performance response to frequency which has been found difficult to predict generally
with any simple metric. This can result in missed energy savings in phases that were assumed
unsuitable for DVFS or that were scaled lower than their actual energy-optimal frequency. Second,
this method still requires O(l) application runs to determine a frequency configuration. Large
applications may have many phases requiring a significant energy investment. Green Queue’s
method requires O(f) application runs taking advantage of the fact that the number of frequency
settings is often much smaller than the number of phases in real programs.

Snowdon et al. use hardware counters to model both system power consumption and performance
response to frequency scaling [14][15]. In the model, a training set of hand picked applications
are used to correlate hardware counter measurements with power and performance responses
to frequency scaling. The counters with the highest correlations to power and performance
measurements are then used at runtime to estimate both power and performance response to
potential frequency changes.

This model, however, is not portable. Different CPU models provide different counters which will
require different models. Furthermore, micro-architectural advancements and the move to multi-
core complicate modeling. There has been some success modeling power on more recent multi-
core processors [16], but performance modeling, and therefore energy modeling, may be more
challenging.

One approach to creating portable models is to create the model in software. Instead of using
hardware counters, Laurenzano et al. use application traces to derive loop signatures [17]. These
signatures are compared against signatures collected from a training set which covers a space of
power- and performance-relevant metrics. Because the model is in software, it is not restricted by
the availability of hardware counters. Since the domain of possibly relevant software properties is
boundless, this allows modeling behaviors that are difficult or impossible to capture with hardware
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6 J. PERAZA ET AL.

counters alone. While an artificial benchmark suite also provides control over the training space, it
can be prone to systematic errors. The space covered by the benchmark can be decisively explored,
but the model loses variability in properties that aren’t specifically accounted for by the benchmark.

3. GREEN QUEUE

The Green Queue project is a production-quality framework of tracing, database, and analysis tools
to facilitate running user applications at reduced energy costs using a variety of techniques. Figure
2 gives an overview of the Green Queue framework.

Green Queue Framework

DVFS Instrumentation

Trace Database

Structural Analyzer

Phase DetectorPower Model LoopTimer

Application

Application + DVFS SecureScaler

Tracing: MPI Timer, Block Counter, Cache Simulator

Machine

Submission

Tracing

Analysis

Instrumentation

Save Energy

Figure 2. The Green Queue Framework

The first time an application is submitted to Green Queue, it is examined by several analysis
tools to learn about both its static properties and runtime behavior. Runtime behavior is examined
by gathering traces while the submitted application is executed. The next time the application
is submitted to the Green Queue, the analysis from its previous submission is retrieved from a
database. That analysis is used to instrument the application with DVFS controls, which is then run
using those controls to reduce the application’s energy footprint.

3.1. Characterizing Applications

The first step in an application’s interaction with Green Queue is to characterize the application.
At this stage, the application is analyzed to find its static properties then is run using binary
instrumentation and MPI profiling tools to measure its runtime behavior.

3.1.1. MPI Load Imbalance — MPI load imbalance is measured using PSiNSTracer [18], a tool
that provides wrappers for instrumenting MPI routines. These instrumented routines are introduced
to the application using the LD PRELOAD mechanism, which has the effect of timing and counting
the calls to all MPI routines during an application run. The results of these timings can be used to
determine the amount of communication and CPU time as well as detect imbalances of CPU time
between MPI ranks. When imbalances beyond a certain threshold are detected, the application is
identified as a candidate for intertask DVFS.

3.1.2. Static Analysis — The binary instrumentation framework PEBIL [19] is used in its capacity
as a static analysis tool to produce information about the structure of the program as well as what
operations occur within those structures. This results in a detailed picture of the boundaries of
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various control flow structures such as functions and loops as well as the type and size of important
classes of operations that reside in those structures, such as floating point or memory operations.
PEBIL also records the average size of memory operands in each block and measures the number of
instructions between register or memory definitions and their usage. Blocks are associated with the
loops and functions that contain them. The tool also records, when possible, the targets of function
calls for each block.

3.1.3. Runtime Execution/Memory Tracing — Green Queue uses PEBIL in two seperate
instrumented application runs to collect two types of traces for an application: execution counts
and memory tracing. In the first run, Green Queue collects counts for all of the basic blocks and
loops in an application, showing its hot spots and how the various control structures in the program
are exercised. Green Queue then makes a second application run during which the hot spots are
instrumented to simulate the application’s memory address streams interacting with the memory
subsystem of the machine. It is important to note that simulation of this kind provides far more detail
about the memory behavior than can be obtained with hardware counters. In particular, simulation
allows Green Queue to attach memory behavior statistics to the control structures (functions, loops,
basic blocks and instructions) in the program.

3.2. Application Trace Analysis

After trace data is collected, Green Queue uses this data to construct a representation of the
program. Each phase in the program is detected and analyzed to determine an optimal frequency
configuration.

3.2.1. Trace Database — The application trace database is at the center of Green Queue’s
application analysis capabilities. This database provides a clean interface to the trace data gathered
for an application. On the backend, this trace data is stored in an SQL database to allow for arbitrary
and powerful querying of that data. A java class frontend allows for the re-use of many common
high level queries across the several analysis modules in Green Queue and other related projects.
The trace database also supports querying and aggregating data by function, loop, or basic block
and selection of data particular to specific MPI ranks.

3.2.2. Interprocedural Loop Analysis — An interprocedural analysis is critical to the phase
detection accuracy of Green Queue for real applications. In order to make DVFS decisions about
loops, the loops must have an accurate characterization profile. If function calls that are made from
within loops are not counted toward those loops, the resulting characterization can be innacurate.
Consider the loop in Figure 3a.

for ( i = 0; i < N; i++ ) {
a[i] += b[i]
f()

}

(a) Demonstration of how loop characterization can
be inaccurate without interprocedural analysis

for ( i = 0; i < N; i++ ) {
f()

}

(b) Demonstration of how phases can go undetected
without interprocedural analysis

If the function call in this loop were not considered, this loop may be characterized as a very
memory intensive loop and could erroneously result in a low clock frequency being used to run the
loop. The actual behavior of this loop, however, depends on what the function f does. If f works
the CPU more heavily than memory and is non-trivial, then it is likely that the loop would be best
run at a higher frequency.

A second motivation for performing interprocedural analysis is the detection of phases in modular
programs. To ensure that DVFS is used effectively, only phases which contain more than a certain
number of dynamic instructions are considered. Now consider the loop in Figure 3b.
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In this case a simple intraprocedural analysis would find an empty loop unsuitable for DVFS.
However, if f has a large number of instructions or if the loop has a large number of iterations, a
more sophisticated view of this loop may show that it forms a substantial phase. Green Queue uses
a structural analyzer to support interprocedural analysis and to provide a mechanism for high level
navigation of the application traces. The structural analyzer creates loop and function summaries and
approximates a context-sensitive call graph, allowing analysis of inter-procedural loop hierarchies.

Function inlining is used to perform the interprocedural analysis. However indiscriminate
function inlining can cause an explosion in memory usage by the structural analyzer because each
time a function is inlined, the data structures accounting for its trace data are duplicated at each point
where it is inlined. For many small, insignificant functions, inlining does not improve the accuracy
of phase characterization because the number of dynamic instructions that they contribute is too
small to significantly affect the code that calls them. To mitigate this effect the inlining algorithm
prunes functions whose dynamic instruction count is below a certain threshold.

A second concern when performing inlining is handling cycles in the call graph resulting from
recursion. To simplify the analysis, functions that are members of cycles are never inlined. Green
Queue targets HPC applications where it is expected that significant recursion will be rare, and in
practice this simplification has not been a problem thus far.

Algorithm 1 Function Inlining
Add all functions to the worklist
while worklist is not empty do

Remove a function f from the worklist
if f is not a leaf function then

continue
end if
if number of dynamic instructions in f is below a threshold then

Remove f from call-graph
Remove all calls to f

else
Inline f at all callers

end if
Add all callers of f to the worklist

end while

The algorithm used to perform function inlining within Green Queue’s structural analyzer is a
worklist algorithm, shown in Algorithm 1. Initially, all functions are added to the worklist. At each
iteration, a function is removed from the worklist. If the function contains any function calls, it is
not a leaf function and is not ready for inlining. It is removed from the worklist and no inlining
is done. Otherwise, if the function is smaller than a threshold, it is pruned. It is removed from the
worklist and all references made to it by other functions are removed. The effect is the same as if the
function were inlined, but no additional resources are used. If the function is above the threshold,
then it is considered significant. It is inlined at all functions that call it. When a function is pruned
or inlined, all functions that contain references to the function are added to the worklist.

When a function is inlined, all of its dynamic statistics are aggregated into the appropriate level
of the loop hierarchy in each function that called it. One challenge in this process is that the
summary for the function being inlined contains context insensitive dynamic statistics; it contains
aggregated information for all call stacks leading to this function. If the function’s statistics were
aggregated entirely into the caller function, the caller function’s statistics would become distorted.
In the absence of sufficient information in the trace data to guarantee accurate attribution of this
information to the correct caller, the assumption is made that the portion of instructions attributable
to any caller of a function is proportional the number of times the call originated from that call site.
This information is readily available from the execution trace data discussed in Section 3.1.3 and
is a useful approximation that greatly reduces the time and space complexity of the required trace
data.

When the worklist is empty, most non-cyclical functions will have been inlined. The function
will not be inlined if it participates in a cycle, if it is not called by any other function, or if the
analysis could not locate where it was called. If a function is never called, it is either insignificant
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PMAC’S GREEN QUEUE 9

because it does not effect the analysis or it is a root function such as main. For simplicity, the
analyis framework does not support detecting calls via function pointers. These types of calls will
go uninlined in the analysis but they are expected to be rare in HPC applications and have so far not
been found to interfere significantly with the analyses.

3.2.3. Phase Detection — In prior work, phases have often been identified by sudden changes in
certain application characteristics. The approach offered here differs markedly in that no assumption
is made about which properties are used to determine phase boundaries. The definition of a
phase in Green Queue is a contiguous execution of code where the energy optimal frequency is
approximately homogeneous. The characterization of code may change, but if optimal frequency
remains the same, no phase change has been made. Consequent to this approach, frequency selection
occurs midway through Green Queue’s phase detection process.

To bootstrap the phase detection algorithm, the assumption is made that each inner-most loop is
homogeneous and is therefore a phase unto itself. If a loop has no nested sub-loops the whole loop
is marked as belonging to a single phase. Initially, the phase entry point is the head of the loop but
may move when phases are merged.

There is an overhead to switching frequencies and if a phase is too short, the cost of switching to
an energy-improving frequency may surpass the benefit of running at that frequency. To avoid this,
a pass over the loop hierarchy is made which eliminates small loops as noise. The analysis makes
a pre-order traversal over the loop hierarchy and at each loop examines the number of dynamic
instructions contained within it compared to the loop entry count gathered during the application’s
execution trace. If the loop has too few dynamic instructions per entry, the loop and all of its children
are removed from the analysis. This may allow phase entry points to be moved to outer loops when
all of their children are eliminated. Additionally, if a loop has no siblings (its parent loop has no
other sub-loops) then the phase entry point is moved to the parent loop. This allows the call to the
frequency scaling library to be placed higher in the loop hierarchy and therefore introduces less
overhead. Once phase entry points have been moved to sufficiently sized loops, frequency selection
analysis is performed in order to mark each phase with an optimal frequency. More on this process
is described in section 3.5.2.

After frequency selection is complete, a second pass over the loop hierarchy is made to merge
neighboring phases with the same frequency. This is done via a depth first traversal of the loop
hierarchy. When the traversal reaches the most deeply nested loop, its optimal frequency is
compared to the frequency selected for each of its siblings. If all sibling loops share the same
frequency, they are merged and the phase entry point is moved to their parent loop. This process
continues up the loop hierarchy until two or more sibling loops have differing optimal frequencies,
indicating a phase transition.

Since the trace data does not contain information about the order in which loops are executed,
there may still remain unmerged neighboring phases with the same frequency. This is addressed
with dynamic phase merging, discussed further in section 3.3.1.

3.3. Deploying Applications with DVFS

The result of the phase detection and frequency selection algorithms is a frequency configuration
file for the application which describes the boundaries and optimal clock frequencies for the
application’s phases. Given this frequency configuration, more infrastructure is needed to employ
DVFS on an application on a production system. This section describes the mechanisms put in place
to accomplish these frequency scaling operations.

3.3.1. Instrumenting with a Customized DVFS Scheme — An instrumentation tool written with
PEBIL is used to instrument an application for DVFS. At instrumentation time, calls to a frequency
scaling library are programmed into the application’s phase entry points. At the start of the
application run, this library loads the frequency configuration file, which contains a mapping of
phases to frequencies. Deferring the handling of frequency settings until runtime in this fashion
allows frequency settings to be modified without re-instrumenting the application. The frequency
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scaling library can track statistics about the performance of the DVFS configuration such as the
number of frequency switches and can perform certain optimizations that were not possible offline.
By tracking the current frequency on any given CPU, Green Queue is able to skip the frequency
scaling operation when the current frequency matches the target frequency. This has the effect of
dynamically merging neighboring homogenous phases that were too complex for our offline phase
merging algorithm to find, reducing the overhead introduced by the DVFS scheme and thereby
increasing its effectiveness.

3.3.2. Introducing DVFS Securely — Green Queue uses a mediator between the application and the
operating system to handle frequency scaling requests. This mediator, SecureScaler, is a daemon
which accepts requests on Unix domain sockets and can be used to implement security policies
with regard to how frequency scaling requests are honored, such as allowing only particular users
or groups to modify clock frequency or to honor requests only on a particular subset of the system.
This makes Green Queue far easier to integrate into a supercomputer’s software and middleware.

3.4. Characterization of Training Benchmarks

For our intratask frequency selection method, described in Section 3.5.2, models are used to make
predictions about power or performance of application phases at different frequency settings.
These models are based on characterizations and measurements collected from sets of training
benchmarks. A characterization profile for one of these benchmarks currently includes cache misses
per instruction for each level of cache, ratios of floating point and memory operations to each other
and to the total number of instructions, and average value def-use distances for integer and floating
point operations. The time and power response to different frequency settings is directly measured
during each of the training benchmark runs.

3.4.1. pcubed — The first training set used is pcubed [17]. pcubed is a framework for
automated, systematic generation of micro-benchmarks across a parameter space. The parameters
to pcubed allow generation of benchmarks that cover the characterization space and have
a configurable runtime length. pcubed therefore allows a controlled exploration of the
characterization space. However, while pcubed can generate benchmarks with specified property
values, unspecified characteristics such as memory access patterns and dependencies lack variation
and are thus overtrained. Models that use pcubed alone can accurately predict the entire parameter
space of pcubed benchmarks with a relatively small number of data points while still mispredicting
for real applications.

3.4.2. Other Micro-Benchmark Kernels — To supplement pcubed a suite of 31 HPC kernels are
added to the training set. These kernels add variety and complexity to the training set to help
prevent models from becoming overtrained to the particular chacacteristics explored explicitly
by pcubed. These kernels come from a variety of different domains, are very prevalent in HPC
applications, and have been extensively used in the past to investigate and evaluate intranode auto-
tuning techniques [20][21][22]. Here we have categorized them into four categories following the
scheme used in [21] and [23] – (1) Linear algebra computation kernels, which do different operations
on scalars, vectors and matrices such as matrix-matrix or matrix-vector multiplication; (2) Linear
algebra solvers, which solve a system of linear equations; (3) Stencil kernels, which update array
elements following some fixed access pattern such as the jacobi relaxation method; and (4) Data
mining kernels, which do simple statistical analysis on random variables.

3.5. Frequency Selection within Green Queue

In this section, we describe Green Queue’s method for the selection of a clock frequency strategy
for the application, either by way of selecting the frequency for an application phase or by
selecting a scaling strategy based on the detected MPI imbalance properties of the application.
The decision about what clock frequency configuration is optimal is based entirely on choosing the
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frequency which we predict can save the maximum amount of energy out of all possible frequency
configurations.

For a load-imbalanced application, Green Queue bases the clock frequency selection on the
results of an imbalance detection algorithm that uses the MPI profile (refer to Section 3.1.1)
collected for the application. In order to select a clock frequency scaling strategy for a load-balanced
application, Green Queue takes a phase profile, generated from the input application trace data (refer
to Section 3.1.3) queries a power model to estimate total system power draw during that phase, and
utilizes phase timing data to arrive at the optimal frequency for the phases. The phase configuration
is output to a file that can be loaded at runtime by a DVFS-instrumented application.

3.5.1. Intertask Frequency Selection — The first step in analyzing application traces within Green
Queue is to determine whether the workload is balanced across MPI ranks. If the workload is
balanced, the application is analyzed further for intratask DVFS. If it is imbalanced, it is a candidate
for intertask DVFS.

Running on homogenous hardware, load imbalance within MPI applications typically occurs
when some MPI ranks are assigned more computational work than other ranks. Many MPI
applications exhibit load imbalance issues due to the structure of the underlying scientific problem
that is being solved or due to some artifact of the implementation of the solution to that problem.
Solutions to the load balancing problem are well-developed in the literature and range from
solutions which involve modification of the algorithm or implementation of dynamic load balancing
in the application. Despite these solutions load balancing remains a problem in HPC because
application developers reasonably seek to avoid the complexity of introducing these solutions into
their applications.

The load imbalance problem persists and is unlikely to disappear any time soon, resulting in
excess computation on some ranks and imbalances within the computation distributed to MPI
tasks within applications. Green Queue takes advantage of these excesses by measuring them then
introducing lower clock frequencies to the CPUs that are hosting MPI ranks which are running at
less than full capacity. The measurements of MPI behavior are collected using PSiNSTracer [18],
an open source MPI tracing and profiling library.

We start by defining CPUTimei as the amount of time spent outside of MPI calls on rank i, then
we define the excess computation of rank i for an MPI run on n ranks as follows.

excessi =
CPUTimei

MAXn
r=0(CPUTimer)

(1)

excessi is therefore the ratio of the computation time of rank i to the most computationally
intensive rank in the application. Note that Equation (1) is defined in such a way that the inequality
0 ≤ excessi ≤ 1 holds for all ranks. We then use the following formula to assign a clock frequency
to some rank i, where p is a penalty factor that will be derived empirically in Section 4.1.

Freqi = (excessi × (1 + p))× Freqmax (2)

Combining Equations (1) and (2) yields an equation directly relating the MPI profiling
measurements to the clock frequency selections.

Freqi
Freqmax

=
CPUTimei × (1 + p)

MAXn
r=0(CPUTimer)

(3)

That is, we select the clock frequency for a rank in such a way that the ratio of that clock frequency
to the maximum frequency on the system is equal to the ratio of the CPUTime of that rank to the
maximum CPUTime for all ranks in the run, subject to a penalty factor which can be used to
tailor how aggressive the frequency selection is. p = 0 yields a clock frequency which equates these
ratios, positive values of p yield higher clock frequencies, and negative values of p yield lower clock
frequencies.

This scheme yields a clock frequency for each MPI rank, corresponding to a particular processing
core. However, two factors prevent running these exact frequencies on each core. First, the set of
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clock frequencies available is generally discrete and limited to some small number of fixed values
– 15 frequency options in the case of the Sandybridge system we test in this paper. For the sake
of simplicity, we currently round the frequency produced by Equation 2 to the nearest available
frequency. We also face the problem that clock frequency cannot be set for each core independently
on a Sandybridge processor. Every core on a socket runs at the frequency of the maximum frequency
that is set for any core attached to that socket.

We experimentally pursued several strategies with the goal of assigning ranks to cores in such
a way that groups of similar frequency were assigned to the same socket. Such strategies have
the effect of allowing the socket to achieve a lower overall frequency and result in lower power
draws. On the other hand, rearranging ranks (e.g. remapping tasks) in this way risks destroying
communication locality properties that are present within the application in addition to the risk of
grouping intense ranks together, pitting those ranks in competition with one another for scarce
processor resources. Empirically we found that the performance pitfalls of these strategies far
outweighed the power draw improvements, so we omit the consideration of alternative mapping
strategies in our results as we evaluate the effectiveness of this approach.

3.5.2. Intratask Frequency Selection — The most challenging problem addressed by this work is
selection of an optimal frequency for a phase. The approach used within Green Queue is to take
a phase characterization profile as input, then utilize a power model combined with performance
measurements to arrive at an estimate of the optimal frequency for the given phase. This approach is
based on the observations that (1) power is modeled more easily than performance and (2) very fine-
grained performance is more easily measured than power. The result is an approach that combines
power modeling with performance measurement.

Modeling Application Power Consumption Direct measurement of power draw for different
application phases can be inaccurate and sometimes impossible because power usually can only be
measured over time scales that are far larger than typical, smaller application phases. The power
consumption measurement devices used in this work yield roughly one reading per second[24];
even state of the art devices increasing the measurement granularity by several orders of magnitude
produce measurements at over time frames that are large compared to typical application phase
length[25]. A more practical approach is to relate important properties observed about an application
with the total system power draw, then use that relationship to estimate power for an application
phase with a given set of properties.

A basic power consumption model can be constructed directly from the pcubed benchmark
set. Once traces are collected for the benchmarks, they are run once per target system to measure
the average power draw. One of the disadvantages of this approach is that for systems with a
large number of configurable frequency settings, the number of benchmarks that have to be run to
populate the characterization space explodes. A set of loops from pcubed that adequately covers
the interesting characterization space, consisting of 2320 benchmarks, each configured to run for
5 seconds at the highest frequency, would take at least 3 days to explore on a Sandy Bridge node
with 15 different CPU frequencies. This problem is made worse by random power or performance
fluctuations that can affect measurements and which force multiple collections of each data point,
further increasing runtime.

In order to reduce the number of points that need to be measured, a machine learning approach
is used to create power models based on a small subset of pcubed space based on the problem
formulation in Equation (4). In Equation (4), l1 p ins, l2 p ins and l3 p ins are cache levels 1, 2
and 3 misses per instruction. fprat is the the ratio of the number of floating point operations to
the number of memory operations, mops ins is the number of memory operations per instruction.
fops ins is the number of floating point operations per instruction. int dud and fp dud are integer
and floating point definition-use distances respectively. The specific machine learning algorithm
used for this process is the gradient boosting method (gbm) [26]. gbm is based on the idea that
combined predictions made by an ensemble of weak, but fairly simple to construct, models can
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give better overall predictions for the phenomenon that is being modeled. The weak models are
constructed in stages and each new model is refined using some specified loss (or cost) function.

Psys = f(freq, l1 p ins, l2 p ins, l3 p ins,

fprat,mops ins, fops ins, int dud, fp dud )
(4)

Figure 3. Modeled vs. Observed Total System Power Draw

To prevent overtraining, the pcubed benchmark set is supplemented with a set of 31 micro-
benchmark kernels which are derived from a variety of different domains, are very prevalent in
HPC applications, and have been extensively used in the past to investigate and evaluate intra-node
auto-tuning techniques [20][21][22]. See Section 3.4.2 for further details on the composition of
these micro-benchmark kernels. The statistical computing package R is used to train the power draw
models based on the characterization profiles (and measured associated power draw) of pcubed
and kernels. When Green Queue needs to select a frequency for an application phase, the models
are loaded and fed the phase profile. The model returns predictions for the phase’s power and
performance at each available frequency which can then be used to estimate the optimal frequency.
This method avoids the need to hand tune weights and can make use of pcubed, kernel training
loops, or any other training inputs that are supplied.

Green Queue currently uses 1400 data points covering different working set sizes, kernel types
and frequencies are measured for the kernels and are combined with 1400 data points from pcubed
selected randomly from the set of all pcubed test cases on all frequencies. A 10-fold cross validated
model is constructed using 600 random samples† from the total training set of 2800 samples is able
to predict the power draw of the remaining 2200 samples with an absolute mean error percentage of
2.5%. Figure 3 shows the modeled versus measured values for total system power draw for all 2800
samples in the combined pcubed and micro-benchmark kernel set. The thick line in the graph is
the trend line and for a well-behaved model, this line should be roughly a 45 degree line, which is
the case in Figure 3.

Measuing Application and Loop Performance Performance measurements for the frequency
selection algorithm are gathered by measuring loop runtimes within the application for every
frequency. This is facilitated by a PEBIL-based binary instrumentation tool which inserts timers
around loop entry and exit points within the application. The tool sums the time spent in each
loop throughout the application run. To minimize the overhead of timing these runs and because

†We experimented with various training dataset sizes, and for space reasons, we chose to present only the model that
gave us the most promising prediction results.
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such loops cannot be phases (see Section 3.2.3), loops smaller than certain number of instructions
executed per entry into the loop are excluded from timing. Using this exclusion rule at a threshold
of 50000 instructions per loop entry, no significant overhead was measured in any of our tests.

Several optimizations are available which reduce the cost of additional application runs. First,
many HPC applications are iterative; timing information can be expected to remain constant across
iterations, implying that timing information can be gathered at a reduced number of iterations.
Second, for HPC applications that are run on hundreds or thousands of cores, a weakly scaled data
set can be used to measure loop runtimes on a single node or less, drastically reducing the resource
investment of measuring loop times at each frequency.

After loop timing information for each frequency has been measured, Green Queue can combine
measured timing information with the gbm-based power predictions discussed in Section 3.5.2 in
order to estimate application energy consumption for each phase at each frequency and then select
the frequency which optimizes energy for that phase.

4. EVALUATION

To determine the effectiveness of the intratask and intertask DVFS techniques used within Green
Queue, experiments were run on a single rack of Gordon at the San Diego Supercomputer
Center[27]. Each rack contains 64 nodes networked by QDR Infiniband arranged in a 3D torus.
Each compute node contains two 8-core Intel Xeon E5-2670 processors for a total of 1024 cores.
Each core has 32 KB L1 instruction cache and 32 KB L1 data caches as well as a 256 KB combined
L2 cache. The 8 cores on a chip share a 20 MB L3 cache. Each node has 64 GB of memory.
There are 15 frequency settings available, ranging from 1.2 GHz to 2.6 GHz, in addition to a Turbo
Boost setting[28]. Turbo Boost was not enabled in these experiments because it causes unpredictable
fluctuations in frequency, which in turn makes desgining reproducible experiments difficult.

Power was measured using an SNMP interface to two APC PDU’s supplying power to the
rack. A single rack is used in the experiments because of a limitation in our power consumption
methodology, not because of a limitation in the techniques presented for phase detection and DVFS
selection. The techniques presented can target any core count, but power, in this case, can only be
measured at the rack level.

Green Queue was evaluated for 9 HPC applications and 3 benchmarks. These applications
include several important scientific problems which use large amounts of dedicated node-hours on
leadership class machines. Subject applications along with brief descriptions are provided in Table I.
Where not otherwise noted, the input specifications/parameters for each of these applications for
a 1024-core run were derived either via direct interaction with developers or experts on each
application, through an application’s web-portal, or from 1024-core benchmarking runs provided
by NERSC [29]. From the NAS parallel benchmark suite, we use FT, CG, and MG at the class E
problem size.

4.1. Intertask DVFS Experimental Results

In examining our inter-task frequency scaling scheme, we begin by presenting some empirical
results relating to the selection of the value of the penalty factor p from Equation (3) in Section 3.5.1.
p is used within a strategy which attempts to exploit the imbalance of MPI applications to gain an
energy advantage by noting that those ranks which are off the application’s critical path can be run
at lower clock rates, thereby lowering power draw while minimally impacting performance. Larger
values for p result in more aggressive clock frequency strategies (that is, lower clock frequencies)
and lower values result in more passive strategies (through higher clock frequencies). We evaluate
a large range of values for p for two full applications, POP and WRF, then use the results of those
evaluations to select a single value for p that results in a generally well-performing tradeoff between
the lower power draw and the potential loss in performance that can be the result of running at lower
clock frequencies.
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Table I. Subject applications for Green Queue DVFS experiments.
Application Description

Intratask Scaling
MILC [30] Code to study quantum chromodynamics (QCD), the theory of strong interactions of subatomic physics.
GTC [31] Particle-in-cell application developed to study turbulent transport in magnetic fusion.

SWEEP3D [4] Radiation transport code.
PSCYEE [32] Parallel three dimensional finite-difference time-domain (FDTD) code for the Maxwell equations.
LBMHD [33] Code that simulates homogeneous isotropic turbulence in dissipative magnetohydrodynamics.

NPBs [5] NAS Parallel Benchmarks.
Intertask Scaling

LAMMPS [34] Molecular dynamics code.

HYCOM
‡

[35] Hybrid isopycnal-sigma-pressure (generalized) coordinate ocean model code.
WRF [36] Next-generation mesoscale numerical weather prediction system.

POP
§

[37] 3D ocean circulation model designed to study ocean climate system.

Figures 4a and 4b show our evaluations for a variety of choices for p. Both results are consistent
with the conclusion that the choice of p as a small, positive value results in a nearly energy-
optimal strategy. Green Queue therefore uses p = 0.05. With p = 0.05, we apply the intertask scaling
methodology presented in Section 3.5.1 to two other applications – HYCOM and LAMMPS –
shown in Table II. The results in table II show the energy reduction, performance loss and relative
energy-delay product of applications measured with Green Queue compared to the application run in
its normal fashion at the highest frequency. These applications show a range of imbalance properties
from severe (LAMMPS¶) to moderate (WRF) to slight (POP and HYCOM).
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Figure 4

Table II. Intertask DVFS Energy Savings
Application Energy Reduction Delay Added Relative Energy-Delay Product
LAMMPS 31.7% 2.3% -30.1 %

WRF 16% 27.2% 6.8 %
HYCOM 0.9% 7% 6.1 %

POP 3.1% 0.8% -2.3 %

4.2. Intratask DVFS Experimental Results

Several aspects of Green Queue’s intratask DVFS strategy were evaluated. Experiments were run
to measure the effect of varying the minimum phase size (see Section 3.2.2, disabling restoration

‡Run on 1001 cores, the closest valid configuration to 1024. MPI tasks are packed 16 per node onto the first 62 nodes,
then 8 and 1 task per node respectively onto the two sockets of the 63rd node. The 64th node is left empty for all runs.
§Run two simultaneous cases of 480 cores on 64 nodes. MPI tasks are packed 16 cores per node onto the first 30 nodes
of each half of the rack, leaving 4 empty nodes during all runs.
¶These imbalance properties are sensitive to the dataset used. That is, some datasets show severe imbalances while others
do not.
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of CPU frequency at the end of a phase (see Section 3.3.1) and to compare Green Queue with
application unaware DVFS.

4.2.1. Varying Phase Granularity — We first explore the impact of varying the minimum allowable
phase size. During phase selection, phases that are too small are eliminated as noise and a larger
phase is assumed to contain them. The experiment is run for four applications: CG, MG, FT, and
MILC. Results are shown in Figure 5.
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Figure 5. Green Queue Energy Savings with Various Minimum Phase Sizes

The results show that optimal phase size is different for different applications. This is because the
energy savings that can be achieved in total depends on how much energy can be saved by scaling the
next phase minus the overhead of making a frequency change. This tradeoff can result in a negative
net energy savings as seen with MILC in Figure 5 at the most agressive phase granularities. The
phase granularity that on average performs best (5 million instructions) is used to create frequency
configurations for the remaining applications. The results are shown in Table III.

Table III. Intratask DVFS Energy Savings
Application Energy Reduction Delay Added Relative Energy-Delay Product

CG 17.1% 9.5% -9.2%
FT 21.0% 2.4% -19.1%
MG 8.4% 8.7% -0.4%

MILC 6.5% 13.0% 5.7%
PSCYEE 19.0% 8.5% -12.1%
LBMHD 5.3% 7.1% 1.4%

GTC 4.8% 1.3% -3.6 %
Sweep3D 0% 0% 0 %

4.2.2. Disabling Frequency Restoration — When instrumenting a phase for runtime DVFS, in
implementation there is a choice of whether or not to restore the CPU frequency to a default value
(the maximum) when exiting a known phase. Restoring CPU frequency is to its maximum value
upon exiting a known phase is the conservative route. If a region of code is not characterized by
the analysis, the highest available frequency should preferred since this will avoid a performance
penalty without known energy savings. Skipping a switch back to the maximum frequency on phase
exit is to be optimistic about the coverage of the phase detection analysis. If coverage is complete,
then the next phase will set its own frequency and an intermediate switch to the default frequency is
avoided.

The the solid bars in Figure 5 are for experiments which skip setting the frequency upon
phase exit. The hashed bars labeled ”Best+Exit” show the energy savings achieved using the ideal
minimum phase size (5 million instructions) and when frequency is restored to the maximum
frequency at phase exit points. In every case, disabling frequency restoration saves more energy
than restoring frequency on phase exit. For MILC and MG, the overhead of restoring frequency
at the end of each phase is enough to result in increased energy usage over the uninstrumented
application. This indicates that coverage of the phase detection analysis is complete enough that
having uncovered code run at possibly non-optimal frequencies is better than having to make
additional frequency transitions at the end of each phase and in each case examined, was a valuable
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optimization. The number of frequency transitions can be reduced by at least a factor of two with
frequency restoration disabled and likely more since it will allow dynamic phase merging to occur.

4.2.3. Comparison With Blind Frequency Scaling — This work was partly motivated by
experiments that demonstrated the possiblity that a frequency reduction could increase the total
energy consumed by an application. This section compares those results with Green Queue to
validate it’s technique by demonstrating that Green Queue can achieve greater energy reductions
than any single static frequency selection. The results are shown in Figures 6a and 6b.
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Figure 6
Sweep3D is useful to demonstrate that energy is not always reduced with a frequency reduction.

Sweep3D consists of only a single identifiable phase. This is because Sweep3D hass several short
inner loops contained in a stack of outer loops. Each inner loop is too short to effectively instrument
as its own phase. Figure 6a shows that scaling the frequency below 2.0 GHz resulted in significant
increases in total energy consumption. Green Queue selected 2.6 GHz as the optimal frequency
for Sweep3D. The blind scaling experiments show that 2.4 and 2.3 GHz frequency configurations
save 1.1% and 1.3% energy over Green Queue. This margin of error is acceptable. When energy
differences between frequencies are very small, the performance penalty is likely to make the
tradeoff less attractive, as evidenced by the 7% and 11% performance penalties shown by Sweep3D.
Green Queue performs best when it can identify phases that can be scaled without losing signifcant
performance.

The results for FT show that application aware DVFS is a significant improvement over blind
scaling because of its identification of phases. In this case, not only does Green Queue save more
energy than could be achieved running the application at any single frequency, it does so with a
much smaller performance loss than would be needed to achieve similar results with blind scaling.
With Green Queue, FT was able to achieve a 21% energy reduction with only a 2.4% penalty to
performance. The best case that blind scaling can achieve is a 18% energy reduction and it suffers a
16% performance penalty.

4.3. Discussion and Future Work

Tables II and III summarizes the intratask and intertask results for all the subject applications.
Figure 7 shows the power draw for both the baseline run and the Green Queue run for a subset
of the applications. We present this graph as a visual aid show the dramatic nature of the effects
on system power draw that can be accomplished with the Green Queue. Of all the applications
that we considered for our intratask application-aware DVFS, FT saves the most energy, followed
by PSCYEE. Both FT and PSCYEE are have parts that are memory-bound. Since Green Queue’s
phase discovery and DVFS selection methods utilize memory behavior as an important factor in
detecting when a CPU is likely to have little computation to perform, we should expect Green
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Queue to fare well on these applications. Energy saved for GTC and MILC, codes which use a
substantial number of dedicated allocation hours on many leadership class machines, save 4.8% and
6.2% energy respectively.
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Figure 7. Baseline vs. Green Queue – power monitoring during application runs.

When we consider all the applications together, the average energy savings that we achieve with
Green Queue is 12.1%. This improvement in overall energy savings comes at the expense of average
performance loss of 7.9%. The maximum energy savings that we achieve with the intratask strategy
is 21% for FT and this comes at the performance loss of 2.4%. The maximum energy savings from
the internode strategy is 31.7% for LAMMPS, which comes with a performance penalty of 2.3%.
Overall these results are encouraging. When we consider that typical HPC system installations run
well below full utilization, this makes a strong case for introducing marginal delays into application
codes where such delays will show large reductions in the operating expenses of the system. The
literature also points to what is known as the cascade effect [38], which states that any energy
reduction measured at the system level implies roughly similar amounts of energy saved throughout
the center in the form of decreased cooling requirements and power transformer inefficiencies.
Finally, using lower voltage-frequency states also improves the reliability and lifespan of processor
hardware [39] and doing so judiciously helps both energy efficiency and the reliability of the system.

The proposed methods of analysis within Green Queue are tied to the application binary rather
than the source code. In many ways this is an advantage, since solutions tied to source code would
require rebuilding the application if the in cases where the source code is even available. However
is also presents a limitation; modifications to the binary resulting even from small updates, or
recompilation with a different compiler or flags results in a different binary that must be analyzed. In
general, recomplilation with a different compiler or flags can result in drastically different power-
performance behavior, validating the need for re-analyzing the binary. However, in some cases,
much of the code may remain unchanged. Future work might address this issue by detecting which
portions of the binary have changed and assessing the need to reanalyze the application.

This work has shown that the optimal phase size differs between applications. This is a result of
the tradeoff between investing time (and therefore energy) to make a frequency switch and saving
energy by running a phase at its optimal frequency setting. Green Queue is currently limited in its
ability to analyze this tradeoff. Future work can achieve greater energy savings by calculating the
projected energy savings of a frequency change and comparing it to the energy overhead of making
the change. If two neighboring phases have only slightly different optimal frequencies, it may be
best to run both phases at one frequency or the other to avoid the cost of a frequency transition.

In some applications, such as Sweep3D, there are several short phases in a loop. Each phase is
too short to effectively instrument for DVFS on its own, so Green Queue merges them together,
blending their behaviors. If there are significant differences between phases in a loop, increased
energy savings may be possible if loop re-ordering is performed so that each phase is longer. A
simple solution could inform users what sections of code have similar characteristics and if grouped
together could be amenable to DVFS. A more advanced solution could be built into a complier to
automatically re-order code so that larger phases can be achieved.

Other future work involves combining the techniques presented here with other energy saving
strategies. The intertask and intratask techniques presented in this article could be combined
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if the per-core contributions to power were accurately modeled and if the interactions between
unsychronized or hetergenous tasks were understood in the context of DVFS. Current research at
SDSC includes an investigation of job striping[40] which may also prove to be a good candidate for
integration into Green Queue.

5. CONCLUSION

Energy bills have become a significant cost to high performance computing and data centers,
upwards of the millions and tens of millions of dollars per year and rising. There is a clear need to
mitigate this by understanding the tradeoffs involved between reducing energy usage and delaying
time-to-solution. In this work we (1) presented Green Queue, a practical implementation of a
system which facilitates understanding these tradeoffs, (2) investigated Dynamic Voltage-Frequency
Scaling (DVFS) as a technique for reducing total energy consumption of MPI applications for high
performance computing and showed that there is significant potential for energy and dollar savings,
and (3) identified opportunities to reduce the energy consumption of particular HPC applications by
up to 21% and 32% energy savings via intratask and intertask DVFS, respectively.
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