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Abstract— Computers with hardware accelerators, also referred to as hybrid-core systems, speedup applications by offloading 

certain compute operations that can run faster on accelerators.  Thus, it is not surprising that many of top500 supercomputers use 

accelerators. However, in addition to procurement cost, significant programming and porting effort is required to realize the 

potential benefit of such accelerators. Hence, before building such a system it is prudent to answer the question ‘what is the 

projected performance benefit from accelerators for the workloads of interest?’ We address this question by way of a 

performance-modeling framework that predicts realizable application performance on accelerators rapidly and accurately without 

going to the considerable effort of porting and tuning.  

The modeling framework first automatically identifies commonly found compute patterns in scientific applications which we term 

idioms, which may benefit by accelerator technology. Next the framework models the predicted speedup of those idioms if they 

were to be ported to and run on hardware accelerators. As a proof of concept we characterize two kinds of accelerators 1) the 

FPGA accelerators on a Convey HC-1 system and 2) an NVIDIA FERMI GPU accelerator. We model performance of the idioms 

gather/scatter and stream and our predictions show that where these occur in two full-scale HPC applications, Milc and HYCOM, 

gather/scatter speeds up by as much as 15X, and stream by as much as 14X, whereas the overall compute time of Milc improves by 

3.4% and HYCOM by 20%. The cost of migrating data to/from the accelerator device can dwarf the benefit of speedup and hence 

we present models of data migration costs and its impact on the performance of Milc and HYCOM. 

Keywords-accelerators;GPU;FPGA;performance prediction; performance modeling;benchmarking;HPC 

I.  INTRODUCTION 

Limitations of traditional general processor architectures have resulted in the emergence of hybrid core computers. These 

computer systems integrate specialized hardware, called accelerators; to augment the generic CPU and can provide fast 

computations for certain classes of compute operations. The CPU offloads operations to the hardware accelerators such as 

GPUs or the FPGAs to perform certain operations that may run faster on these, and this in turn improves application 

performance. 

Accelerators have gained popularity recently and indeed many of the world's fastest supercomputers listed in the TOP500 

list [15] have hardware accelerators. For example, Tianhe-1A supercomputer has 7,168 NVIDIA Tesla M2050 general purpose 

GPUs. 



One of the challenges of hybrid core architecture is the effort required to port existing applications to these new system 

architectures. Large HPC applications typically have code sizes that exceed 100,000 lines, and porting them can take years of 

effort. Moreover, while in general an accelerator may benefit an application, the choice of the particular best accelerator device 

may not be readily apparent. Hence, before undertaking procurement, or time consuming reprogramming effort, one should 

explore the projected benefits from a given set of accelerator devices on the workload of interest. We show that performance 

models have a useful part to play in this evaluation and can help answer these questions accurately and speedily. 

To predict speedup and evaluate choice of accelerator device, one must first identify sections of existing source code that 

are potential candidates to run on accelerators. For identification of code sections we can leverage the fact that many HPC 

applications’ computational and data access patterns can be expressed by a small set of commonly occurring idioms [41]; 

examples of idioms include reduction, transpose, stencil and the like. Hence by identifying idioms one can identify instances of 

idioms that may run faster on the accelerator. Porting can then simply replace the selected idiom instances in source code to 

run on the selected accelerator.  

In this paper we present our modeling methodology that can predict idiom performance on a given accelerator, and these 

models are then used to identify and choose idiom instances and accelerator device for porting. To develop prediction models, 

we first characterize how a particular accelerator device performs idiom operations over a range of data sizes by means of 

simple benchmarks. Given this information we develop a model that can predict performance of an idiom operation when it 

occurs in an application.  

In particular, in this paper we present characterization studies of two accelerator devices: 1) FPGAs on a Convey HC-1 

system [3] and 2) NVIDIA FERMI GPUs [4]. For these two devices we characterize their ability to perform reduction, stream, 

transpose, stencil, and gather/scatter idioms. Furthermore we develop performance models of gather/scatter and stream idioms 

for both accelerator devices. We also present two validation experiments to validate the performance models. In the first 

validation experiment we predict runtimes, with 10% average error, at fine-grained level/loop level of single loops with an 

idiom in the HMMER [5] application running on the accelerators. In the second validation experiment we predict runtimes, 

with 1.5% error, of graph500 [8] application when all its idioms that benefit from accelerators are ported to the accelerator 

device.  

Using the performance models we project how two HPC applications, Milc and HYCOM, would benefit running on a 

hypothetical system like, Jaguar, a Cray XT5, but with the addition of the FPGA and GPU attached to each node. Our 



predictions show that for Milc and HYCOM, gather/scatter speeds up by as much as 15X, stream by as much as 14X; whereas 

the overall compute time of Milc improves by 3.4% and HYCOM by 20%. 

Another issue that we address in this paper is the impact of moving data between accelerators and CPUs. The cost of data 

migration can become the performance bottleneck if they are not addressed. A programmer needs to minimize this cost and to 

guide the programmer we develop and present models of data migration cost on performance. Our models allow a programmer 

to query various scenarios ranging from completely hiding the latency of data migration to the worst case of exposing the 

latency. These models can aid the programmer to understand, without implementing, the relationship between latency hiding 

and performance.  We present models and characterization for both the FPGA and GPU systems and also present the impact of 

various data latency costs on the performance of Milc and HYCOM.  

Identification of idioms and modeling large-scale applications can be labor intensive and error prone. Hence, we also 

briefly describe the performance modeling framework and the set of tools that can automate the prediction process.  

The outline of the rest of the paper is as follows: Section II gives an overview of idioms that are used to characterize 

applications. Section III describes the two hardware accelerators that were modeled, and their capabilities to compute idioms 

are shown in Section IV. Section V describes the tools and process used to identify idioms in applications. The PMaC 

modeling framework is used for performance predictions and this is described in Section VI. Validation of our models and a 

projection study to calculate speedup of applications on a HPC machine with hardware accelerators in described in Section 

VII. Finally we discuss related work in Section VIII and conclusions and future work is discussed in Section IX. 

II. IDIOMS 

An idiom is a pattern of computation and memory access that may occur within an application. Given a sufficient covering 

set one may express an application in terms of its constituent idioms. For example, a stream idiom, shown in Figure 1, is used 

to define a pattern where memory is read from an array and copied to another array. Specifically, the data is read and written 

sequentially. A stream may arise from the presence of the statement A[i] = B[i] within a loop over i. 

 

Figure 1.  Sample Stream Code 

Idioms are useful for describing patterns of computation that have the potential to be optimized or sped up, for example, by 

loading the piece of code to a coprocessor or accelerator.  

1. values[c] = constants[c];  

2. for( i = 0; i < 10; ++i ) {  

3.    item = source_array[i];  

4.    dest_array[i] = item; } 

 



We have found the following idioms to be common in HPC applications. All of the code samples given here are assumed to 

be part of a loop, i (and j) are loop induction variables. 

• Stream: A[i] = A[i] + B[i] 

The stream idiom includes accesses that step through arrays. In the above example two arrays are being stepped through 

simultaneously, but the stream idiom is not limited to this case. Stepping through any array in a loop where the index is 

determined by a loop induction variable is considered a stream. 

• Transpose: A[i][j] = B[j][i] 

The transpose idiom involves a matrix transpose, essentially reordering an array using the loop induction variable. 

• Gather: A[i] = B[C[i]] 

The gather idiom includes gathering data from a potentially random access area in memory to a sequential array. In this 

example the random accesses are created using an index array, C. 

• Scatter: A[B[i]] = C[i] 

The scatter idiom is essentially symmetric to gather idiom. Values are read from a sequential area of memory and saved to 

an area accessed in a potentially random manner. 

• Reduction: s = s + A[i] 

A reduction can be formed from a stream, as in the working example, or a gather. It implies that the values returned from 

the read portion of the idiom are folded into a temporary variable. 

• Stencil: A[i] = A[i-1] + A[i+1] 

 A stencil idiom involves accessing an array in a fixed pattern more complex than a simple sequential manner, including a 

dependency between iterations of the loop. 

• Matrix Matrix Multiply: C[i][j] = A[i][k]*B[k][j] 

This is the familiar operation of multiplying two matrices. 

• Matrix Vector Multiply: C[i] = A[i][j]*B[j] 

This is another common operation describing product of a matrix with a vector. 

Defining a complete and usefully distinguishing covering set of idioms for a broad class of applications is an open research 

problem but the just-described set is useful as shown in this paper. 



III. HARDWARE ACCELERATORS 

We study two popular hardware accelerator technologies: FPGAs and GPUs. A Convey HC-1 system with FPGAs is 

described in Section III.A and a machine with NVIDIA FERMI GPUs is described in Section III.B 

A. FPGA - Convey HC-1 

The Convey HC-1[3], shown in Figure 2, is a hybrid core computer that closely couples the FPGA based reconfigurable 

coprocessor with an Intel Xeon Woodcrest processor (Intel 5138). The coprocessor and the host processor share memory and 

thus reduce the cost of data transfer. The coprocessor can be targeted for different workloads by reloading them with different 

instruction sets called Convey personalities.  The personalities can be written in low level FPGA specific language or use the 

vendor supplied personalities. These personalities can then be called from C/C++/Fortran source code. In this paper we used 

the vendor-supplied personalities. 

 

Figure 2.  Convey HC-1 

B. GPU – NVIDIA FERMI 

The second accelerator we studied was a NVIDIA C2070 (FERMI) GPU [4]. The system studied was composed of three 

GPUs attached to a machine with dual hex-core Intel Xeon processors (X5680). Shown in Figure 3 is a NVIDIA FERMI GPU. 

FERMI has 512 cores that are arranged in 16 Streaming Multiprocessors (SM). The GPU is connected to the host machine by 

PCI express interface and has its own DRAM. In this paper the NVIDIA supplied compiler was used to compile code for the 

GPU. 

“Commodity” Intel 
Server 

Convey FPGA-based 
coprocessor 



 

Figure 3.  NVIDIA FERMI 

IV. MACHINE CHARACTERIZATIONS 

For this work we developed a benchmark suite that enabled us to profile the rate at which the FPGA, GPU, and CPU can 

perform idiom operations at different data sizes (range covered by the induction variable expressed in bytes). Each idiom is 

separately executed by the benchmark at specific data sizes. Prior to timing and execution of the idiom, data is migrated to the 

memory of the respective device; this enables separate performance models for compute work on the device as well as data 

migration. Thus, the bandwidths plotted in figure 4, described next, do not include cost of data migration. 
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Figure 4.  This figure shows memory bandwidths achieved by GPU, FPGA, and CPU for different idiom operations ignoring data transfer costs. Each plot 

shows bandwidth expressed in GB/s on Y-axis and the data size in bytes on X-axis 

 

Figure 4 shows the bandwidth as a function of data set size for transpose, reduction, stream, stencil, gather, and scatter 

idioms for a GPU, FPGA, and Xeon CPU. Each plot in this figure shows the achieved bandwidth in GB/s on the Y-axis versus 

data size in bytes on the X-axis. In all cases, except for the transpose idiom, when data size is in order of Megabytes the 

hardware accelerator, either the GPU or the FPGA, always performs better than the CPU. For transpose idiom, GPU 

outperforms both CPU and FPGA, whereas FPGA and CPU performances are comparable. Although we have not confirmed, it 

is our hypothesis that the compiler used for the FPGA may not be optimized for transpose operation and better performance 

may be obtained by developing custom transpose FPGA code. For smaller data sizes in many cases the performance of CPU is 

better or comparable to the accelerators partly due to the cost of setting up the accelerators to perform the operations. Hence, 

the best choice of the device depends upon the data footprint and idiom. 

V. APPLICATION CHARACTERIZATIONS 

In order to model and predict how a particular application may benefit by running idioms on accelerator hardware we need 

to first identify instances of those idioms within the application source code. Furthermore we need to capture the parameters 

that determine their performance. As shown in Figure 4, data footprint is an indicative parameter that can be used to understand 

performance. Generally speaking larger datasets benefit to a greater extent by running on accelerator hardware by amortizing 

the cost of data migration. In this paper we focus on two of the idioms, stream and gather/scatter, to model their performance 

on GPU and FPGA hardware. The remaining idioms are left as future work. 
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A. Identifying Idioms 

Identification of idioms can be labor-intensive for large HPC codes. To aid in this process, we used an idiom-recognizing 

tool called PIR (PMaC Idiom Recognizer) [2, 14] to search the source code for idioms. The PIR tool automates the search for 

idioms in a powerful way by using data-flow analysis during program compilation to augment the identification process.  

Table I presents just a sample of the report from PIR. The sample shows how PIR is able to classify the idiom, capture the 

source file, source line, function name and even the line number of source code used for the identification (additional 

information about loop depth, start, and end are captured but not shown). For large-scale applications with code base greater 

than 100,000 lines of code, PIR is a particularly useful tool since it is completely automated. 

TABLE I.  SAMPLE PIR REPORT 

File  Line#  Function Idiom Code 

foo.c 623 Func1 gather a[i]=    b[d[j]] 

tmp.c 992 Func2 stream x[j]=  c[i] 

 

B. Profiling Identified Idioms 

In order to model the performance of identified idioms on accelerator hardware, we also need to capture the data footprint 

for each identified idiom. Data footprint depends on data input at runtime; hence we use PEBIL [9], a binary instrumentation 

tool to capture those parameters. The instrumented binary is executed and data footprint is stored per basic block.   

In order to capture data footprint of idioms of interest, the information given by PIR has to be mapped to basic blocks in 

application binary. As shown in Table I, PIR gives file name and line number for each identified idiom. A special feature of 

PEBIL was used that prints line number and file name of each basic block. The two outputs are then post processed and the 

matching results produce a list of basic blocks corresponding to the idioms identified by PIR. This list of basic blocks is then 

instrumented by PEBIL to capture the data footprint. 



VI. PMAC PERFORMANCE MODELING FRAMEWORK 

 

 

Figure 5.  PMaC Prediction Framework 

For the purpose of modeling and prediction of accelerators we extended the PMaC performance-modeling framework [11]. 

This framework is used to provide fast and accurate predictions of large scale HPC application performance. The modeling 

framework is based on three components: (1) Benchmarks that characterizes how fast a machine can perform certain 

operations, called Machine profiles, (2) Tracing and simulation tools that gather information about application characteristics 

and requirements, called Application Signatures, and (3) the convolver, which are methods that predict performance using 

application signatures and machine profiles. The framework is depicted in Figure 5. 

The framework has been designed to accurately predict performance of large-scale parallel applications. For predictions, 

the framework is composed of a single processor model and a communication model. Each model comprises of an application 

signature, machine profile, and a convolver that is used for prediction. The two models are incorporated into a simulator, 

PSiNS [10], which can replay entire application traces and predict runtime for different configurations of network and 

machine. The models have been used to provide accuracy of within 15% absolute error for prediction of production codes on 

real-world HPC applications [10]. For a more complete description of the other pieces of the framework, please see Carrington 

et al.[12] and Tikir et al.[13].  

During compute phase the model focuses on the time it takes to move the data through memory hierarchy. Although 

floating-point operations do take time, often memory access times dominate. A detailed description of memory time is given in 

Target System 
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Application 

Machine Profile: 

Rates at which machine 

can performance 
fundamental operations 

Application Signature: 

Fundamental Operations 

carried out by the 
application 

Application Traces Machine Profile 

PSiNS Simulator 
Convolve application signatures 
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Tikir et al. [13]. Equation 1 shows the memory-time of an application as the sum of memory time of all its basic blocks. PEBIL 

is used to trace memory references and simulate the address stream thorough a cache simulator for the target architecture to 

obtain the size of memory reference as well as the type (e.g. L1 cache reference, L2 cache reference, …) for all the basic 

blocks of an application. 

             ∑
                     

       

      

 

 

 

(1) 

 

  

 

Where, 

Mem BWj = 

bandwidth of jth type of reference on 

target system 

Ref Size = size of the reference in bytes 

Mem Refi,j = number of references of basic block i type j 

 

Since we are running parallel applications we also need to capture and model application communication. We use 

PSiNSTracer [10] to capture traces of MPI calls made by an application. A machine’s ability to perform various MPI functions 

is captured by simple benchmarks such as ping pong. These traces and machine profiles are then replayed by PSiNS simulator 

and used for predictions.  

Idiom operations are performed during an applications compute phase, and hence, the computational model in the 

framework was extended for off-loading compute work to the accelerators. In a previous study [14] the framework was 

extended to predict performance of gather/scatter operations on the FPGA hardware. In this work we extend the framework in 

two ways: (1) we develop models for the GPU in addition to the FPGA, and (2) we develop models of stream and 

gather/scatter idioms for the GPU and a model of stream idiom for the FPGA. The model equations are similar in form to 

equation 1 that calculates memory time when the work is off-loaded to the accelerator hardware. 

VII. EXPERIMENTS AND RESULTS 

A. Models 

1) Prediction Equations 



We developed a prediction model for each idiom-device combination. For example, shown in equation 2 is the prediction 

model used for predicting stream performance on the FPGA. This equation is a piece wise linear fit of the data shown in Figure 

4. The modeled bandwidth and measured bandwidth of the FPGA and the GPU for idioms is shown in Figure 6. As shown in 

this figure the models accurately predict the actual measured bandwidth of both devices.  
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Where, 

Mem 

BWstream 

= 

13.59*ln(RS) - 159.2: RS <= 4194304,   

 53.0: RS > 4194304 

Ref Size = size of the reference in bytes (RS) 

Mem Refi,j = # of references of basic block i type j 
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Figure 6.  This figure shows, for stream and scatter idioms,  measured and modeled memory bandwidths on GPU and FPGA,  measured memory bandwidth 

on host CPU, and measured memory bandwidth on FGPA, GPU with data transfer cost. Each plot shows bandwidth expressed in GB/s on Y-axis and the 

data size in bytes on X-axis 

 

2) Validation 

To validate our accelerator modeling framework we conducted two experiments. In the first experiment we validated the 

models on a fine-grained level/loop level by porting single loops (i.e. gather/scatter or stream) to the FPGA and GPU and 

comparing the measured runtime to the predicted. In the second experiment we validate the models accuracy to predict the 

overall speedup of an entire application when idioms that benefit from accelerators are ported to the accelerator device. 

For our first experiment we used the real world application HMMER[5], which is a protein sequence analysis suite and its 

main algorithm hmmsearch searches an input HMM against a database. In this paper we search the globins.hmm profile in the 

uniprot_sprot.fasta dataset distributed with the package. This application was run with 8 MPI tasks on both the GPU and the 

FPGA systems. 

HMMER was first analyzed by PIR to search for idioms. PIR reported 666 gather/scatter idioms and 307 stream idioms. 

We chose the applications largest stream and gather idioms and traced it with PEBIL to identify data footprint of each idiom 

loop. Next, we measured the run time of the idiom loops on the host CPU. Using our models we obtained predictions for the 

idiom loops running on the FPGA and the GPU. 

To validate our predictions, we ported those loops to the FPGA and the GPU and measured their actual run times. The 

results of our predictions are shown in Table II. 
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TABLE II.  PREDICTED AND MEASURED IDIOM TIMES ON FPGA, GPU 

Idiom  Measured Predicted % Error1 

Stream (FPGA) 384.70 3370.0 12.3% 

Stream (GPU) 18.40 18.50 0.3% 

Gather/Scatter (GPU) 0.074 0.087 17.3% 

1 %Error=abs((Measured – Predicted)/Measured))*100 

 

As seen in this table our models have error rates as low as 0.3% and as high as 17.3%. Note, that we did not port gather 

loop to the FPGA, which was done in the study by Carrington el al.[14]. In that work error rate was shown to be less than 10% 

for a gather/scatter loop in FLASH application. 

In our second experiment we used the application graph500 [8], which is a popular benchmark created to test HPC systems 

performance for data-intensive computing. In this experiment we test our models accuracy to predict the speedup of sequential 

version of graph500 ported to run on the FPGA. We leave porting to GPU as part of future work.  

Graph500 consists of two kernels: kernel 1 generates the initial graph, and kernel 2 is used to perform breadth-first search 

of the graph. The size of the problem is specified as a scale factor, which is used to calculate the number of vertices in the 

graph as 2scale. Briefly the algorithm proceeds in two steps: it first generates the graph based on the scale factor. In the second 

step it samples 64 random key and for each key it executes make_bfs which a is routine that computes the parent array by 

performing a breadth-first search starting with  the key, and then executes validate routine which validates that the parent array 

is a correct BFS search tree. Hence, make_bfs and validate are executed 64 times. The time for make_bfs routine is used 

to calculate a performance metric for graph500 called TEPS (travelled edges per second); higher TEPS is better. More 

information of graph500 can be obtained here [8].  

We ran a scale size 24, the largest we could run on our system. At this scale factor, graph500 takes 5980 seconds to finish 

execution. Of this time it spends 1313.92 seconds for 64 executions of make_bfs at a mean TEPS of approximately 13 

Million TEPS per execution of make_bfs. The make_bfs routine spends most of its time in a main inner for loop which has 

a scatter and stream idiom. Hence, this routine can benefit from the high memory bandwidth that is available in the FPGA. We 

use a Convey-supplied personality to execute the make_bfs computation on the FPGA, while the remaining is executed on 

the host CPU. With this porting, make_bfs speeds up by 98X and, the total run time of graph500 speeds up by 21.64% taking 

4686 seconds to finish execution.  



Next to predict the speedup of make_bfs routine, we use PEBIL to identify and trace the basic blocks of make_bfs. 

PEBIL identifies that the routine’s main inner for loop with the scatter and stream idiom are contained in one basic block. Then 

we use PEBIL to trace the corresponding basic block and determine its data footprint. For purpose of predictions we assume 

that each idiom operates on half of the basic block’s data footprint. Accordingly, the predicted time for the basic block is 

calculated as the sum of the times using stream and scatter models, where each model predicts time for the half of the basic 

block’s data footprint. To validate our models we use our prediction framework and idiom models to calculate speedup of the 

make_bfs routine and calculate overall speedup of graph500. These results are discussed next.  

Our framework predicts that graph500 takes approximately 5847 seconds to execute entirely on the CPU without porting. 

Our FPGA scatter and stream models predict that the make_bfs routine speeds up by 96X on the FPGA, giving an error of 

about 2% compared to measured speedup of 98X. Next, our framework predicts that the total run time of graph500 ported to 

the FPGA speeds up by 18.65% taking 4757 seconds to finish execution. Thus, our predicted speed of graph500 is about 3% 

lower than measured speedup and our predicted run time of 4757 seconds has an error of 1.5% as compared to the measured 

runtime of 4686 seconds. 

B. Projection Study 

Next we studied a set of full-scale applications running on a production HPC system, Jaguar, a Cray XT5. Jaguar consists 

of 18,688 compute nodes. Each node contains dual hex-core AMD Opteron processors with 16GB of memory. The resulting 

system has a total of 224,256 cores and 300TB of main memory. We use this system to capture traces and profiles of large-

scale applications. Then, we use our models to calculate speedup for a hypothetical system that is like Jaguar but with FPGAs 

and GPUs attached to the compute nodes. For this study we assume that when an operation is running on the accelerator, the 

CPU is blocked waiting for the device to complete. Although additional speedup may be obtained by overlapping CPU and 

accelerator computes and we leave this as part of future work.  

The applications we used for this study are:  

• HYCOM [6] is a popular ocean modeling code. We ran the standard dataset on 8 cores and large dataset on 256 cores. 

• Milc [7] is a code for simulations of SU3 lattice gauge theory on MIMD parallel machines. In this paper we ran the 

ks_imp_dyn algorithm. We ran a small problem on 8 cores and a larger problem on 256 cores. 

First we show our models accuracy for predicting runtime for jaguar without accelerators (i.e. the host CPUs); these are 

shown in Table III. As shows in this table the models have average errors of 6.3% and are no worse than 18.1%. The higher 



prediction error for HYCOM can be attributed to the inaccuracy of the framework to model relative larger number of branches 

in the applications inner loops.  

TABLE III.  MEASURED AND PREDICTED RUN TIMES ON JAGUAR 

Application Measured Predicted % Error1 

Milc (8 cores) 278 277 0.4% 

Milc (256 cores) 1,345 1,350 0.4% 

HYCOM (8 cores) 262 246 6.1% 

HYCOM (256 cores) 809 663 18.1% 

1 %Error=abs((Measured – Predicted)/Measured))*100 

TABLE IV.  IDIOM INSTANCES IN CODE  

Idiom HYCOM Milc 

Gather/scatter 1,797 156 

stream 1,300 105 

reduction 110 22 

stencil 132 0 

transpose 3,986 286 

Mat-Mat Mult 2,161 6 

Mat-Vec Mult 115 2 

Fraction of loops Covered 67.45% 37.44% 
 

In order to find out how accelerators might affect the performance of these applications we used performance models of a 

hypothetical machine like Jaguar but with hardware accelerators (i.e. GPUs and FPGAs).  We identified the number of 

instances of idioms in these workloads and this is shown in Table IV. For each idiom the table shows the number of instances 

and the final row shows fraction of total loops covered by an idiom. 

In this study the amount of speedup that may be achieved by running idioms on accelerators is limited by the idioms 

dynamic coverage, i.e., fraction of application time spent in idiom loops. Table V shows the dynamic coverage of idioms for 

HYCOM, and Milc for both small and large data inputs. As shown in this table we cover a large majority of application 

runtime for Milc and significant fraction for HYCOM. The idiom recognizer, PIR, is an ongoing work and we believe that in 

the future we can cover the remaining fraction for HYCOM by refining our tools. Table V also shows that the coverage of 

runtime by a particular idiom changes with data input. For example, gather/scatter idiom accounts for 14.2% of runtime of 

HYCOM 8 cores case, and 4.6% of HYCOM 256 cores case.  



TABLE V.  IDIOM RUNTIME CONTRIBUTION  

 HYCOM 

(8 cores) 

HYCOM 

(256 cores) 

Milc 

(8 cores) 

Milc 

(256 cores) 

Gather/scatter 14.2% 4.6% 1.2% 0.7% 

stream 21.1% 16.9% 5.6% 3.0% 

reduction 0.0% 0.1% 15.7% 13.9% 

stencil 4.7% 11.1% 0.0% 0.0% 

transpose 0.9% 2.0% 0.0% 0.0% 

Mat-Mat Mult 23.7% 8.6% 61.2% 58.6% 

Mat-Vec Mult 0.0% 0.1% 10.5% 16.7% 

All Idioms 64.6% 54.9% 94.2% 93.2% 

 

Note that the remainder of the section discusses runtime of only the idiom code and at the end of this section presents 

results for the entire applications compute time. Using the performance models for Milc 256 cores and HYCOM 256 cores we 

explored the per basic-block idiom behavior of these two applications. First, we calculate speedups by individual idioms when 

entirely run on one of piece of hardware (i.e. GPU, CPU, and FPGA). This data is presented in Table VI and VII for HYCOM 

and Milc, respectively. The tables summarize the cumulative time across all MPI tasks for gather/scatter and stream idioms. 

Comparing total idiom runtimes for executing both idioms on CPU with that of executing it entirely on GPU or FPGA has 

some interesting results. Blindly porting all gather/scatter idioms to the FPGA can improve performance of scatter/gather 

idioms over the CPU in the range of 7X-15X for the FPGA and 6X-12X for the GPU, while porting stream idioms to the 

FPGA can improve performance of stream idioms in the range of 12X-14X. Porting all streams idioms to the GPU improves 

performance of stream idioms by ~10X for Milc. However, there is 50% performance loss for the stream idioms if we blindly 

porting all instances of the stream idiom in HYCOM to the GPU. This can be attributed to the data footprint of the streams 

idioms in HYCOM being too small to saturate all the threads available in the GPU which is required to achieve high memory 

bandwidth. As we showed in figure 4, significantly larger data sizes are required for the stream idioms to speed up on the GPU. 

TABLE VI.  RUN TIMES FOR IDIOMS IN HYCOM 

 CPU FPGA GPU 

Gather/Scatter 7,768 495 638 

Stream 28,459 2,302 44,166 

Total 36,556 2,798 44,803 



TABLE VII.  RUN TIMES FOR IDIOMS IN MILC 

 CPU FPGA GPU 

Gather/Scatter 2,376 334 399 

Stream 10,452 771 1,087 

Total 12,827 1,104 1,487 

 

Next sifting through the data reveals that the optimal choice of accelerator differs by basic block of the idioms being 

ported. Some blocks run faster on the GPU while some run faster on the FPGA, and there are still a small minority that run 

faster on the CPU. We perform a series of predictions comparing the performance impact of running the set of basic blocks on 

their optimal choice of hardware: GPU, CPU, or FPGA; tables VIII and IX show the results of these investigations. The three 

columns in the table represent the performance effect of picking the optimal hardware for each basic-block when provided the 

choice of host CPU vs. FPGA, host CPU vs. GPU, and host CPU, GPU, or FPGA. One can compare the results of this more 

selective porting vs. the type of blind porting results shown in tables VI and VII. There are some interesting results when one 

compares the run time of entirely running idioms on one device, shown in table VI and VII, versus running idioms on the 

optimal choice of device by basic block shown in tables VIII and IX.  Shown in table VIII is the result of this prediction for 

HYCOM. In the first column is the best among CPU versus FPGA. In this case optimal matching reduces run time of idiom 

code by only 5 seconds as compared to running the idioms entirely on the FPGA, shown in table VI. Next, in the second 

column is the optimal matching among GPU and CPU. In this case optimal matching makes significant improvements for 

runtime of idiom code of ~5.5X over the just the CPU alone and ~6.5X over the just the GPU alone. Finally the results of 

choosing the optimal hardware among all three: GPU, CPU, and FPGA, is shown in the last column. Again there are noticeable 

improvements for runtime of idiom code of ~14X over CPU, ~17X over GPU and ~7.7% improvement over the FPGA. 

TABLE VIII.  OPTIMAL MAPPING OF DEVICE FOR HYCOM 

 CPU vs. FPGA CPU vs. GPU Optimal of CPU, GPU, FPGA 

Gather/Scatter 495 638 448 

Stream 2,297 6,096 2,149 

Total 2,792 6,734 2,596 

 

We perform a similar analysis for Milc and the results are shown in Table IX. Comparing optimal choice of CPU and 

FPGA we find that the FPGA is the best choice. Similarly, comparing optimal choice of the GPU and the CPU, the GPU is the 



best choice. Finally the last column in table IX shows that choosing between the three GPU, CPU, FPGA the performance 

improvement over just choosing the FPGA is <0.1%. Hence for this application gather/scatter and stream idioms can all run on 

the FPGA for nearly optimal performance. 

TABLE IX.  OPTIMAL MAPPING OF DEVICE FOR MILC 

 CPU vs. FPGA CPU vs. GPU Optimal of CPU, GPU, FPGA 

Gather/Scatter 334 399 334 

Stream 770 1,087 765 

Total 1,104 1,486 1,099 

 

Next using our models for stream and gather/scatter we predicted the overall run times of Milc and HYCOM if run on the 

optimal hardware (i.e. CPU, FPGA, or GPU). Our predictions show that the overall improvement to these applications 

compute time by porting these idioms to the accelerators is 3.4% for Milc and 20% for HYCOM. While the improvements for 

Milc are not as significant, the improvements for each individual idiom are quite significant as shown in table IX. 

VIII. MODELING DATA MIGRATION COST 

 

 

Figure 7.  Bandwidth (GB/s) versus Data Transfer Size (Bytes) between CPU and FPGA/GPU 

The cost of data migration, i.e., transferring data between CPU and hardware accelerators, can be significant. Shown in 

figure 7 is the bandwidth achieved for one-way data transfer i.e., to/from CPU from/to hardware accelerators. The cost of data 

transfers dominates run time for smaller data sizes. For example, we found that, for the stream idiom on the FPGA, if data is 

transferred to/from the FPGA at start/end of stream loop, then the FPGA is better than the CPU only for datasets that exceed 2 

GB. Thus, to extract maximum benefit from the hardware accelerator, data transfer costs need to be minimized. Combining the 
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results from figure 4 and figure 7 illustrates the complexity of determining the best achievable performance from the 

GPU/FPGA for a given data size and it is interesting to note this space is complex – there is no clear winner among the CPU, 

FPGA, GPU it depends on the idiom and the dataset size. 

 
Figure 8.  This figure shows measured and modeled memory bandwidths (GB/s) to transfer data between CPU and FPGA/GPU 

First we model the data migration bandwidth as a function of size of the data to be transferred between CPU and the 

accelerator devices. Shown in Figure 8 is the comparison between modeled and measured bandwidths. The models accurately 

predict the achieved bandwidths with average error of prediction being 3.16% and 1.69% for the FPGA and the GPU systems 

respectively.  Using these models we can characterize the performance impact of data transfer on the various idioms discussed 

in Section IV and presented in Section VIII A. Next in Section VIII B we use the models to present the performance impact of 

data migration on our projection study which was discussed in Section VII B.   

A. Idiom Characterization with Data Transfer  

Data migration cost adds overhead in accelerator performance when we are unable to hide the latency of data transfer. 

Latency can be overcome by a number of means, one may allocate the data on the accelerator device itself and thus avoid data 

transfer altogether; alternatively if data migration is required then we can hide its latency by asynchronously migrating data 

and overlapping it with computation. However there maybe situations where we cannot completely eliminate overhead of data 

transfer and some latency will need to be added to the cost of computation. To model those situations we define and calculate 

data transfer cost as the fraction of total data transfer whose latency cannot be overcome or minimized and hence needs to be 

added to the total computation time. For example if we are operating on data size of 100MB and we specify data transfer ratio 

of 0.1, this ratio specifies that latency to transfer 10% of the 100MB, i.e., 10MB, will be added to the computation time on the 

accelerator. We next present characterizations of idiom performance for data transfer ratios between of 0.0 and 1.0.  
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Presented in figure 9 is the idiom characterization with the cost of data transfer for the six idioms, gather, scatter, stream, 

reduction, transpose, and stencil. Each figures plots, for a given idiom, the achieved bandwidth (GB/s) at different data sizes. 

The bandwidths are plotted for CPU, and for FPGA/GPU only the data transfer ratios that outperform the CPU at least for one 

data size are plotted.  

Comparing performance of the transpose idiom on CPU vs. FPGA, the figure shows that the CPU outperforms the FPGA 

for every data size and data transfer ratios. As explained in Section IV, it is our hypothesis that the compiler on the FPGA does 

not provide optimal support for transpose. Comparing performance of the transpose idiom on CPU vs. GPU, the figure shows 

that the GPU starts outperforming the CPU when the data size exceeds 1MB, and when the data size is in multiple gigabytes 

the GPU outperforms the CPU even with data transfer ratio of 1.0. Note that the plot of transpose idiom on CPU vs. GPU uses 

logarithmic scale for the Y-axis. 

Comparing performance of the reduction idiom on CPU vs. FPGA, the figure shows that the FPGA starts outperforming 

the CPU when the data size exceeds 256KB. When considering the data transfer cost, in the best case we found that the FPGA 

outperforms the CPU only when the data transfer ratio is below 0.3. Comparing performance of reduction idiom on CPU vs. 

GPU, the figure shows that the GPU starts outperforming the CPU when the data size exceeds 16KB. Similarly while 

analyzing data transfer costs, in the best case, we found that the GPU outperforms the CPU only when the data transfer ratio is 

below 0.3. 

Comparing performance of the stream idiom on CPU vs. FPGA, the figure shows that the FPGA starts outperforming the 

CPU when the data size exceeds 512KB. Analyzing cost of data transfer shows that, in the best case, the FPGA outperforms 

the CPU only when the data transfer ratio is below 0.4. Comparing performance of the stream idiom on CPU vs. GPU, the 

figure shows that the GPU starts outperforming the CPU when data size exceeds 2MB. Analyzing data transfer ratios shows 

that in the best case the GPU outperforms CPU only when the data transfer ratio is below 0.3. 

Comparing performance of the stencil idiom on CPU vs. FPGA, the figure shows that the FPGA starts outperforming the 

CPU when the data size exceeds 512KB. Analyzing data transfer ratios shows that in the best cast the FPGA outperforms the 

CPU only when the data transfer ratio is below 0.4. Comparing performance of the stencil idiom CPU vs. GPU, the figure 

shows that the GPU starts outperforming the CPU when data size exceeds 1MB. Analyzing data transfer costs shows that in 

the best case the GPU outperforms the CPU only when the data transfer ratio is below 0.3. 

Comparing performance of the gather idiom on CPU vs. FPGA, the figure shows that the FPGA starts outperforming the 

CPU when the data size exceeds 700KB. Analyzing data transfer ratio shows that in the best case the FPGA outperforms the 



CPU only when the data transfer ratio is below 0.4. Comparing performance of the scatter idiom on CPU vs. GPU,  the figure 

shows that the GPU starts outperforming the CPU when the data size exceeds 700KB. Analyzing data transfer ratios shows 

that in the best case the GPU outperforms the CPU only when the data transfer ratio is below 0.3. 

Comparing performance of the scatter idiom on CPU vs. FPGA, the figure shows that the FPGA starts outperforming the 

CPU when the data size exceeds 700KB. Analyzing data transfer ratios shows that in the best case the FPGA outperforms the 

CPU only when the data transfer ratio is below 0.3. Comparing performance of the scatter idiom CPU vs. GPU, the figure 

shows that the GPU starts outperforming the CPU when the data size exceeds 700KB. Analyzing data transfer ratios shows 

that in the best case the GPU outperforms the CPU only when the data transfer ratio is below 0.3.  
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Figure 9.  This figure shows, for a givem idiom, achieved memory bandwidths (GB/s) on Y-axis versus data size (Bytes) on X-axis. Note that only the plot 

of Transpose: CPU vs. GPU uses logarithmic scale for the Y-axis, whereas the remaining plots use linear scale for theY-axis. The bandwidths are plotted for 

CPU, and for FPGA/GPU only the data transfer ratios that outperform the CPU at least for one data size are plotted.   

B. Projection Study with Data Transfer Costs 

Next we present the projection study of Section VII B with costs of data transfer included. A programmer that wishes to 

port applications to accelerator devices needs to minimize the cost of data transfer to benefit from accelerators. However, the 

extent to which latency needs to be minimized may not be known, i.e., total fraction of the data transfer latency that needs to be 

reduced in order to benefit from the computation speedup on accelerators. Models such as the ones presented in this section 

can play a useful role in guiding the programmer and demonstrate the relationship between cost of data transfer and 

performance. To illustrate this point we extend our projection study of executing Milc and HYCOM executing on 256 cores on 

a supercomputer with two choices of accelerators per node and include data transfer costs.  

First we present an analysis of the performance if all the idioms were run on one device with data transfer costs and 

presented in figure 10. Comparing the runtime of gather/scatter, stream idioms of HYCOM on CPU vs. FPGA shows the 

following: (1) gather/scatter idiom runs faster when the data transfer ratio is below 0.4, (2) stream idiom always runs faster on 

FPGA regardless of the data transfer ratio, and (3) overall the total idiom run time is faster on the FPGA when the data transfer 

ratio is below 1.0. Comparing the runtime of gather/scatter, stream idioms of HYCOM on CPU vs. GPU shows the following: 

(1) gather/scatter idioms run faster on GPU when the data transfer ratio is below 0.4, (2) the stream idiom always runs faster on 

the CPU, and (3) overall the total idiom run time is faster on the CPU.  

0

10

20

30

40

50

60

M
e

m
o

ry
 B

an
d

w
id

th
 (

G
B

/s
) 

Bytes 

Scatter: CPU vs FPGA 

0.0

0.1

0.2

BW_CPU

0

5

10

15

20

25

30

35

40

45

M
e

m
o

ry
 B

an
d

w
id

th
 (

G
B

/s
) 

Bytes 

Scatter: CPU vs GPU 

0.0

0.1

0.2

BW_CPU



Comparing the runtime of gather/scatter, stream idioms of Milc on CPU vs. FPGA shows the following: (1) gather/scatter 

idioms run faster on the FPGA when the data transfer ratio is below 0.2, (2)  stream idiom runs faster on the FPGA when the 

data transfer ratio is below 0.2, and (3) overall the total idiom run time is faster on the FPGA when the data transfer ratio is 

below 0.2. Comparing the runtime of gather/scatter, stream idioms of Milc on CPU vs. GPU shows the following: (1) 

gather/scatter idioms run faster on the GPU when the data transfer ratio is below 0.2, (2) stream idiom runs faster on the FPGA 

when the data transfer ratio is below 0.2, and (3) overall the total idiom run time is faster on the FPGA when the data transfer 

ratio is below 0.2.  
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Figure 10.  This figure shows, for HYCOM and Milc, the cumulative  MPI task time (s) on FPGA/GPU versus data transfer ratio (between 0.0 and 1.0) for 

gather/scatter, stream, and total time for both idioms. The figure also show the CPU time for each idiom and is indicated with the label CPU on the X-axis.  

 

Next we analyze the optimal mapping with data transfer costs included. The plots of figure 11 shows the run times of the 

gather/scatter and stream idioms of HYCOM and Milc by optimally mapping each basic block of an idiom to its best 

performing device. This mapping is done for each date transfer ratio. The plots also show the run time of these idioms on the 

CPU, FPGA, and GPU for reference. The plot for optimal mapping of gather/scatter and stream idioms of HYCOM show the 

following: (1) when the data transfer ratio exceeds 0.5 gather/scatter idioms optimally map to CPU only, (2) whereas for 

stream idiom when the data transfer ratio exceeds 0.6, the CPU is the optimal choice and (3) Overall for total idiom time the 

CPU is the optimal device when the data transfer ratio exceeds 0.6. Similarly the plot for optimal mapping of gather/scatter and 

stream idioms of Milc show that when the data transfer ratio exceeds 0.2 both gather/scatter and stream idioms optimally map 

to CPU only and hence, overall for total idiom time the CPU is the optimal device when the data transfer ratio exceeds 0.2. 
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Figure 11.  This figures shows for each application, the time for each idiom if each idiom was executed on the best of CPU,FPGA, GPU. The times are 

shown for optimal mapping for data transfer costs (between 0.0 and 1.0) on X-axis. Additionally the excuting times on the CPU, FPGA, GPU and labelled as 
CPU, FPGA, GPU on the X-axis. 
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IX. BACKGROUND 

Several techniques exist to model general-purpose architectures [20-39] spanning flavors of analytical and trace-based 

methods. Analytical models require a detail understanding of the complex interactions of software and hardware and are 

generally difficult to generalize and automate.  

Hardware accelerators have been the focus of several studies. Alam et al [16] investigate using their Modeling Assertions 

to model the multi-streaming, vector processing capabilities of the X1E on the NAS SP kernel [17] Hong and Kim [18] 

developed an analytical model for GPU performance and applied it to micro-kernel and benchmarks, but not full scale HPC 

applications. Govindaraju et al [19] developed a memory model for GPUs for a set of algorithms used in scientific 

applications. They tested the model on benchmark kernels but not full-scale HPC applications.  

In the study by Carrington el al.[14] the performance of gather/scatter idioms was modeled on the FPGAs of the Convey 

HC-1 system. In this work we characterized both FPGA and GPU with additional idioms and developed models for both the 

FPGA and the GPU for two idioms. We also presented results of predictions for two full-scale HPC applications, Milc and 

HYCOM. 

X. CONCLUSIONS AND FUTURE WORK 

In this paper we presented characterizations of several idioms or compute patterns on FGPA and GPU. Depending on the 

idiom and data input size a particular device or the CPU may be the optimal choice.  

We also presented an extension of our methodology to model gather/scatter and stream idioms on FPGAs and GPUs. We 

use our models to project the speedup of gather/scatter and stream idioms on a system similar to Jaguar, a Cray XT5, but with 

hardware accelerators. Our models show that while its beneficial to run these idioms on accelerators the optimal choice is 

dependent on data size. We also presented a scenario of optimal choice of CPU, FPGA, and GPU for each idiom-data size pair.  

We quantified and modeled the overhead of data transfer costs on idiom performance and using our models showed the 

overhead for various data transfer cost scenarios on projected speedup of gather/scatter and stream idioms on a system similar 

to Jaguar, a Cray XT5, but with hardware accelerators. Our data migration cost analysis shows that most of the latency of data 

transfer needs to hidden or minimized in order to gain speedup on accelerators. Data migration cost was also shown to be an 

important factor to achievable performance by GPU [40].  

In this paper, the models assume that the CPU is blocked while the operation is performed on the accelerator. In future 

work we would like to model the potentials of overlapping CPU compute with accelerator compute. It would also be 



interesting to investigate power savings opportunities when either CPU or accelerators are blocked. Finally, we will also 

extend our models for other idioms and devices. 
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