
Modeling Power and Energy Usage of HPC Kernels

Ananta Tiwari, Michael A. Laurenzano, Laura Carrington, Allan Snavely
Performance Modeling and Characterization Laboratory

San Diego Supercomputer Center
San Diego, California, USA

{tiwari, michaell, lcarring, allans}@sdsc.edu

Abstract—Compute intensive kernels make up the ma-
jority of execution time in HPC applications. Therefore,
many of the power draw and energy consumption traits
of HPC applications can be characterized in terms of the
power draw and energy consumption of these constituent
kernels. Given that power and energy-related constraints
have emerged as major design impediments for exascale
systems, it is crucial to develop a greater understanding
of how kernels behave in terms of power/energy when
subjected to different compiler-based optimizations and
different hardware settings. In this work, we develop CPU
and DIMM power and energy models for three extensively
utilized HPC kernels by training artificial neural networks .
These networks are trained using empirical data gathered
on the target architecture. The models utilize kernel-
specific compiler-based optimization parameters and hard-
ware tunables as inputs and make predictions for the
power draw rate and energy consumption of system
components. The resulting power draw and energy usage
predictions have an absolute error rate that averages less
than 5.5% for three important kernels – matrix multipli-
cation (MM), stencil computation and LU factorization.

I. INTRODUCTION

Compute intensive kernels make up the majority of
execution time in large scale HPC applications [8].
These kernels are often executed a large number of
times during a single execution of an application. A
lot of recent research efforts have therefore been di-
rected towards automatically identifying these kernels
based on attributes such as computational demand and
memory access patterns [17], and towards developing
compiler-based optimization strategies to help improve
their performance. Gaining a better understanding of the
power and energy usage behavior of these kernels when
subjected to various compiler-based optimizations and
different hardware-related tunables is also very important
given that thepower wall has emerged as the key
bottleneck in the design of exascale systems [11]. Models
can be used to aid in developing this understanding.

We focus on three extensively studied kernels — MM,
stencil computation and LU factorization. Over the years,
various optimization strategies that target specific re-
source(s) in computing platforms have been developed to
reduce execution time of these kernels. Some examples
of such strategies include loop tiling and unrolling to
target reuses in caches and registers respectively. Most
of these tuning strategies areparametrized. That is, they
expose a set of optimization-related parameters that can
be selected to change the ways optimizations are applied
to a piece of code. An exhaustive approach to evaluating
all possible optimizations in this parameter space is often
not practical because these spaces are multi-dimensional
— i.e., a given piece of code can benefit from the simul-
taneous application of many strategies which can result
in billions (or more!) possible optimization parameter
combinations.

Recently, various empirical auto-tuners [24] [22] have
successfully used search or heuristics based approaches
to generate and evaluate only a manageable subset of the
optimization parameter space for computational kernels
and select the code variant that obtains the best perfor-
mance in terms of execution time. The work presented
in this paper draws inspiration from the success of
these empirical approaches to optimization. However,
rather than using a search-based approach to navigate the
parameter space, we develop kernel-specific power draw
and energy usage models for certain system components
using artificial neural networks (ANNs).

The models utilize kernel-specific compiler-based op-
timization parameters and hardware tunables as inputs
and can make predictions for power draw and energy
usage of the CPUs and DIMMs for all code variants
in the parameter space. The ANNs that form the basis
of the models are trained using empirical power and
performance data gathered for the kernel on the tar-
get architecture. These training data points are drawn
randomly from the parameter combination space and
constitute a very small portion (less than3%) of the

MM: Exec Time (sec)
5 15 25 35

0
40

0
80

0

12.94x

MM: CPU Watts

C
ou

nt
s

70 90 110

0
10

0
30

0

1.64x

MM: DIMM Watts
20 30 40

0
10

0
30

0 2.58x

MM: CPU+DIMM Energy
C

ou
nt

s
1000 3000

0
50

0
10

00

10.8x

Stencil: Exec Time (sec)
5 10 15 20

0
40

0
80

0

6.79x

Stencil: CPU Watts

co
un

ts

80 90 110

0
10

0
30

0

1.55x

Stencil: DIMM Watts
30 35 40 45

0
20

0
40

0
60

0 1.59x

Stencil: CPU+DIMM Energy

co
un

ts

500 1500 2500

0
50

0
10

00

7.42x

(a) (b)

Fig. 1. Distributions of execution time (seconds), CPU and DIMM Power Draw (Watts) and CPU+DIMM Energy usage (Joules) for (a)
MM and (b) stencil code variants along with the

(

max

min

)

ratio for the respective entities shown in the histograms. The code variants utilize
different tiling factors, unrolling factors and were run using 7 available CPU clock frequencies on a Xeon. Input data size is kept constant.

total points in the space.
The optimization strategies that we apply to each of

the computational kernels have been shown to improve
those kernels’ performance in various research articles.
The focus here is not to establish or verify the applicabil-
ity of these strategies. Rather the focus is on whether we
can use the optimization parameters to accurately predict
the power draw rate of individual system components.

The power draw and energy usage landscape can be
quite large and varied. Figure 1 shows histograms of
CPU power draw, DIMM power draw and CPU+DIMM
energy consumption collected for a small, random subset
of the possible code variants for MM and stencil kernels.
The best and the worst performing code variants for
MM on a Xeon system (described in Section III-A),
for example, are over an order of magnitude different in
terms of CPU+DIMM energy usage. Therefore charac-
terizing these differences will help understand the impact
of compiler optimizations on energy usage.

II. M ETHODOLOGY

We model power and energy for a parameter combina-
tion space of a particular kernel by measuring execution
time and power (and therefore energy) for a small subset
of the points in that kernel’s optimization parameter
space. These measured points are then used as training
input for a set of ANNs whose outputs are models of
power draw, execution time, and energy usage of that
kernel for all optimization parameter combinations.

A. Problem Formulation

For each model, as shown in Equation 1, we develop
a function f , whose inputs are a set of optimization
parametersx1 · · · xn and whose outputy is some
measure of the efficacy of the optimization (in terms
of power, time or energy) on the computation.

y = f(x1 · · · xn) (1)

Equation 2 shows a specific formulation of Equation 1
as the model of DIMM power draw (Pd) for kernel MM
in terms of the compiler-level optimization parameters
(ti, tj, tk, ui anduj – loop tiling and unrolling factors),
CPU clock frequency (freq) and matrix size (msize).

Pd = f(ti, tj, tk, ui, uj,msize, freq) (2)

For every such model,f is determined by exposing the
problem to an artificial neural network.

B. Artificial Neural Networks

An artificial neural network (ANN) is a comput-
ing system that consists of densely interconnected and
adaptive processing elements that are highly capable
of knowledge discovery in the input dataset [2] [5].
ANNs, which have been used successfully in the area
of HPC in the past to derive performance models for
scientific applications [9] [15], have several desirable
properties that make them attractive as the approach for
performance, power and energy prediction problems.

1. ANNs can capture complex linear and non-linear
interactions between the input parameters and between

Fig. 2. (a) Network diagram for ANN. (b) Illustration of the learning process within a single network unit (adapted from [9] and [10])

the input and output parameters. Often these types of
interactions are difficult to discover and even when
they are available, it is challenging to completely and
accurately describe them.

2. Generally ANNs work well even in the presence
of some noise in the training data [10], [2]. Noise in our
empirically collected data can be caused by OS jitter,
other processes running on the system, or limitations of
the hardware measurement infrastructure [3].

3. Most classical optimization algorithms require the
definition of the objective function. However, for perfor-
mance and energy modeling problems we may not know
these functions a priori. ANNs do not need a formulation
of the objective function and are therefore a good match
for performance, power and energy modeling. The fact
that no objective function definition is required to train
ANNs offers another benefit — the models are generated
using no domain-specific knowledge, meaning that the
modeling techniques are more likely to be useful in other
application/kernel domains.

C. Theory

While ANNs have been used in tackling various
complex real-world problems — pattern classification,
clustering, optimization, etc. [2], this work uses ANNs
to approximate the functionf in Equation 1. In the
context of function approximation, ANNs take a series of
predictors (input parametersx1 · · · xn in Equation 1)
and produce a map of those input parameters to one
or more outcomes (y in Equation 1). The network
consists of a set of layers – an input layer, one or more
hidden layers and an output layer. Figure 2(a) provides
a schematic diagram for the network that is utilized in
this work. The network is afully-connected single hidden
layer feed-forward networkwith one output unit. The

number of nodes in the input layer is equal to the number
of predictors. In fully-connected networks, all nodes in
a given layer are connected to all the nodes immediately
following that layer. Each edge that connects two nodes
has an associated weight. Feed-forward networks have
no cycles in their connection topography.

Developing a model requires two phases – training
and validation. During the training phase, a set of em-
pirically gathered data points are presented to the input
layer sequentially. The input layer simply passes the
incoming values to the hidden units. The hidden units
take a weighted sum of the incoming values (nsum

in Figure 2(b)) and pass the weighted sum through an
activation function. The activation function that we use is
the sigmoid function (see Figure 2(b)). Sigmoid, which
is a strictly increasing function, is the most commonly
used activation function in ANNs because it exhibits
smoothness and has desirable asymptotic properties [10].

At the output layer, the contributions from each of the
hidden units are summed to derive a predicted value.
The calculated error in prediction is back-propagated
to update the edge weights using the gradient descent
method [2]. Edges are iteratively updated until the
model’s predicted value is within some small error range
when compared to the observed value.

We now discuss specific issues that affect the predic-
tive accuracy of ANNs and schemes to address them.

1. Over-fitting the training data (describing noise in
the data rather than the underlying relationships) is a
danger when using machine learning techniques such as
ANN because it results in degraded prediction accuracy
on non-training inputs. To avoid this we use thek-
fold cross validation method during the validation phase,
which has been shown to help mitigate the problem of

over-fitting [20]. In k-fold cross validation, the training
dataset is randomly partitioned intok equal-sized sub-
sets.k different models are then constructed, each using
k − 1 of the k partitions as training input so that1 of
thek sets can be set aside for model validation. Each of
thek models are then validated against the validation set
and the model that yields the minimum error is selected.

2. Data scaling and centering is needed to make sure
that large values of some input and output parameters do
not unduly affect the learning process. Several techniques
have been proposed to achieve this [2]. In this work,
taking the logarithm of the predictors and the outcomes
was enough to construct networks with stable accuracy.

3. The number of hidden units also play an important
role. While there are many techniques that can be used
to determine the “right” number of hidden units, our
experience showed that setting the number of hidden
units equal to twice the number of predictor variables
works well for our purposes.

III. E XPERIMENTAL SETUP

This section describes our experimental setup, which
consists of an Intel Xeon workstation equipped with a
DC power measurement harness. We utilize a source-to-
source code transformer to generate code variants.

A. Experimental Platform

The experiments were conducted on an Intel Xeon
E5530 workstation. The E5530 has 2 quad-core proces-
sors. Each core has its own 32KB L1 cache and 256KB
L2 cache. Each of the quad-core processors has a shared
8MB L3 cache (for a total of 16MB of L3 for the 8
cores). The processors can be clocked at 1.60, 1.73, 1.86,
2.00, 2.13, 2.26, or 2.39 GHz. Processor clock frequency
is changed using thecpufreq-utils package [1] that
is available with many popular Linux distributions.

B. Power Measurement

To derive system component-level power measure-
ments, we utilize a PowerMon2 apparatus [3]. Power-
Mon2 is a hardware and software framework designed to
obtain fine-grained current and voltage measurements for
different components of a target system such as CPUs,
memory subsystem, disks, GPUs, etc. The device sits
between an ATX power supply and the power inputs of
various system components and reports measurements on
up to eight channels via a PC’s USB port. We identify
the DC-rails that supply power to the CPUs and DIMMs
and collect the measurements for those rails for each test.

C. Code Variants Generation

Code variants representing different loop optimization
strategies are generated using CHiLL [7], which is
a polyhedral loop transformation and code generation
framework. CHiLL provides a high-level script interface
that we leverage to describe a set of loop transformation
strategies and instantiate their associated parameters for a
given piece of code. In CHiLL nomenclature, the scripts
that describe loop transformations are called “recipes”.

IV. EXPERIMENTAL RESULTS

These experiments are designed to study the effect of
training dataset size of the artificial neural networks on
the overall predictive accuracy of the trained networks.
Recall that the training data for the models are gathered
empirically — i.e. for each of the points in the training
dataset, a corresponding code variant is generated using
CHiLL; the generated variant is compiled and executed
on the target architecture to measure execution time and
component-level power draws. Therefore, the time cost
of the modeling step is directly related to the size of
the training set. For each of the three kernels studied
in this paper, we use a four-step process to construct
and validate models. First, from the entire parameter
space, we randomly sample a set of points (N) and
generate, compile and evaluate the corresponding code
variants. Second, we select a set of random samples,
V , from N and use that subset for model validation.
Third, we construct training datasets from(N \V) with
varying numbers of points and train separate neural
networks. We repeat steps two and three for each of the
properties we are attempting to model — CPU power
draw, DIMM power draw and execution time. Finally,
the trained models are used to predict the outcomes for
all points in V . The CPU power draw, DIMM power
draw and execution time models are then used to predict
CPU+DIMM energy usage.

We use R, an open-source statistical computing envi-
ronment, to automate the process of model training and
validation. R packagescaret [12] andnnet [23] are
leveraged to generate the ANN models.

A. Matrix Multiplication (MM)

We provide a simple to understand MM implementa-
tion in Table I. We refer the readers to Tiwari et. al. [22]
for details on the optimization strategy for MM. The
strategy that we use for MM exploits the reuse of array
c in registers, and the reuse of arraysa andb in caches.
Data copying is applied to avoid conflict misses. The
set of seven free parametersti, tj, tk (tiling factors for

TABLE I
KERNELS USED FOR EXPERIMENTS

Kernel Naive Code Parameters Parameter Domains

MM [22]‡
do i = 1, n
do k = 1, n

do j = 1, n
c(i,j) = c(i,j)+a(i,k)*b(k,j)

ti, tj, tk (i, j, k tiles)
ui, uj (i, j unrolls)
CPU freqs (freq)
matrix sizes (msize)

ti, tj, tk ∈ [2, 4, 8, . . . , 1024]
ui ∈ [factors(ti)], ui≤ 8
uj ∈ [factors(tj)], uj≤ 8

ui 6= ti, uj 6= tj
msize ∈ [1300, 1400, · · · , 2000]

Total points: 647360

Stencil [22]‡

do k=2, n-1
do j=2, n-1
do i=2, n-1
a(i,j,k)=c*(b(i-1,j,k)+b(i+1,j,k)

+b(i,j-1,k)+b(i,j+1,k)
+b(i,j,k-1)+b(i,j,k+1))

ti, tj, tk (i, j, k tiles)
ui, uj (i, j unrolls)
CPU freqs (freq)

ti, tj, tk ∈ [2, 4, 8, · · · , 512]
ui ∈ [factors(ti)], ui≤ 8
uj ∈ [factors(tj)], uj≤ 8

ui 6= ti, uj 6= tj
Total points: 56700

LU [7]‡

do k=1, n-1
do i = k+1, n

a(i,k)=a(i,k)/a(k,k)
do i = k+1, n

do j = k+1, n
a(i,j)=a(i,j)-a(i,k)*a(k,j)

tj (loop j tile)
ti1, tj1, tk1 (trsm tiles)
ui1, uj1 (trsm unrolls)
ti2, tj2, tk2 (MM tiles)
ui2, uj2 (MM unrolls)
matrix size (msize), freq

ti∗, tj∗, tk∗ ∈ [2, 4, 8 · · · 1024]
ui∗∈[factors(ti∗)], ui∗≤ 8
uj∗∈[factors(tj∗)], uj∗≤ 8

ui∗ 6= ti∗, uj∗ 6= tj∗
msize ∈ [1500, 1600, · · · , 2200]

Total points: 8.34e+10
‡ Due to space limitations, we are not able to provide full transformation recipes. Please refer to the cited articles for full recipes.

loops i, j and k), ui, uj (unrolling factors for loopsi
andj), msize andfreq constitute the set of predictors.
Table I provides further details on the parameter space
and the constraints on the predictor variables. The total
number of points in the parameter space is6.5× 105.

We generate a total of 8285 different code variants (N)
that utilize randomly selected optimization parameters,
CPU clock frequency and input data size. We set aside
the majority (65%) of the points in the model validation
set V . We construct separate ANN models for CPU
power draw, DIMM power draw and execution time
using various training dataset sizes — these training
subsets are drawn from roughly 2900 points not set
aside for validation. Each of the models is then used to
predict the CPU and DIMM power draw and execution
time for the points inV . Figure 3 shows the absolute
mean error percentage and standard deviation of the error
percentage on the y-axis and the training dataset size
on the x-axis for MM execution time models. As the
size of the training dataset increases, the error generally
improves as well; the same holds true for standard
deviation of the error. What is interesting, however, is
that the improvements flatlines after the training dataset
size is larger than around 1200 elements. This suggests
that a fairly small time investment in collecting empirical
training data can give us a execution time model, which
has an average error rate of approximately 5.47%.

Table II summarizes the training set size sensitivity
results for CPU and DIMM power draw and execution
time. Energy predictions made for the points inV using
the CPU, DIMM power draw and execution time models
constructed with 1400 points, have an average absolute

 4

 6

 8

 10

 12

 14

 16

 18

 0 500 1000 1500 2000 2500 3000

er
ro

r

of samples in the training data

Effect of varying training set size for Exec. Time (MM)

abs mean error %
std dev of abs mean error %

Fig. 3. Training set size sensitivity — MM Execution Time

error of 4.9%. The training dataset consisting of 1400
points corresponds to a very small portion (0.22%)
of the total points in the parameter space. A simple
extrapolation of the measured execution times suggests
that it would require more than 86 days1 of execution
time to evaluate the entire parameter space. Evaluating
1400 points to construct the training set takes roughly
4.6 hours. This contrast highlights one of the major
benefits of our modeling technique — we are able to
give accurate power and energy predictions using hours,
not months, of system execution time.

Finally, Figure 4 shows the modeled versus observed
values for CPU and DIMM energy consumption for MM.
The red line in the graph is the trend line and for a well-
behaved model, this line should be a roughly 45 degree
line, which is the case in Figure 4.

1Using the average of measured times (11.6s) for all 647360 points.

Fig. 4. Modeled vs. Obs. CPU+DIMM energy for MM (log scale)

TABLE II
TRAINING SET SIZE SENSITIVITY

Outcome Training abs mean std dev
set size error1 %

MM
CPU power draw 900 1.61 1.58

DIMM power draw 1400 3.34 3.13
Execution time 1200 5.47 5.44

Energy prediction 1400 4.89 4.69

Stencil
CPU power draw 1200 1.08 1.00

DIMM power draw 1100 1.84 1.84
Execution time 1600 4.64 4.25

Energy prediction 1500 3.95 3.66

LU
CPU power draw 1400 0.98 0.78

DIMM power draw 1500 2.70 2.45
Execution time 1100 4.50 3.81

Energy prediction 1600 3.94 3.34

1error = abs(observed−modeled

observed
)× 100

B. Stencil

We provide a naı̈ve stencil (in this case a Jacobi)
implementation in Table I. We refer readers to Tiwari et.
al. [22] for the detailed optimization strategy for stencil.
Since arrayb has reuse on three dimensions, the loops
are tiled on three dimensions for reuse in caches. Loopsi

andj are unrolled for register reuse. The free parameters
ti, tj, tk, ui, uj and freq form a five-dimensional
parameter space with5.67 × 104 total points.

For stencil modeling, we randomly sampled the pa-
rameter space for a total of 4900 points. Of these 4900
points, we set aside 40% of the points2 (1960) for model
validation (V). From the remaining 2940 points, we

2Based on our experience with MM and LU modeling (see next
section), we collected a smaller set of empirical data for stencil.

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 500 1000 1500 2000 2500 3000

er
ro

r

of samples in the training data

Effect of varying training set size for Exec. Time (stencil)

abs mean error %
std dev of abs mean error %

Fig. 5. Training set size sensitivity — Stencil Execution Time

Fig. 6. Modeled vs. Obs. CPU+DIMM energy for stencil (log scale)

trained separate networks using varying-sized training
subsets. The networks constructed using those training
datasets are validated against the points inV .

Figure 5 shows the ANN learning curve attributes
(absolute error % and standard deviation) for stencil. The
error percentage flatlines after the training dataset size
of 1600 elements. At a training set size of 1600, the
average error rate for execution time prediction is 4.6%.

Table II summarizes the training set size sensitivity
results. Figure 6 shows the modeled vs. observed values
for CPU+DIMM energy usage for this kernel. At a train-
ing set size of 1500, the average absolute error rate of
energy prediction is 3.9%. The training dataset consisting
of 1500 points corresponds to 2.6% of the total points
in the parameter space. If one were to evaluate all the
points in the parameter space, it would require more than
3.6 days3 of execution time. Evaluating 1500 points to
construct the training set requires roughly 2.2 hours.

3Using the average of measured times (5.4s) for all 56700 points.

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000

er
ro

r

of samples in the training data

Effect of varying training set size for Exec. Time (LU)

abs mean error %
std dev of abs mean error %

Fig. 7. Training set size sensitivity — LU Execution Time

C. LU Factorization

We provide a naı̈ve LU implementation in Table I. The
detailed description of how LU kernel is transformed is
provided by Hall et. al. [7]. The idea is to first apply
tiling to loop j and split the iteration space inside thej-
tile control loop into an imperfect loopnest and a perfect
loopnest. The perfect loop nest is then split into two sub-
loopnests — one that has non-overlapping array accesses
(a MM kernel) and the other that has overlapping array
accesses (a triangular solve kernel). Each of these sub-
loopnests are then independently optimized to target
reuses in caches and registers. The recipe shown for LU
transformation in [7] has a total of 11 free parameters
(listed in Table I along with domain definitions and
constraints). Together with the CPU clock frequency and
input matrix size, we have a 13-dimensional parameter
space with a total of approximately8.32× 1010 points.

For LU factorization modeling, we randomly sampled
the parameter space for a total of 9700 points (approx-
imately 1 in every 8.5 million points). Of these 9700
points, we set aside the majority (65%) of the points
for model validation (V). From the remaining 3400
points, we developed models using varying-sized training
subsets. The models constructed using those training
datasets are validated against the points inV .

Figure 7 shows the absolute mean error percentage
and standard deviation of the error percentage on the
y-axis and the training dataset size on the x-axis for
LU execution time models. We see a similar trend that
we saw for MM. The error percentage flatlines after the
training dataset size of 1100 elements (i.e. adding more
than 1100 data points in the training set does not add new
information to the model). At 1100 training set size, the
average error rate for execution time prediction is 4.5%.

Table II summarizes the training set size sensitivity
results. Figure 8 shows the modeled versus observed

Fig. 8. Modeled vs. Obs. CPU+DIMM energy for LU (log scale)

values for CPU+DIMM energy consumption for LU.
Energy predictions made for points inV using the CPU,
DIMM and execution time networks trained with 1600
points have an average absolute error rate of 3.9%. The
training dataset consisting of 1600 points corresponds to
a very small portion (less than0.0000019%) of the total
points in the parameter space. If one were to evaluate
all the points in the parameter space, it would take more
than 14500 years4. Evaluating 1600 points to construct
a training set takes roughly 2.4 hours.

V. D ISCUSSION

In order to further validate the capability of the
models, we sampled 666312 random points from the
parameter space of LU (henceforth referred to asL)
and used the energy model developed Section IV-C to
predict the energy usage for each variant inL. The total
time required to calculate these energy predictions on our
Intel E5530 workstation is roughly 20 seconds, compared
to an estimated 42 days to run and measure all points
in L. For each matrix size inL, we then empirically
gathered energy usage data for the kernel variants whose
modeled energy consumption fell in either extremity (the
10 highest and 10 lowest for each of 8 matrix sizes).
We call this set of 160 pointsE. The average absolute
error percentage in energy prediction for points inE
is 7.0% compared to 3.9% (see Table II): this error
rate is still sufficiently accurate to enable interesting
exploration of the space. Further analysis of the modeled
vs. observed energy usage for the points inE revealed
some interesting results. For instance, formsize=2100,

4Using the average of measured times (5.5s) for 8.32×10
10 points.

the model found (and we empirically verified) a code
variant that consumes 7.7% less energy than the lowest-
energy point from the training dataset for thismsize.
Also, for msize=1900, the model found a code variant
that consumes 33% more energy than the highest-energy
variant for thismsize in the training set. This shows that
even though the models are developed using a small
number of measured points that have no guarantee of
encapsulating the range of nominal results that can be
expected from target kernel, that it is reasonable to
extend the models over that entire range. Search-based
auto-tuners, for example, can utilize our models to learn
the shape of the space and to make better decisions in
terms of where to start the navigation of the search space
and what regions to avoid.

We also see various other use-cases for the models
presented in this paper. For example, if power draw is
a primary concern, one can build and query a model
for component power draw. For example, for LU, we
were able to find and empirically verify two parameter
configurations that were different in energy usage by
only 3%, but one configuration drew 20% less CPU and
DIMM power.

The models developed in this work also find applica-
bility in research based on exhaustive parameter sweeps
in order to learn some feature(s) of a target system.
Laurenzano et. al. [13] use the results of an exhaustive
set of benchmark runs to guide dynamic clock frequency
selections. Our models could reduce the number of actual
benchmark runs required to fill their benchmark results
space, greatly reducing the overhead of filling this space
because most of it could be filled with modeled results.

VI. RELATED WORK

Ipek et. al. [9] and Lee et. al. [15] use ANNs to predict
execution time of HPC applications. Their models use
application-level input parameters (e.g. processor topol-
ogy, input datasize) as predictors. Our work uses kernel-
specific compiler optimization parameters as inputs to
predict energy usage by system components. Our models
can certainly be used in conjunction with the models
presented by Ipek et. al. and Lee et. al. to develop an
end-to-end modeling infrastructure.

Various researchers have utilized hardware counters
to develop power draw characterizations for HPC ap-
plications and kernels [21] [6] [16] [18]. Others have
used processor performance events [4] and architectural
parameters and parameters drawn from application’s
characteristics [14]. Singh et. al. [21] derive an analytic,
workload-independent piece-wise linear power model

that maps performance counters and temperature to en-
ergy usage. Lively et. al. [16] also use hardware counters
to develop application-centric models for the runtime
and power draw of the system. Rahman et. al. [18] use
models based on hardware counters to estimate power
draw of chip multiprocessors and use that information
to guide the usage of various compiler optimizations.
Our models do not use hardware counters and are solely
based on compiler-level optimization parameters.

Seng et. al. [19] examine the effect of compiler
optimization levels and a few specific compiler optimiza-
tion flags on the energy usage of the Intel Pentium 4
processor. Rather than relying on optimization flags, we
exercise a greater control over how different code trans-
formation strategies are applied. Moreover, our technique
can model component-level power and energy usage.

VII. C ONCLUSION

In this work, we used artificial neural networks to
predict component-level power draw and energy usage
of certain HPC computational kernels. For each of the
kernels, we showed that the number of points in the
training dataset is a very small fraction of the total
number of points in the parameter space. This means that
we have to generate and evaluate a fairly small number
of code variants to characterize the energy usage be-
havior of kernels when subjected to various well-studied
parametrized compiler-optimization strategies and can
generate these models using hours of execution time
rather than days, months or years (depending on the size
of the optimization parameter space). Once the networks
are trained, they can be used to predict power draw
rate and energy usage of the CPUs and DIMMs for all
code variants in the parameter space. Using these small
training sets, the maximum absolute error rate of the
models averages 5.5% for power draw, execution time,
and energy usage over three important HPC kernels.

VIII. A CKNOWLEDGEMENTS

This work was supported partly by the DOE Office of
Science through the SciDAC award titled SUPER (Insti-
tute for Sustained Performance, Energy and Resilience).

REFERENCES

[1] CPU Freq. Scaling. https://wiki.archlinux.org/index.php/Cpufrequtils.
[2] I. Basheer and M. Hajmeer. Artificial Neural Networks:

Fundamentals, Computing, Design, and Application.Journal
of Microbiological Methods, 43(1):3 – 31, 2000.

[3] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield. Power-
Mon: Fine-grained and integrated power monitoring for com-
modity computer systems. InIEEE SoutheastCon 2010, pages
479 –484, 2010.

[4] W. Bircher and L. John. Complete system power estimation: A
trickle-down approach based on performance events. InISPASS
2007, pages 158 –168, april 2007.

[5] M. Caudill. Neural Networks Primer, Part I.AI Expert, 2:46–52,
December 1987.

[6] B. Goel, S. McKee, R. Gioiosa, K. Singh, M. Bhadauria,
and M. Cesati. Portable, scalable, per-core power estimation
for intelligent resource management. InGreen Computing
Conference, 2010 International, pages 135 –146, aug. 2010.

[7] M. W. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, and M. M.
Khan. Transformation recipes for code generation and auto-
tuning. In LCPC’09, Oct 2009.

[8] J. He, A. Snavely, R. Van der Wijngaart, and M. Frumkin.
Automatic recognition of performance idioms in scientific ap-
plications. InIPDPS’11, pages 118 –127, may 2011.

[9] E. Ipek, B. R. D. Supinski, M. Schulz, and S. A. Mckee. An
approach to performance prediction for parallel applications. In
Euro-Par, Springer LNCS, 2005.

[10] A. Jain, J. Mao, and K. Mohiuddin. Artificial neural networks:
a tutorial. Computer, 29(3):31 –44, mar 1996.

[11] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson,
W. Dally, et al. Exascale computing study: Technology chal-
lenges in achieving exascale systems. 2008.

[12] M. Kuhn. Building predictive models in r using the caret
package.Journal of Statistical Software, 28(5):1–26, 11 2008.

[13] M. A. Laurenzano, M. Meswani, L. Carrington, A. Snavely,
M. M. Tikir, and S. Poole. Reducing Energy Usage with
Memory and Computation-Aware Dynamic Frequency Scaling.
EuroPar’11, Bordeaux, France, 2011.

[14] B. C. Lee and D. M. Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power predic-
tion. ASPLOS-XII, pages 185–194, New York, 2006. ACM.

[15] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz,
K. Singh, and S. A. McKee. Methods of inference and learning
for performance modeling of parallel applications. InPPoPP
’07, pages 249–258. ACM, 2007.

[16] C. Lively, X. Wu, V. Taylor, S. Moore, H.-C. Chang, C.-Y.
Su, and K. Cameron. Power-aware predictive models of hy-
brid (mpi/openmp) scientific applications on multicore systems.
Computer Science - Research and Development, pages 1–9.
10.1007/s00450-011-0190-0.

[17] C. Olschanowsky, L. Carrington, M. Tikir, M. Laurenzano, T. S.
Rosing, and A. Snavely. Fine-grained energy consumption
characterization and modeling. InDOD High Performance
Computing Modernization Program UGC, 2010.

[18] S. F. Rahman, J. Guo, and Q. Yi. Automated empirical tuning
of scientific codes for performance and power consumption. In
6th International Conf. on High Performance and Embedded
Arch. and Compilers, HiPEAC ’11, NY, USA, 2011.

[19] J. S. Seng and D. M. Tullsen. The Effect of Compiler
Optimizations on Pentium 4 Power Consumption. In7th
Workshop on Interaction between Compilers and Computer
Arch., INTERACT ’03, Washington, DC, USA, 2003.

[20] R. Setiono. Feedforward neural network construction using
cross validation.Neural Comput., 13:2865–2877, Dec 2001.

[21] K. Singh, M. Bhadauria, and S. A. McKee. Prediction-based
power estimation and scheduling for cmps. InProceedings of
the 23rd international conference on Supercomputing, ICS ’09,
pages 501–502, New York, NY, USA, 2009. ACM.

[22] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth. A
Scalable Auto-Tuning Framework for Compiler Optimization.
In IPDPS’09, Rome, Italy, May 2009.

[23] W. N. Venables and B. D. Ripley.Modern Applied Statistics
with S. Springer, New York, fourth edition, 2002. ISBN 0-387-
95457-0.

[24] R. C. Whaley and J. J. Dongarra. Automatically tuned linear
algebra software. InACM/IEEE conference on Supercomputing
(1998), Wash., DC, USA, 1998.

