
A Static Binary Instrumentation Threading Model
for Fast Memory Trace Collection

Michael A. Laurenzano∗ Joshua Peraza† Laura Carrington∗ Ananta Tiwari∗ William A. Ward, Jr.‡ Roy Campbell‡

∗ Performance Modeling and Characterization Laboratory
San Diego Supercomputer Center

University of California, San Diego
michaell@sdsc.edu, lcarring@sdsc.edu, tiwari@sdsc.edu

† Dept. of Computer Science and Engineering
University of California, San Diego

jperaza@cse.ucsd.edu

‡ High Performance Computing Modernization Program
United States Department of Defense

william.ward@hpc.mil, roy.campbell@hpc.mil

Abstract—In order to achieve a high level of peformance,
data intensive applications such as the real-time processing of
surveillance feeds from unmanned aerial vehicles will require
the strategic application of multi/many-core processors and co-
processors using a hybrid of inter-process message passing (e.g.
MPI and SHMEM) and intra-process threading (e.g. pthreads
and OpenMP). To facilitate program design decisions, memory
traces gathered through binary instrumentation can be used to
understand the low-level interactions between a data intensive
code and the memory subsystem of a multi-core processor or
many-core co-processor. Toward this end, this paper introduces
the addition of threading support for PMaCs Efficient Binary
Instrumentation Toolkit for Linux/x86 (PEBIL) and compares
PEBILs threading model to the threading models of two other
popular Linux/x86 binary instrumentation platforms – Pin and
Dyninst – on both theoretical and empirical grounds. The empir-
cal comparisons are based on experiments which collect memory
address traces for the OpenMP-threaded implementations of the
NASA Advanced Supercomputing Parallel Benchmarks (NPBs).
This work shows that the overhead of collecing full memory
address traces for multithreaded programs is higher in PEBIL
(7.7x) than in Pin (4.7x), both of which are significantly lower
than Dyninst (897x). This work also shows that PEBIL, uniquely,
is able to take advantage of interval-based sampling of a memory
address trace by rapidly disabling and re-enabling instrumenta-
tion at the transitions into and out of sampling periods in order to
achieve significant decreases in the overhead of memory address
trace collection. For collecting the memory address streams of
each of the NPBs at a 10% sampling rate, PEBIL incurs an
average slowdown of 2.9x compared to 4.4x with Pin and 897x
with Dyninst.

I. INTRODUCTION

Large data streams, such as those obtained through surveil-
lance, typically require preprocessing before they can be
used to determine frame-to-frame differences or track object
motion. To acheive higher throughput, this preprocessing can
often utilize highly parallel hardware such as the Xeon Phi
coprocessor or some of the emerging multicore commodity
systems of today. When designing such systems, memory per-
formance is critical. Computer architects use memory address

traces to develop and refine their memory subsystem designs in
order to improve performance [1] and reduce energy consump-
tion [2]. Software developers similarly use the characteristics
derived from memory address trace analysis to restructure
codes in order to achieve higher levels of performance.

With these factors as motivation, PMaC’s Efficient Binary
Instrumentation for Linux/x86 (PEBIL) [3] has recently been
upgraded to support multithreaded x86 64 code. PEBIL is an
open source binary instrumentation toolkit, which previously
provided support for message passing codes only. PEBIL
functions by inserting extra code and data into a compiled
executable, statically creating an instrumented executable bi-
nary. When this instrumented binary executes, the original
functionality of the program is retained while information
about the program’s behavior (e.g., its memory address stream)
is collected as a side-effect.

This work introduces PEBIL’s support for the instrumen-
tation of codes that are multithreaded using pthreads or
OpenMP. PEBIL’s threading model is explained (Section II)
and compared to two other popular x86 64/Linux binary
instrumentation toolkits, Pin [4] and Dyninst [5], with par-
ticular attention given to each of the tools’ support for
providing thread-specific program analysis (Section III). The
threading support overhead for PEBIL, Pin and Dyninst are
then compared empirically by timing the capture of memory
address traces for the OpenMP-threaded implementations of
the NASA Advanced Supercomputing Parallel Benchmarks
(NPBs) [6] using interval-based sampling rates ranging from
1% to 100% (Section IV). These experiments show that full
memory address trace collection (a 100% sampling rate) slows
the threaded NPBs by an average of 7.7x for PEBIL, 4.7x for
Pin and 897x for Dyninst. Furthermore, PEBIL is solely able
to take advantage of interval-based sampling to significantly
reduce overheads – at a 10% sampling rate the overhead of
memory address trace collection is reduced to 2.9x for PEBIL,
5.5x for Pin and is unimproved over full tracing for Dyninst.



II. PEBIL’S THREADING MODEL

Several issues must be addressed when designing and im-
plementing support for the instrumentation of multithreaded
codes. These are divided into two broad categories: those
required to produce correct, thread-safe instrumented code
and those required to deliver thread-specific results from
instrumented code.

A. Instrumenting for Thread Safety

PEBIL’s generation and insertion of code into a target
program have two important purposes: (1) to add functionality
to the program, generally to collect some type of information
about what the running program is doing, and (2) to protect the
program’s state from being altered by that extra functionality.
The central mechanism introduced when integrating support
for multithreaded codes into PEBIL is the utilization of po-
sition independent code for any instrumentation code serving
either of these purposes. In many cases, position dependent
code can be translated directly into position independent
code simply by using indirect or PC-relative addressing.
In those cases, the performance penalty is quite low since
these addressing modes require only a small amount of extra
computation relative to their position dependent counterparts.

Certain operations, however, have no immediate transla-
tion when replacing position dependent code with position
independent code. For instance, PEBIL must preserve the
program’s semantics when inserting extra code. Therefore, for
any inserted instrumentation code which defines some register
that is live in the program PEBIL must save that register prior
to running any inserted code then restore it to its original
value before returning control back to the program. As an
efficient way of accomplishing state preservation, previous
versions of PEBIL used a single fixed memory region as
the storage site for spilled program state. For multithreaded
codes, however, this simple technique is inadequate because
more than one thread cannot safely access the same memory
region absent some mechanism to prevent basic concurrency
errors. Such mechanisms are generally very slow relative to the
typical operations performed by inserted instrumentation code
and hence are undesirable because they would significantly
increase the runtime overhead of the instrumented program.
To preserve and restore a multithreaded program’s state safely
and efficiently, PEBIL now saves and restores state to the top
of each thread’s private execution stack.

B. Thread-Local Instrumentation Data

To provide thread-specific statistics about program behav-
ior, it is necessary for PEBIL to provide a mechanism that
allows an executing thread to quickly find its private copy
of instrumentation data structures (e.g., counters, buffers, or
other collected program state). The difference between main-
taining a private copy of a data structure and maintaining
synchronization around a single data structure shared between
all threads is important because performance data gathered
using the former approach can often be far more useful than
the latter – for example, thread-local execution counters can

reveal imbalances between threads. Whether data structures
are thread-local can also have dramatic consequences in terms
of the performance of the instrumented program. For example,
a basic optimization for handling the memory address stream
generated by an execting program is to buffer those addresses
and process them in batch. A tool which attempted to share
a single buffer between all threads could either synchronize
access to that buffer either at a very fine granularity, which
would invariably generate large amounts of coherence-related
bus traffic, or synchronize access at a coarse granularity,
allowing only a single thread to make progress at a time.

PEBIL provides thread-local data structures to an instru-
mented multithreaded program by providing a hook to thread
creation that allows thread-local data structures to be gener-
ated for private use by each newly created thread. The data
structures created therein are made accessible though a single
table, shared by all threads within a process, which contains a
small pool of memory for each thread. This memory pool can
contain anything of interest to the thread, but is currently only
32 bytes. In practice, for all but the simplest instrumentation
tools this memory pool is therefore limited to holding the
addresses of other interesting data structures. When collecting
memory access traces, for example, this pool contains the ad-
dress of a buffer which holds unprocessed memory addresses
that have been collected from the program. The remainder of
this section discusses how a thread accesses its private memory
pool at runtime and introduces an optimization that allows the
location of that memory pool to be cached for short periods
of time within a running program.

1) Runtime Thread-Local Data Access: Each thread has ac-
cess to a small pool of private memory through a shared table
that it is provided to each process in a PEBIL-instrumented
multithreaded program. For a given thread, the default formula
for deriving the thread’s index into this table IDX is IDX
= (TID >> 12) & 0xffff, where TID is the unique
identifier for the thread. This formula yields a value for IDX
within the range [0,65536), which is simply the value of
bits 12-27 of the thread’s unique identifier. From the standpoint
of efficiency, this method is perfect since it can generate IDX
from scratch1 in as few as three x86 64 instructions.

This method will generate identical indexes for any threads
that share bits 12-27 in their unique identifiers and in principle
there is no guarantee of uniqueness of these bits. In practice,
however, conflicts of this sort have never been encountered
when running up to 16 threads per process. To detect conflicts
as such, PEBIL currently intercepts all thread create calls,
verifying for each new thread that no existing thread has a
table index that conflicts with the new thread’s table index. If
a conflict is detected, PEBIL generates a runtime error rather
than falling back to a slower mode which can resolve conflicts
or guarantee that they will not occur. In such cases execution
can be retried, allowing PEBIL to use a larger number of bits
of the thread ID to reduce the likelihood of conflict, though it
should be noted that each additional bit used doubles the size

1In x86 64 a running thread’s unique identifier is stored in %fs:0x10.



of the table of memory pools.
2) Caching Thread-local Data: Even though the instruction

sequence generating the location of a thread’s private memory
pool is short, that sequence of instructions potentially must
be executed at every instrumentation point that refers to the
memory pool. Because detailed instrumentation tools typically
require frequent access to the memory pool, sometimes as
often as every basic block or every memory instruction, instead
of requiring the location of the memory pool to be recomputed
every time a thread executing instrumentation code needs
to access thread-local data, PEBIL attempts to cache the
computed location in a dead register so that it need not be
recomputed by every subsequent instrumentation point. PEBIL
currently examines code at the function level to try to identify
whether any single register is dead throughout the function’s
execution. If no such register is found, PEBIL must generate
code which recomputes the memory pool location every time
it is required. However, if such a dead register is available
within a function PEBIL inserts code to compute the location
of the memory pool only at the entry and reentry (that is,
immeditately following a call to another function) points of the
function. In order to increase its effecicy, future work within
PEBIL should include extending this optimization to smaller
code structures like loops or basic blocks.

III. RELATED WORK

There are many other x86/Linux binary instrumentation
projects: Pin [4], Dyninst [5], and Valgrind [7] being among
the most popular. This section focuses on Pin and Dyninst
due to space limitations and because Valgrind was designed
for certain useful but heavyweight instrumentation tasks, dis-
tinguishing itself in terms of functionality at the cost of
efficiency [8]. Many binary instrumentation tools covering
other architectures and operating systems exist, but are outside
the scope of this work.

Pin is a popular dynamic binary instrumentation tool which
is maintained by Intel for use on its x86 and x86 64 plat-
forms; it supports threads by providing API hooks for thread
creation/desctruction and for associating a number of data
structures with each thread. Whereas PEBIL performs all state
preservation on a thread’s private stack, Pin sets aside a distinct
region of heap memory for each thread. Pin-instrumented
multithreaded code accesses this region of memory by storing
its location at all times in some general purpose register that
is stolen from the program, which is very effective at mini-
mizing the overhead of accessing that thread-local data. This
register stealing approach is possible because Pin utilizes a
sophisticated dynamic code optimization engine to reorganize
the program around the stolen register where necessary.

Dyninst is a dynamic binary instrumentation tool and static
rewriter which supports a variety of platforms, including x86
and x86 64. Dyninst supports thread-awareness in the devel-
opment of instrumentation tools by by providing a class that
allows the control and examination of running threads. Dyninst
also provides the facilities for building limited expressions
to implement hand-coded instrumentation code sequences,

which can be written to utilize the identifier of an executing
thread. The mechanisms used to control and interact with
threads at runtime and the facilities through which hand-
coded instrumentation is expressed are richer than what PEBIL
provides, but they are far more heavyweight. The support for
utilizing the thread identifier in hand-coded instrumentation is
somewhat similar to PEBIL’s in concept, though while PEBIL
uses a single instruction to get the thread identifier into a regis-
ter, Dyninst uses a much more elaborate mechanism involving
at least two function calls, plus all the resulting necessary
state protection. Dyninst also lacks a facility for caching the
thread identifier or other thread-related information that might
allow instrumentation code to reuse the location of thread-
local data once computed. As shown in the following section,
these factors combine to introduce very large overheads when
utilizing thread-local data in Dyninst.

IV. EXPERIMENTAL RESULTS

This section presents the results of an empirical study whose
purpose is to show the overhead of gathering memory address
traces for multithreaded codes with PEBIL, Pin and Dyninst.
These experiments use aggressively optimized instrumentation
tools developed for each instrumentation platform which col-
lect memory address traces for the OpenMP implementations
of the NAS Parallel Benchmarks (NPBs) [6]. Descriptions of
these benchmarks are given in Table I. The test system used
in all experiments is a dual-socket, 8-core Intel Xeon X3450.
Each core has a 32KB dedicated L1 cache and 256KB of
L2 cache. All four cores in a socket share 8MB of L3 cache
and both sockets on the board share 16GB of memory. Each
experiment is run using a single process with a number of
OpenMP threads specified in Table I. Furthermore, all results
presented here are computed as the mean of three independent
runs of the particular experiment.

TABLE I
NAS PARALLEL BENCHMARK DESCRIPTIONS

Name Description Input Thread # of Static
Size Count Mem. Insns.

BT block tri-diagonal solver B 4 4888
CG conjugate gradient B 8 1170
DC data cube W 8 2240
EP embarassingly parallel B 8 573
FT 3D fast Fourier Transform B 8 1889
IS integer sort C 8 372
LU lower-upper Gauss-Seidel B 8 5339
MG multi-grid on mesh sequence B 8 2568
SP scalar penta-diagonal solver B 4 4456

A. Thread Support Overhead

The first experiment is intended to illustrate the overhead of
frequently accessing thread-specific data in the multithreaded
workload described in Table I. PEBIL, Pin and Dyninst are
used to instrument each program in this workload in order
to fill a set of buffers (one for each thread) with every
memory access issued during program execution. That is, these
experiments are designed to collect the full memory address
stream that results from program execution, also known as a



full memory address trace. The per-thread buffer size for each
tool was optimized for speed using a small set of empirical
tests, resulting in 32KB buffers for PEBIL, 128KB buffers for
Pin and 512KB buffers for Dyninst. Because this experiment
is intended to quantify the overhead of providing thread-
specific instrumentation as opposed to demonstrating the use
of or overhead related to a particular application of memory
address traces, upon encountering a full buffer the memory
addresses found in that buffers are simply discarded as quickly
as possible in order to return control to the instrumented
program to begin filling the buffer again. The sequence of
interactions that a thread has with its private buffer are to:

1) Fill the buffer with memory addresses.
2) Call a minimal processing function which updates a

count of the number of memory accesses encountered
so far and marks the buffer as being empty.

3) Return control to the instrumented application which
begins to fill the buffer again.

The results for this experiment are given in the top row
of Table II labeled ”Full Trace”; the entries in this table are
the slowdowns involved in collecting the full memory address
traces for each of the test benchmarks using PEBIL, Pin and
Dyninst, computed as the instrumented application runtime
divided by the uninstrumented runtime. Examination of these
results matches our expectations fairly closely – the average
slowdowns for PEBIL, Pin and Dyninst are 7.7x, 4.7x and
897x respectively. PEBIL is on average 1.7x slower than Pin
when producing full address traces, which is a reasonable
value given the relatively long runtimes of collecting the
traces. The high overheads associated with Dyninst are due
principally to the fact that the thread identifier is to give a
thread access to its private address buffer, which is done at
every memory instruction; the overhead of this operation is
high in Dyninst and is the result is never reused between
instrumentation points, so it must be done very frequently.
This contrasts with both PEBIL and Pin. In PEBIL, accessing
the thread’s private buffer is much faster because accessing the
thread identifier is faster and because that identifier might be
cached and reused between instrumentation points. In Pin, the
location of a thread’s private data, which in turn contains the
thread’s private address buffer, is accessed through a register
that stolen from the program. This potentially introduces
overhead in the form of a program that is reorganized to not
use that register, but results in very fast access to the thread’s
private address buffer since most of the computation of the
buffer’s address only needs to be computed once.

B. Sampling the Memory Address Stream

It is often the case that full memory address streams are
subjected to some form of sampling, either in the form of
interval-based sampling [1] or resulting from a sohpisticated
phase-based analysis scheme [9]. The motiviation for introduc-
ing sampling of any form is simple – HPC application runtimes
are often measured in hours and utilizing their full memory
address traces consumes too many resources (time and/or disk
space). Sampling is popular because it often allows significant

fractions of the memory address stream to be discarded while
still allowing the properties of the memory address stream to
be ascertained with an acceptable level of fidelity.

Throwing away memory addresses after they are collected
allows the overhead of processing memory addresses to be
reduced, yet it also introduces the opportunity to reduce the
overhead of collecting those memory addresses. If the instru-
mentation tool can disable or remove instrumentation during
the instrumented program run, then interval-based sampling
can potentially reduce the cost of collecting the memory
address trace because large amounts of unnecessary compu-
tation (computing effective addresses and copying addresses
as well as other metadata into the address buffer) can be
avoided. Each of PEBIL, Pin and Dyninst are capable of
modifying instrumentation at runtime in this fashion. PEBIL
can rapidly disable and re-enable arbitrary instrumentation
points at runtime using a simple operation which swaps
inserted instrumentation code for nops. Pin and Dyninst can
remove and arbitrarily reinstrument code, which is far more
versatile than PEBIL’s approach but which comes at the
expense of runtime overhead to perform the removal and re-
instrumentation operations.

The effectiveness of interval-based sampling within PEBIL,
Pin and Dyninst are explored by repeating the experiments
in Section IV-A but capturing only the first 10% and 1% of
the memory addresses of each interval of 1 billion addresses
issued by the running program. During these runs, the instru-
mentation tool disables and reenables instrumentation around
the sampled regions of the program’s memory address stream.
The results of introducing sampling are seen in Table II, which
show the overhead for three sampling rates for both PEBIL
and Pin, labeled PEBIL-SAMPLE and Pin-SAMPLE respec-
tively. Dyninst-SAMPLE is excluded from Table II because
reconfiguring instrumentation with Dyninst in this fashion
always resulted in increased overheads. Because introducing
this optimization into these Pin experiments does not reliably
result in overhead improvements, a results series labeled Pin-
BEST is also shown which gives the best achievable overhead
between collecting the full memory address trace (Pin-FULL)
and the sampling-aware Pin tool used at that sampling rate
(Pin-SAMPLE). These results show that the overhead of
collecting memory accesses with PEBIL decreases gracefully
as the sampling rate decreases. Pin does not demonstrate
the same reliable performance improvements despite the very
large sampling period2 used here – 1 billion addresses; on
average Pin-FULL performs better than Pin-SAMPLE, even
for the lowest sampling rate of 1%.

Overall, PEBIL-SAMPLE is 1.9 times faster than Pin-
SAMPLE at a 10% sampling rate and over twice as fast at 1%.
PEBIL-SAMPLE is generally far better than PEBIL-FULL
because PEBIL’s method of reconfiguring instrumentation at
runtime is very lightweight, involving a simple exchange of
instrumentation code and nops, resulting in runtime overheads

2A larger sampling period implies that fewer instrumentation removal and
re-insertion operations will be done per instrumented program run.



TABLE II
MEMORY ADDRESS TRACE COLLECTION OVERHEAD (SLOWDOWN RELATIVE TO UNINSTRUMENTED RUNTIME) FOR THE NBPS (OPENMP)

BT CG DC EP FT IS LU MG SP MEAN

Full Trace
PEBIL-FULL 16.6 6.1 2.0 2.6 6.2 5.9 10.6 10.2 9.3 7.7
Pin-FULL 6.2 4.4 3.0 3.0 3.9 5.6 5.9 5.3 4.8 4.7
Dyninst-FULL 739 863 531 449 922 752 1759 1556 504 897

10% Sampled
PEBIL-SAMPLE 4.6 2.8 1.8 1.6 2.4 2.6 3.3 3.4 3.3 2.9
Pin-SAMPLE 6.0 4.5 3.6 2.8 3.1 3.9 10.3 6.5 9.0 5.5
Pin-BEST 6.0 4.4 3.0 2.8 3.1 3.9 5.9 5.3 4.8 4.4

1% Sampled
PEBIL-SAMPLE 3.4 2.4 1.8 1.5 2.1 2.3 2.6 2.7 2.7 2.4
Pin-SAMPLE 5.8 4.4 4.5 2.8 2.9 3.8 9.6 5.5 8.0 5.3
Pin-BEST 5.8 4.4 3.0 2.8 2.9 3.8 5.9 5.3 4.8 4.3

in PEBIL-SAMPLE that reliably decrease as more of the
program’s address stream is discarded during sampling. The
difference between Pin-FULL and Pin-SAMPLE is the conflu-
ence of two competing effects – (1) increased overhead due to
the acts of removing and re-inserting instrumentation around
sampling and (2) reduced overhead as a result of running code
which is not wasting time computing addresses and copying
those addresses into a buffer. Which of these effects is stronger
for a particular experiment depends on the sampling rate as
well as the amount of code that is reinstrumented each time
sampling is removed or re-inserted. The latter is too complex
to be treated in this work in great detail, though it is related to
the static size of the code and number of memory operations
in the program. Indeed if the number of memory operations
(see Table I) in a benchmark is taken as a guide, it can be
observed that programs with the largest numbers of memory
instructions (LU and SP) show the worst performance declines
in Pin-SAMPLE over Pin-FULL whereas the program with the
smallest number of memory instructions (IS) shows the most
improvement in Pin-SAMPLE of Pin-FULL.

Finally, it is important to note that these results in no way
cast doubt on the generally-realizable benefits of introducing
interval-based sampling into any scheme which utilizes a
program’s memory address trace because sampling will still
have the effect of proportionally reducing the computation or
storage required to handle the address trace. That is, memory
address trace collection overhead can be improved in ways
that depend on the nature of the tool being used to collect the
address trace, but sampling can be used to improve memory
address trace processing overheads in conjunction with any
binary instrumentation tool.

V. CONCLUSIONS

HPC software will continue to evolve and transform to
utilize the high levels of concurrency offered by current and
upcoming multicore and manycore chips. This evolution has
used (and will continue to use) complex models of paral-
lelization to include both interprocess and shared memory
models built on top of threading platforms like OpenMP
and pthreads. Sophisticated program analysis tools, such as
the binary instrumentation toolkit PEBIL, are necessary for
understanding how to effectively use increasingly complex
combinations of hardware and supporting system software.
This work presented the extensions made to PEBIL in or-
der to provide support for instrumenting programs that are

multithreaded with pthreads or OpenMP. Details of PEBIL’s
threading model, along with some optimizations surrounding
that model, were described and compared to the models of
two other popular binary instrumentation tools – Pin and
Dyninst. A series of experiments surrounding the collection
of programs’ memory address traces using each of these three
instrumentation tools were performed, demonstrating that Pin
is somewhat faster than PEBIL for collecting full memory
address traces for the OpenMP implementations of the NAS
Parallel benchmarks, with Dyninst far slower than either. Be-
yond this, the introduction of interval-based sampling reduces
the overheads observed for collecting memory address traces
with PEBIL in proportion to the sampling rate, increases the
overhead with Dyninst, and has varying results with Pin. These
experiments show that PEBIL has a reasonable threading
model and is well-positioned for performing practical analysis
of the memory address streams of HPC programs.

REFERENCES

[1] L. Carrington, A. Snavely, X. Gao, and N. Wolter. A performance
prediction framework for scientific applications. International Conference
on Computational Science, 2003.

[2] M. A. Laurenzano, M. Meswani, L. Carrington, A. Snavely, M. Tikir, and
S. Poole. Reducing energy usage with memory and computation-aware
dynamic frequency scaling. European Conference on Parallel Processing,
2011.

[3] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. PEBIL:
efficient static binary instrumentation for Linux. International Symposium
on Analysis of Systems & Software, 2010.

[4] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. Programming Language
Design and Implementation, 2005.

[5] B. Buck and J. K. Hollingsworth. An API for runtime code patching.
International Journal of High Performance Computing Applications,
14(4), 2000.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.
The NAS Parallel Benchmarks – summary and preliminary results. The
International Conference for High Performance Computing, Networking,
Storage and Analysis, 1991.

[7] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. Programming Language Design and
Implementation, 2007.

[8] J. Seward and N. Nethercote. Using Valgrind to detect undefined value
errors with bit-precision. In USENIX Annual Technical Conference, 2005.

[9] M. A. Laurenzano, B. Simon, A. Snavely, and M. Gunn. Low cost
trace-driven memory simulation using simpoint. Workshop on Binary
Instrumentation and Applications, 2005.


