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Abstract—We examine the scalability of a set of techniques
related to Dynamic Voltage-Frequency Scaling (DVFS) on HPC
systems to reduce the energy consumption of scientific ap-
plications through an application-aware analysis and runtime
framework, Green Queue. Green Queue supports making CPU
clock frequency changes in response to intra-node and inter-
node observations about application behavior. Our intra-node
approach reduces CPU clock frequencies and therefore power
consumption while CPUs lacks computational work due to
inefficient data movement. Our inter-node approach reduces
clock frequencies for MPI ranks that lack computational work.

We investigate these techniques on a set of large scientific
applications on 1024 cores of Gordon, an Intel Sandybridge-
based supercomputer at the San Diego Supercomputer Center.
Our optimal intra-node technique showed an average measured
energy savings of 10.6% and a maximum of 21.0% over regular
application runs. Our optimal inter-node technique showed an
average 17.4% and a maximum of 31.7% energy savings.

I. INTRODUCTION

The electricity costs of operating HPC systems and data

centers have increased by 36% in the last 5 years (from 7

gigawatts to almost 10 gigawatts total in the United States),

according to Jonathan Koomey’s 2011 report [1] on recent

electricity growth within data centers. This growth was actu-

ally dampened by the global recession; it had been forecast

by the Environmental Protection Agency to double [2] and

it is very likely to double within the next 5 years as the

economy rebounds and the Department of Energy enters the

“exascale” era of supercomputing. To help reduce these energy

costs, we present Green Queue, a scalable scheduler deployed

on Gordon [3] at the San Diego Supercomputer Center in

which users and the facility operators work together to save as

much as 31.7% of the operational energy bill. Green Queue

utilizes application behavior and hardware configurables to

discover customized energy efficient runtime configurations

specifically for an application. It then deploys the application

onto the machine and utilizes these runtime settings to run the

application in a way that uses less energy.

Green Queue is based on a series of application-aware Dy-

namic Voltage-Frequency Scaling (DVFS) techniques for use

within MPI applications. DVFS is a technique whose purpose

is to lower the power draw of the computing system by putting

the processor(s) of the system into lower frequency-voltage

states. However, the undesirable side effect of lowering the

clock frequency is a potential loss in performance when that

lower clock frequency results in the delay of something on

an application’s critical path. This implies that there is a

careful balance which must be struck between lowered power

draw and loss of performance in order to achieve reduced

energy consumption. Understanding this tradeoff requires un-

derstanding the complex effects that memory access patterns,

computational behavior, load imbalances in a parallel job,

and changes in CPU clock frequency have on performance

and power draw. Our approach to gaining this understanding

consists of a combination of lightweight static analysis and

runtime tracing to automatically acquire characterizations of

the patterns of execution for computational bottlenecks and

load imbalances within an application. We then use this

information to develop a customized DVFS strategy that is

prepared, stored in a database and deployed on the application

each time it is seen by Green Queue.

Through Green Queue we take a two-pronged approach to

determine the customized strategy of CPU clock frequency

for an application. First, for applications with good load

balancing we attempt to increase energy efficiency with an

intra-node clock frequency selection mechanism. This method

utilizes a detailed, full characterization of the application to

logically partition the application into phases of behavior;

phases serve as the basic unit in the application for which

clock frequency decisions will be made. For the application’s

phases, we query power consumption models for the system

which yield the system-wide power draw for individual phases

of the application at all available frequencies within the

hardware. We then combine the power draw models with

execution time data/models to transparently map application

phases to their optimal clock frequency settings. Second, for

applications with poor load balancing our strategy seeks to

shift the clock frequency on the hardware running MPI ranks

that have less work to do than their counterparts. These shifts

are based on timing measurements of the MPI behavior of

the application and reduce the power draw for the hardware

running those ranks which appear to be off the critical path

for the application and should therefore have little impact on

overall runtime, saving power at little cost to performance.

We test the effectiveness of Green Queue on 1024 cores

(a full rack) of Gordon, a novel Intel Sandybridge-based

supercomputer at the San Diego Supercomputer Center. Using

rack-level AC power measurements that are collected for the

entire system and encompass all power drawn by the system,

we show substantial energy benefits on a host of real scientific



applications that are run using the Green Queue.

II. RELATED WORK

DVFS as a technique for increasing the energy efficiency of

HPC systems and applications is relatively well-studied. For

the sake of clarity, we distinguish two categories of related

work: intra-node and inter-node DVFS techniques for reducing

energy consumption.

A. Intra-node DVFS

Intra-node DVFS schemes take advantage of the periods

during an application run during which the performance of

the application is to some degree independent of the CPU

clock frequency running the application; periods which usually

correspond to times when the application is waiting on some

resource (e.g. memory or disk). Early work by Ge et al. [4]

explores the opportunities to reduce energy consumption by

running memory-bound applications either at a fixed frequency

for the entire run or at hand-tuned dynamic frequency settings

for different functions in an application.

Freeh et al. [5] collect an application profile then use

that profile to manually divide a program into phases based

on a memory pressure metric, operations per cache miss.

Each of the identified phases is then run on several of the

available frequencies to determine the most energy efficient

frequency for that phase. Green Queue automates the process

of identifying possible application phases, determining the

optimal frequency for those targets using power models rather

than trial and error, then instrumenting the application binary

to automatically shift the frequency as the application runs.

A number of projects use power/energy models based on

hardware counter data [6], [7], [8] to determine optimal

frequency settings for an application. Green Queue relies

on application characteristics and power models based on

those characteristics to make frequency scaling decisions.

Often these approaches are time interval-based rather than

program structure-based like Green Queue. Time interval-

based approaches take observations about the application from

previous intervals to estimate the time/power requirements

and workload of upcoming intervals. These estimations are

mostly based on hardware counters aggregated in the previous

intervals: cache accesses counters [9], MIPS (Millions of

Instructions per Second) [10] and CPU stall cycles [11]. Time

interval-based approaches can run into suboptimal behavior

when pre-defined time-intervals do not happen to line up with

changes in application behavior. Green Queue’s application

phase analysis and identification avoids this by utilizing the

application’s structure to construct phase boundaries.

B. Inter-node DVFS

Inter-node DVFS schemes attempt to identify MPI inter-

node load imbalance or the time spent blocked in MPI routines

and use that information to lower the clock frequency of the

hardware running the slacking or blocking MPI ranks. Freeh et

al. [12] present a runtime system called Jitter which influences

the clock frequencies of the CPUs running iterative codes

using observations about the behavior of previous iterations

within a run to predict the likely behavior of upcoming

iterations. Their scheme is introduced to the application by

inserting a special MPI call at the top of the main loop in

the application, then intercepting that call in a Profiling MPI

(PMPI) layer. Rountree et al. take an approach in Adagio [13]

which makes runtime clock frequency selection decisions

at many of the “natural” MPI call entry points within the

application, while attempting to reduce energy and minimize

runtime delay. Adagio meets these goals, achieving up to

20% energy reductions in certain MPI applications while

maintaining minimal slowdowns. Adagio also makes several

other contributions to the state of the art, most notably it

demonstrates that regions of the application can and should

be split across multiple clock frequencies where none of the

available frequencies closely match the ideal frequency.

These schemes demonstrate significant progress toward

minimizing the energy required to run poorly balanced MPI

applications, though to our knowledge they have never been

shown to work at scale. Our current approach is simpler

than more refined schemes like Jitter and Adagio but it is

demonstrated at scale, which allows it to serve as a proof

of concept for using DVFS on parallel scientific applications

running on large number of CPUs in order to reduce their

energy impact. Future work includes incorporating many of the

novel concepts introduced by other works in order to refine our

own efforts to exploit MPI imbalances to reap energy savings.

III. GREEN QUEUE FRAMEWORK

We start this section by describing a typical workflow for

an application within Green Queue, for which a high level

illustration is provided in Figure 1. Users submit jobs to the

queue to be scheduled on the batch nodes. In order for an

application to be subjected to application-aware DVFS, the

application first needs to be instrumented for data movement

and MPI communication trace collection. Once the trace

is collected, it is analyzed to determine which of the two

approaches—inter-node (detailed in Section V-B) and intra-

node (detailed in Section IV and V)—is beneficial for the

application. Note that this process needs to be done only once

per application provided that the size and nature of the dataset

remains similar to the original1. The result of the analysis

is recorded in an application trace database. Any subsequent

runs of the application will result in those customized DVFS

settings being retrieved from the trace database, which Green

Queue will use to instrument and run the application with

those settings.

A. Application Characterization

Green Queue relies on basic block analysis and cache

simulation tools developed on top of the PEBIL [14], an open

source binary instrumentation toolkit for x86/Linux. A basic

1Often applications work on different datasets but the size of dataset
remains relatively constant. When different datasets are used for the same
application binary, these can be delineated by setting an environment variable
to identify the name of the dataset.



Fig. 1. Green Queue Workflow (Letters in red circles correspond to the tools
described in respective subsections)

block analysis tool provides static and dynamic information

about each basic block in an application including instruction

types and their respective counts, information on loop and

function memberships, relationships to other basic blocks

(control flow edges), memory access sizes, def-use distances,

and basic block visit counts. Based on the basic block visit

counts, the set of the most dominant basic blocks are selected

as candidates for cache simulation. A cache simulation tool

utilizes this list of candidates to produce cache hit rates per

cache level for each candidate block.

B. MPI Communications Behavior

Green Queue uses PSiNSTracer [15], an open source MPI

tracing and profiling library, to identify load imbalances in

MPI applications. For this work, we extended PSiNSTracer

to allow MPI profiling layer functions to be introduced to

the application via the LD_PRELOAD environment variable

on Linux systems, so it therefore requires no modifications

to any stage of the application build process to use it. The

PSiNSTracer library times and counts each type of MPI call

in the application, then writes a summary of that information

to disk when the application is finalized.

C. Storing Application Trace Data

Our strategies for clock frequency selection rely funda-

mentally on the trace data that we collect using the basic

block analysis, cache simulation and MPI tracing tools that

we described above. To ensure easy and fast access to this

data, we have developed a system for storing and interacting

with application trace data. This system uses an underlying

SQL relational database as well as a high level interface

which allows arbitrary queries to be run on the available static

and dynamic application data, including queries on high-level

control flow units such as basic blocks, loops and functions.

D. Frequency Scaling

To enable frequency scaling, we utilize the

cpufreq-utils [16] package available on many Linux

distributions. Since DVFS is a privileged operation, we

have developed a light-weight and secure software layer

called SecureScaler. SecureScaler is a daemon that accepts

frequency change requests from user-level applications via a

Unix-domain socket and optionally acts on those requests.

This extra layer allows additional security policies to be used

when applications issue frequency change requests.

In the next section, we discuss Green Queue’s application

analysis and phase discovery methodologies.

IV. IDENTIFYING APPLICATION PHASES

A program phase is a path through the program’s control

flow graph which exhibits roughly uniform runtime behavior

while on that path. Many runtime approaches use simple

time slices because application specific information is not

available. For intra-node DVFS we leverage detailed static

and runtime application analysis and trace data collected

using tools developed on top of PEBIL (see Section III-A)

to customize phase granularity of the application. The trace

data is used to reconstruct an abstract representation of the

program. This representation is used by the phase analysis

module within Green Queue to create an approximate context-

sensitive call graph for the application. The call graph includes

function summaries at each node as well as loop summaries

within each function summary.

In this work, we utilize knowledge of the program structure

to more accurately locate phase boundaries. We assume that

all loops at the inner-most level are a single homogeneous

phase and phase transitions occur at loop boundaries. The

primary obstacle with this approach to phase identification is

overcoming function calls. Phases are dynamic; they describe

the execution of a program over time, so they easily break

across function boundaries. If function calls are not taken into

account, phases may be characterized inaccurately or missed

entirely. For example, in a set of experiments done without

accounting for functions no substantial phases were identified

in two applications: MILC [17] and SWEEP3D [18]. Real

applications are written to be modular so it is imperative that

our analysis crosses function boundaries.

We use function inlining when analyzing trace data to

create inter-procedural loop hierarchies. Inlining all the func-

tions in a program is potentially a very expensive operation.

The memory footprint required per function is multiplied by

the number of callpoints it has throughout the application.

Function inlining is further complicated by direct or indirect

recursion. Attempting to inline functions that are part of a

cycle in the call graph will result in an infinite loop of inlining.

Our algorithm is designed to avoid large memory requirements

by skipping functions that have a small number of dynamic

instructions. These functions would have a very small impact

on the result of our analysis, so eliminating them is acceptable.

We choose not to attempt inlining on functions involved in a

call-graph cycle. We avoid them using a worklist algorithm

to only inline leaf functions, functions that make no function

calls. The worklist initially contains all the functions in the

application. As functions are taken off the worklist, they are

considered for inlining. If they are either inlined or removed,

every function that calls them is marked as changed and

added to the worklist. When the algorithm completes, no leaf

functions will remain in the call graph unless they were also

root functions (i.e. main).

When a function is inlined, its dynamic statistics are aggre-

gated into its new parent loop and function in proportion to



the number of times it was called from that location out of

the total number of calls. When inlining is complete, we are

left with only root functions. Ideally there is only a single root

function, the main function. Other root functions are possible

if there are cycles in the call graph, if the calls escape our

analysis (e.g. called by a function pointer), or if the functions

are never called. We expect the first two cases to be rare; we

have not yet witnessed their occurrence in any applications we

have analyzed so far. The third case means that the function

is of no further interest because the function is dead.

Each root function contains summaries to form an inter-

procedural loop hierarchy. Initially, phase entry points are

placed at the entry to the most deeply nested loops. Given

our assumption that inner-most loops are homogeneous, this

ensures that an actual phase follows each phase entry point

and gives us a starting point for identifying larger phases.

These phases may be too short to show energy gains with

DVFS. The overhead of switching frequency has the potential

of eliminating the energy savings of running at the lower clock

frequency. To more suitably organize phases and the frequency

scaling activity at their borders, we introduce a series of

optimizations on top of the basic phase recognition scheme just

described. These optimizations include eliminating small/noisy

loops, merging neighboring phases that are of similar behavior,

and eliminating frequency shifts at phase exit points and are

detailed below.

Noisy Loop Elimination: To eliminate noisy loops, we make

a pre-order traversal of the loop hierarchy. At each loop

node, if the number of dynamic instructions in the loop is

below some threshold, the loop and all of its children are

eliminated from the analysis. If all children of some parent

loop are eliminated, then the parent loop becomes an inner

loop. Lower thresholds result in a larger number of phases

and therefore more finely tuned frequency switching, though

in turn this potentially results in higher overheads due to

the cost of performing more frequency scaling operations. In

Section VI we perform a series of experiments to evaluate

different choices for this threshold.

Merging Neighboring Loops: Two phases are neighboring

if they occur sequentially at runtime. We approximate this by

considering all loops contained in the same parent loop to

be neighbors. We use this approximation because application

trace information containing dynamic inner loop ordering is

impractical to gather. A depth first search algorithm is used

on the loop hierarchy to combine phases. We traverse the

loop hierarchy to the inner most loops, where if we find that

all neighboring inner loops share the same optimal frequency

their phases are eliminated and a new phase entry point is

created at their parent loop’s entry. This process is repeated

until neighboring loops have different optimal frequencies or

until an outermost loop is reached. Phase merging is also done

at runtime; a call issued by the current phase to change to the

frequency is only honored if the target frequency is different

than the current frequency.

Phase Exit Optimization: The final optimization seeks to

eliminate the overhead of restoring the original clock fre-

quency upon exiting a phase by utilizing the observation that

our phase-based analysis is generally very complete. That

is, it covers the vast majority of the run of the application.

Therefore, rather than resetting the frequency to its original

value we eliminate the call to the frequency scaling library

in order to leave the next phase responsible for setting its

own optimal frequency. The risk in this optimization is that

the analysis could be incomplete and result in executing long

sections of the application (sections outside of phases) at

suboptimal frequencies. However, if our analysis is complete,

we can reduce the number of frequency changes by half or

more. We evaluate the tradeoff involved in employing this

optimization in Section VI.

V. CLOCK FREQUENCY SELECTION

In this section, we describe Green Queue’s method for the

selection of a clock frequency strategy for the application,

either by selecting the frequency for an application phase or

by selecting a scaling strategy based on the detected MPI

imbalance properties of the application. The decision about

what clock frequency configuration is optimal is made based

entirely on the amount of energy we can save with possible

frequency configurations.

In order to select a clock frequency scaling strategy for a

load-balanced application, Green Queue takes a phase profile,

generated from the trace data as input, queries the power model

for total system power draw estimation, and utilizes phase

timing data to output the optimal frequency for the phases. The

phase configuration is output to a file to be loaded at runtime

by a DVFS instrumented application. For a load-imbalanced

application, Green Queue bases the clock frequency selection

on the results of an imbalance detection algorithm that uses

the MPI profile collected for the application.

A. Intra-Node Frequency Scaling via Power Models

Direct measurement of power draw for different application

phases can be inaccurate and sometimes impossible because

power usually can only be measured at large granularity and

at some expense/effort. The power draw measurement devices

that we currently use only yield roughly one reading per

second. Many application phases are too short to get useful

power measurements given such a coarse power measurement

granularity. A more practical approach is to relate important

properties observed about an application with the total system

power draw, then use that relationship to estimate power for

an application phase with a given set of properties.

Earlier work [19] took this approach and introduced a

loop generation framework called pcubed. The framework

allows for the creation of a population of loops within a

space of important application characteristics such as number

of memory operations, floating point operations, working set

size and various definition-use distances. Once this space is

defined, pcubed generates the benchmark loops in order to

populate it. Basic block analysis and cache simulation tools

described in Section III-A are then used to derive an eight-



dimensional vector (see Equation 1) of observable properties

for each of the generated benchmark cases.

Once traces are collected for the benchmarks, the bench-

marks are run once per target system to measure the average

power draw. One of the disadvantages of this approach is that

for systems with a large number of configurable frequency

settings, the number of benchmarks that have to be run

to populate the characterization space explodes. A set of

loops from pcubed that adequately covers the interesting

characterization space, consisting of 2320 benchmarks, each

configured to run for 5 seconds at the highest frequency,

would take at least 3 days to explore on a Sandybridge node

with 15 different CPU frequencies. This problem is made

worse by random power or performance fluctuations that can

affect measurements and force multiple collections of each

data point, further increasing data collection time. In order

to reduce the number of points that need to be measured, a

machine learning approach is used to create power models

based on a small subset of the pcubed space based on the

problem formulation in Equation (1).

Psys = f(freq, l1 p ins, l2 p ins, l3 p ins,

fprat,mops ins, fops ins, int dud, fp dud )
(1)

In Equation (1), [l1, l2, l3] p ins are cache levels 1, 2

and 3 misses per instruction. fprat is the ratio of the num-

ber of floating point operations to the number of memory

operations, mops ins is the number of memory operations

per instruction. fops ins is the number of floating point

operations per instruction. int dud and fp dud are integer

and floating point definition-use distances respectively. The

specific machine learning algorithm used for this process is

the gradient boosting method (gbm) [20].

Power prediction models are trained on a small subset of

pcubed data that is supplemented with a set of 31 bench-

mark kernels to prevent over-training. These kernels are very

prevalent in HPC applications and have been extensively used

to evaluate intra-node auto-tuning techniques [21], [22]. Here

we have categorized them into four categories following the

scheme used in [23]: 1. Linear algebra computation kernels,

which do different operations on scalars, vectors and matrices;

2. Linear algebra solvers, which solve a system of linear

equations; 3. Stencil kernels, which update array elements

following some fixed access patterns; 4. Data mining kernels,

which do statistical analysis on random variables.

Green Queue takes 1400 data points from the kernels,

varying working set sizes and frequencies, and combines them

with 1400 data points from pcubed selected randomly from

the set of all pcubed test cases on all frequencies. A 10-

fold cross validated model is constructed using 600 random

samples2 from the total training set of 2800 samples and is

able to predict the power draw of the remaining 2200 samples

with an absolute mean error percentage of 2.5%. Figure 2

shows the modeled versus measured values for total system

power draw for all 2800 samples in the combined pcubed

2We experimented with various training sizes, and for space reasons, we
chose to present the model that gave us the most promising prediction results.
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Fig. 2. Modeled vs. Observed Total System Power Draw

and HPC kernels set. The thick line in the graph is the trend

line and for a well-behaved model, this line should be roughly

a 45 degree line, which is the case in Figure 2.

When Green Queue needs to select a frequency for an

application phase, the machine learning models are loaded

and fed the phase profile. The models return predictions for

the phase’s power requirements at each available frequency.

These predictions are combined with the phase timing data to

estimate the optimal frequency.

B. Inter-Node Frequency Scaling on Load Imbalance

Load imbalance in MPI applications occurs when some MPI

ranks are assigned more computational work than other ranks.

Many MPI applications exhibit load imbalance issues due to

the structure of the underlying scientific problem that is being

solved or due to some artifact of the implementation of the

solution. Remedies to the load balancing problem are well-

developed in the literature and range from solutions which

involve modification of the algorithm or implementation to

doing dynamic load balancing. Despite these solutions load

balancing remains a problem in HPC because application

developers reasonably seek to avoid the complexity of intro-

ducing these solutions into their applications.

Green Queue absorbs imbalances by measuring them and

introducing lower clock frequencies to the CPUs that are

running MPI ranks which are running at less than capacity.

The measurements of MPI behavior are collected using PSiN-

STracer [15], an open source MPI tracing and profiling library.

We start by defining CPUT imei as the amount of time

spent outside of MPI calls on rank i, then we define the excess

computation of rank i for an MPI run on n ranks as follows.

excessi =
CPUTimei

MAXn
r=0

(CPUTimer)
(2)

excessi is therefore the ratio of the computation time of rank

i to the most computationally intensive rank in the application.

Note that Equation (2) is defined in such a way that the

inequality 0 ≤ excessi ≤ 1 holds for all ranks. We then

use the following formula to assign a clock frequency to



some rank i, where p is a penalty factor that will be derived

experimentally in Section VI-B.

Freqi = (excessi × (1 + p)) × Freqmax (3)

Combining Equations (2) and (3) yields an equation directly

relating the MPI profiling measurements to the clock fre-

quency selections.

Freqi

Freqmax

=
CPUTimei × (1 + p)

MAXn
r=0

(CPUTimer)
(4)

That is, we select the clock frequency for a rank in such a

way that the ratio of that clock frequency to the maximum

frequency on the system is equal to the ratio of the CPUT ime

of that rank to the maximum CPUT ime for all ranks in the

run, subject to a penalty factor which can be used to tailor

how aggressive the frequency selection is. p = 0 yields a

clock frequency which equates these ratios, positive values of

p yield higher clock frequencies, and negative values of p yield

lower clock frequencies.

This scheme yields a clock frequency for each MPI rank,

corresponding to a particular processing core. However, two

factors prevent running these exact frequencies on each core.

First, the set of clock frequencies available is generally dis-

crete and limited to some small number of fixed values–15

frequency options in the case of the Sandybridge system we

test in this paper. Because of this, we round the frequency

produced by Equation 3 to the nearest available frequency.

We also face the problem that clock frequency cannot be

set for each core independently on a Sandybridge processor.

Every core on a socket runs at the frequency of the maximum

frequency that is set for any core attached to that socket.

We experimentally pursued several strategies with the goal

of assigning ranks to cores in such a way that groups of

similar frequency were assigned to the same socket. Such

strategies have the effect of allowing the socket to achieve

a lower overall frequency and result in lower power draws.

However, rearranging ranks (e.g. remapping tasks) in this

way risks destroying communication locality properties that

are present within the application in addition to the risk of

grouping resource intensive ranks together, pitting those ranks

against one another for scarce processor resources. Empirically

we found that the performance pitfalls of these strategies far

outweighed the power draw improvements, so we omit the

consideration of alternative mapping strategies in our results

as we evaluate the effectiveness of the approach outlined in

this section.

VI. RESULTS

All experiments were conducted on Gordon, a supercom-

puter with 1024 compute nodes (16,384 total cores) recently

deployed at the San Diego Supercomputer Center. Each com-

pute node has 64GB of memory and consists of two sockets

each running an 8-core Intel Sandybridge E5-2670 processor.

There are 15 different clock frequency settings available in

this processor model – 1.2GHz through 2.6GHz at 100MHz

increments – and can be set independently for each socket.

Gordon’s compute nodes are configured as a 3D torus and

are connected with a QDR Infiniband network. We obtain

the rack-level AC power measurement directly from the APC

Power Distribution Units (PDU) [24] that supply power to

Gordon’s compute racks. Each APC PDU supports remote

power monitoring via an SNMP interface. This setup allows

us to measure the power draw of any of the 16 1024-core

racks of Gordon, though for the sake of consistency we use

the same rack for all experiments in this work.

Green Queue was evaluated for 4 large-scale HPC appli-

cations and 3 benchmarks: MILC [17], SWEEP3D [18],

CG [25], FT [25], MG [25], LAMMPS [26] and POP [27].

A. Intra-node Scaling

Recall from Section IV that our approach to intra-node

DVFS involves identifying phases in the application. Phases

are continuously executed sections in the application’s control

flow graph which have roughly uniform behavior. We start

by exploring the effect of varying the number of dynamic

instructions required to be executed in a phase in order to

consider it valid. Phases below that threshold will be hidden

from analysis since they have the potential to act as noise

within a larger and more important phase. Lowering this

threshold will identify more phases for DVFS at the margin,

which in turn will usually incur higher overheads as the result

of making a greater number of clock frequency switches.

Raising this threshold will eliminate, as noise, the short phases

at the margin. This will reduce the overheads resulting from

performing clock frequency switches, but potentially misses

valuable opportunities for DVFS.

In Figure 3 we evaluate this tradeoff empirically by run-

ning a set of application codes through Green Queue with

threshold values ranging from 5 × 104 to 1.5 × 109. The

results of lower thresholds are solid-colored bars of lighter

color, while the results of higher thresholds are shown in

darker solid colors. Examining the average energy savings for

each threshold indicates that a threshold of 5×106 performed

most suitably in reducing the energy required to run this set

of application codes. However, note that there is a relatively

wide range of threshold values that results in energy savings

that are only very slightly worse than the energy saved by

5× 106. We take this as evidence that the exact value of the

threshold is relatively unimportant as long as the threshold is

of approximately the right magnitude. We therefore proceed

with the threshold 5×106 in the remainder of our experiments.

Having selected a minimum phase threshold, we now turn

our attention to determining whether the optimization of skip-

ping frequency scaling operations at the end of every phase is

a useful optimization. This optimization reduces the overhead

from performing frequency scaling operations. However, it

also risks running the application in a sub-optimal frequency if

the portion of the application following a phase is not covered

by the analysis, is large, and runs optimally at a frequency

that is different from the optimal frequency for the preceding

phase. To evaluate the effects of this optimization we run a

set of experiments (with a phase size threshold of 5 × 106)

which disable this optimization, shown as hashed bars (labeled
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BestExit) in Figure 3. These results show that this optimization

is overwhelmingly positive in the impact it has on energy

savings, so our preferred configuration that we use for our

final intra-node DVFS experiments is to use a threshold of

5 × 106 with the exit point optimization enabled. The results

of running other applications through Green Queue with this

configuration are shown in Table I.

B. Inter-node Scaling

In examining our inter-node frequency scaling scheme, we

begin by presenting some empirical results relating to the

selection of the value of the penalty factor p from Equation (4)

in Section V-B. p is used within a strategy which attempts to

exploit the imbalance of MPI applications to our advantage by

noting that those ranks which are off the application’s critical

path can be run at lower clock rates, thereby lowering power

draw while minimally impacting performance. Larger values

for p result in more aggressive clock frequency strategies

(that is, lower clock frequencies) and lower values result in

more passive strategies (through higher clock frequencies). We

evaluate a large range of values for p for POP, then use the

results of this evaluation to select a single value for p that

results in a well-performing tradeoff between the lower power

draw and the potential loss in performance that can be the

result of running at lower clock frequencies.

Figures 4 shows our evaluation for a variety of choices for

p. The result is consistent with the conclusion that the choice

of p as a small, positive value results in a nearly energy-

optimal strategy3. In Section V-B, we use p = 0.05 to further

validate the quality of this choice on the open source molecular

dynamic application LAMMPS.

C. Discussion

Table I summarizes the intra-node and inter-node results

for all the subject applications. Of all the applications that

we considered for our intra-node application-aware DVFS, FT

saves the most energy. Green Queue registers 6.2% energy

saving for MILC, an application which uses a substantial

number of dedicated allocation hours on many leadership

class machines. It is also important to note the result for

SWEEP3D, for which Green Queue directs us to always

run at the highest available frequency, 2.6GHz. We validated

this decision by running the phases detected for SWEEP3D

at lower frequencies, and found that decreasing frequency

quickly moved the energy usage upward, indicating that the

decision made by Green Queue in that case is correct. Table

I also shows the energy reductions realized when running

our inter-node frequency scaling strategy with p = 0.05.

The amount of energy that can be saved by selecting for

frequencies based on those imbalances is based on the degree

to which the code is imbalanced. Highly imbalanced codes

(LAMMPS4) show more opportunity for energy improvement.

When we consider all the applications together, the average

energy savings that we can achieve with Green Queue is

12.5%. This improvement in overall energy savings comes

at the expense of average performance loss of 5.2%. The

maximum energy savings that we achieve with the intra-node

strategy is 21% for FT and this comes at the performance

loss of 2.4%. The maximum energy savings from the inter-

node strategy is 31.7% for LAMMPS, which comes with a

performance penalty of 2.3%. When we consider that typical

HPC system installations run well below full utilization, this

makes a strong case for introducing marginal delays into

application codes where such delays will show large reductions

in the operating expenses of the system. Finally, the literature

3Similar experiments with other apps showed the same conclusion, though
space limitations prevent us from presenting those evaluations.

4These imbalance properties are sensitive to the dataset used. That is, some
datasets show severe imbalances while others do not.



TABLE I
SUMMARY OF OVERALL ENERGY SAVINGS WITH GREEN QUEUE

Application FT CG MG MILC SWEEP3D POP LAMMPS

Technique intra intra intra intra intra inter inter

Energy Savings 21.0% 17.1% 8.4% 6.5% - 3.1% 31.7%

points to what is known as the cascade effect [28], which

states that any energy reduction measured at the system level

implies roughly similar amounts of energy saved throughout

the center in the form of decreased cooling requirements and

power transformer inefficiencies.

VII. CONCLUSION

In this work we examined the scalability of a set of tech-

niques related to Dynamic Voltage-Frequency Scaling (DVFS)

that we used on a modern supercomputer to reduce the energy

footprint of running large-scale scientific applications and

improve the reliability and lifespan of the hardware that runs

them. We explored techniques which exploit opportunities to

use frequency scaling in response to observations based on

both intra-node and inter-node behavior.

We investigated representatives of these approaches on 1024
cores of Gordon, an Intel Sandybridge-based supercomputer at

the San Diego Supercomputer Center, resulting in measured,

full-system energy reductions that averaged 10.6% and 17.4%
respectively for our intra-node and inter-node approaches re-

spectively. These results show that DVFS is scalable and well-

suited to reducing the energy impact of running large-scale

scientific applications. This impact should not be understated;

individual HPC center energy bills currently are in the millions

of dollars per year, a level at which reductions of the of energy

usage at the scale shown here would quickly realize significant

and real resource savings.
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