
A Tool for Characterizing and Succinctly
Representing the Data Access Patterns of

Applications
Catherine Mills and Allan Snavely

Department of Computer Science and Engineering
University of California at San Diego

Email: (crmills,allans)@cs.ucsd.edu,(cmills,allans)@sdsc.edu
Laura Carrington

San Diego Supercomputer Center
Email: lcarring@sdsc.edu

Abstract—Application address streams contain a wealth of
information that can be used to characterize the behavior of
applications. However, the collection and handling of address
streams is complicated by their size and the cost of collecting
them. We present PSnAP, a compression scheme specifically
designed for capturing the fine-grained patterns that occur in
well structured, memory intensive, high performance computing
applications. PSnAP profiles are human readable and reveal a
great deal of information about the application memory behavior.
In addition to providing insight to application behavior the
profiles can be used to replay a proxy synthetic address stream
for analysis. We demonstrate that the synthetic address streams
mimic very closely the behavior of the originals.

I. INTRODUCTION

The memory address stream of an application contains
a wealth of information which can be used to characterize
the memory behavior of the application. High performance
computing (HPC) application are often memory bound, due
to this and the effects of the “Von Neumann Bottleneck,” the
memory behavior of an application often dominates the overall
performance. Memory address streams can therefore be used
to drive trace-driven memory simulations to explore compute
system and application software improvements [1], [2], [3],
[4], [5].

Recently, power consumption patterns have been shown to
have a very high correlation with memory access patterns
[6] opening up another pivotal area of research dependent on
address stream traces. Power consumption has been identified
as a primary challenge to exascale computing [7].

Despite the general usefulness of trace-driven memory sim-
ulation the collection, handling and storage of memory address
traces remains problematic. Address streams for large-scale
high performance computing (HPC) applications are more
problematic than most due to large numbers of processors and
the expense of using large resources. Challenges associated
with address trace collection include space costs, time costs,
accessibility, and proxy inaccuracies.

Space Costs: Address streams are extremely large. It is
possible for an application’s address stream to grow faster

than 2.6 TB per hour per core [8]. HPC applications are run
on thousands of processors and potentially for many hours,
further exacerbating the issue.

Time Costs: Collecting address streams and storing them
to disk, as well as retrieving them from disk, is slow. The
processing rate for an address stream that is being read from
disk is limited by disk speed. Optimistically, this would be
250 MB/s (addresses can be generated faster than 700 MB/s).

On-the-fly processing of address streams bypasses the space
challenges by never storing the trace. However, this processing
must be done on an HPC resource and causes at least a
10X slowdown even with aggressive sampling techniques.
Without sampling, the slowdown is much worse, 100X-1000X
[9]. Additionally, the process must be repeated any time the
experimental parameters change, requiring further use of the
HPC resource.

Accessibility: Raw address streams themselves provide little
if any insight to code structure or access patterns. A stored
address stream is too large to be read and understood by a
person.

Proxy Inaccuracies: One common approach to avoiding the
use of large address streams is to work with application kernels
or representative benchmarks, rather than real workloads.
However, it is very difficult to find a benchmark that can act
as an accurate proxy for HPC applications. The validity of
a simulation depends heavily on the chosen input workload
[10], [11]. The performance results obtained by traces of
small benchmarks chosen to represent a high performance
computing (HPC) workload are of questionable relevance
during such evaluations; choosing appropriate benchmarks is
a difficult task, especially when applied to an HPC workload
[12].

Obtaining and storing relevant address traces is a fundamen-
tal requirement for trace-driven memory simulation of large-
scale HPC applications and the question must be asked: how
does one provide valid and relevant input of substantial size
to a simulation?

This paper presents Synthetic Address Stream Profiles

(PSnAP). PSnAP is a compression technique designed specif-
ically for HPC address streams. It takes advantage of patterns
found in the per instruction address streams of an application
and creates very small profiles. These profiles can be used
to replay the address stream. PSnAP resolves many of the
difficulties associated with address stream collection including
space costs, time costs, accessibility, and proxy inaccuracies.

Space Costs: PSnAP profiles are extremely compact, in the
range of kilobytes, meaning they can be emailed between
collaborators. An important characteristic of the profiles is that
they grow as a function of the complexity of the source code
structure rather than dynamic execution time.

Time Costs: Once collected PSnAP profiles can be reused
repeatedly without the use of an HPC system. The slowdown
incurred by tracing for PSnAP is only incurred a single
time and tracing can be performed for specific areas of an
application, further reducing HPC system use. The replay
times for PSnAP are fast enough that they can be replayed
at least at the rate of disk speeds.

Accessibility: The PSnAP profiles are human readable and
manipulatable. High level structures and fine-grained patterns
can be seen in the profiles, application phases can be identi-
fied, and the results of compiler optimizations such as loop-
unrolling and function inlining can be seen.

Proxy Inaccuracies: There is no need to use benchmark
kernels to represent HPC application address streams; the
actual streams can be compressed.

The contributions of this work are as follows:
• A new per-instruction recording technique that captures

access patterns in a concise manner.
• A human readable address stream profile that can be

manipulated to evaluate different auto-tuning strategies.
• A synthetic stream generation method that leverages

existing control flow compression and per-instruction
address streams.

We evaluate PSnAP based on accuracy and performance
using the NAS Parallel Benchmarks [13]. Accuracy must be
examined because PSnAP uses lossy techniques. We compare
the observed and synthetic address streams using cache hit
rates. PSnAP achieves accuracy in the full execution mea-
surements, on average the difference between observed and
synthetic streams is .08%.

PSnAP’s performance includes, execution overhead, profile
size and replay time. A comparison of these values shows that
PSnAP beats the state of the art in all three categories.

In addition to good performance, the format of PSnAP
profiles allows for an array of new usage models. For example,
PSnAP profiles can be partially replayed for examination of
specific loops, can be replayed in chunks in order to fit into
memory, and can be manipulated for experimentation.

II. PSNAP APPROACH

PSnAP profiles are generated by running an instrumented
executable on an HPC resource. The address stream is captured
on-the-fly and a minimal amount of information is saved to
raw PSnAP profiles. The raw PSnAP profiles are processed

further off-line. The post-processing does not require the use
of an HPC resource.

The instrumentation is done using a binary rewriter, PEBIL
[14]. The instrumentation tool collects address tuples into a
buffer and, when the buffer is full, passes the set of tuples to
the PSnAP library. PEBIL is an open source lightweight binary
instrumentation tool that can be used to capture information
about the behavior of a running executable. It works on the
Linux/X86 instruction set.

This section describes our approach to representing in-
struction address streams. We begin with an overview of the
representation and then describe the methods of recording,
decoding and replaying address streams.

A. Stream Representation

Three core concepts guide this compression technique. This
section describes the motivation behind each concept using
an example instruction taken from the most dominant1 basic
block from the NAS Parallel Benchmark FT [13].

1) Address streams generated per instruction are simpler
than per basic block, loop, or application.

2) Any instruction address stream can be described in terms
of a starting address and a stride pattern.

3) Describing an address stream in terms of strides is often
more succinct than describing it in terms of addresses.

Address streams generated per instruction are simpler than
those generated per basic block, loop, or application. This
level of granularity was chosen because patterns within small
regions of memory are often simple and easily compressed
[15]. In most cases, instructions act on a contigious region of
memory.

A simple example demonstrates the benefits of focusing on
per instruction address streams. Figure 1(a) shows the address
stream for the entire dominant basic block of FT. The virtual
address space is covered by the y-axis. Time is represented
along the x-axis (one address per unit time). There are two
visible patterns in the stream, the upper half has four smaller
patterns that are repeated and the lower half is a single simple
pattern. Contrast this to Figure 1(b) that shows the address
stream for only the first instruction of the block (out of 8).
It covers a smaller area (address space) and presents a much
more simple pattern.

The pattern seen in Figure 1(b) can be succinctly repre-
sented using strides2. The range of addresses produced is
fairly large, but over the entire execution only four strides
are encountered. Figure 2(a) shows the same range of time,
but plots the strides rather than instructions. In this figure is
appears that there are 2047 small strides (the thick line across
the top) followed by one large backward stride (size 36,816
bytes). Figure 2(b) is a zoomed in view of the first 48 strides
in this stream (the thick black line in Figure 2(a); this view
reveals that there are 15 strides of size 16 followed by a stride

1Basic block dominance is determined by the number of memory instruc-
tions executed on behalf of each block over an entire run.

2A stride is the numerical difference between two subsequent addresses.

2

(a) All 8 instructions in basic block.

(b) First instruction in basic block.

Fig. 1. Address Streams: Dominant block in FT.

of size 48. We refer to this repeated pattern as the instruction’s
stride pattern.

Any instruction address stream can be described in terms
of a starting address and a stride pattern. Continuing with
the current example, a manual inspection of the stride pattern
reveals a fixed stride pattern that can be expressed as an ex-
pression (very much like a regular expression) where A,B,C,
and D are the recorded strides and the exponents indicate the
number of times to repeat a pattern.

((A15B)127A15C)16384(A15B)127A15D (1)
where : A = 16, B = 48, C = −36816, D = −18384

Describing an address stream in terms of strides is often
more succinct than describing it in terms of addresses. In this
example it is possible to express the first phase of this address
stream using less than 70 bytes. The first phase of this address
stream represents approximately 23 Mb of addresses, this is a
compression of over 300,000 times. A large portion of address
streams are well represented in this manner. We show that out
of over 13,000 instructions in the NPBs, only 29 fail to fit
this model and, therefore, require a different representation.
Not only is there a high compression rate, but the address

(a) The stride stream.

(b) The stride stream (Zoomed in).

Fig. 2. Reducing an address stream to strides allows for a much more succinct
representation of the stream.

stream pattern has been encapsulated in a way that is easily
accessible to the reader.

The amount of space required for this representation de-
pends directly upon the number of unique strides that occur in
the address stream. For instance, in a random address stream,
one that may result from a gather operation, there are as many
strides as there are addresses. This type of address stream is
not a candidate for this representation. It is identified as such
(early in instrumentation) and alternate means of recording are
employed.

B. Recording and Decoding Stride Patterns

The following describes how the stride patterns are deter-
mined from a raw address stream. The PSnAP library receieves
a stream of address tuples from the instrumentation code.
Each tuple contains an identifiers for the basic block and
instruction as well as the memory address. After recording the
first address encountered by a specific instruction the algorithm
focuses on strides.

The stride patterns are recorded by counting occurrences of
unique strides. When a new stride is encountered it is put at the
end of an array list (strides) at index i. Another array count

3

is updated so that count(i) = 1 indicating that stride(i) has
been encountered once. In addition, each time a new stride is
encountered a snapshot of the count array is recorded.

The cost of updating the arrays is linear with respect to the
number of unique strides. The number of uniques strides for a
specific instruction is quite small, during our experiments no
instruction had more than 15 unique strides associated with
it. Furthermore, in the examples shown in this section the
matches that occur at the first index make up 94% of the
total accesses.

Table I shows an example of this data. There are four strides
recorded. The first time that a stride of size 48 is encountered,
a stride of size 16 has already been encountered 15 times. This
can be seen in the first row of the stride history in Table I. At
the end of execution the snapshots contain the values needed
to create the expression in Eq. 2 along the diagonal. The series
of snapshots is referred to as a stride history.

TABLE I
STRIDE HISTORY FOR THE FIRST INSTRUCTION OF THE DOMINANT BLOCK

IN FT.

Stride 16 48 -36816 -18384
Count 377487360 24903680 131071 131072

stride history
1 15 1 0 0
2 1920 127 1 0
3 31458240 2080831 16384 1

This example illustrates the basic idea behind the PSnAP
approach. The repeated stride pattern can be found by exam-
ining a stride history.

After the stride histories have been recorded they must be
decoded in order to prepare for replay. Decoding refers to the
process of transforming a stride history into a stride pattern.
The decoding is done off-line, meaning that it does not require
the use of an HPC resource.

Decoding involves three steps. First, each instruction is cate-
gorized(identification). Second, transformations are performed
on the stride histories to reveal the stride patterns(reduction).
Lastly, the stride patterns are used to guide address stream
reconstruction(replay).

Identification involves classifying each stride history. The
following pattern classifications are defined: constant, simple
repeat, simple alternating, complex repeat, and undesignated.

The simple repeat, simple alternating and complex repeat
classifications result from nested loop patterns moving through
multi-dimensional data. Simple repeat is the basis for each of
them.

Throughout the discussion on decoding the following defi-
nitions apply:

A-Z represent the values in the strides array (in order).
ci is the value in the ith position of the counts array.
h(i,j) is the value in the ith row and jth column of the

stride history.
1) Simple Repeat: A simple repeat pattern results from a

nested loop structure stepping through array data. A strided
walk through a 1D array is the most basic example. The

number of strides collected will depend on the dimension of
the data and the depth of the loop structure. Table II shows the
data for a simple repeat pattern taken from the FT benchmark.

Identification. Simple repeat patterns are identified using the
counts array (row 2 of Table II. Each count in the line must
be evenly divisible by the sum of counts that fall after it.

∀i(ci%Σn
j=i+1cj = 0) (2)

Reduction. Once the instruction has passed the identification
test, the next step is to reduce the stride history into represen-
tative expressions. The reduction is performed only on the last
line of the stride history.

Divide each value by the sum of the values that fall after it
in the same row. Given that ci is the value in position i apply
the following.

ci = ci/Σn
j=i+1cj (3)

The repeat value is set to the last value in the counts row. The
reduced pattern is therefore: (15,255,2047,1) repeated 7 times.

TABLE II
THE STRIDE HISTORY FOR A SIMPLE REPEAT.

strides 4096 -61424 16 -134217712
counts 62914560 4177920 16376 7

stride history
1 15 1 0 0
2 3840 255 1 0
3 7864320 522240 2047 1

replay pattern
pattern 15 255 2047 1

Replay. Replaying the pattern is straight-forward, the pattern
is the following.

(((A15B)255A15C)2047(A15B)255A15D)7 (4)
A = 4096, B = −61424, C = 16, D = −134217712

It appears to be unnecessary to collect the pattern from the
last line of the stride history. From Table II it is apparent
that the same values appear along the diagonal of the stride
history. However, the simple repeat pattern is often embedded
within simple alternating and complex repeat patterns. In those
situations the full diagonal is not available.

2) Simple Alternating: A simple alternating pattern consists
of two or more simple repeat patterns. This can occur during
a phase change in the execution or after jumping to a new
portion of data that may or may not have the same shape as
the previous data. The complex repeat pattern may contain
a simple alternating pattern and the method for handling
complex repeat can be used for simple alternating.

3) Complex Repeat: The last in this group of patterns is
the complex repeat pattern. The complex repeat pattern can
comprise both simple repeat and simple alternating patterns.
The pattern in the top half of Figure 1(a) is a complex repeat
pattern taken from FT. This pattern is found in the fourth
instruction of the most dominant basic block. Figure 3 shows
the contribution of the fourth instruction to the basic block

4

pattern. Its stride history is presented in Table III3. Four
distinct patterns can be seen in the first 8000 addresses of
the figure. The replay pattern reflects these patterns.

Fig. 3. The address stream for the fourth instruction of the most dominant
block in FT.

Identification. The complex repeat pattern is more involved
to identify than the previous two examples. The reduction steps
must be complete and then each of the resulting patterns are
tested for simple repeat and simple alternating.

Reduction. The complex repeat pattern is a combination
of other patterns, therefore, the first reduction step is to
identify the individual patterns. The dominant lines have to be
identified. A dominant line is one that describes a complete
pattern. Both simple repeat and simple alternating patterns
have dominant lines as well, but they are trivial to locate
because they are always the last line in the stride history. A
dominant line is always followed by a line with a 1 in the
diagonal.

Definition 1: history(i) is dominant ⇐⇒ history(i +
1, i + 1) = 1

Definition 2: final(i) == j ⇐⇒ dom(i, j) = 0 &
∀nk=j+1dom(i, k) = 0

Each dominant line is further reduced.
1) Reduce each dominant line by the values in the dominant

line directly above it.

dom(i, j) = dom(i, j)− dom(i− 1, j) (5)

2) Subtract one from the position in each dominant line
that corresponds to the final value in the dominant line
above it.

dom(i, final(i− 1)) = dom(i, final(i− 1))− 1 (6)

The last dominant line is not a simple repeat or simple
alternate pattern. This line is referred to as a master line.
A master line guides the repetitions of the patterns that
come before it. This line is reduced to only the entries that
correspond with final values in the patterns above it.

master(j) = 0 ⇐⇒ @is.t.final(i) = j (7)

3The pattern created by this basic block has two phases (a simple repeat) the
second phase has been removed in order to make the example more readable.

Each of the dominant lines is passed through the reduction
performed for simple repeat or simple alternating. In this
example all of the lines are simple repeat. The reduced
dominant lines and final pattern are listed in Table. III.

Replay. The replay for this pattern is performed in the same
way that each of the previous patterns. The only addition is
that the patterns are grouped together and repeated 4095 times.

(A15B)127A15C

((A15D)3A15E)31(A15D)3A15F

((A15D)15(A15)G)7((A15D)15)7A15H

((A15D)63A15I)

((A15D)63A15J) (8)
where : A = 16, B = 336, C = −73392, D = 48

E = 1200, F = −72528, G = 4656, H = −69072

I = 18480, J = −55248

A representation such as the above is detailed yet compact
and is much more human readable than a raw address stream.
If needed a human or a post-analysis tool can tell a lot about
an application or a section of an application from examining
patterns such as the above. We also provide the ability to
”zoom in” on specific loops or functions and show their
patterns. Also PSnAP’s ease of use allows one to recapture the
same stride patterns after a change. For example, a recompile
with new flags or a code restructuring, to examine what has
changed or improved.

III. CONTROL FLOW COMPRESSION

As described thus far, PSnAP provides a mechanism to
record and replay address streams for individual instructions.
A full synthetic address stream requires that those streams
be replayed together in the order they were collected. This
order is recorded using control flow compression. The control
flow compression used by PSnAP follows the method used
in Path Grammar Guided Trace Compression (PGGTC) [16]
very closely. The following is a brief overview of the approach,
highlighting the differences between PSnAP and PGGTC.

The control flow graph of an application is a directed graph
that describes the path taken through the code. The application
code is broken down into basic blocks, which are represented
as nodes in the graph. A basic block is a set of instructions
that has a single entry and a single exit.

Loop structures and basic blocks are identified statically
using a binary rewriting tool PEBIL. The loops and basic
blocks are each assigned a unique id. The loop ids are unique
over the entire code and the block ids are referred to as masks
and are unique only within the containing loop.

Each loop in the application is treated separately. Figure 4(b)
demonstrates how sub loops are separated. The entire sub-loop
containing blocks B,C and D is moved to a new data structure
and is replaced with a dummy basic block. This reduces the
complexity of describing the flow through each loop.

Instrumentation code is inserted at the loop heads and at
the beginning of each basic block. This code is responsible

5

TABLE III
THE STRIDE HISTORY FOR A COMPLEX REPEAT.

Stride 16 336 -73392 48 1200 -72528 4656 -69072 18480 -55248
Counts 377487360 6225920 32768 16809984 1507328 32768 327680 32768 32775 32760

stride history
1 15 1 0 0 0 0 0 0 0 0 0
2 1920 127 1 0 0 0 0 0 0 0 0
3 1935 127 1 1 0 0 0 0 0 0 0
4 1980 127 1 3 1 0 0 0 0 0 0
5 3840 127 1 96 31 1 0 0 0 0 0
6 4080 127 1 111 31 1 1 0 0 0 0
7 5760 127 1 216 31 1 7 1 0 0 0
8 6720 127 1 279 31 1 7 1 1 0 0
9 7680 127 1 342 31 1 7 1 1 1 0
10 31457280 520192 4096 1400832 126976 4096 28672 4096 4096 4095 1

reduced dominant lines
1 1920 127 1 0 0 0 0 0 0 0 0
2 1920 0 0 96 31 1 0 0 0 0 0
3 1920 0 0 120 0 0 7 1 0 0 0
4 960 0 0 63 0 0 0 0 1 0 0
5 960 0 0 63 0 0 0 0 0 1 0
60 0 0 4095 0 0 4095 0 4095 4095 4095 1

replay pattern
1 15 127 1 0 0 0 0 0 0 0 0
2 15 0 0 3 31 1 0 0 0 0 0
3 15 0 0 15 0 0 7 1 0 0 0
4 15 0 0 63 0 0 0 0 1 0 0
5 15 0 0 63 0 0 0 0 0 1 0
60 0 0 4095 0 0 4095 0 4095 4095 4095 1

(a) The original
loop.

(b) The resulting loop.

Fig. 4. Loop separation in the control flow graph.

for recording the path taken through the loop and the iteration
count for each entry.

The path taken through the loop for a single iteration is
expressed in a bit map. The bit map is maintained by the
loop head and updated by each visited basic block. Each basic
block, or dummy basic block that represents a sub-loop, within
the outer loop is statically assigned a mask. Instrumentation
code at each basic block performs a bitwise-OR with the loop
bit map. At the end of a single iteration of the loop each
flipped bit in the map represents a basic block taken.

The ordering of the masks for basic blocks is key for
accurate replay. The 1 bits in the bit mask indicate which
basic blocks where executed and the order they were executed
in. If the basic blocks in figure 4(a) were labeled as B=00,

C=01, and D=10 (a valid breadth first ordering) the execution
of C and D would be swapped during replay. A topological
ordering [17] is used to ensure that the path represents a valid
execution ordering of basic blocks.

At the end of each loop iteration the path taken through the
loop is compared to the path taken on the previous iteration.
If the paths match, a counter is incremented, if not, the new
path is pushed on a stack of paths, called the path history. A
limited number of paths are recorded to save space.

If the number of allowed paths is exceeded, the loop is
labeled as having overflowed. A snapshot of the current path
history is taken and saved. At that point the history converts
to only counting the paths taken, the order is no longer
maintained. The number of entries maintained in the history
is configurable, for the experiments using the NPBs 20 entries
was adequate.

There are several differences between the PSnAP imple-
mentation and the original PGCCT implementation. PGCCT
is non-lossy whereas PSnAP is lossy. Specifically, rather than
collecting new paths indefinitely, PSnAP allows for a finite
number of paths to be collected before simply counting unique
paths rather than keeping track of the order they appeared
in. For example, if two paths were taken through a loop in
an alternating manner 1 million times, PGCCT would have 1
million entries in the stack of paths. PSnAP would have only
2, each with an associated count of 500,000. This saves a large
amount of space, but results in a potential loss of accuracy, if
the pattern cannot be determined. As a hint to the pattern a
snapshot of the path history at the point of overflow is saved

6

in the profile.
The other major difference between the implementations is

that the bit maps in PGGTC were limited to 32 bits. If the path
through a loop contained more than 32 basic blocks a hash map
was used. The bit maps in PSnAP have been implemented to
expand a byte at a time indefinitely.

The result is a highly compressed trace, even of long
running or complex applications or benchmarks, that can be
easily shared, even by email, to convey the memory behavior
of applications.

IV. EVALUATION

The accuracy and performance of PSnAP were evaluated
through a series of experiments. The experiments were con-
ducted using the NAS Parallel Benchmarks [13] run on four
cores. All of the experiments were run on Dash4. Dash is a
64 node system housed at SDSC. Each node is equipped with
two quad-core 2.4 GHz Intel Nehalem processors and 48 Gb of
memory. The experiments include a coverage survey, manual
inspections of key basic block address streams, cache hit rate
comparisons, and a performance evaluation.

A survey of instruction address stream characterizations was
performed in order to verify that an adequate percentage of
instructions qualify to be represented using stride patterns. The
accuracy of the synthetic address streams is evaluated in two
ways. The instruction-specific streams were directly compared
at a basic block level (this implies no control flow). Addi-
tionally the cache hit rates of the synthetic address streams
were compared to those of the observed address stream.
The synthetic address streams prove to be very accurate; the
instruction-specific streams are non-lossy with a 100% match
rate. Cache hit rates were reproduced with an average error of
0.8% (i.e less than 1%) in L1.

The performance evaluation of PSnAP includes examining
the achieved compression rates and the overhead of generating
the profiles and synthetic streams. The compression rates are
competitive with the state of the art, often surpassing it. At the
same time the slowdown is significantly less; PSnAP incurs
an average slowdown of 90X. This slowdown is achieved
with no sampling and using an unoptimized version of the
instrumentation code. The slowdown is already very low for
such an instrumentation approach and we believe that the
slowdown can be further reduced with the addition of sampling
and optimizations.

A. Coverage

Before examining the accuracy of PSnAP for the benchmark
set as a whole, it is important to ensure that individual
instructions are being properly represented. This cannot be
done unless a significant portion of instructions are represented
by the defined stride patterns from section II-B. A coverage
test was conducted to measure the number of instructions
in the benchmarks that qualified as candidates. Of the over
30,000 instructions evaluated in the NPBs, only 29 are not
represented using the defined patterns.

4http://www.sdsc.edu/us/resources/dash/dash system access.html

TABLE IV
INSTRUCTION-LEVEL PATTERN COVERAGE STATISTICS FOR NPBS.

Label BT CG EP FT IS LU MG SP
P 3455 384 30 231 62 2987 753 5262
R 0 2 0 0 11 0 16 0
T 3455 386 32 231 73 2987 769 5262
P=PSnAP, R=Random, T=Total

Table IV shows the coverage statistics for the categories in
PSnAP. The random instructions, which occur in CG, IS and
MG, were manually examined. Each of them results from the
use of index arrays and are in fact not candidates for PSnAP
representation. For these cases, a random access stream is
generated during replay.

B. Pattern Resolution

The reproduction of fine-grained patterns has historically
been a weakness in synthetic stream generation. A high level
of resolution is very important when studying memory behav-
ior, especially when prefetching is a consideration. In order
to demonstrate the level of resolution achieved by PSnAP
we manually compared the first 100,000 addresses for the
dominant basic block in each benchmark. An exact match was
achieved for each of the NPBs with qualifying instructions,
even the complex pattern shown in Figure 1(a).

C. Cache Simulation Results

Cache simulation comparisons allow for a higher-level view
of PSnAP’s accuracy. We have shown that the fine-grained pat-
terns are reproduced on a per instruction, and per basic block
basis, but the lossy nature of the control flow compression
leaves an opening for differences between the observed and
synthesized streams. We compare the overall cache hit rates
for the entire execution as well as perform a more fine-grained
basic block comparison.

This evaluation uses a set of seven memory hierarchies
taken from recent and historical HPC systems. Included in the
set are PowerPC, IT2, MIPS, Opteron, Budapest, Nehalem,
and IBM Power6. The MIPS structure is altered to create
four hypothetical structures. The line size and associativity are
varied in turn. The structures were chosen to represent small,
medium and large caches, with a variety of line size.

The observed address stream of each benchmark was fed
into a series of cache simulators [18], [14]. The cache sim-
ulations produce cache hit rates for each basic block in the
application and for the entire execution. These cache hit rates
are then compared with the cache hit rates that result from the
simulation driven by the synthetic streams.

Table V shows the difference in the hit rates (between syn-
thetic and observed) for the entire execution using the Nehalem
cache structure. The accuracy varied very little across cache
configurations and the Nehalem results are representative of
the full set. PSnAP’s overall accuracy is very high. The average
error for L1 is 0.8%.

A more detailed comparison of basic block cache hit rates
confirms PSnAP’s accuracy. For this comparison the cache

7

TABLE V
PERFORMANCE OF PSNAP ON NPBS (4 PROCESSORS).

Benchmark Full Trace Size Compressed Files % Abs Err in Cache Hit Rates
(over full execution)

(GB) ratio size KB (L1) (L2) (L3)
BT.A 1,120 84,856X 13,840 0.2 0.1 0.1
CG.A 18 83,020X 232 0.4 0.4 0.1
EP.A 51 1,973,790X 27 0.0 0.0 0.0
FT.A 64 97,203X 690 0.2 0.5 0.4
IS.A 43 134,019X 338 1.3 0.2 0.1
LU.A 599 79,399X 7,908 1.9 1.5 0.6
MG.A 40 19,760X 2,118 1.1 0.7 0.3
SP.A 508 33,359X 15,968 1.4 1.0 0.7

hit rates across all cache structures were compared for the
dominant basic block in each benchmark. Table VI shows the
observed and synthetic cache hit rates for the dominant basic
block of each benchmark using the Nehalem cache structure.
Not surprisingly, IS is the worst performing. The dominant
instruction in IS performs a load calculated using an index
array. It is categorized as undesignated and a random function
is used to generate the synthetic stream. All of the basic blocks
containing instructions with recorded stride patterns performed
well, the maximum difference is 0.71%.

TABLE VI
ACCURACY OF PSNAP ON NPBS AT THE BASIC BLOCK LEVEL (4

PROCESSORS).

Benchmark Cache Hit Rate
Observed Synthetic Diff.

BT.A 94.71 94.71 0.00
CG.A 75.43 76.14 0.71
EP.A 93.75 93.75 0.00
FT.A 86.09 86.48 0.29
IS.A 96.33 93.28 3.05
LU.A 93.77 93.73 0.04
MG.A 88.51 88.99 0.48
SP.A 97.70 97.70 0.00

Our experimental results demonstrate very clearly that the
synthetic streams are very similar to the observed in terms
of performance. The error is consistently below 1%, with the
exception of IS.

D. Size and Slowdown

The size and scaling behavior of the memory profiles are
major advantages of the PSnAP approach. Each of the bench-
marks used for the accuracy evaluation produced memory
profiles of less than 2MB, which is easily shared among col-
laborators. Table V shows the compression ratios for PSnAP.
The size of each PSnAP profile is a function of address
stream complexity rather than running time, or dataset size.
Specifically, the size of the profile is a function of loop
count, basic block count and instruction count, but is largely
dominated by the memory instruction count.

Table VII shows that the collection overhead is on average
90X. This is very small for a profiling technique with no

sampling. The addition of sampling is planned as future work,
providing the opportunity for even more improvements.

TABLE VII
RUNNING TIMES FOR INSTRUMENTATION AND REPLAY.

Benchmark Running Times(slowdown)
Exec. PSnAP Replay

sec. sec.
BT.A 27 1856(69X) 1170
CG.A 0.7 56(77X) 42
EP.A 3 163(59X) 18
FT.A 2 197(116X) 235
IS.A 0.6 62(112X) 44
LU.A 19 1610(86X) 967
MG.A 0.8 88(117X) 109
SP.A 23 1441(62X) 1304

The replay time is a significant metric because slow replay
leads to slow simulations. The current state of the art for replay
speeds is to replay at disk read speed (optimistically 250 MB/s
for a single disk without RAID). An optimized version of
the PSnAP replay tool approaches this rate for some profiles.
However, we have devised an alternative replay process in
order to guarantee consistent replay speeds at disk speed.

We have demonstrate that the PSnAP profiles have a high
degree of accuracy, low instrumentation costs, and that is is
possible to replay the profiles at disk speeds. The result is a
highly accurate, highly compressed trace that is easy to capture
and replay whether to drive simulation or other analysis.

V. RELATED WORK

PSnAP is not the first attempt at taking advantage of
regularities in address streams for compression. The following
discussion addresses previous work done in the areas of ad-
dress stream compression, synthetic address stream generation,
and synthetic benchmark generation. PSnAP differentiates
itself from all of the work described below because of the
granularity of analysis, the compression ratios achieved, the
overhead of collection and replay, and the fact that the profiles
are human readable and lend themselves to manipulation.

Several schemes have been developed specifically for ad-
dress streams and they are able to achieve a much higher
level of compression than general compression schemes, up
to six orders of magnitude (Sequitor [19], VPC [20], Mache

8

[21], and SIGMA [22]). These schemas have two main disad-
vantages. First, the time required to perform compression is
very long and second the compression ratio is unpredictable
because it depends on finding regular patterns in the address
stream and treats all streams the same, even when the desired
patterns do not exist. Each of these methods is lossless, mean-
ing that even areas of random accesses are saved. Attempting
to compress random accesses takes a large amount of time, and
in most cases the compression ratio is insignificant. Sequitor
is the standout performer of this group. It works by creating
a context free grammar based on the patterns repeated in the
address stream. The grammar is created dynamically during
compression.

ScalaMemTrace [23] is a recently developed tool that works
on the same principles as PSnAP. A hierarchical representation
is used to represent the access patterns created by specific
instructions. The representation uses and extended type of
Regular Section Descriptor (RSD). Our method of collection
has a smaller time complexity (PSnAP depends on the number
of unique strides rather than the number of unique addresses)
and the processed representation is slightly smaller. The meth-
ods are complimentary in that ScalaMemTrace is comparable
with multi-threaded applications; a feature that PSnAP does
not have.

A lossy compression technique was presented by Gao et al.
[16] referred to as Path Grammar Guided Trace Compression
(PGGTC). PGGTC works in a very similar fashion to Sequitor
with the exception that rather than creating a context free
grammar on-the-fly it uses static analysis to build a control
flow graph, which can be used to create a context free
grammar. Gao also realized that some portions of an address
stream are truly random and therefore do not lend well to
compression. Rather than attempting to compress them, they
are detected, summarized and regenerated. This summarization
is what makes this compression technique lossy.

Also directly related to our work are other efforts to
summarize application behavior and generate synthetic traces.
Sorenson et al. [24] expanded on work done by Grimsrud
et al[25] that demonstrated that none of the five well-known
approaches to this area achieved a high level of accuracy. The
general categories examined are: the Independent Reference
Mode (IRM), the Stack Model, the Partial Markov Reference
Model, the Distance Model, and the Distance-Strings Model.
Each of these was shown to not preserve the access patterns
and locality demonstrated in the original trace. IRM came the
closest to achieving this, but missed important features of the
trace.

Even though other groups have attempted to classify pro-
gram behavior based on the locality characteristics of their
address streams [26], [27], [28], [29], [30], [31], [25], achiev-
ing within 90% verisimilitude when using these streams as
representatives of the full application to predict cache hit rates
has not been possible until a project called Chameleon[32].
Chameleon focused on the stream and application as a whole,
this work breaks them down into their constituent pieces. That
change in granularity allows for the extrapolation of address

profiles that was not previously possible.
In addition, the first version of PSnAP [15] created synthetic

address streams based on a statistical description of the strides
encountered during execution.

A second type of synthetic trace generation is one that
focuses on creating a full synthetic benchmark rather than
the memory access patterns alone. Iyengar et al. [33] pro-
posed a method of generating synthetic traces using a graph
representation that characterizes each benchmarks program
trace. The graph is a trimmed version of the control flow
graph. The memory accesses are created by following the
control flow graph using a statistical model and following
a set of rules about how memory accesses within a given
window relate. Joshi [34] proposed a technique for creating
synthetic benchmarks based on the control flow graph as
well. The memory locality was characterized by recording
the most common stride and the frequency of that stride for
each instruction. This is similar in concept PSnAP, but would
miss complex patterns like the one observed in FT. Another
project that aims to create synthetic benchmarks is [35]. In
this work dynamic profiling is coming with static information
to create synthetic code in a high level language that will
have similar performance characteristics to the profiled code.
PSnAP is different from this work in that the main focus is on
storing profiles and creating traces for simulation. It is possible
to use PSnAP to save instruction mix information as well and,
therefore, theoretically create synthetic benchmarks.

VI. CONCLUSION

Despite the general usefulness of trace-driven memory sim-
ulation the collection, handling and storage of memory address
traces remains problematic. PSnAP addresses the challenges
associated address trace collection including space costs, time
costs, accessibility, and proxy inaccuracies by decomposing
address streams into smaller simple streams. The repeated
patterns in the smaller streams are recorded during dynamic
execution using a simple stride history scheme.

Space Costs. PSnAP achieves consistent compression ratios
higher than any previously compression technique. Not only
are the compression ratios high, but the growth of the profile
sizes does not grow in relation to execution time. Once each
instruction level stream description has been established the
profile stops growing regardless of the number of times that
it is repeated.

Time Costs. The compression ratios are achieve while main-
taining low execution overhead (on average 90X). We have
presented a method for replay that matches the disk speed
available. It is also possible to perform direct replay of the
profiles, which outperforms disk reads for some benchmarks.
Another advantage of PSnAP is that specific areas of interest
in the application can be captured in the profiles rather than the
entire application. This is desirable for extremely long running
applications where any slowdown is a difficult challenge.

Accessibility. PSnAP profiles are human readable and ma-
nipulatable. This opens up several new usage scenarios for
address streams. Due to their size PSnAP profile are easily

9

shared between collaborators. It is also possible to replay only
specific portions of the stream. Specific loops can be identified
and played along with the loops nested within them.

Replay check-pointing is also possible. This means that the
replay can be performed in sections. It is possible to request
only a million addresses at a time. This level of control makes
exploring and experimenting with the streams much easier than
with other compression methods.

Proxy Inaccuracies. It is not necessary to evaluate bench-
marks or application kernels as proxies to real application.
The applications themselves can be represented with PSnAP
profiles.

PSnAP represents a real advance in the handling of address
streams. We note improvements in the areas of space and time
costs as well as making the information captured in memory
address streams easily accessible to users.

PSnAP combines previous work done on dynamic control
flow graph compression with a new technique for compressing
instruction-level address streams. The development of the fine-
grained instruction-level address stream compression allows
for much faster instrumentation as well as the very small pro-
files. We demonstrate that fine-grained patterns are reproduced
address for address and cache hit rates are reproduced with an
average error of 0.8%.

REFERENCES

[1] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and
V. S. Pai, “Challenges in computer architecture evaluation,” Computer,
vol. 36, no. 8, pp. 30–36, 2003.

[2] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger, “Evaluation techniques
for storage hierarchies,” IBM Systems Journal, vol. 9, pp. 78 – 117,
1970.

[3] P. Calingaert, “System performance evaluation: survey and appraisal,”
Commun. ACM, vol. 10, no. 1, pp. 12–18, 1967.

[4] W. Anacker and C. P. Wang, “Evaluation of computing systems with
memory hierarchies,” IEEE Transactions on Electronic Computers, vol.
EC-16, no. 6, pp. 670–679, December 1967.

[5] W. Anacker and C. Wang, “Performance evaluation of computing
systems with memory hierarchies,” Electronic Computers, IEEE Trans-
actions on, vol. EC-16, no. 6, pp. 764–773, Dec. 1967.

[6] C. Olschanowsky, L. Carrington, M. Tikir, M. Laurenzano, T. S. Rosing,
and A. Snavely, “Fine-grained energy consumption characterization
and modeling,” in DOD High Performance Computing Modernization
Program User Group Conference, 2010.

[7] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein,
R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling,
R. S. Williams, K. Yelick, K. Bergman, S. Borkar, D. Campbell,
W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, J. Hiller,
S. Keckler, D. Klein, P. Kogge, R. S. Williams, and K. Yelick, “Exascale
computing study: Technology challenges in achieving exascale systems
peter kogge, editor & study lead,” 2008.

[8] X. Gao, “Reducing time and space costs of memory tracing,” Ph.D.
dissertation, University of California at San Diego, La Jolla, CA, USA,
2006.

[9] X. Gao, M. Laurenzano, B. Simon, and A. Snavely, “Reducing overheads
for acquiring dynamic traces,” in International Symposium on Workload
Characterization, 2005.

[10] J. Flanagan, B. Nelson, and G. Thompson, “The inaccuracy of trace-
driven simulation using incomplete multiprogramming trace data,” in
MASCOTS, 1996.

[11] D. R. Kaeli, “Issues in trace-driven simulation,” in Performance Evalua-
tion of Computer and Communication Systems. London, UK: Springer-
Verlag, 1993, pp. 224–244.

[12] R. C. Murphy and P. M. Kogge, “On the memory access patterns of
supercomputer applications: Benchmark selection and its implications,”
IEEE Trans. Comput., vol. 56, no. 7, pp. 937–945, 2007.

[13] (2008). [Online]. Available: http://www.nas.nasa.gov/Resources/
Software/npb.html

[14] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “Pebil:
Efficient static binary instrumentation for linux,” International Sympo-
sium on the Performance Analysis of Systems and Software, March 2010.

[15] C. Olschanowsky, M. Tikir, L. Carrington, and A. Snavely, “PSnAP:
Accurate Synthetic Address Streams Through Memory Profiles,” in
Workshops on Languages and Compilers for Parallel Computing, 2009.

[16] X. Gao, A. Snavely, and L. Carter, “Path grammar guided trace com-
pression and trace approximation,” International Symposium on High-
Performance Distributed Computing, vol. 0, pp. 57–68, 2006.

[17] R. E. Tarjan, “Edge-disjoint spanning trees and depth-first search,”
Algorithmica, vol. 6, no. 2, pp. 171–185, 1976.

[18] M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely, “The pmac
binary instrumentation library for powerpc,” in Workshop on Binary
Instrumentation and Applications, 2006.

[19] S. Mitarai, M. Hirao, T. Matsumoto, A. Shinohara, M. Takeda, and
S. Arikawa, “Compressed pattern matching for SEQUITUR,” in Data
Compression Conference, 2001, pp. 469+.

[20] M. B. Computer, “Vpc3: A fast and effective trace-compression al-
gorithm,” in IEEE/USP International Workshop on High Performance
Computing, 1994.

[21] A. Samples, “Mache: No-loss trace compaction,” University of Califor-
nia at Berkeley, Tech. Rep., 1988.

[22] L. DeRose, K. Ekanadham, J. K. Hollingsworth, and S. Sbaraglia,
“Sigma: A simulator infrastructure to guide memory analysis,” in In
Supercomputing, 2002, pp. 1–13.

[23] S. Budanur, F. Mueller, and T. Gamblin, “Memory trace compression
and replay for spmd systems using extended prsds?” SIGMETRICS
Perform. Eval. Rev., vol. 38, pp. 30–36, March 2011. [Online].
Available: http://doi.acm.org/10.1145/1964218.1964224

[24] E. Sorenson and J. Flanagan, “Evaluating synthetic trace models using
locality surfaces,” IEEE International Workshop on Workload Charac-
terization, pp. 23–33, Nov. 2002.

[25] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson, “On the accuracy of
memory reference models,” in the international conference on Computer
performance evaluation : modelling techniques and tools. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 1994, pp. 369–388.

[26] R. B. Bunt and J. M. Murphy, “The measurement of locality and the
behaviour of programs,” Comput. J., vol. 27, no. 3, pp. 238–253, 1984.

[27] D. Thiebaut, J. Wolf, and H. Stone, “Synthetic traces for trace-driven
simulation of cache memories,” IEEE Transactions on Computers,
vol. 41, no. 4, pp. 388–410, 1992.

[28] P. J. Denning and S. C. Schwartz, “Properties of the working-set model,”
Commun. ACM, vol. 15, no. 3, pp. 191–198, 1972.

[29] K. Beyls and E. H. D’Hollander, “Reuse distance as a metric for cache
behavior,” in In Proceedings of the IASTED Conference on Parallel and
Distributed Computing and Systems, 2001, pp. 617–662.

[30] W. S. Wong and R. J. T. Morris, “Benchmark synthesis using the
lru cache hit function,” IEEE Trans. Comput., vol. 37, pp. 637–645,
June 1988. [Online]. Available: http://dl.acm.org/citation.cfm?id=45868.
45869

[31] A. Agarwal, J. Hennessy, and M. Horowitz, “An analytical cache model,”
ACM Trans. Comput. Syst., vol. 7, no. 2, pp. 184–215, 1989.

[32] J. Weinberg and A. Snavely, “Chameleon: A framework for observing,
understanding, and imitating memory behavior,” in Workshop on State-
of-the-Art in Scientific and Parallel Computing, Trondheim, Norway,
May 2008.

[33] V. S. Iyengar, L. H. Trevillyan, and P. Bose, “Representative traces for
processor models with infinite cache,” in Proceedings of the 2nd IEEE
Symposium on High-Performance Computer Architecture, ser. HPCA
’96. Washington, DC, USA: IEEE Computer Society, 1996, pp. 62–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=525424.822668

[34] A. Joshi, L. Eeckhout, R. H. Bell, Jr., and L. K. John, “Distilling the
essence of proprietary workloads into miniature benchmarks,” ACM
Trans. Archit. Code Optim., vol. 5, pp. 10:1–10:33, September 2008.
[Online]. Available: http://doi.acm.org/10.1145/1400112.1400115

[35] L. Van Ertvelde and L. Eeckhout, “Benchmark synthesis for architecture
and compiler exploration,” in Workload Characterization (IISWC), 2010
IEEE International Symposium on, dec. 2010, pp. 1 –11.

10

