

ABSTRACT
Suppose one is considering purchase of a computer equipped

with accelerators. Or suppose one has access to such a computer
and is considering porting code to take advantage of the
accelerators. Is there a reason to suppose the purchase cost or
programmer effort will be worth it? It would be nice to able to
estimate the expected improvements in advance of paying money
or time. We exhibit an analytical framework and tool-set for
providing such estimates: the tools first look for user-defined
idioms that are patterns of computation and data access identified
in advance as possibly being able to benefit from accelerator
hardware. A performance model is then applied to estimate how
much faster these idioms would be if they were ported and run on
the accelerators, and a recommendation is made as to whether or
not each idiom is worth the porting effort to put them on the
accelerator and an estimate is provided of what the overall
application speedup would be if this were done.

As a proof-of-concept we focus our investigations on
Gather/Scatter (G/S) operations and means to accelerate these
available on the Convey HC-1 which has a special-purpose
“personality” for accelerating G/S. We test the methodology on
two large-scale HPC applications. The idiom recognizer tool
saves weeks of programmer effort compared to having the
programmer examine the code visually looking for idioms;
performance models save yet more time by rank-ordering the best
candidates for porting; and the performance models are accurate,
predicting G/S runtime speedup resulting from porting to within
10% of speedup actually achieved. The G/S hardware on the
Convey sped up these operations 20x, and the overall impact on
total application runtime was to improve it by as much as 21%.

General Terms

B8.2 Performance Analysis and Design Aids

Descriptors
Performance

Keywords

Benchmarking, performance prediction, performance
modeling, FPGAs, accelerators, HPC.

1 INTRODUCTION
Tools to help programmers identify optimization opportunities

are useful for improving application scalability [1-4], improving
throughput of applications [5], and improving programmer
productivity[6, 7]. Lately Scalable hybrid-multi-core computing
systems are becoming ubiquitous in the HPC environment. These
systems typically have host cores and accelerator hardware thus
offering the promise of enhanced compute power. For example
the recently announced #1 on the Top500 list augments 14,336
Intel Westmere-EP processors with 7,168 NVIDIA M2050
general purpose GPUs and is capable of 2.57 petaflops on
LINPACK. Because some real-world applications are more
memory bound than compute bound, other accelerator-based
systems such as Convey-HC-1 focus on speeding up memory
accesses rather than flops. Yet common wisdom is that all these
systems are difficult to program. They require writing code in new
language extensions such as CUDA of even (in the case of
Convey) coming up with VHDL-level descriptions of the problem
to be solved. So at issue is to determine to what extent real-world
applications would benefit from the accelerators on such systems?
And assuming they would benefit, what portions of the
applications would benefit most and how much work would it be
to port the application, or portions of it, to these accelerators? PIR
(PMaC’s Idiom Recognizer) [8] is a static analysis tool that
automates the process of identifying sections of code that are
candidates for acceleration. PIR automatically recognizes and
identifies user-specified compute and memory access patterns,
called idioms [41] within application source code. This greatly

An Idiom-finding Tool for Increasing Productivity of
Accelerators

Laura Carrington Mustafa M. Tikir1 Catherine Olschanowsky
UCSD/SDSC Google Inc. UCSD/SDSC

9500 Gilman Dr. MC0505 1600 Amphitheatre Parkway 9500 Gilman Dr. MC0505
La Jolla, CA 92093-0505 Mountain View, CA 94043 La Jolla, CA 92093-0505

1-858-534-5063 1-858-357-1681 1-858-246-0744
lcarring@sdsc.edu mustafa.m.tikir@gmail.com cmills@sdsc.edu

Michael Laurenzano Joshua Peraza Allan Snavely Stephen Poole
UCSD/SDSC UCSD/SDSC UCSD/SDSC ORNL

9500 Gilman Dr. MC0505 9500 Gilman Dr. MC0505 9500 Gilman Dr. MC0505 PO BOX 2008 MS6173
La Jolla, CA 92093-0505 La Jolla, CA 92093-0505 La Jolla, CA 92093-0505 Oak Ridge, TN 37831-6173

1-858-822-2798 1-909-292-6970 1-858-534-5158 1-865-574-9008
michaell@sdsc.edu jperaza@ucsd.edu allans@sdsc.edu spoole@ornl.gov

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ICS’11, May 31–June 4, 2011, Tucson, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0102-2/11/05…$10.00.

1 This work is completed while Dr. Tikir was an active member of PMaC
Labs at SDSC

reduces the amount of code that an expert must analyze “by hand”
(visually). Once a section of code is identified that could be run
on an accelerator, there still remains the question should it be?
Often the startup overhead of moving the data to/from the
accelerator outweighs the performance benefits. Also this question
may depend on input. In this work we develop a general
performance model for accelerators that can estimate whether the
identified idiom would be worth computing on an accelerator
depending on input. The combined tool-stream (PIR + model)
helps programmers to be productive in two ways 1) it saves them
the labor of analyzing thousands lines of legacy code “by hand” to
identify idioms that are candidates for acceleration and 2) it saves
the time of porting candidate idioms by identifying sections of
code/idioms to be ported only when the forecasted performance
improvement will benefit overall performance 3) it triages the
idioms that should be ported in order best-candidate-for-porting-
first.

In this paper we focus our investigations on local
Gather/Scatter (G/S) operations and means to accelerate these
available on the Convey HC-1 which has a vendor supplied
function (i.e. Convey personality) for accelerating local G/S. A
local G/S is one where the data is gathered or scattered from
memory local to the core and doesn’t require communication
among cores. G/S is a very difficult memory access pattern for
most commodity systems to do well [9-11] and therefore some
real applications may benefit more from this kind of acceleration
than the more common “flops” accelerators. We test the
methodology on two large-scale HPC applications. The idiom
recognizer tool saves weeks of programmer effort compared to
having the programmer examine the code “by hand” looking for
idioms; performance models save yet more time by rank-
ordering the idioms, best-candidate-for-porting-first; the models
themselves are highly accurate and predict the G/S runtime
speedup resulting from going ahead and porting to within 10% of
what was actually achieved. The G/S hardware on the Convey
sped up these operations 20x, the overall impact on total
application runtime was to improve it by as much as 21%. In what
follows we describe first in Section II our tool for recognizing
idioms, section III describes our performance modeling
methodology applied to G/S, section IV provides experimental
results, section V concludes, and section VI gives background and
related work.

2 IDIOMS
PIR (PMaC Idiom Recognizer)[8] is a tool for searching source

code for idioms. An idiom [41] is a local pattern of computation
that a user may expect to occur frequently in certain applications.
For example, a stream idiom is a pattern where memory is read
from an array, some computation may be done on this data, and
then the data is written to another array. A stream reads
sequentially from the source array and writes sequentially to the
destination array. A stream may arise from the presence of the
statement A[i] = B[i] within a loop over i.

Idioms are useful for describing patterns of computation that
have the potential to be optimized, for example, by loading the
piece of code to a coprocessor or accelerator.

The PIR tool allows us to automate searching for idioms in a
powerful way by using data-flow analysis to augment the
identification process. It would be very difficult to use a simpler
searching tool, such as regular expressions, because a regular
expression does not naturally discern the meaning of the text it

identifies. For example, in the code shown in Figure 1, a simple
regular expression based on (for example) “grep” that searches for
stream idioms of the form “A[i]= B[i]” would incorrectly identify
line 1 as a stream and it would miss the stream at lines 3-4
because the assignment is broken into multiple statements.

Figure 1. Sample stream idiom code.

PIR, however, is able to determine that line 1 is not in a loop
and that c is a constant. This indicates that the meaning of this
statement is simply a variable assignment, rather than a stream. In
lines 3-4, PIR uses data-flow analysis to determine that item in
line 4 holds a value from the source array making this a stream.

PIR’s design provides the flexibility to identify optimization
opportunities for many different hardware configurations. The
user provides descriptions of the idioms to be identified. As a
starting point, PIR provides a set of commonly useful idioms and
access to an Idiom definition syntax that allows for user
customization of the idioms.

PIR includes seven idiom definitions we have found to be
common in HPC applications. The user is free to define more via
a simple pattern describing API. The pre-defined idioms are
described in the following. All of the code samples are assumed to
be part of a loop, i (and j) are loop induction variables.

 Stream: A[i] = A[i] + B[i]

The stream idiom includes accesses that step through arrays. In
the above example two arrays are being stepped through
simultaneously, but the stream idiom is not limited to this case.
Stepping through any array in a loop where the index is
determined by a loop induction variable is considered a stream.

 Transpose: A[i][j] = B[j][i]

The transpose idiom involves a matrix transpose, essentially
reordering an array using the loop induction variable.

 Gather: A[i] = B[C[i]]

The gather idiom includes gathering data from a potentially
random access area in memory to a sequential array. In this
example the random accesses are created using an index array, C.

 Scatter: A[B[i]] = C[i]

The scatter idiom is essentially the opposite of gather. Values
are read from a sequential area of memory and saved to an area
accessed in a potentially random manner.

 Reduction: s = s + A[i]

1. values[c] = constants[c];
2. for(i = 0; i < 10; ++i) {
3. item = source_array[i];
4. dest_array[i] = item;
5. }

A reduction can be formed from a stream, as in the working
example, or a gather. It implies that the value returned from the
read portion of the idiom is assigned to a temporary variable.

 Stencil: A[i] = A[i-1] + A[i+1]

A stencil idiom involves accessing an array in a sequential
manner, including a dependency between iterations of the loop.

Table 1 presents just a sample of the report for an application.
The sample shows how PIR is able to classify the idiom, capture
the source file, source line, function name and even the line
number of source code used for the identification(additional
information about loop depth, start, and end are captured but not
shown).

Table 1. Sample output from PIR analysis on HYCOM.

File Name Line # Function Idiom Code

mod_tides.F 623 tides_set gather pf(i)=f(index(i))

mxkrt.f 992 mxkrtbaj reduction sdp=sdp+ssal(k)*q

The PIR user manual and programmers guide can be found
online at www.sdsc.edu/pmac.

3 MODELING GATHER-SCATTER OPERATIONS
Once the idioms are identified having an accurate estimate of

which ones will perform well on the new accelerator could save a
lot of human hours in porting efforts. Some idioms that can be
executed on an accelerator should not be because the overhead of
moving the data to the accelerator is greater than the performance
gains of executing them there. It is not uncommon anecdotally for
users to invest a fair amount of time in porting to accelerators only
to discover the whole code as a whole runs slower1. Having an
accurate performance model avoids these situations.

In this work we develop a general methodology to model idiom
operations on accelerators. The focus of this paper is on the G/S
idiom due to its ability to exacerbate a systems memory
performance. The Von Neumann Bottleneck is particularly
aggravated by memory access patterns that have a substantial
amount of randomness or indirection in the address stream such as
Gather/Scatter idioms. In a Gather, non-contiguous memory
locations are collected up into a contiguous array; in a Scatter,
contiguous array elements are distributed to non-contiguous
memory locations; because these species of operations are 1)
prevalent in many scientific applications 2) performance-limited
on many architecture by the latency of main memory, various
architectural features have been proposed to try to accelerate
them. An access to main-memory on today’s deep-memory-
hierarchy machines commonly takes two orders-of-magnitude
longer than either floating-point or integer operations, thus these
operations will be performance bottlenecks unless some means
can be found to accelerate them.

Our motive was to develop models and methodology to be able
to assist in the prediction of the benefit of having G/S accelerators
directly in future HPC architectures without just building the

1 Negative results are rarely published in computer science: at a recent

DoD GP GPU workshop most application developers reported spending
considerable time porting codes to accelerators without getting any
speedup.

hardware first and finding out if it is useful afterwards. Building a
model of the interaction of the hardware and the application
requires three main components: the machine component, the
application component, and the model component. The machine
component involves measuring the performance benefits of using
the acceleration hardware for Gather/Scatter operations and
identifying the parameters that affect that performance (i.e.
locality, vector length, etc.). The application component entails
automating the detection of Gather/Scatter operations in a large
scale HPC application and measuring the parameters of these
operations that affect performance on the acceleration hardware.
The final piece, the model component, combines the machine
component and application component to complete the model and
detail the performance of the application on the hardware.

3.1 Machine Component- Measuring
Gather/Scatter Operations

The Machine Component of the G/S model consists of a way to
measure the typical performance of running Gather/Scatter
operations on acceleration hardware and determine what
parameters affect their performance. A simple benchmark was
developed, SGBench[12]. SGBench has two main loop bodies;
one for a local scatter operations and one for a local gather
operations.

Figure 2 and Figure 3 represents the code snippets from
SGBench for the scatter and gather operations respectively. The
code represents local operations that do not require
communication among cores. Figure 2 illustrates a scatter
operation. In this loop the array A is filled by the contents of array
B at non-contiguous locations in local memory, determined by the
index array. In Figure 3 the gather operation is shown. Here a
contiguous piece of array B is filled by the contents of a non-
contiguous piece of array A in local memory. In both loops the
index array is filled with integers representing elements of an
array.

Figure 2. Loop for Scatter operation.

Figure 3. Loop for Gather operation.

In considering Gather/Scatter operation and ways to accelerate

them, it is important to understand if there is locality in the index
set. If there is locality the accelerator hardware may be able
exploit it; also accelerator hardware may exist at different levels
of the memory hierarchy (cache, local main memory, global
memory, etc.). The size of the array accessed then matters but also
any clustering or patterns of the index set matters. G/S accelerator
hardware basically works by packing and reordering memory
requests and pulling in chunks of random locations at a time. So
even though the index set is by definition random, if reordered it

 for(i=0;i<n;i++){
 A[index[i]] = B[i];
 }

 for(i=0;i<n;i++){
 B[i] = A[index[i]];
 }

may have some locality properties that G/S hardware can take
advantage of. To study different modes of Gather/Scatter
operations, the addresses in the index array in SGBench was
varied. This work focused on three specific modes.

Figure 4 depicts the three kinds of locality modes we consider
in the index set. Figure 4a random indices has no locality, that is
to say the index set is a set of entirely random indices that span
the entire array from 0 to size of A. The second mode, clustered
indices, shown in Figure 4b, has locality clusters within the
random index set. In this case the indices in the index array span
certain sections of the A array and within those sections the
indices of the index array are random. In the third mode, spread
indices, illustrated in Figure 4c, the indices have, if reordered,
some spatial locality (predictable or constant strides) spanning the
entire array from 0 to size of A.

181 3 9 1314

113 3 9 1814

1 13

110 4 7 1813

4 7 10 16

random
indices

spread
indices

3 13

213 3 5 1712

2 5 12 17

clustered
indices

Cluster #1 Cluster #2

b)

c)

a)
A

 a
rr

a
y

A
 a

rr
a

y
A

 a
rr

a
y

index
array

index
array

index
array

Figure 4. Type of index arrays for gather-scatter operations,
a) random index, b) clustered index, c) spread index.

Random indices (Figure 3a) might be typical of a graph
problem or similar to the RandomAccess (GUPs) kernel [13, 14],
Clustered (Figure 3b) is typical of sorting partially-sorted input,
Spread (Figure 3c) typical of a sparse matrix problem which can
arise in Finite Element or Finite Difference codes. Along with
enabling the index array to be filled in the three different modes,
SGBench also allows the user to vary the padding or offset
between the A, B and index arrays as these parameters may
interact with memory banking.

3.1.1 Machine Component – measuring the FPGAs
To study the performance effects of Gather/Scatter operations

on acceleration hardware, SGBench was ported to the Convey
HC-1[15]. The Convey HC-1, shown in Figure 5, uses a tightly
integrated Intel 5138 processor (Xeon Woodcrest) with a FPGA-
based, reconfigurable coprocessor. The coprocessor can be
targeted at specific workloads by reloading it with different
instruction sets, called personalities. By enabling the
implementation of a new instruction set, the coprocessor can be
tailored to specific applications and algorithms. In addition the
coprocessor shares memory with the Intel processor, which

reduces the data transfer time between the computing elements
and eliminates much implementation complexity.

4 Protein Sequence Engines
10 Sequence State machines each

Figure 5. Convey HC-1.

For this work, a Convey supplied personality was used to
accelerate local Gather/Scatter operations illustrated in Figure 2
and Figure 3. This personality was used both to gather
performance data used as input for the model and to port sections
of the application for model verification.

The SGBench benchmark was used to measure both the
performance of Scatter operation and Gather operation. SGBench
was run on two ways; first the entire SGBench execution was run
on the host processors of the HC-1. Second the majority of the
SGBench execution was run on the host processor with just the
loops containing Gather or Scatter operations running on the
FPGAs. The measurements were taken to determine the
performance effects of running G/S operations at increasing data
set sizes (i.e. total address range of the arrays). The measurements
were made using an index array of stride-1 and an index array of
random-stride, this was intended to cover the range of
performance for the operations shown in Figure 4a through Figure
4c. The measurements were taken both on the host Xeon
processor and the FPGA coprocessor. Figure 6 and Figure 7
illustrate the results of these measurements as a function of the
size of the address range of the test loop and compare
performance of operations on the host Xeon processor with those
on the FPGAs.

Figure 6. Performance of Scatter loop as a function of
|Address Range| on Convey HC-1 using host and FPGA.

0

10

20

30

40

50

60

1.E+4 1.E+5 1.E+6 1.E+7 1.E+8 1.E+9 1.E+10

B
an

d
w
id
th
 (
G
B
/s
)

Size of Address Range (Bytes)

host ‐ index stride 1
host ‐ index random
FPGA ‐ index stride 1
FPGA ‐ index random

Figure 7. Performance of Gather loop as a function of
|Address Range| on Convey HC-1 using host and FPGA.

Figure 6 shows Scatter operations run at different data set sizes.
The first curve is for SGBench run at increasing sizes on the host
processor (Xeon) of the Convey HC-1 with an index array of
stride-1, while the second curve is for an index of random-stride.
These curves illustrate that as the size is increased the
performance decreases in a stepwise fashion on the host processor
an exemplar of today’s deep-memory-hierarchy machines
comprised of levels of cache. The next two curves, in Figure 6,
are Scatter operations run on the FPGA with stride-1 and random-
stride index arrays. This illustrates that at a few small data set
sizes, it is more beneficial to run Scatter operations on the host but
that performance on the FPGA increases with size asymptotically
and for large sizes ~200x performance improvement over the host
can be gained. More importantly, the performance does not
change much when using random-stride vs. stride-1 index array
on the FPGA for larger data sizes.

Figure 7 represents similar measurements for Gather
operations. Both figures illustrate that there are only small
changes in performance when running Gather vs. Scatter
operations on the FPGAs and the FPGA’s performance is not
significantly affected by the randomness of the index array. The
figures illustrate that the data footprint of these operations can
dramatically affect performance; in other words there is no such
thing as “the performance of a machine on Gather/Scatter” rather
one needs more information such as the size of the range of array
address arguments to accurately estimate performance.

3.2 Application Component
In order to have a general scheme for modeling and predicting

Gather/Scatter operation performance, we first need to identify
instances of Gather/Scatter operations within the source code.
Secondly, we need to capture the parameters of each individual
G/S instance that will affect their performance (locate them on the
benchmark graph) if they were to be ported to the accelerated
hardware. As identified above, size or range of addresses in the
G/S loop, are important in determining performance on the
Convey HC-1 and thus were identified as the main modeling
parameter. Figure 6 and Figure 7 illustrates how the
Gather/Scatter operations benefit for large address ranges more
when using the FPGAs, which would also likely be true of
commodity (HPC) processors with built-in G/S capabilities. In
fact in retrospect we can look back at the vector systems of the

80’ and 90’s and see how this was also true back then. Back then
G/S was inherent in the hardware and on the Crays it was in the
ISA as an assembler vector instruction.

3.2.1 Identifying Gather/Scatter operations

Once the basic Gather/Scatter operation is defined the next step
is to automate the detection of these operations in large scientific
application because without automated detection the task of
identifying candidates for G/S acceleration by hand would be
extremely time consuming. The PIR tool, described in section 2,
was used to automate the search for G/S instances in large scale
scientific application.

Identification of the idioms in an application in an automated
way allows for the easy detection of Gather/Scatter instances.
Once the G/S instances are detected the second step is capturing
the address ranges for each instance. This needs to be done
dynamically by instrumentation.

3.2.2 Measuring range Gather/Scatter operations
Once operations in an application are identified as

Gather/Scatter, the next step, as suggested by the benchmark
results, is to measure the address range of each instance as they
occur within the application. It should be clear that the range may
depend on input, thus a static analysis tools such as PIR, while
sufficient to identify instances of Gather/Scatter in applications,
provides insufficient information to accurately model them since
performance may vary more than an order-of-magnitude just
depending on range of addresses (see Figure 6 and Figure 7).
Therefore we used the binary instrumentation tool PmacInst[16]
to instrument the instances of Gather/Scatter identified by PIR.

PmacInst is used to gather the memory traces of an application
for the general PMaC performance model. It is designed to
instrument an identified set of basic-blocks in an application and
capture the memory addresses of those blocks during the
execution of the application. To conserve time and space the
address stream is simulated against architectural features of
interest (caches, Gather/Scatter hardware) on-the-fly while the
application is running.

In order to capture the range of the Gather/Scatter operations
identified by PIR two steps were required. First the information
gathered from PIR needed to be translated and conveyed between
the two tools because PIR works on source code while PmacInst
works on the binary—we need to identify the binary code
corresponding to the source code. This translation allows
PmacInst to add additional instrumentation to those basic-blocks
identified by PIR. Secondly, an address range function was
developed to process the address streams from Gather/Scatter
operations and calculate the range and distribution of those
operations.

In order to translate identified PIR operations to basic-blocks
by PmacInst a special feature of PmacInst was utilized. This
feature allowed the source file and line number to be collected
along with the basic-block number. This same information is
collected by PIR, so by using additional parsing scripts, the PIR
output was connected to and combined with the static analysis
from PmacInst to automate the identification and additional
instrumentation of all Gather/Scatter instances. This extra
instrumentation allowed for the addresses of these operations to
be processed by the function to calculate address range for each
G/S instance.

0

10

20

30

40

50

60

1.E+4 1.E+5 1.E+6 1.E+7 1.E+8 1.E+9 1.E+10

B
an

d
w
id
th
 (
G
B
/s
)

Size of Address Range (Bytes)

host ‐ index stride 1
host ‐ index random
FPGA ‐ index stride 1
FPGA ‐ index random

To calculate the range of addresses in a Gather/Scatter
operation the function was designed to minimize overhead while
maintaining sufficient accuracy by determining the memory
regions touched by each basic-block. One way to gather
information on memory regions for an address stream is to use
binary search tree that holds the boundary addresses for memory
regions and at every memory access searches for the region the
memory access fits in [17]. This requires additional split and
merge operations of memory regions according to some heuristics
for accurate region identification. Even though such an approach
would potentially identify the memory regions very accurately, it
would also introduce a significant overhead since a search in the
binary tree would be required for every memory access and would
rely on accurate split and merge heuristics.

To avoid this large overhead, the function tracks the addresses
accessed by each memory operation (instruction) in the basic-
block separately. Since the instrumentation code already passes
information about the memory operation for each access, we
identify the region accessed by the memory operation by keeping
track of the minimum and maximum addresses touched.

This method is faster at instrumentation time but requires
additional post processing to be accurate enough. The overall
overhead required for this additional instrumentation is less than
10%. The additional post-processing is needed due to the fact that
even though the list of memory regions accessed by all memory
operations can be used as the memory regions accessed by the
block, some of these memory regions may overlap. This is can be
a result of multiple memory operations accessing the same data
structures and arrays, which can be an outcome of heavy code
optimizations such as loop unrolling. To correct for such overlap,
we post process the trace data to find the minimal number of
memory regions accessed by a basic block. We accomplish this by
first sorting the list of memory regions accessed by all memory
operations in ascending order of their minimum addresses and
then merging the overlapping regions.

Table 2 shows the results of using this range calculation on an
instrumented run of the SGBench benchmark. The table presents
the measured and actual ranges for a given array in the scatter
loop shown in Figure 2. The instrumented SGBench was run at 8
different size scatter loops and the results for 4 of those are shown
in Table 2 below. The relative absolute error for all the runs was
less than 1% for all sizes.

Table 2. Actual and measured ranges in SGBench.

Array
name

Actual size
(bytes)

Measured
size (bytes)

%
Error2

A 20,480 20,400 0.4

B 5,120 5,080 0.8

Index 2,560 2,540 0.8

A 65,536 65,520 0.0

B 16,384 16,344 0.3

Index 8,192 8,192 0.3

A 16,777,216 16,777,128 0.0

B 4,194,304 4,194,264 0.0

Index 2,097,152 2,097,132 0.0

A 33,554,432 33,554,352 0.0

B 8,388,608 8,388,568 0.0

Index 4,194,304 4,194,284 0.0

1
100

size actual

size measured - size actual
 Error %

 abs

The automated process of using PIR to identify Gather/Scatter
operations and PmacInst to measure ranges was further tested
using spot checking of two large scale applications (HYCOM and
Flash) and showed similar absolute relative error with all loops
measured with less than 1% error.

Thus by combining the PIR and PmacInst tools we have a tool
to automate the process of first identifying Gather/Scatter
operations and second measuring the range of each of those
operations in a tractable fashion, which is an important step in
modeling their performance on acceleration hardware.

3.3 Modeling Gather/Scatter operations
We extended our existing performance modeling framework to

account for the performance effects of acceleration hardware on
Gather/Scatter operations. Here we briefly describe the PMaC
framework designed to model large scale parallel applications and
then present how the Gather/Scatter model is incorporated into the
framework.

3.3.1 PMaC Performance prediction framework

The PMaC prediction framework is designed to accurately
model parallel applications on HPC systems. In order to model a
parallel application, the framework is composed of two models, a
computational model and a communication model. The
computational model models work done on the processor in
between communication event, while the communication model
deals with modeling communication events. Below a brief
description is provided but for a detailed description of the
framework, please see Snavely et al.[18], Carrington et al.[19] and
Tikir et al. [20].

For each model, the computational and communication is
comprised of three primary components: an application signature,
a machine profile, and a convolution method. The machine profile
captures that rates that a machine can perform fundamental
operations through simple benchmarks. These simple benchmarks
includes tests for performance of different kinds of memory
access patterns, arithmetic operations, and communications
events, at various working set sizes and message sizes. The
application signature includes detailed information about the
required operations the applications needs as well as the locality
of its data and its message sizes, and is collected via trace tools.
The machine profile and application signature are combined by
mapping the required operation of the application to their
expected rate on the target machine. This mapping takes place in
the PSiNS simulator that re-plays the entire execution of the HPC
application on the target/predicted system to calculate the runtime
of the target system. The models generated by the framework
have shown good accuracy (i.e. <15% absolute relative error)
predicting full-scale application running production datasets on
existing systems [21].

Figure 8. . Measured bandwidth as function of cache hit rates

for Opteron.

For this work we focused on extending the computational or
core model, which is comprised of the work done on the processor
or core in between communication events or computational work.
We extended the model to account for the effect of having
accelerators in each node; and modeling the work that is off-
loaded to the accelerator.

For the computational model there are two main operations that
normally comprise a majority of the run time: arithmetic time and
memory time. Arithmetic time is the time required to perform
floating-point and other math operations. Memory time is the time
required to load and store memory references and it is this time
that usually dominates the computational model’s run time. To
accurately model memory time we need to determine the number
of bytes that need to be loaded or stored but also the location and
access pattern of those references. This is because references from
different locations and access patterns can perform orders of
magnitude better or worse. For example, a stride-one load from
L1 cache can perform significantly faster than a random stride
load from main memory. Figure 8 is an example of the
MultiMAPS benchmark[20] used to capture the complex
interaction of spatial and temporal locality and performance on
memory reference on a two level Opteron processor. The
MultiMAPS surface allows the model to determine the
performance of memory references with different spatial and
temporal locality.

 To capture this temporal and spatial locality information in an
application for each reference that occurs in the execution an
augmented memory trace of the application is used. The memory
trace is captured using the pmacInst[16] tool which has the ability
to instrument each memory reference in order to capture the
memory address stream from each core of the running application.
This address stream is then processed on-the-fly through a cache
simulator for the target system or system to predict. The result of
this trace is for each basic block of the application information is
provided on: 1) the location of the block in the source code, 2)
number of floating-point operations and type, 3) number of
memory references and type (e.g. load and/or store), 4) size of
references in bytes, and 5) the expected cache hit rates for those
references on the target system. It is the hit rates that provide
information about the spatial and temporal locality of the
reference and enable accurate predictions of their performance via
the corresponding data on the MultiMAPS surface. The

framework enables the application to be traced on a one system
(i.e. the base system) but by simulating a difference cache
structure (i.e. the target system) the model can predict the
performance of a completely different system. For this work the
applications were trace on an IBM Power 6 system but simulated
the cache structures for AMD and Intel based systems, these are
referred to cross-architectural predictions.

In the computational model the majority of the time comes
from the memory time or time to move data through the memory
hierarchy (arithmetic time is also modeled but memory time tends
to dominate in the cases we studied). A detailed description of the
memory time calculation can be found at Tikir et al.[20]. The
general memory time equation is:

1)

 BBall

i j

ji,

memory BW

reference of sizeref.memory
 timememory

Where:
Memory bandwidthj = memory bandwidth of the jth type of

memory reference on a target system.

Size of reference = size in bytes of the reference

memory ref.i,j = number of memory references for
basic-block i of the jth type (locality
information encompassed in type)

Equation 1 represents the memory time of an application as

being the sum of all basic-block’s memory time for the
application.

To model Gather/Scatter operations, an additional equation
needed to be developed to compute the time for operations off-
loaded to the accelerator or Convey HC-1 FPGAs and additions to
the simulator on which equation is used for which basic-block.

3.3.2 Gather/Scatter memory model

In order to add the modeling of Gather/Scatter operations the
simulator requires two additional pieces of data. First, how the
performance of Gather/Scatter operations vary with size of
operation and second which basic-blocks in the application
contains these operations and what is their size.

In developing a model of the performance of Gather/Scatter
operation based on size, we first investigated the trends displayed
in Figure 6. The concept in designing the model is to start as
simple as possible and only add complexity when needed.
Therefore we started with a piece-wise fit to the data in Figure 6.
The equation for modeling Gather/Scatter operations on the
FPGAs is as follows:

2)

 BBall

i gs

ji,

memory BW

reference of sizeref.memory #
 timememory

Where:

3) 3MBsize192KBfor 6.12size51 memory BWgs E

4) 3MB48 memory BWgs

Where:
Memory BWj = memory bandwidth of the jth type of memory

reference on the target system.

Size = size in bytes of the reference

Equation 2 represents the memory bandwidth as a function of
size in bytes detailed in Equations 3 and 4. The framework was
modified so that the simulator incorporated the trace data of the
PIR recognized Gather/Scatter operations, its measured size, and
Equations 2, 3, and 4 to model the performance impact the
Convey would have on applications. Note that the simulator
includes a conditional that would only run those Gather/Scatter
operations that are predicted to see a performance improvement
on the FPGA (from Figure 6 and Figure 7 only those with array
address ranges larger than 192 KB).

4 EXPERIMENTAL MODEL AND RESULTS
In the experiment we used two full-scale scientific applications

to test the model, HYCOM and FLASH. FLASH is an
astrophysics application developed at the “FLASH Center”
funded by DOE ASC/Alliance Program. It is a state-of-the-art
simulator code for solving nuclear astrophysical problems related
to exploding stars. It is 126,478 lines of code. HYCOM is an
ocean modeling application developed by The Naval Research
Laboratory (NRL), Los Alamos National Laboratory (LANL), and
the University of Miami as an upgrade to MICOM (well-known
ocean modeling code) by enhancing the vertical layer definitions
within the model to better capture the underlying science. It is
54,085 lines of code.

The main goal of the research was to design a modeling
framework to explore the question “Would a given HPC
application benefit from accelerators?”. We designed a general
modeling methodology around this but to verify the methodology
we chose a specific set of operations (e.g. G/S) and a specific
accelerator (e.g. the FPGA). In order to verify the models two
main experiments were conducted. The first experiment was to
simply verify the model for the two large scale applications
running on a large scale HPC system. In addition verify the model
at a finer-grain level for only Gather/Scatter operations still
running on the same system, see section 4.1. The second
experiment dealt with a smaller data set for the FLASH
application. In this experiment we wanted to verify the FPGA
Gather/Scatter model by running the application on the Convey
HC-1 and porting a single loop of the application to the FPGA for
the verification of the FPGA model. The smaller data set was used
because the HC-1 only had 4 host cores and we were unable to
run a bigger data set. Figure 2 and Figure 3 had already verified
the accuracy of the FPGA Gather/Scatter model on benchmarks
on the HC-1 but this experiment verified the model working
within a full-scale application on that system.

4.1 Models and fine grain verification
experiment

In this experiment we needed to first verify the full application
model for the two applications running on a large scale HPC
system. In addition verify the accuracy of the full application
model at a finer-grain level by capturing the model time for only
Gather/Scatter operations of the application. To accomplish this a
large data set was used as input to the application. For this
experiment we identified all of the Gather/Scatter instances within
both applications, modeled the entire computational time of the
applications (using the full framework), then inside the simulator
captured the modeled time for just the Gather/Scatter idioms
within the applications, and verified those modeled times on a

large scale HPC system by measuring those times with a light
weight profiling tool and individual timers.

 For this experiment, models were developed for HYCOM and
FLASH for Oakridge National Laboratory’s (ORNL) Jaguar XT4
to verify the accuracy and the granularity of the models. Jaguar is
an XT4 with seastar2 interconnect [22]. FLASH was run on
Jaguar with 128 processors using the white dwarf input and
HYCOM was run with 59 processors using the 26-layer 1/4
degree fully global HYCOM benchmark input deck. While the
framework is designed and is used at much larger processor
counts, both applications were run at small core counts to
minimize the contribution of runtime from communication, thus
focusing the modeling on computational aspects of the application
such as their ability to benefit from Gather/Scatter accelerators.

PIR was used to capture the number and location of
Gather/Scatter operations in FLASH and HYCOM source codes.
An additional feature was added so that PIR automatically
inserted tags at the identified Gather/Scatter operations to enable
timer insertion to aid in model accuracy verification. This feature
could further be enhanced to automate the process of modifying
the identified Gather/Scatter loops to call the FPGA personality, a
valuable aid in the porting process (future work).

After the PIR analysis, 140 Gather/Scatter idioms were
identified for FLASH and 64 in HYCOM. PIR only captures the
number of G/S idioms but gives no indication on their
contribution to the overall runtime; for that, the performance
model is required. A performance model for FLASH and
HYCOM executing on Jaguar was developed to investigate the
performance benefit these applications would see from FPGA
accelerators.

Table 3 shows the results for both predicted/modeled and
measured computational time of FLASH and further breaking
down the time spent in Gather/Scatter operations for both
predicted/model and measured time. It also has the
predicted/modeled computational time on Jaguar for HYCOM
compared to the measured computational time.

Table 3. Prediction of FLASH on ORNL Jaguar.

Code segment Predicted time
(sec)

Measured time
(sec)

% error1

FLASH – full 262 250 4.6%
FLASH G/S ops 69 68 1.4%
HYCOM – full 5956 5781 2.9%
1

100
measured

predicted - measured
 Error %

 abs

Table 3 shows that the accuracy of modeling FLASH and
HYCOM on existing hardware is accurate to within 5% (e.g. rows
2 and 4). Additionally at finer granularity models of the
Gather/Scatter operations of FLASH with the same level of
accuracy (e.g. <2% error, row 3). Due to the nature of the
HYCOM G/S operations (e.g. inner loops with other operations)
we were unable to capture the fine grain G/S operation time alone
without disturbing the overall runtime significantly due to number
of calls to the timer routines (the measurement was affecting the
execution significantly). Therefore we were only able to compare
the overall runtime and not the G/S operations on HYCOM.

4.2 Convey HC-1 models and verification
Once the accuracy of the applications’ models on an existing

system was confirmed then the exploration of the Gather/Scatter
operations on the Convey system was investigated. It is one thing
to verify the accuracy of a kernel extracted from an application
(e.g. SGBench) but this experiment was designed to verify the
accuracy of the model during execution of the entire application.

To verify the accuracy of the FPGA Gather/Scatter model and
simulation for large scale applications, one of the identified
Gather/Scatter operations (i.e. loop) of FLASH was ported to the
Convey system and timed to compare the simulated FPGA model
time with the measured time. So a majority of the FLASH
application could then be executed on the HC-1 host processors
with one loop being executed on the FPGA. Porting loops to the
Convey requires some additional work; the whole point of our
technique is to focus programmer efforts on the parts of the code
where the effort will result in the most reward. From FLASH we
chose porting a loop that ranked the highest among the
Gather/Scatter operations for overall runtime contribution.

Due to the size of the Convey HC-1 we were accessing (only 4
host processors) we had to choose a smaller FLASH input, sedov-
2d problem rather than the white dwarf input, in order to run
FLASH at full-scale with the single ported loop executing on the
FPGAs. Alternately we could have extracted the loop into a small
kernel but that might not fully capture the data transfer penalties
associated with the many visits to the loop throughout the
execution. A full application model was developed for the sedov-
2d input similar to the white dwarf input verified in Table 3. This
time the model was developed for not only Jaguar but the host
processors of the HC-1. In addition for both models the simulation
time for the identified loop was captured in order to verify the
model accuracy at the loop level. Then a model was generated for
the HC-1 with that loop executing on the FPGA, this allowed
verification of the FPGA G/S model. The sedov-2d input
computational time was predicted/modeled and measured on
Jaguar and the Convey host; the results are shown in Table 4
below. This illustrates the accuracy of the Gather/Scatter model
on the Convey HC-1 system for the sedov-2d input with a relative
absolute error less than 10%.

Table 4. Simulated and measured Gather/Scatter times for
FLASH on the Convey HC-1.

Code/section
(system)

Measured
time (s)

Predicted
time (s)

% Error1

FLASH-full
(Jaguar)

518.6 487.7 6.0%

#1 FLASH-G/S loop
(Jaguar)

3.4 3.7 9.3%

FLASH-full
(Convey Host)

491.9 489.7 5.0%

#1 FLASH-G/S loop
(Convey FPGAs)

2.8 3.0 8.6%

1

100
measured

predicted - measured
 Error %

 abs

 Table 4 verifies the accuracy of the FPGA G/S model when
implemented in a full-scale application even at a fine grain loop
level with only 8.6% abs. relative error. Table 3 and Table 4
confirms the accuracy of the full application models for FLASH
and HYCOM, the accuracy of the models on a finer-grain level

(i.e. gather/scatter operations in FLASH), and the accuracy of the
FPGA Gather/Scatter model on the Convey HC-1 FPGAs.

4.3 Exploring the benefits of G/S on FPGAs
In section 4.1 we verified the Jaguar models accuracy for full

scale applications and sub-sections (e.g. G/S loops) of the
application. In section 4.2 we verified the FPGA G/S model
executing in the context of a full scale application. After verifying
these components of the modeling framework we then began to
investigate the original question the methodology was designed to
explore, “Do applications benefit from running G/S operations on
FPGAs?” Since we have verified large scale runs of HYCOM and
FLASH on Jaguar nodes we will start our exploration there.

To explore this space we need to create a hypothetical system
consisting of 32 Jaguar nodes (e.g. 128 cores) with FPGAs
attached to the cores, essentially a hypothetical Convey system
where the host processors are Barcelona (i.e. XT4- Jaguar)
processors rather than Xeon’s. We then use the models to predict
the performance of FLASH and HYCOM on this system to
answers the question “What if all Gather/Scatter operation that
would perform faster on the FPGAs were ported and run on them
how that would affect overall application runtime?”

These new simulations give insight into not only whether an
application might benefit from accelerated G/S operations but
how much and which ones. The G/S operations in FLASH took 68
seconds on Jaguar and were predicted to take 3.5 seconds if run
on the FPGAs an almost 20X speedup. HYCOM showed slightly
different behavior since a significant number of the HYCOM G/S
operations did not benefit from the FPGAs (were too small).
HYCOM showed G/S operations predicted to run on the FPGAs
at a 7X speed up compared to Jaguar. The overall runtime speed
up of FLASH and HYCOM resulting from the FPGAs on the new
hypothetical system was 21% and 3.2% respectively.

The model showed that while there are over 140 Gather/Scatter
operations in FLASH that contributes to 27% of the runtime, the
FPGAs can potentially speedup these by close to 20X. The model
allows users to focus porting efforts by identifying only those
applications and idioms that would benefit most. While the
speedup of the G/S operations was significant, due to the nature of
the applications this speedup had only a modest contribution to
the speedup of the overall runtime. This speedup could potentially
be significantly improved if other idioms were ported to the
FPGAs (future work).

If we look at Figure 6 we see that G/S operating on arrays
smaller than 16K would be faster on the host. The performance
models predict that the 33 largest instances of G/S (out of 140)
correspond to 95% of predicted total G/S execution time.
Quantitatively, the predicted time with FPGA G/S model is 197.2
seconds if all G/S in FLASH larger than 16K are ported while
porting the top 33 results in execution time of 198.7 seconds for
accelerator system. That is, even though we eliminated 107 blocks
from porting to G/S hardware, we did not lose anything from the
benefits of the accelerators. We only lost 1.42 seconds of
optimized time but we were able to reduce the port time by a
significant factor.

5 CONCLUSIONS
This work showed a general modeling methodology to

automate the prediction of HPC applications on acceleration
hardware. The models were confirmed using two large scale
applications with an average absolute relative error of 5% and

fine-grain accuracy of the model was confirmed with similar
results. The fine-grain model for FPGA G/S operations was
proven to have less than 8.6% absolute relative error using a loop
from FLASH running on the FPGAs for verification. The
performance modeling methodology estimated that >100 instances
of the G/S idiom were not worth porting thus saving additional
programmer’s time and improving performance and avoiding
illogical results such as incorrectly assuming Convey can’t
accelerate G/S because blind porting all G/S would make the code
run slower. While speedup of 21% and 3.2% may not seem
significant for some developers this amount may be worth the
effort. The tools and models make the porting effort less
challenging by identifying which sections of the application
would benefit from porting and indicating their contribution to the
overall runtime, leaving the final decision up to the developer. In
addition, this work focused only on Gather/Scatter operations but
the tools and methodology can be applied to other operations (i.e.
stream, reduction, etc.). And with additional work on PIR and its
source code tagging feature, porting could become quite effortless
for the user/developer. In future work we also intend to extend
this to model other idioms and also in using these potential
calculations to predict how much energy we could save (FPGA’s
consume less energy than their host processors). Also, the
methodology described in this work could easily be extended to
other accelerators such as GPUs. Such an extension would involve
similar steps as using PIR to identify code blocks which might
perform efficiently on GPUs, developing a model for those blocks
on the GPU, develop trace tools to capture relevant model inputs,
and modify the simulator to incorporate new trace data and
models. Such work is saved for future work.

6 BACKGROUND
The prevalence of Gather/Scatter operation in application can

be seen in sorting algorithms, hash searches, and sparse-matrix
vector multiplication[23] to name a few. For many parallel
algorithms scatter and gather are two fundamental operations[24]
for instance radix sort is a parallel sorting algorithm[25], hash
used in databases, and any linear solvers use sparse-matrix vector
multiplication[26]. The use of acceleration hardware to speed-up
Gather/Scatter operations has mainly focused on GPU-based
acceleration hardware. In He et al[23] they used gather scatter
operations optimize using GPUs to implement three memory
intensive algorithms radix sort, the hash search, and the sparse-
matrix vector multiplication with models for just the GPU.

On traditional architectures there are varying techniques for
modeling the performance of HPC applications [18, 27-46],
spanning derived analytical models, trace-based models, to a
combination of the two. Analytical based models require a
detailed understanding of the application and/or its algorithm and
the method doesn’t lend itself to automated model generation,
unlike trace-based methods.

Understanding the performance of acceleration hardware
through modeling is a task that many researchers have focused on.
Alam et al[47] investigate using their Modeling Assertions to
model the multi-streaming, vector processing capabilities of the
X1E on the NAS SP kernel[48]. Hong and Kim[49] developed an
analytical model for GPU performance and applied it to micro-
kernel and benchmarks, but not full scale HPC applications.
Govindaraju et al [50] developed a memory model for GPUs for a
set of algorithms used in scientific applications. They tested the
model on benchmark kernels but not full-scale HPC applications.

This work offers a unique contribution in that it develops a
general framework to model acceleration hardware on full-scale
HPC applications and validates the model using full-scale
applications and the acceleration hardware offered by the Convey
FPGA system.

ACKNOWLEDGMENT
This work was supported by the DoD and used elements at the

Extreme Scale Systems Center, located at ORNL and funded by
the DoD. The software used in this work was in part developed by
the DOE-supported ASC / Alliance Center for Astrophysical
Thermonuclear Flashes at the University of Chicago. This
research used resources of the National Center for Computational
Sciences at Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725. Special thanks to Mark
Kelly and Glen Edwards for all their help.

REFERENCES
[1] B. Miller, et al., "The Paradyn Parallel Performance

Measurement Tool," Computer, vol. 28, pp. 37-46, 2002.
[2] S. Shende and A. Maloney, "The TAU Parallel Performance

System," International Journal of High Performance
Computing Applications, vol. 20, 2006.

[3] V. Adve, et al., "An Integrated Compilation and Performance
Analysis Environment for Data Parallel Programs,"
Proceedings of the IEEE/ACM SC95 Conference, 1995.

[4] V. Freeh, et al., "Analyzing the Energy-time Trade-off in High-
Performance Computing Applications," IEEE Transactions on
Parallel and Distributed Systems, vol. 18, pp. 835-848, 2007.

[5] J. Shin, et al., "Autotuning and Specialization: Speeding up
Nek5000 with Compiler Technology," presented at the
International Conference on Supercomputing, 2010.

[6] J. Kepner, "HPC Productivity: An Overarching View,"
International Journal of High Performance Computing
Applications, vol. 18, 2004.

[7] L. Hochstein, et al., "Parallel Programmer Productivity: A
Case Study of Novice Parallel Programmers," Proceedings of
the 2005 ACM/IEEE conference on Supercomputing, 2005.

[8] C. Olschanowsky, et al., "PIR: A Static Idiom Recognizer," in
First International Workshop on Parallel Software Tools and
Tool Infrastructures (PSTI 2010), San Diego, CA, 2010.

[9] J. Nieplocha, et al., "Global Arrays: A Non-uniform Memory
Access Programming Model for High-Performance
Computers," Journal of Supercomputing, vol. 10, pp. 169-189,
1996.

[10] J. Lewis and H. Simon, "The Impact of Hardware
Gather/Scatter On Sparse Gaussian Elimination," SIAM J. Sci.
Stat. Comput., vol. 9, pp. 304-311, 1988.

[11] S. Mukherjee, et al., "Efficient Support for Irregular
Applications on Distributed-memory Machines," ACM
SIGPLAN Notices, vol. 30, pp. 68-79, 1995.

[12] SGBench see, http://www.sdsc.edu/pmac/SGBench.
[13] J. Dongarra and P. Luszczek, "Introduction to the HPC

Challenge Benchmark Suite," ICL-UT-05-01, 2005.
[14] G. Fox, et al., "Solving Problems on Concurrent Processors:

Volume 1, Chapter 22," P. Hall, Ed., ed Englewood Cluffs, NJ,
1988.

[15] C. HC-1,
"http://www.conveycomputer.com/ConveyArchitectureWhiteP.
pdf," ed.

[16] M. Tikir, et al., "The PMaC Binary Instrumentation Library for
PowerPC," Workshop on Binary Instrumentation and
Applications, San Jose, 2006.

[17] C. Olschanowsky, et al., "PSnAP: Accurate Synthetic Address
Streams Through Memory Profiles," The 22nd International
Workshop on Languages and Compilers for Parallel
Computing, Oct. 8-10 2009.

[18] A. Snavely, et al., "A Framework for Application Performance
Modeling and Prediction," ACM/IEEE Conference on High
Performance Networking and Computing, 2002.

[19] L. Carrington, et al., "How well can simple metrics represent
the performance of HPC applications?," Proceedings of the
ACM/IEEE SC2005 Conference on High Performance
Networking and Computing, 2005.

[20] M. Tikir, et al., "Genetic Algorithm Approach to Modeling the
Performance of Memory-bound Codes," The Proceeding of the
ACM/IEEE Conference on High Performance Networking and
Computing, 2007.

[21] M. Tikir, et al., "PSINS: An Open Source Event Tracer and
Execution Simulator for model prediction," presented at the
HPCMP User Group Conference, San Diego, CA, 2009.

[22] "ORNL Jaguar see http://www.nccs.gov/computing-
resources/jaguar/."

[23] B. He, et al., "Efficient Gather and Scatter Operations on
Graphics Processors," SC07, 2007.

[24] J. D. Owens, et al., "A Survey of general purpose compuation
on graphics hardware," Computer Graphics Forum, vol. 26,
2007.

[25] M. Zagha and G. E. Blelloch, "Radix sort for vector
multiprocessors.," in Supercomputing 1991, 1991.

[26] J. Bolz, et al., "Sparse matrix solvers on the GPU: conjugate
gradients and multigrid," ACM Transactions on Graphics, pp.
917-924, 2003.

[27] V. Adve and R. Sakellariou, "Application representations for
multiparadigm performance modeling of large-scale parallel
scientific codes," The International Journal of High
Performance Computing Applications, vol. 14, 2000.

[28] S. Alam and J. Vetter, "A Framework to Develop Symbolic
Performance Models of Parallel Applications," presented at the
5th International Workshop on Performance Modeling,
Evaluation, and Optimization of Parallel and Distributed
Systems, 2006.

[29] G. Almasi, et al., "Demonstrating the scalability of a molecular
dynamics application on a Petaflop computer," presented at the
Proceedings of the 15th international conference on
Supercomputing, Sorrento, Italy, 2001.

[30] B. Armstrong and R. Eigenmann, "Performance forecasting:
Towards a methodology for characterizing large
computationals applications," in Internationals Conference on
Parallel Processing, 1998.

[31] D. Bailey and A. Snavely, "Performance Modeling:
Understanding the Present and Predicting the Future,"
EuroPar, 2005.

[32] J. Bourgeois and F. Spies, "Performance prediction of an NAS
benchmark program with chronosmix enviroment," presented
at the 6th International Euro-Par Conference, 2000.

[33] M. Clement and M. Quinn, "Automated performance
prediction for scalable parallel computing," Parallel
Computing, vol. 23, 1997.

[34] M. J. Clement and M. J. Quinn, "Analytical performance
prediction on multicomputers," Supercomputing, pp. 886-894,
1993.

[35] D. Culler, et al., "LogP: Towards a realistic modle of parallel
computation," in 4th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 1993.

[36] M. Faerman, et al., "Adaptive performance prediction for
distributed data-intensive applications," presented at the
Supercomputing, 1999.

[37] T. Fahringer and M. Zima, "A static parameter based
performance prediction tool for parallel programs," presented
at the The International Conference on Supercomputing, 1993.

[38] D. J. Kerbyson, et al., "Predictive Performance and Scalability
Modeling of Large-Scale Application," Supercomputing, 2001.

[39] C. Lim, et al., "Implementation lessons of performance
prediction tool for parallel conservative simulation," presented
at the 6th International Euro-Par Conference, 2000.

 [40] G. Marin and J. Mellor-Crummey, "Cross Architecture
Performance Predictions for Scientific Applications Using
Parameterized Models," In Proceedings of the Joint
International Conference on Measurement and Modeling of
Computer Systems, June 2004.

[41] B. Mohr and F. Wolf, "KOJAK - A Tool Set for Automatic
Performance Analysis of Parallel Applications," presented at
the European Converence on Parallel Computing (EuroPar),
2003.

[42] J. Simon and J.-M. Wierum, "Accurate Performance Prediction
for Massively Parallel Systems and its Applications," Euro-
Par'96 Parallel Processing, vol. 1124, pp. 675-688, 1996.

[43] A. van Gemund, "Symbolic performance modeling of parallel
systems," IEEE Transactions on Parallel and Distributed
Systems, vol. 14, 2003.

[44] A. Wagner, et al., "Performance models for the processor farm
paradigm," IEEE Transactions on Parallel and Distributed
Systems, vol. 8, 1997.

[45] L. Yang, et al., "Cross-Platform Performance Prediction of
Parallel Applications Using Partial Execution," presented at the
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, 2005.

[46] X. Zhang and Z. Xu, "Multiprocessor Scalability Predictions
Through Detailed Program Execution Analysis," International
Conference on Supercomputing, pp. 97-106, 1995.

[47] S. Alam, et al., "An Exploration of Performance Attributes for
Symbolic Modeling of Emerging Processing Devices,"
presented at the HPCC, 2007.

[48] NAS Parallel Benchmarks (NPB) see,
http://www.nas.nasa.gov/Resources/Software/npb.html.

[49] S. Hong and H. Kim, "An Analytical Model for a GPU
Architecture with Memory-level and Thread-level Parallelism
Awareness," presented at the ISCA'09, Austin, Texas, USA,
2009.

[50] N. Govindaraju, et al., "A Memory Model for Scientific
Algorithms on Graphics Processors," presented at the
Supercomputing, Tampa, Florida USA, 2006.

