
 

 

ABSTRACT 
Suppose one is considering purchase of a computer equipped 

with accelerators. Or suppose one has access to such a computer 
and is considering porting code to take advantage of the 
accelerators. Is there a reason to suppose the purchase cost or 
programmer effort will be worth it? It would be nice to able to 
estimate the expected improvements in advance of paying money 
or time. We exhibit an analytical framework and tool-set for 
providing such estimates: the tools first look for user-defined 
idioms that are patterns of computation and data access identified 
in advance as possibly being able to benefit from accelerator 
hardware.  A performance model is then applied to estimate how 
much faster these idioms would be if they were ported and run on 
the accelerators, and a recommendation is made as to whether or 
not each idiom is worth the porting effort to put them on the 
accelerator and an estimate is provided of what the overall 
application speedup would be if this were done. 

As a proof-of-concept we focus our investigations on 
Gather/Scatter (G/S) operations and means to accelerate these 
available on the Convey HC-1 which has a special-purpose 
“personality” for accelerating G/S.   We test the methodology on 
two large-scale HPC applications.  The idiom recognizer tool 
saves weeks of programmer effort compared to having the 
programmer examine the code visually looking for idioms;   
performance models save yet more time by rank-ordering the best 
candidates for porting;  and the performance models are  accurate, 
predicting G/S runtime speedup resulting from porting to within 
10% of speedup actually achieved. The G/S hardware on the 
Convey sped up these operations 20x, and the overall impact on 
total application runtime was to improve it by as much as 21%. 
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1 INTRODUCTION 
Tools to help programmers identify optimization opportunities 

are useful for improving application scalability [1-4], improving 
throughput of applications [5], and improving programmer 
productivity[6, 7].  Lately Scalable hybrid-multi-core computing 
systems are becoming ubiquitous in the HPC environment. These 
systems typically have host cores and accelerator hardware thus 
offering the promise of enhanced compute power. For example 
the recently announced #1 on the Top500 list augments 14,336 
Intel Westmere-EP processors with 7,168 NVIDIA M2050 
general purpose GPUs and is capable of 2.57 petaflops on 
LINPACK. Because some real-world applications are more 
memory bound than compute bound, other accelerator-based 
systems such as Convey-HC-1 focus on speeding up memory 
accesses rather than flops. Yet common wisdom is that all these 
systems are difficult to program. They require writing code in new 
language extensions such as CUDA of even (in the case of 
Convey) coming up with VHDL-level descriptions of the problem 
to be solved. So at issue is to determine to what extent real-world 
applications would benefit from the accelerators on such systems? 
And assuming they would benefit, what portions of the 
applications would benefit most and how much work would it be 
to port the application, or portions of it, to these accelerators? PIR 
(PMaC’s Idiom Recognizer) [8] is a static analysis tool that 
automates the process of identifying sections of code that are 
candidates for acceleration. PIR automatically recognizes and 
identifies user-specified compute and memory access patterns, 
called idioms [41] within application source code. This greatly 
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reduces the amount of code that an expert must analyze “by hand” 
(visually). Once a section of code is identified that could be run 
on an accelerator, there still remains the question should it be? 
Often the startup overhead of moving the data to/from the 
accelerator outweighs the performance benefits. Also this question 
may depend on input. In this work we develop a general 
performance model for accelerators that can estimate whether the 
identified idiom would be worth computing on an accelerator 
depending on input.  The combined tool-stream (PIR + model) 
helps programmers to be productive in two ways 1) it saves them 
the labor of analyzing thousands lines of legacy code “by hand” to 
identify idioms that are candidates for acceleration and 2) it saves 
the time of porting candidate idioms by identifying sections of 
code/idioms to be ported only when the forecasted performance 
improvement will benefit overall performance 3) it triages the 
idioms that should be ported in order best-candidate-for-porting-
first. 

In this paper we focus our investigations on local 
Gather/Scatter (G/S) operations and means to accelerate these 
available on the Convey HC-1 which has a vendor supplied 
function (i.e. Convey personality) for accelerating local G/S. A 
local G/S is one where the data is gathered or scattered from 
memory local to the core and doesn’t require communication 
among cores.  G/S is a very difficult memory access pattern for 
most commodity systems to do well [9-11] and therefore some 
real applications may benefit more from this kind of acceleration 
than the more common “flops” accelerators.  We test the 
methodology on two large-scale HPC applications. The idiom 
recognizer tool saves weeks of programmer effort compared to 
having the programmer examine the code “by hand” looking for 
idioms;   performance models save yet more time by rank-
ordering the idioms, best-candidate-for-porting-first;  the models 
themselves are highly accurate and predict the G/S runtime 
speedup resulting from going ahead and porting to within 10% of 
what was actually achieved. The G/S hardware on the Convey 
sped up these operations 20x, the overall impact on total 
application runtime was to improve it by as much as 21%. In what 
follows we describe first in Section II our tool for recognizing 
idioms, section III describes our performance modeling 
methodology applied to G/S, section IV provides experimental 
results, section V concludes, and section VI gives background and 
related work. 

2 IDIOMS 
PIR (PMaC Idiom Recognizer)[8] is a tool for searching source 

code for idioms. An idiom [41] is a local pattern of computation 
that a user may expect to occur frequently in certain applications. 
For example, a stream idiom is a pattern where memory is read 
from an array, some computation may be done on this data, and 
then the data is written to another array. A stream reads 
sequentially from the source array and writes sequentially to the 
destination array. A stream may arise from the presence of the 
statement A[i] = B[i] within a loop over i. 

Idioms are useful for describing patterns of computation that 
have the potential to be optimized, for example, by loading the 
piece of code to a coprocessor or accelerator. 

The PIR tool allows us to automate searching for idioms in a 
powerful way by using data-flow analysis to augment the 
identification process. It would be very difficult to use a simpler 
searching tool, such as regular expressions, because a regular 
expression does not naturally discern the meaning of the text it 

identifies. For example, in the code shown in Figure 1, a simple 
regular expression based on (for example) “grep” that searches for 
stream idioms of the form “A[i]= B[i]” would incorrectly identify 
line 1 as a stream and it would miss the stream at lines 3-4 
because the assignment is broken into multiple statements. 

 

 

Figure 1. Sample stream idiom code. 

 

PIR, however, is able to determine that line 1 is not in a loop 
and that c is a constant. This indicates that the meaning of this 
statement is simply a variable assignment, rather than a stream. In 
lines 3-4, PIR uses data-flow analysis to determine that item in 
line 4 holds a value from the source array making this a stream. 

PIR’s design provides the flexibility to identify optimization 
opportunities for many different hardware configurations. The 
user provides descriptions of the idioms to be identified. As a 
starting point, PIR provides a set of commonly useful idioms and 
access to an Idiom definition syntax that allows for user 
customization of the idioms. 

PIR includes seven idiom definitions we have found to be 
common in HPC applications. The user is free to define more via 
a simple pattern describing API.  The pre-defined idioms are 
described in the following. All of the code samples are assumed to 
be part of a loop, i (and j) are loop induction variables. 

 
 Stream: A[i] = A[i] + B[i] 
 

The stream idiom includes accesses that step through arrays. In 
the above example two arrays are being stepped through 
simultaneously, but the stream idiom is not limited to this case. 
Stepping through any array in a loop where the index is 
determined by a loop induction variable is considered a stream. 

 
 Transpose: A[i][j] = B[j][i] 
 

The transpose idiom involves a matrix transpose, essentially 
reordering an array using the loop induction variable. 

 
 Gather: A[i] = B[C[i]] 
 

The gather idiom includes gathering data from a potentially 
random access area in memory to a sequential array. In this 
example the random accesses are created using an index array, C. 

 
 Scatter: A[B[i]] = C[i] 
 

The scatter idiom is essentially the opposite of gather. Values 
are read from a sequential area of memory and saved to an area 
accessed in a potentially random manner. 

 
 Reduction: s = s + A[i] 
 

1. values[c] = constants[c]; 
2. for( i = 0; i < 10; ++i ) { 
3.   item = source_array[i]; 
4.   dest_array[i] = item; 
5. } 



 

 

A reduction can be formed from a stream, as in the working 
example, or a gather. It implies that the value returned from the 
read portion of the idiom is assigned to a temporary variable. 

 
 Stencil: A[i] = A[i-1] + A[i+1] 
 

A stencil idiom involves accessing an array in a sequential 
manner, including a dependency between iterations of the loop. 

Table 1 presents just a sample of the report for an application. 
The sample shows how PIR is able to classify the idiom, capture 
the source file, source line, function name and even the line 
number of source code used for the identification( additional 
information about loop depth, start, and end are captured but not 
shown). 

 

Table 1. Sample output from PIR analysis on HYCOM. 

File Name Line # Function  Idiom Code 

mod_tides.F 623 tides_set gather pf(i)=f(index(i)) 

mxkrt.f 992 mxkrtbaj reduction sdp=sdp+ssal(k)*q 

The PIR user manual and programmers guide can be found 
online at www.sdsc.edu/pmac. 

3 MODELING GATHER-SCATTER OPERATIONS 
Once the idioms are identified having an accurate estimate of 

which ones will perform well on the new accelerator could save a 
lot of human hours in porting efforts. Some idioms that can be 
executed on an accelerator should not be because the overhead of 
moving the data to the accelerator is greater than the performance 
gains of executing them there.  It is not uncommon anecdotally for 
users to invest a fair amount of time in porting to accelerators only 
to discover the whole code as a whole runs slower1. Having an 
accurate performance model avoids these situations.  

In this work we develop a general methodology to model idiom 
operations on accelerators. The focus of this paper is on the G/S 
idiom due to its ability to exacerbate a systems memory 
performance. The Von Neumann Bottleneck is particularly 
aggravated by memory access patterns that have a substantial 
amount of randomness or indirection in the address stream such as 
Gather/Scatter idioms. In a Gather, non-contiguous memory 
locations are collected up into a contiguous  array;  in a Scatter, 
contiguous array elements are distributed to non-contiguous 
memory locations; because these species of operations are 1) 
prevalent in many scientific applications 2) performance-limited 
on many architecture by the latency of main memory, various 
architectural features have been proposed to try to accelerate 
them. An access to main-memory on today’s deep-memory-
hierarchy machines commonly takes two orders-of-magnitude 
longer than either floating-point or integer operations, thus these 
operations will be performance bottlenecks unless some means 
can be found to accelerate them.  

Our motive was to develop models and methodology to be able 
to assist in the prediction of the benefit of having G/S accelerators 
directly in future HPC architectures without just building the 

 
1 Negative results are rarely published in computer science: at a recent 

DoD GP GPU workshop most application developers reported spending 
considerable time porting codes to accelerators without getting any 
speedup. 

hardware first and finding out if it is useful afterwards. Building a 
model of the interaction of the hardware and the application 
requires three main components: the machine component, the 
application component, and the model component. The machine 
component involves measuring the performance benefits of using 
the acceleration hardware for Gather/Scatter operations and 
identifying the parameters that affect that performance (i.e. 
locality, vector length, etc.). The application component entails 
automating the detection of Gather/Scatter operations in a large 
scale HPC application and measuring the parameters of these 
operations that affect performance on the acceleration hardware. 
The final piece, the model component, combines the machine 
component and application component to complete the model and 
detail the performance of the application on the hardware. 

3.1 Machine Component- Measuring 
Gather/Scatter Operations 

The Machine Component of the G/S model consists of a way to 
measure the typical performance of running Gather/Scatter 
operations on acceleration hardware and determine what 
parameters affect their performance. A simple benchmark was 
developed, SGBench[12]. SGBench has two main loop bodies; 
one for a local scatter operations and one for a local gather 
operations.  

Figure 2 and Figure 3 represents the code snippets from 
SGBench for the scatter and gather operations respectively. The 
code represents local operations that do not require 
communication among cores. Figure 2 illustrates a scatter 
operation. In this loop the array A is filled by the contents of array 
B at non-contiguous locations in local memory, determined by the 
index array. In Figure 3 the gather operation is shown. Here a 
contiguous piece of array B is filled by the contents of a non-
contiguous piece of array A in local memory. In both loops the 
index array is filled with integers representing elements of an 
array. 

 

 

Figure 2. Loop for Scatter operation. 

 

 

Figure 3. Loop for Gather operation. 

 
In considering Gather/Scatter operation and ways to accelerate 

them, it is important to understand if there is locality in the index 
set. If there is locality the accelerator hardware may be able 
exploit it; also accelerator hardware may exist at different levels 
of the memory hierarchy (cache, local main memory, global 
memory, etc.). The size of the array accessed then matters but also 
any clustering or patterns of the index set matters. G/S accelerator 
hardware basically works by packing and reordering memory 
requests and pulling in chunks of random locations at a time. So 
even though the index set is by definition random, if reordered it 

      for(i=0;i<n;i++){ 
          A[index[i]] = B[i]; 
      } 

      for(i=0;i<n;i++){ 
          B[i] = A[index[i]]; 
      } 



 

 

may have some locality properties that G/S hardware can take 
advantage of. To study different modes of Gather/Scatter 
operations, the addresses in the index array in SGBench was 
varied. This work focused on three specific modes.  

Figure 4 depicts the three kinds of locality modes we consider 
in the index set. Figure 4a random indices has no locality, that is 
to say the index set is a set of entirely random indices that span 
the entire array from 0 to size of A. The second mode, clustered 
indices, shown in Figure 4b, has locality clusters within the 
random index set. In this case the indices in the index array span 
certain sections of the A array and within those sections the 
indices of the index array are random. In the third mode, spread 
indices, illustrated in Figure 4c, the indices have, if reordered, 
some spatial locality (predictable or constant strides) spanning the 
entire array from 0 to size of A.   
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Figure 4. Type of index arrays for gather-scatter operations, 
a) random index, b) clustered index, c) spread index. 

Random indices (Figure 3a) might be typical of a graph 
problem or similar to the RandomAccess (GUPs) kernel [13, 14], 
Clustered (Figure 3b) is typical of sorting partially-sorted input, 
Spread (Figure 3c) typical of a sparse matrix problem which can 
arise in Finite Element or Finite Difference codes. Along with 
enabling the index array to be filled in the three different modes, 
SGBench also allows the user to vary the padding or offset 
between the A, B and index arrays as these parameters may 
interact with memory banking. 

 

3.1.1 Machine Component – measuring the FPGAs 
To study the performance effects of Gather/Scatter operations 

on acceleration hardware, SGBench was ported to the Convey 
HC-1[15]. The Convey HC-1, shown in Figure 5, uses a tightly 
integrated Intel 5138 processor (Xeon Woodcrest) with a FPGA-
based, reconfigurable coprocessor. The coprocessor can be 
targeted at specific workloads by reloading it with different 
instruction sets, called personalities. By enabling the 
implementation of a new instruction set, the coprocessor can be 
tailored to specific applications and algorithms. In addition the 
coprocessor shares memory with the Intel processor, which 

reduces the data transfer time between the computing elements 
and eliminates much implementation complexity. 
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Figure 5. Convey HC-1. 

For this work, a Convey supplied personality was used to 
accelerate local Gather/Scatter operations illustrated in Figure 2 
and Figure 3. This personality was used both to gather 
performance data used as input for the model and to port sections 
of the application for model verification.  

The SGBench benchmark was used to measure both the 
performance of Scatter operation and Gather operation. SGBench 
was run on two ways; first the entire SGBench execution was run 
on the host processors of the HC-1. Second the majority of the 
SGBench execution was run on the host processor with just the 
loops containing Gather or Scatter operations running on the 
FPGAs. The measurements were taken to determine the 
performance effects of running G/S operations at increasing data 
set sizes (i.e. total address range of the arrays). The measurements 
were made using an index array of stride-1 and an index array of 
random-stride, this was intended to cover the range of 
performance for the operations shown in Figure 4a through Figure 
4c. The measurements were taken both on the host Xeon 
processor and the FPGA coprocessor. Figure 6 and Figure 7 
illustrate the results of these measurements as a function of the 
size of the address range of the test loop and compare 
performance of operations on the host Xeon processor with those 
on the FPGAs. 

 

 

Figure 6. Performance of Scatter loop as a function of 
|Address Range| on Convey HC-1 using host and FPGA. 
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Figure 7. Performance of Gather loop as a function of 
|Address Range| on Convey HC-1 using host and FPGA. 

Figure 6 shows Scatter operations run at different data set sizes. 
The first curve is for SGBench run at increasing sizes on the host 
processor (Xeon) of the Convey HC-1 with an index array of 
stride-1, while the second curve is for an index of random-stride. 
These curves illustrate that as the size is increased the 
performance decreases in a stepwise fashion on the host processor 
an exemplar of today’s deep-memory-hierarchy machines 
comprised of levels of cache. The next two curves, in Figure 6, 
are Scatter operations run on the FPGA with stride-1 and random-
stride index arrays. This illustrates that at a few small data set 
sizes, it is more beneficial to run Scatter operations on the host but 
that performance on the FPGA increases with size asymptotically 
and for large sizes ~200x performance improvement over the host 
can be gained. More importantly, the performance does not 
change much when using random-stride vs. stride-1 index array 
on the FPGA for larger data sizes.  

Figure 7 represents similar measurements for Gather 
operations. Both figures illustrate that there are only small 
changes in performance when running Gather vs. Scatter 
operations on the FPGAs and the FPGA’s performance is not 
significantly affected by the randomness of the index array. The 
figures illustrate that the data footprint of these operations can 
dramatically affect performance; in other words there is no such 
thing as “the performance of a machine on Gather/Scatter” rather 
one needs more information such as the size of the range of array 
address arguments to accurately estimate performance.   

 

3.2 Application Component 
In order to have a general scheme for modeling and predicting 

Gather/Scatter operation performance, we first need to identify 
instances of Gather/Scatter operations within the source code. 
Secondly, we need to capture the parameters of each individual 
G/S instance that will affect their performance (locate them on the 
benchmark graph) if they were to be ported to the accelerated 
hardware. As identified above, size or range of addresses in the 
G/S loop, are important in determining performance on the 
Convey HC-1 and thus were identified as the main modeling 
parameter. Figure 6 and Figure 7 illustrates how the 
Gather/Scatter operations benefit for large address ranges more 
when using the FPGAs, which would also likely be true of 
commodity (HPC) processors with built-in G/S capabilities. In 
fact in retrospect we can look back at the vector systems of the 

80’ and 90’s and see how this was also true back then. Back then 
G/S was inherent in the hardware and on the Crays it was in the 
ISA as an assembler vector instruction.  

 
3.2.1 Identifying Gather/Scatter operations 

Once the basic Gather/Scatter operation is defined the next step 
is to automate the detection of these operations in large scientific 
application because without automated detection the task of 
identifying candidates for G/S acceleration by hand would be 
extremely time consuming. The PIR tool, described in section 2, 
was used to automate the search for G/S instances in large scale 
scientific application.  

Identification of the idioms in an application in an automated 
way allows for the easy detection of Gather/Scatter instances. 
Once the G/S instances are detected the second step is capturing 
the address ranges for each instance. This needs to be done 
dynamically by instrumentation.  

 

3.2.2 Measuring range Gather/Scatter operations  
Once operations in an application are identified as 

Gather/Scatter, the next step, as suggested by the benchmark 
results, is to measure the address range of each instance as they 
occur within the application. It should be clear that the range may 
depend on input, thus a static analysis tools such as PIR, while 
sufficient to identify instances of Gather/Scatter in applications, 
provides insufficient information to accurately model them since 
performance may vary more than an order-of-magnitude just 
depending on range of addresses (see Figure 6 and Figure 7).  
Therefore we used the binary instrumentation tool PmacInst[16] 
to instrument the instances of Gather/Scatter identified by PIR.  

PmacInst is used to gather the memory traces of an application 
for the general PMaC performance model. It is designed to 
instrument an identified set of basic-blocks in an application and 
capture the memory addresses of those blocks during the 
execution of the application. To conserve time and space the 
address stream is simulated against architectural features of 
interest (caches, Gather/Scatter hardware) on-the-fly while the 
application is running. 

In order to capture the range of the Gather/Scatter operations 
identified by PIR two steps were required. First the information 
gathered from PIR needed to be translated and conveyed between 
the two tools because PIR works on source code while PmacInst 
works on the binary—we need to identify the binary code 
corresponding to the source code. This translation allows 
PmacInst to add additional instrumentation to those basic-blocks 
identified by PIR. Secondly, an address range function was 
developed to process the address streams from Gather/Scatter 
operations and calculate the range and distribution of those 
operations. 

In order to translate identified PIR operations to basic-blocks 
by PmacInst a special feature of PmacInst was utilized. This 
feature allowed the source file and line number to be collected 
along with the basic-block number. This same information is 
collected by PIR, so by using additional parsing scripts, the PIR 
output was connected to and combined with the static analysis 
from PmacInst to automate the identification and additional 
instrumentation of all Gather/Scatter instances. This extra 
instrumentation allowed for the addresses of these operations to 
be processed by the function to calculate address range for each 
G/S instance. 
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To calculate the range of addresses in a Gather/Scatter 
operation the function was designed to minimize overhead while 
maintaining sufficient accuracy by determining the memory 
regions touched by each basic-block. One way to gather 
information on memory regions for an address stream is to use 
binary search tree that holds the boundary addresses for memory 
regions and at every memory access searches for the region the 
memory access fits in [17]. This requires additional split and 
merge operations of memory regions according to some heuristics 
for accurate region identification.  Even though such an approach 
would potentially identify the memory regions very accurately, it 
would also introduce a significant overhead since a search in the 
binary tree would be required for every memory access and would 
rely on accurate split and merge heuristics. 

To avoid this large overhead, the function tracks the addresses 
accessed by each memory operation (instruction) in the basic-
block separately. Since the instrumentation code already passes 
information about the memory operation for each access, we 
identify the region accessed by the memory operation by keeping 
track of the minimum and maximum addresses touched. 

This method is faster at instrumentation time but requires 
additional post processing to be accurate enough. The overall 
overhead required for this additional instrumentation is less than 
10%. The additional post-processing is needed due to the fact that 
even though the list of memory regions accessed by all memory 
operations can be used as the memory regions accessed by the 
block, some of these memory regions may overlap. This is can be 
a result of multiple memory operations accessing the same data 
structures and arrays, which can be an outcome of heavy code 
optimizations such as loop unrolling. To correct for such overlap, 
we post process the trace data to find the minimal number of 
memory regions accessed by a basic block. We accomplish this by 
first sorting the list of memory regions accessed by all memory 
operations in ascending order of their minimum addresses and 
then merging the overlapping regions. 

Table 2 shows the results of using this range calculation on an 
instrumented run of the SGBench benchmark. The table presents 
the measured and actual ranges for a given array in the scatter 
loop shown in Figure 2. The instrumented SGBench was run at 8 
different size scatter loops and the results for 4 of those are shown 
in Table 2 below. The relative absolute error for all the runs was 
less than 1% for all sizes. 

Table 2. Actual and measured ranges in SGBench. 

Array 
name 

Actual size 
(bytes) 

Measured 
size (bytes) 

%       
Error2 

A 20,480 20,400 0.4 

B 5,120 5,080 0.8 

Index 2,560 2,540 0.8 

A 65,536 65,520 0.0 

B 16,384 16,344 0.3 

Index 8,192 8,192 0.3 

A 16,777,216 16,777,128 0.0 

B 4,194,304 4,194,264 0.0 

 
 

Index 2,097,152 2,097,132 0.0 

A 33,554,432 33,554,352 0.0 

B 8,388,608 8,388,568 0.0 

Index 4,194,304 4,194,284 0.0 

1 
100

size actual

size measured -  size actual
 Error  % 






 abs

 

The automated process of using PIR to identify Gather/Scatter 
operations and PmacInst to measure ranges was further tested 
using spot checking of two large scale applications (HYCOM and 
Flash) and showed similar absolute relative error with all loops 
measured with less than 1% error. 

Thus by combining the PIR and PmacInst tools we have a tool 
to automate the process of first identifying Gather/Scatter 
operations and second measuring the range of each of those 
operations in a tractable fashion, which is an important step in 
modeling their performance on acceleration hardware. 

 

3.3 Modeling Gather/Scatter operations 
We extended our existing performance modeling framework to 

account for the performance effects of acceleration hardware on 
Gather/Scatter operations. Here we briefly describe the PMaC 
framework designed to model large scale parallel applications and 
then present how the Gather/Scatter model is incorporated into the 
framework.   

 
3.3.1 PMaC Performance prediction framework 

The PMaC prediction framework is designed to accurately 
model parallel applications on HPC systems. In order to model a 
parallel application, the framework is composed of two models, a 
computational model and a communication model. The 
computational model models work done on the processor in 
between communication event, while the communication model 
deals with modeling communication events. Below a brief 
description is provided but for a detailed description of the 
framework, please see Snavely et al.[18], Carrington et al.[19] and 
Tikir et al. [20]. 

For each model, the computational and communication is 
comprised of three primary components:  an application signature, 
a machine profile, and a convolution method. The machine profile 
captures that rates that a machine can perform fundamental 
operations through simple benchmarks. These simple benchmarks 
includes tests for performance of different kinds of memory 
access patterns, arithmetic operations, and communications 
events, at various working set sizes and message sizes. The 
application signature includes detailed information about the 
required operations the applications needs as well as the locality 
of its data and its message sizes, and is collected via trace tools. 
The machine profile and application signature are combined by 
mapping the required operation of the application to their 
expected rate on the target machine. This mapping takes place in 
the PSiNS simulator that re-plays the entire execution of the HPC 
application on the target/predicted system to calculate the runtime 
of the target system. The models generated by the framework 
have shown good accuracy (i.e. <15% absolute relative error) 
predicting full-scale application running production datasets on 
existing systems [21]. 

 



 

 

 
Figure 8. . Measured bandwidth as function of cache hit rates 

for Opteron. 

For this work we focused on extending the computational or 
core model, which is comprised of the work done on the processor 
or core in between communication events or computational work. 
We extended the model to account for the effect of having 
accelerators in each node; and modeling the work that is off-
loaded to the accelerator.  

For the computational model there are two main operations that 
normally comprise a majority of the run time: arithmetic time and 
memory time. Arithmetic time is the time required to perform 
floating-point and other math operations. Memory time is the time 
required to load and store memory references and it is this time 
that usually dominates the computational model’s run time. To 
accurately model memory time we need to determine the number 
of bytes that need to be loaded or stored but also the location and 
access pattern of those references. This is because references from 
different locations and access patterns can perform orders of 
magnitude better or worse. For example, a stride-one load from 
L1 cache can perform significantly faster than a random stride 
load from main memory. Figure 8 is an example of the 
MultiMAPS benchmark[20] used to capture the complex 
interaction of spatial and temporal locality and performance on 
memory reference on a two level Opteron processor. The 
MultiMAPS surface allows the model to determine the 
performance of memory references with different spatial and 
temporal locality.  

 To capture this temporal and spatial locality information in an 
application for each reference that occurs in the execution an 
augmented memory trace of the application is used. The memory 
trace is captured using the pmacInst[16] tool which has the ability 
to instrument each memory reference in order to capture the 
memory address stream from each core of the running application. 
This address stream is then processed on-the-fly through a cache 
simulator for the target system or system to predict. The result of 
this trace is for each basic block of the application information is 
provided on: 1) the location of the block in the source code, 2) 
number of floating-point operations and type, 3) number of 
memory references and type (e.g. load and/or store), 4) size of 
references in bytes, and 5) the expected cache hit rates for those 
references on the target system. It is the hit rates that provide 
information about the spatial and temporal locality of the 
reference and enable accurate predictions of their performance via 
the corresponding data on the MultiMAPS surface. The 

framework enables the application to be traced on a one system 
(i.e. the base system) but by simulating a difference cache 
structure (i.e. the target system) the model can predict the 
performance of a completely different system. For this work the 
applications were trace on an IBM Power 6 system but simulated 
the cache structures for AMD and Intel based systems, these are 
referred to cross-architectural predictions. 

In the computational model the majority of the time comes 
from the memory time or time to move data through the memory 
hierarchy (arithmetic time is also modeled but memory time tends 
to dominate in the cases we studied). A detailed description of the 
memory time calculation can be found at Tikir et al.[20]. The 
general memory time equation is: 
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Where: 
Memory bandwidthj = memory bandwidth of the jth type of 

memory reference on a target system. 
 

Size of reference  = size in bytes of the reference 
 

# memory ref.i,j  = number of memory references for 
basic-block i of the jth type (locality 
information encompassed in type) 

 
Equation 1 represents the memory time of an application as 

being the sum of all basic-block’s memory time for the 
application.  

To model Gather/Scatter operations, an additional equation 
needed to be developed to compute the time for operations off-
loaded to the accelerator or Convey HC-1 FPGAs and additions to 
the simulator on which equation is used for which basic-block. 

 
3.3.2 Gather/Scatter memory model 

In order to add the modeling of Gather/Scatter operations the 
simulator requires two additional pieces of data. First, how the 
performance of Gather/Scatter operations vary with size of 
operation and second which basic-blocks in the application 
contains these operations and what is their size.  

In developing a model of the performance of Gather/Scatter 
operation based on size, we first investigated the trends displayed 
in Figure 6. The concept in designing the model is to start as 
simple as possible and only add complexity when needed. 
Therefore we started with a piece-wise fit to the data in Figure 6. 
The equation for modeling Gather/Scatter operations on the 
FPGAs is as follows: 
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Where: 
Memory BWj  = memory bandwidth of the jth type of memory 

reference on the target system. 
 



 

 

Size = size in bytes of the reference 
 

Equation 2 represents the memory bandwidth as a function of 
size in bytes detailed in Equations 3 and 4. The framework was 
modified so that the simulator incorporated the trace data of the 
PIR recognized Gather/Scatter operations, its measured size, and 
Equations 2, 3, and 4 to model the performance impact the 
Convey would have on applications. Note that the simulator 
includes a conditional that would only run those Gather/Scatter 
operations that are predicted to see a performance improvement 
on the FPGA (from Figure 6 and Figure 7 only those with array 
address ranges larger than 192 KB). 

4 EXPERIMENTAL MODEL AND RESULTS 
In the experiment we used two full-scale scientific applications 

to test the model, HYCOM and FLASH. FLASH is an 
astrophysics application developed at the “FLASH Center” 
funded by DOE ASC/Alliance Program. It is a state-of-the-art 
simulator code for solving nuclear astrophysical problems related 
to exploding stars. It is 126,478 lines of code. HYCOM is an 
ocean modeling application developed by The Naval Research 
Laboratory (NRL), Los Alamos National Laboratory (LANL), and 
the University of Miami as an upgrade to MICOM (well-known 
ocean modeling code) by enhancing the vertical layer definitions 
within the model to better capture the underlying science. It is 
54,085 lines of code. 

The main goal of the research was to design a modeling 
framework to explore the question “Would a given HPC 
application benefit from accelerators?”. We designed a general 
modeling methodology around this but to verify the methodology 
we chose a specific set of operations (e.g. G/S) and a specific 
accelerator (e.g. the FPGA). In order to verify the models two 
main experiments were conducted. The first experiment was to 
simply verify the model for the two large scale applications 
running on a large scale HPC system. In addition verify the model 
at a finer-grain level for only Gather/Scatter operations still 
running on the same system, see section 4.1. The second 
experiment dealt with a smaller data set for the FLASH 
application. In this experiment we wanted to verify the FPGA 
Gather/Scatter model by running the application on the Convey 
HC-1 and porting a single loop of the application to the FPGA for 
the verification of the FPGA model. The smaller data set was used 
because the HC-1 only had 4 host cores and we were unable to 
run a bigger data set.  Figure 2 and Figure 3 had already verified 
the accuracy of the FPGA Gather/Scatter model on benchmarks 
on the HC-1 but this experiment verified the model working 
within a full-scale application on that system. 

4.1 Models and fine grain verification 
experiment 

In this experiment we needed to first verify the full application 
model for the two applications running on a large scale HPC 
system. In addition verify the accuracy of the full application 
model at a finer-grain level by capturing the model time for only 
Gather/Scatter operations of the application. To accomplish this a 
large data set was used as input to the application. For this 
experiment we identified all of the Gather/Scatter instances within 
both applications, modeled the entire computational time of the 
applications (using the full framework), then inside the simulator 
captured the modeled time for just the Gather/Scatter idioms 
within the applications, and verified those modeled times on a 

large scale HPC system by measuring those times with a light 
weight profiling tool and individual timers. 

 For this experiment, models were developed for HYCOM and 
FLASH for Oakridge National Laboratory’s (ORNL) Jaguar XT4 
to verify the accuracy and the granularity of the models. Jaguar is 
an XT4 with seastar2 interconnect [22].  FLASH was run on 
Jaguar with 128 processors using the white dwarf input and 
HYCOM was run with 59 processors using the 26-layer 1/4 
degree fully global HYCOM benchmark input deck. While the 
framework is designed and is used at much larger processor 
counts, both applications were run at small core counts to 
minimize the contribution of runtime from communication, thus 
focusing the modeling on computational aspects of the application 
such as their ability to benefit from Gather/Scatter accelerators.  

PIR was used to capture the number and location of 
Gather/Scatter operations in FLASH and HYCOM source codes. 
An additional feature was added so that PIR automatically 
inserted tags at the identified Gather/Scatter operations to enable 
timer insertion to aid in model accuracy verification. This feature 
could further be enhanced to automate the process of modifying 
the identified Gather/Scatter loops to call the FPGA personality, a 
valuable aid in the porting process (future work).  

After the PIR analysis, 140 Gather/Scatter idioms were 
identified for FLASH and 64 in HYCOM. PIR only captures the 
number of G/S idioms but gives no indication on their 
contribution to the overall runtime; for that, the performance 
model is required. A performance model for FLASH and 
HYCOM executing on Jaguar was developed to investigate the 
performance benefit these applications would see from FPGA 
accelerators. 

Table 3 shows the results for both predicted/modeled and 
measured computational time of FLASH and further breaking 
down the time spent in Gather/Scatter operations for both 
predicted/model and measured time. It also has the 
predicted/modeled computational time on Jaguar for HYCOM 
compared to the measured computational time.  

 

Table 3. Prediction of FLASH on ORNL Jaguar. 

Code segment Predicted time 
(sec) 

Measured time 
(sec) 

% error1

FLASH – full 262 250 4.6% 
FLASH G/S ops 69 68 1.4%
HYCOM – full 5956 5781 2.9% 
1

100
measured

predicted -  measured
 Error  % 






 abs

 

Table 3 shows that the accuracy of modeling FLASH and 
HYCOM on existing hardware is accurate to within 5% (e.g. rows 
2 and 4). Additionally at finer granularity models of the 
Gather/Scatter operations of FLASH with the same level of 
accuracy ( e.g. <2%  error, row 3). Due to the nature of the 
HYCOM G/S operations (e.g. inner loops with other operations) 
we were unable to capture the fine grain G/S operation time alone 
without disturbing the overall runtime significantly due to number 
of calls to the timer routines (the measurement was affecting the 
execution significantly). Therefore we were only able to compare 
the overall runtime and not the G/S operations on HYCOM.   



 

 

4.2 Convey HC-1 models and verification 
Once the accuracy of the applications’ models on an existing 

system was confirmed then the exploration of the Gather/Scatter 
operations on the Convey system was investigated. It is one thing 
to verify the accuracy of a kernel extracted from an application 
(e.g. SGBench) but this experiment was designed to verify the 
accuracy of the model during execution of the entire application.  

To verify the accuracy of the FPGA Gather/Scatter model and 
simulation for large scale applications, one of the identified 
Gather/Scatter operations (i.e. loop) of FLASH was ported to the 
Convey system and timed to compare the simulated FPGA model 
time with the measured time. So a majority of the FLASH 
application could then be executed on the HC-1 host processors 
with one loop being executed on the FPGA. Porting loops to the 
Convey requires some additional work; the whole point of our 
technique is to focus programmer efforts on the parts of the code 
where the effort will result in the most reward. From FLASH we 
chose porting a loop that ranked the highest among the 
Gather/Scatter operations for overall runtime contribution. 

Due to the size of the Convey HC-1 we were accessing (only 4 
host processors) we had to choose a smaller FLASH input, sedov-
2d problem rather than the white dwarf input, in order to run 
FLASH at full-scale with the single ported loop executing on the 
FPGAs. Alternately we could have extracted the loop into a small 
kernel but that might not fully capture the data transfer penalties 
associated with the many visits to the loop throughout the 
execution. A full application model was developed for the sedov-
2d input similar to the white dwarf input verified in Table 3. This 
time the model was developed for not only Jaguar but the host 
processors of the HC-1. In addition for both models the simulation 
time for the identified loop was captured in order to verify the 
model accuracy at the loop level. Then a model was generated for 
the HC-1 with that loop executing on the FPGA, this allowed 
verification of the FPGA G/S model. The sedov-2d input 
computational time was predicted/modeled and measured on 
Jaguar and the Convey host; the results are shown in Table 4 
below. This illustrates the accuracy of the Gather/Scatter model 
on the Convey HC-1 system for the sedov-2d input with a relative 
absolute error less than 10%. 

 

Table 4. Simulated and measured Gather/Scatter times for 
FLASH on the Convey HC-1. 

Code/section 
(system) 

Measured 
time (s) 

Predicted 
time (s) 

% Error1

FLASH-full   
(Jaguar) 

518.6 487.7 6.0% 

#1 FLASH-G/S loop 
(Jaguar) 

3.4 3.7 9.3% 

FLASH-full  
(Convey Host) 

491.9 489.7 5.0% 

#1 FLASH-G/S loop 
(Convey FPGAs) 

2.8 3.0 8.6% 

1

100
measured

predicted -  measured
 Error  % 






 abs

 

 Table 4 verifies the accuracy of the FPGA G/S model when 
implemented in a full-scale application even at a fine grain loop 
level with only 8.6% abs. relative error. Table 3 and Table 4 
confirms the accuracy of the full application models for FLASH 
and HYCOM, the accuracy of the models on a finer-grain level 

(i.e. gather/scatter operations in FLASH), and the accuracy of the 
FPGA Gather/Scatter model on the Convey HC-1 FPGAs.  

4.3 Exploring the benefits of G/S on FPGAs 
In section 4.1 we verified the Jaguar models accuracy for full 

scale applications and sub-sections (e.g. G/S loops) of the 
application. In section 4.2 we verified the FPGA G/S model 
executing in the context of a full scale application. After verifying 
these components of the modeling framework we then began to 
investigate the original question the methodology was designed to 
explore, “Do applications benefit from running G/S operations on 
FPGAs?” Since we have verified large scale runs of HYCOM and 
FLASH on Jaguar nodes we will start our exploration there.  

To explore this space we need to create a hypothetical system 
consisting of 32 Jaguar nodes (e.g. 128 cores) with FPGAs 
attached to the cores, essentially a hypothetical Convey system 
where the host processors are Barcelona (i.e. XT4- Jaguar) 
processors rather than Xeon’s. We then use the models to predict 
the performance of FLASH and HYCOM on this system to 
answers the question “What if all Gather/Scatter operation that 
would perform faster on the FPGAs were ported and run on them 
how that would affect overall application runtime?”  

These new simulations give insight into not only whether an 
application might benefit from accelerated G/S operations but 
how much and which ones. The G/S operations in FLASH took 68 
seconds on Jaguar and were predicted to take 3.5 seconds if run 
on the FPGAs an almost 20X speedup. HYCOM showed slightly 
different behavior since a significant number of the HYCOM G/S 
operations did not benefit from the FPGAs (were too small). 
HYCOM showed G/S operations predicted to run on the FPGAs 
at a 7X speed up compared to Jaguar.  The overall runtime speed 
up of FLASH and HYCOM resulting from the FPGAs on the new 
hypothetical system was 21% and 3.2% respectively.  

The model showed that while there are over 140 Gather/Scatter 
operations in FLASH that contributes to 27% of the runtime, the 
FPGAs can potentially speedup these by close to 20X. The model 
allows users to focus porting efforts by identifying only those 
applications and idioms that would benefit most. While the 
speedup of the G/S operations was significant, due to the nature of 
the applications this speedup had only a modest contribution to 
the speedup of the overall runtime. This speedup could potentially 
be significantly improved if other idioms were ported to the 
FPGAs (future work).  

If we look at Figure 6 we see that G/S operating on arrays 
smaller than 16K would be faster on the host. The performance 
models predict that the 33 largest instances of G/S (out of 140) 
correspond to 95% of predicted total G/S execution time. 
Quantitatively, the predicted time with FPGA G/S model is 197.2 
seconds if all G/S in FLASH larger than 16K are ported while 
porting the top 33 results in execution time of 198.7 seconds for 
accelerator system. That is, even though we eliminated 107 blocks 
from porting to G/S hardware, we did not lose anything from the 
benefits of the accelerators. We only lost 1.42 seconds of 
optimized time but we were able to reduce the port time by a 
significant factor. 

5 CONCLUSIONS 
This work showed a general modeling methodology to 

automate the prediction of HPC applications on acceleration 
hardware. The models were confirmed using two large scale 
applications with an average absolute relative error of 5% and 



 

 

fine-grain accuracy of the model was confirmed with similar 
results. The fine-grain model for FPGA G/S operations was 
proven to have less than 8.6% absolute relative error using a loop 
from FLASH running on the FPGAs for verification. The 
performance modeling methodology estimated that >100 instances 
of the G/S idiom were not worth porting thus saving additional 
programmer’s time and improving performance and avoiding 
illogical results such as incorrectly assuming Convey can’t 
accelerate G/S because blind porting all G/S would make the code 
run slower.  While speedup of 21% and 3.2% may not seem 
significant for some developers this amount may be worth the 
effort. The tools and models make the porting effort less 
challenging by identifying which sections of the application 
would benefit from porting and indicating their contribution to the 
overall runtime, leaving the final decision up to the developer. In 
addition, this work focused only on Gather/Scatter operations but 
the tools and methodology can be applied to other operations (i.e. 
stream, reduction, etc.).  And with additional work on PIR and its 
source code tagging feature, porting could become quite effortless 
for the user/developer. In future work we also intend to extend 
this to model other idioms and also in using these potential 
calculations to predict how much energy we could save (FPGA’s 
consume less energy than their host processors). Also, the 
methodology described in this work could easily be extended to 
other accelerators such as GPUs. Such an extension would involve 
similar steps as using PIR to identify code blocks which might 
perform efficiently on GPUs, developing a model for those blocks 
on the GPU, develop trace tools to capture relevant model inputs, 
and modify the simulator to incorporate new trace data and 
models. Such work is saved for future work. 

6 BACKGROUND 
The prevalence of Gather/Scatter operation in application can 

be seen in sorting algorithms, hash searches, and sparse-matrix 
vector multiplication[23] to name a few. For many parallel 
algorithms scatter and gather are two fundamental operations[24] 
for instance radix sort is a parallel sorting algorithm[25], hash 
used in databases, and any linear solvers use sparse-matrix vector 
multiplication[26]. The use of acceleration hardware to speed-up 
Gather/Scatter operations has mainly focused on GPU-based 
acceleration hardware. In He et al[23] they used gather scatter 
operations optimize using GPUs to implement three memory 
intensive algorithms radix sort, the hash search, and the sparse-
matrix vector multiplication with models for just the GPU.  

On traditional architectures there are varying techniques for 
modeling the performance of HPC applications [18, 27-46], 
spanning derived analytical models, trace-based models, to a 
combination of the two. Analytical based models require a 
detailed understanding of the application and/or its algorithm and 
the method doesn’t lend itself to automated model generation, 
unlike trace-based methods. 

Understanding the performance of acceleration hardware 
through modeling is a task that many researchers have focused on. 
Alam et al[47] investigate using their Modeling Assertions to 
model the multi-streaming, vector processing capabilities of the 
X1E on the NAS SP kernel[48]. Hong and Kim[49] developed an 
analytical model for GPU performance and applied it to micro-
kernel and benchmarks, but not full scale HPC applications. 
Govindaraju et al [50] developed a memory model for GPUs for a 
set of algorithms used in scientific applications. They tested the 
model on benchmark kernels but not full-scale HPC applications. 

This work offers a unique contribution in that it develops a 
general framework to model acceleration hardware on full-scale 
HPC applications and validates the model using full-scale 
applications and the acceleration hardware offered by the Convey 
FPGA system. 
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