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Abstract. Over the life of a modern computer, the energy cost of run-
ning the system can exceed the cost of the original hardware purchase.
This has driven the community to attempt to understand and mini-
mize energy costs wherever possible. Towards these ends, we present an
automated, fine-grained approach to selecting per-loop processor clock
frequencies. The clock frequency selection criteria is established through
a combination of lightweight static analysis and runtime tracing that
automatically acquires application signatures - characterizations of the
patterns of execution of each loop in an application. This application
characterization is matched with a series of benchmark loops, which have
been run on the target system and exercise it various ways. These bench-
marks are intended to form a covering set, a machine characterization of
the expected power consumption and performance traits of the machine
over the space of execution patterns and clock frequencies. The frequency
that confers the best power-delay product to the benchmark that most
closely resembles each application loop is the one chosen for that loop.
The application’s frequency management strategy is then permanently
integrated into the compiled executable via static binary instrumenta-
tion. This process is lightweight, only has to be done once per application
(and the benchmarks just once per machine), and thus is much less labo-
rious than running every application loop at every possible frequency on
the machine to see what the optimal frequencies would be. Unlike most
frequency management schemes, we toggle frequencies very frequently,
potentially at every loop entry and exit, saving as much as 10% of the
energy bill in the process. The set of tools that implement this scheme
is fully automated, built on top of freely available open source software,
and uses an inexpensive power measurement apparatus. We use these
tools to show a measured, system-wide energy savings of up to 7.6% on
an 8-core Intel Xeon E5530 and 10.6% on a 32-core AMD Opteron 8380
(a Sun X4600 Node) across a range of workloads.

1 Introduction

Energy costs have become a significant portion of the costs involved in the op-
erational lifetime of largescale systems. These costs have impacts that manifest
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themselves in economic, social and environmental terms. It is therefore prudent
to attempt to understand and minimize these costs where possible. With that
goal in mind, in this work we introduce a methodology that facilitates dynamic
voltage frequency scaling (DVFS) based on the expected impact that operating
at some frequency will have on application performance and power consump-
tion. This methodology is then leveraged in order to choose fine-grained clock
frequency settings (potentially a different frequency for each loop) for the appli-
cation that minimizes system-wide energy use. Along with this methodology, we
present a set of open source tools that automates the entire process.

Certain classes of scientific problems and subproblems exhibit memory bound
behavior in that the time to solution for the problem is decided primarily by
the proximity, size and speed of available memory. Historically, the amount of
memory available to computer hardware has increased at an exponential rate[1].
Nevertheless, many applications can, and will continue to, use all of the memory
available to them. This means that it is important to consider the impact of
physically distant data on performance and power consumption. To facilitate
processor frequency scaling as a means of reducing power consumption, many
modern processors have been designed to operate at a different clock frequency
than certain parts of the memory subsystem[2]. This observation, along with the
notion that some applications spend much of their time waiting on data that
is physically distant, implies that the execution of such applications may suffer
only small or acceptable performance losses when operating at lower clock fre-
quencies, which in turn yields lower power consumption rates. Clock frequency
management policies that are in use today, however, generally do not take full
advantage of this opportunity. They tend to rely on very broad coarse-grained
measures of processor activity/idleness to determine when it is prudent to lower
clock frequency based on perceived inactivity[3][4][5], which serves to down-clock
the processor only in cases when overall system activity is low. Our methodol-
ogy seeks a more refined clock management policy that can make use of this
opportunity.

The opportunity to decrease power consumption by down-clocking the pro-
cessor as it waits for physically distant data is demonstrated in Figure 1, which
shows the performance (Figure 1(a)), power consumption (Figure 1(b)), and
power-delay product (Figure 1(c)) for a series of Stream-derived[6] stride 8 mem-
ory load tests being run at different working set sizes and clock frequencies on
an Intel E5530. The results in Figure 1(a), which shows the measured memory
bandwidth for this series of tests, suggest that performance is independent of
processor clock frequency when the working set size is larger than 512KB. This
size coincides with the size of the L2 cache, or equivalently, when the working
set size is large enough that the data resides in a memory level farther than
L2 cache. Figure 1(b) shows the average power consumption levels during these
same memory load tests. It is important to note that power consumption is
dependent on clock frequency even for working set sizes where performance is
not. Taken together, we can view the results of Figure 1 as an opportunity to
reduce power consumption while having minimal impact on performance. The
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combined metric that covers performance and power consumption is power-delay
product, which is simply the product of delay and normalized power usage of an
application run at some frequency mode when compared to the baseline clock
frequency management policy. Note that power-delay product is equivalent to
energy usage normalized to the baseline clock frequency mode, so these terms
can be used interchangeably. The power-delay product for the Stream tests is
given in Figure 1(c), which shows that power-delay product can be significantly
reduced for certain working set sizes by lowering the processor clock frequency.
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Fig. 1. Performance, power, and power-delay product of a stream-derived stride 8 load
test done at a series of working set sizes and several clock frequencies on an Intel E5530.

Though useful as a proof of concept, it is rarely the case that application be-
havior is as simple as the tests shown in Figure 1. Unlike with the simple Stream
benchmark, the processing unit usually has some amount of computation that
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can be performed while it is stalled on memory accesses, leading to varying de-
grees of performance degradation when the processor is down-clocked. As such,
it is necessary to understand the complex effects that memory, computational
behavior and clock frequency have on performance, power and energy consump-
tion. Our approach to gaining this understanding uses a benchmark to cover the
space of some possible parameters (memory size, memory access pattern compu-
tation amount and type, ILP, clock frequency) to measure the effect that these
factors have on the outputs (performance, power and energy). For applications,
we can then measure the parameters over which we have little/no control (mem-
ory and computation related parameters) in order to make informed decisions
about the parameter we can control (clock frequency) in order to choose from
a benchmark-measured set of outcomes (combinations of performance, power
and energy) for the application. This approach results in measured, system-wide
energy reductions of up to 10.6%.

2 Methodology

2.1 Power Measurement and Frequency Control

To measure the power consumption of a system we employ a WattsUp? Pro
power meter[7] to act as an intermediary between the power source and the
systems power supply. We implemented a library on top of the device’s USB in-
terface to provide some basic functionality for storing and processing the power
measurements. This library is used to make loop level power measurements and
is reported in the results of our system characterization benchmark that is dis-
cussed further in Section 2.2.

For this work we implemented a binary instrumentation tool and library
based on the PEBIL instrumentation toolkit[8] that automates the insertion of
power measurement interface calls as well as clock throttling calls into an ap-
plications binary. The clock frequency change mechanism is built on top of the
cpufreq-utils package1[3] that is available with many popular Linux distribu-
tions. This instrumentation tool and library provide a powerful and low-overhead
way to automatically provide a clock frequency management strategy to the ap-
plication without requiring any build-time steps or special system support. The
power measurement apparatus, at the time of this writing, costs less than $150.
Since a data center the size of SDSC[9] has a 2 million dollar annual electricity
bill, using this kind of tool within a large data center could save a lot of money
without a lot of effort.

2.2 Benchmarking for Power and Performance

In an effort to better understand how a system behaves in the presence of certain
types of computational and memory demands, we have developed a benchmark-
ing framework called pcubed (PMaC’s Performance and Power benchmark) that
1 The cpufreq-utils frequency switching mechanism currently requires superuser

privileges, but we plan to implement a userspace tool that supports our methodology.
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allows us to generate a series of loops while retaining control over the working
set size and memory address stream behavior, floating point operation counts,
and data dependence features of each. The first two parameters relate to the
behavior of the memory subsystem, while the latter two are related to how effec-
tively the processor can hide memory access latency by performing other useful
operations. The major component of each benchmark loop is a series of oper-
ations that is performed on an array of double-precision floating point values,
which are stride-accessed and form a subset of the operands of a set of floating
point operations.

Running a set of tests encompassing wide ranges and combinations of these
parameters at all available clock frequencies for a target system yields a set
of results that describes how that system behaves with respect to performance
and power consumption in the presence of a wide range of demands for its
computational and memory resources at every processor clock frequency. These
results can then be used as the foundation for forming hypotheses about how
an application with a certain set of features in common with the benchmark
instances will operate in terms of both performance and power usage on that
system.

2.3 Application Characterization

In order to determine how an application’s characteristics relate to the individ-
ual tests in the system characterization gathered with pcubed, it is necessary to
capture those relevant features in the application. The collected features are a
set of observable characteristics that are related to the input parameters that
can be supplied to pcubed. These observables are the level 1, 2 and 3 cache
hit rates (derived from arrsize and stride), the ratio of the number of float-
ing point operations to the number of memory operations (derived from fltops
and memops) and the average lookahead values for floating point and integer
computation respectively (derived from parops and the loop structure created
by the compiler), expressed as the average distance divided by the number of
instructions in the loop. The feature characterization process is done at the loop
level because loops are the control flow vehicle through which most computation
is performed in High Performance Computing (it would also be possible to do
this at the function level). Each loop and its inner loops are examined in order to
quantify certain features about their memory behavior, floating point intensity
and data dependency information. This analysis consists of a static analysis pass
and a runtime trace of memory and control flow behavior that is performed by
a binary instrumentation tool implemented with the PEBIL toolkit[8].

In order to make determinations about the expected behavior of an applica-
tion loop, we first map it to one of the pcubed test loops that is collected as part
of the system characterization. For this, we use the geometrically nearest loop in
the 6-dimensional space whose members are the set of observable characteristics
that are based on the pcubed input parameters, which includes the level 1, 2
and 3 cache hit rates, the ratio of the number of floating point operations to
the number of memory operations and the average lookahead values for floating
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point and integer computation respectively, expressed as the average distance
divided by the number of instructions in the loop. As we will show later, the
heuristic of using geometric distance between loop feature sets seems to work
pretty well in practice, but understanding whether geometric distance is the best
measure of similarity for two loops is an open research problem.

Once the pcubed loop that is closest to the application loop is found, we use
the performance and power results gathered from that pcubed loop in order to
supply heuristics about how each clock frequency is likely to affect the appli-
cation loop. pcubed can be run, analyzed, and the results put into a database
automatically using some utility scripts that come with the source code package.
Usually, the application can also be analyzed and its loops compared against the
pcubed database with a single script command, the result of this command being
a separate binary that permanently includes the desired DVFS strategy.

3 Experimental Results

In order to develop a DVFS strategy for an application whose purpose is to
minimize energy usage, we use results gathered from the set of pcubed loops
geometrically closest to the application loops by simply selecting the clock fre-
quency for each pbench loop which minimized energy to be the frequency at
which we will run the matching application loop. We imposed this scheme on a
series of benchmark applications on two test systems. The first of these systems
is an Intel Xeon E5530[10] workstation. The E5530 has 2 quad-core processors.
Each core has its own 32KB L1 cache and 256KB L2 cache. Each of the quad-
core processors has a shared 8MB L3 cache (for a total of 16MB of L3 for the 8
cores). Each of the 8 cores can be independently clocked at 1.60GHz, 1.73GHz,
1.86GHz, 2.00GHz, 2.13GHz, 2.26GHz, 2.39GHz or 2.40GHz. The second sys-
tem is a Sun X4600[11] node that is a part of the Triton Resource[12] at the San
Diego Supercomputer Center. This Sun X4600 node contains 8 quad-core AMD
Opteron 8380[13] processors. Each core has its own 64KB L1 cache and 512KB
L2 cache, and each processor shares 6MB of L3 cache (for a total of 48MB of L3
for the 32 cores). Each of the 32 cores can be independently clocked at 800MHz,
1.30GHz, 1.80GHz or 2.5GHz.

Both of these systems were characterized for every frequency by running
pcubed on a set of 2320 benchmark instances covering a wide range of loop
characteristics for every clock frequency exposed by each system, which is 8
frequencies for the Intel Xeon E5530 and 4 frequencies for the AMD Opteron
8380. While the runtime of pcubed (which includes the time for each test auto-
calibrate itself to run for 5 seconds and for the application analysis tools to run
on the test) depends on the actual set of tests and the clock frequencies involved,
it generally requires approximately 6 hours per clock frequency.

Running pcubed on a target system allows us to draw some conclusions about
that system. For instance if it were found that the energy-optimal frequency for
a large number of tests was at the lower end of the available frequencies, it would
be possible to argue that lowering the range of available clock frequencies could
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result in a more energy-efficient system. Similarly if most tests were found to be
energy-optimal at the higher clock frequencies, this could indicate that raising
the range of available frequencies might have an impact on a system’s energy
efficiency. Neither of these were phenomena were found for either the Intel Xeon
E5530 or the AMD Opteron 8380, but it remains to be seen whether such systems
exist. By examining the pcubed results alone, we can also get an understanding
of what feature thresholds delineate energy-optimal frequency domains for the
target system. For example, Figures 2(a) and 2(b) show maps of which clock
frequency is the most energy efficient for pcubed tests as a function of memory
behavior and computational behavior respectively. The data in these maps meets
our expectations in that the energy-optimal clock frequency generally declines
as the amount of time spent stalled on memory increases or as the availability
of computation to the processor decreases.
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(b) Energy-optimal clock frequency as a function of the availability of compu-
tation. These tests have a fixed arrsize = 16MB and stride = 1.

Fig. 2. pcubed-measured energy-optimal clock frequencies on an Intel Xeon E5530.

3.1 Energy-Optimal Clock Frequency Selection

For each benchmark, we then make an instrumentation pass over the executable,
run the instrumented executable, then run a post-processing script on the results
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of the application analysis. The overhead of the runtime application analysis de-
pends on the application and its behavior, but for all of the benchmarks studies
in this work the maximum overhead was a 13x slowdown (with an average slow-
down of 4.0x) on application runtime, but this step only needs to be run once per
application. This post-processing script combines the static and dynamic appli-
cation analysis, locates the most closely matching pcubed benchmark loop, uses
the results from that pcubed loop to make a determination about which clock
frequency will result in energy-minimal execution for the application’s loop, then
makes a second instrumentation pass on the executable to embed the DFS strat-
egy into the binary. For the purpose of this study, this DFS-embedded executable
as well as a second instrumented executable that contains no DFS-related in-
strumentation are produced with timer and power measurement library calls
inserted into application startup and shutdown so that energy measurements
can be made.

The set of applications used for the Intel Xeon E5530 is the NAS Paral-
lel benchmarks[14], compiled with both the pgi and gnu compiler, as well as
GUPS[15], SSCA#2[16], S3D[17] and HYCOM[18] compiled with the pgi com-
piler. The power-delay product for each of these benchmarks run with our DFS
scheme is computed against a benchmark run without our scheme, which is to say
that it is computed against the default or peak clock rate of the system. Figure
3(a) shows these power-delay products, which can also be stated as the amount
of energy used in comparison to the default frequency management policy. The
average amount of energy saved for this set of benchmarks is 2.6%, but is as high
as 7.6% for CG compiled with the gnu compiler. The set of applications used on
the AMD Opteron 8380 is the NAS Parallel benchmarks, GUPS, SSCA#2 and
HYCOM, all compiled with the pgi compiler. Shown in Figure 3(b), the average
energy saved on the Opteron is 2.1% with a maximum savings of 10.6% on CG.

In addition to power-delay product, Figure 3 also shows the raw delay to
give an account of the slowdown incurred by the tests shown there. The delay
is non-trivial and averages 3.8% for both the Intel Xeon E5530 and the AMD
Opteron 8380. This demonstrates the concept that if performance is of enough
importance, it is unwise to optimize purely in terms of energy. Rather, in that
case it would be prudent to use an objective function that puts more emphasis on
performance such as energy-delay product. With modifications to the few (less
than 10) lines of source code that currently evaluate the pcubed tests based on
power-delay, one could easily for evaluations based on energy-delay or any other
function of performance and power.

It would be time consuming to run every loop of an application at every
clock frequency to determine which of those clock frequencies resulted in energy-
optimal execution. A simple approach that used this strategy would require a
number of runs that is on the order of the product of the number of loops and
the number of available clock frequencies. Alternatively, our approach uses a
set of benchmark runs (requiring around 6 hours per clock frequency but which
only have to be run once in the lifetime of a system) in addition to a single
instrumented application run in order to gather a heuristic to this effect. But



9

(a) 8-core Intel Xeon E5530.

(b) 32-core AMD Opteron 8380.

Fig. 3. Application energy usage (power-delay) and slowdown (delay) when run with
a DFS management scheme, normalized to the default frequency management scheme.

how good is this heuristic? In order to begin to answer this we exhaustively
verified that the selected clock frequency on the Intel Xeon E5530 were energy-
optimal for a pair of benchmarks codes that have the property that their runtime
is dominated by a single loop.

For CG, the loop that is responsible for 95% of the dynamic instruction
count was found to be geometrically closest, using the metrics described in Sec-
tion 2.3, to the pbench loop that has arrsize = 1MB, stride = 1, fltops = 8,
memops = 16 and parops = 1 (meaning each floating point operation is depen-
dent on the result of its predecessor), which was found to be energy-optimal when
run at a clock frequency of 2.13GHz. By subjecting the dominant loop in CG to
each available clock frequency and measuring the energy required to complete
each run we found that 2.13GHz is also the energy-optimal fixed frequency for
the dominant loop. A similar methodology was applied to the dominant loop in
GUPS, which was found to be energy optimal at 1.60GHz. The pcubed instance
found to be geometrically closest to the dominant GUPS loop has arrsize =
16MB, stride = 8, fltops = 4, memops = 64 and parops = 4 (in this case
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meaning that the floating point operations carry only an inter-iteration depen-
dence onto themselves). This loop was also found to run energy-optimally at
1.60GHz. This does not serve as conclusive proof that the frequencies selected
by our methodology are energy-optimal in all cases nor does it indicate that
every interesting aspect of program behavior is encapsulated by the space of
possible loops that can be generated by pbench. It does, however, serve to pro-
vide some validation in a scenario where fully validating the frequency quality
selection would be extremely time consuming.

4 Related Work

Dynamic voltage frequency scaling is a well known technique that has been used
to reduce power and energy usage in the context of various application domains
[19][20][21][22][23]. The DVFS research in High Performance Computing tends to
follow one of two approaches. The first approach is to identify and exploit MPI
inter-task load imbalance. The work done in [24] and [25] focuses on locating
these imbalances and applying reduced frequencies to computation regions that
are not on the application’s criritcal path. By reducing the energy used on a
non-critical path, overall energy can be reduced since power consumption is
decreased with negligible performance loss. Since these approaches seek to exploit
inter-task imbalance for energy gains instead of intra-task imbalance, they are
complementary to ours.

The second approach, which our work falls into, seeks to find a way to exploit
performance-clock independence that occurs within a task as a result of memory
access stalls. Ge et. al. show in [26] that it is possible to reduce energy or energy-
delay by running some memory-bound applications either at a fixed frequency
for the entire run or by hand-selecting the dynamic frequency settings for the
application. Our technique goes further and demonstrates how to automatically
select and use a set of such frequency settings.

In [27], the application is run to collect profiling information, then is divided
by hand into phases that consist of regions that are either of like memory behav-
ior or are split by MPI calls. The application is then augmented to give it the
capability to perform frequency scaling at its phase boundaries, and then sets
of phase/frequency combinations are run in order to determine how particular
frequency selections affect power and performance. This work differs from ours
in two major ways. First, their methodology differs from ours in terms of the how
the application is broken down for analysis. Our methodology currently looks
at loop boundaries as the only possible scaling locations; theirs incorporates
other possibile frequency scaling points. Loop boundaries are natural points of
breakdown for HPC applications and are responsible for a large part of the total
workload of an application, but there are other useful points that could be used
(e.g. function boundaries) that we would like to incorporate into our work. The
other major difference between their methodology and ours is that they search
for the best frequency for the phases in the application by running it with dif-
ferent frequency scaling strategies, while our approach attempts to detail the



11

capabilities of the system in terms of performance and power then determines
the frequency for the application’s loops analytically.

5 Conclusions

This work has shown a benchmark-based approach to selecting processor clock
frequency in a way that takes advantage of unnecessarily high clock rates that
are maintained during memory-bound computations. This methodology is im-
plemented on top of open source software and uses a system-specific performance
and power characterization that is automatically derived from the results of a
set of benchmark loops, generated by the pcubed benchmarking framework, that
are run at each clock frequency on the system. A set of tools that is capable of
capturing static and runtime information on an application executable is then
used to analyze an application’s loops in order to find the benchmark loops
whose features match them most closely. From this matching, we are able to se-
lect a dynamic frequency scaling strategy for the application that should result
in minimizing energy usage during application execution. pcubed was run, and
DVFS strategies were employed on a series of benchmarks on both an Intel Xeon
E5530 and an AMD Opteron 8380, where we realized energy savings of up to
7.6% and 10.6% respectively.
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