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Abstract 
 

 Energy costs comprise a significant fraction of the 
total cost of ownership of a large supercomputer.  As with 
performance, energy-efficiency is not an attribute of a 
compute resource alone; it is a function of a resource-
workload combination.  The operation mix and locality 
characteristics of the applications in the workload affect 
the energy consumption of the resource.  Our experiments 
confirm that data locality is the primary source of 
variation in energy requirements.   
 The major contributions of this work include a 
method for performing fine-grained power measurements 
on high performance computing (HPC) resources, a 
benchmark infrastructure that exercises specific portions 
of the node in order to characterize operation energy 
costs, and a method of combining application information 
with independent energy measurements in order to 
estimate the energy requirements for specific application-
resource pairings.  A verification study using the NAS 
parallel benchmarks and S3D shows that our model has 
an average prediction error of 7.4%.   
 
1.  Introduction  
 
 Energy costs constitute an increasingly significant 
fraction of high performance computing (HPC) resource 
costs.  This increase makes energy costs a major 
consideration in resource acquisition decisions.  
Acquisition committees weigh cost and performance 
tradeoffs in order to choose the best HPC resource for an 
anticipated workload[1].  Informing such choices requires 
evaluating the performance and energy-efficiency of 
candidate resources. 
 Predicting the energy consumption of an HPC 
resource requires understanding how the workload will 
utilize it.  Each application in the workload potentially 
stresses different components of the resource.  Since the 

components consume energy at different rates, the overall 
energy consumption changes with workload.  For 
instance, a computationally-intensive application 
operating exclusively out of L1 cache will not require the 
activation of any memory units (DIMMs).  Deactivating 
the DIMMs lowers the node energy consumption rate 
significantly. 
 In this paper, we present a modeling technique 
capable of informing resource acquisition decisions.  Our 
model combines resource information with application 
information, and provides an energy consumption 
estimate.  Resource information is collected using a 
custom harness that records energy consumption 
information during specialized benchmark execution.  
Application information can be collected on any 
x86/Linux or PowerPC/AIX system. 
 Performance predictions are already part of the 
Department of Defense (DoD) HPC Modernization 
Program Office (HPCMPO) supercomputer acquisition 
process,[2] and energy consumption predictions are the 
obvious next step.  Our energy consumption predictions 
provide valuable insight to acquisition committees faced 
with difficult decisions involving resource tradeoffs.  For 
example, a comparison of up-front hardware cost versus 
long-term (energy) costs is enabled by our models. 
 Our approach provides the ability to perform cross-
architectural predictions.  A cross-architectural prediction 
is one that does not require the application to be run on 
the target resource (the resource under evaluation).  The 
implications of this ability with respect to resource 
evaluation are far-reaching.  For example, if you have 10 
machines and 10 applications, you would normally be 
forced to make 100 energy measurements (assuming such 
measurements were possible); cross-architectural 
predictions require only 10 measurements plus 10 
application characterizations. 
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 More importantly, if the target machine does not yet 
exist at full-scale, benchmarks can be run on a single 
prototype node, and actual application energy 
consumption can be predicted.  Furthermore, if the 
machine doesn’t exist at all, but the energy consumption 
can be forecast on our simple benchmarks, our methods 
allow reasonable estimate of real applications energy 
consumption. 
 Our models also allow for the early evaluation of 
energy-proportionality for specific workloads.  System 
designs that successfully balance application requirements 
and computing capability in order to maximize energy 
efficiency are referred to as energy-proportional 
designs[3].  Each application on a given resource may have 
a different level of energy-efficiency; this is due to the 
varying behaviors of HPC applications.  Thus, a design 
that is energy-proportional for one application may be 
inadequate for another.  This implies that energy-
proportional designs must be workload-specific or that 
hardware must dynamically adapt to the workload.   
 Data movement is a crucial factor in any energy-
proportional design.  Experiments confirm that variations 
in per-operation energy costs in memory-bound 
applications depend mainly on data-movement.  Most 
HPC applications are memory-bound, meaning data- 
movement limits performance[4,5].  The data-movement 
determines, to a large extent, which components on the 
node are active and at what level.  The variations in terms 
of components, active and power-consumed, on today’s 
resources are significant, depending on workload.  Future 
systems are projected to have even more variability as 
they employ dynamic methods to manage power and 
performance.   
 Kogge et al.[6] predict that the cost-per-memory 
access in an exascale machine will be an order-of- 
magnitude smaller than current cost due to technological 
advances.  However, the total energy costs will continue 
to increase dramatically, both in absolute terms, and as a 
fraction of total ownership costs, as datasets become 
larger and move further away from the processor.   
 Figure 1 shows the anticipated typical performance 
and energy costs of accesses to each level of the memory 
hierarchy in future architectures.  The small register file 
(represented as the top of the triangle) offers the cheapest 
access to program operands, in terms of both performance 
and energy.  Moving down the triangle, as the dataset 
grows and operands reside further away from the 
processing core, the cost of each access increases 
dramatically, energy cost per operand transfer increases 
even more quickly than the performance cost (from 40 to 
3,200 pJ per operand)1.   

                                                            
1 Projected energy per access numbers courtesy of Bill Dally (Stanford 
University) via personal correspondence. 

 
Figure 1. Anticipated operand fetch cost on future 

architectures as a function of location in memory hierarchy 
 
 The major contributions of this work include a 
method for performing fine-grained power measurements 
on an HPC resource, a benchmark infrastructure that 
exercises specific portions of the node in order to 
characterize operation energy costs, and a method of 
combining existing application information in order to 
estimate energy requirements for specific application-
resource pairings.  The energy consumption predictions in 
the included verification study have an average prediction 
error of 7.4%.   
 This paper is organized as follows: Section 2 presents 
the power measurement harness and initial findings; 
Section 3 describes the application signature and 
modeling approach; Section 4 presents the measurements 
and a verification study of the model; Section 5 presents 
related work; and conclusions are in Section 6.   
 
2.  Characterizing Energy Consumption 
 
 Our energy consumption characterizations, referred 
to as machine energy profiles, focus specifically at on-
node power consumption.  This includes the CPUs, 
motherboard, memory and input/output (I/O) controllers, 
memory, fans, hard disk, and power supply.  On-node 
power consumption is a large percentage of the total 
system power consumption, and modeling it is a 
necessary and significant step toward full system 
modeling. 
 The CPU and the memory subsystem dominate the 
energy requirements of the system as a whole.  Total 
system power consumption is composed of three 
components, reflecting the architecture of the HPC 
resource: 1) on-node, 2) interconnect, and 3) provisioning 
and cooling.  According to the exascale report[6], the on-
node power consumption represents approximately 50% 
of the overall consumption.  The energy demands of the 
cooling system correspond directly to the variations in on-
node energy requirements[7].  The network power 
consumption represents approximately 27% of the total, 
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with an estimated 20% of that taking place on-node 
(which our methodology captures).   
 Our metric is a measure of energy for each operation 
i.e., Watts s/operation or in other words Joules/operation.  
Not all operations require the same amount of energy; 
energy consumption is expressed as a function of 
operation mode and operand location.  The operation 
modes we use are floating-point or integer.  Significant 
and consistent power consumption trends are apparent 
with respect to operation and working-set size.   
 The energy consumption profiles presented in this 
section characterize the energy consumption required to 
execute operations whose operands are resident in each 
level of the memory hierarchy.  Specialized hardware and 
software produce the energy consumption 
characterization.  The hardware, referred to as the power 
measurement harness, is physically attached to a single 
node of the target system and records power 
measurements, while the software exercises specific 
components of the system.   
 
A. Power Measurement Harness  
 
 Energy consumption rates can be measured by 
monitoring one of two signals, alternating current (AC) or 
direct current (DC).  A standard 220-volt AC supplies the 
compute-node with power.  The AC signal is converted to 
a DC signal at a variety of voltage levels by the power 
supply.  Measurements taken on the AC signal provide a 
high-level, but coarse-grain dataset.  Measurements taken 
on the DC signals provide a more fine-grained, but less 
complete dataset.  Our measurement harness utilizes both 
types of measurements.   
 Compute nodes on HPC resources present significant 
DC measurement challenges.  Specifically, the nodes are 
small and tightly-packed into a rack.  Several compute 
nodes will share a single power-supply, and intercepting 
the DC signal is not always possible.  In order to 
overcome these challenges, the DC measurements can be 
taken on a separate system that uses the same key 
components.  The components that need to be consistent 
are the CPUs and the memory units.  The DC 
measurements taken on the separate machine are verified 
by comparing them to AC measurements taken on the 
compute-node.   
 The energy consumption rates of specific, highly-
variable components are measured by monitoring their 
DC signals.  The DC signals are redirected through a set 
of current-sensing resistors connected to two areas of the 
compute-node: first, the sockets providing power to the 
CPUs and second, each memory bank (DIMM).  These 
components were chosen because they are the source of a 
vast majority of variation in the energy consumption 
rates.   

 A current-sensing resistor has a small resistance and 
is placed in series with an existing circuit.  High-side 
measurements, meaning that the resistor is between the 
power supply and the load rather than between the load 
and the ground, are used in order to obtain accurate 
current measurements.  The voltage drop across the 
current-sensing resistor is measured, and Ohm’s law is 
used to calculate the current.  Power consumption is 
calculated using Equation. 1.  Rld is the equivalent 
resistance of the load, in this case, the CPU or the DIMM.   
    P = I2 Rld (1)  
 The form of the power measurement harness is 
shown in Figure 2.  The left-side of the figure labels each 
measurement point numerically.  The right-side shows the 
circuit diagrams for how each of the measurements is 
taken.  Measurement one is the AC measurement, and is 
taken using an external device, the WattsUp?[8]  Power 
Analyzer/Data Logger.  All measurements, except for the 
AC measurement, are taken and recorded using a Data 
Acquisition Device (DAQ), the NI-DAQ 6255[9].  The NI-
DAQ 6255 is able to measure up to 40 differential 
channels at a sampling rate of 1.25 Mega-Samples/second 
with 16-bit accuracy.  The input range is between −10 and 
10 volts.   

 
Figure 2. The measurement harness 

 
 The DAQ provides a time-series dataset describing 
the voltage-drop across each resistor.  These values are 
averaged, and the result is the average power 
consumption rate (Watts) over a period of time.  The 
period of time is set in the software.  A software call is 
made that triggers a voltage to turn on and off.  The 
voltage is controlled via USB, and is used as a hardware 
trigger to the DAQ indicating that measuring should start 
or stop.  This trigger mechanism allows for accurate 
power consumption rate sampling to take place during 
benchmarking.  The USB control is implemented using a 
Phidgets USB interface kit[10].   
 
B. Power Measurement Benchmark  
 
 The goal of the power measurement benchmark is to 
activate each level in the memory hierarchy in a 
controlled manner, and exercise different functional units 
at the same time.  This enables power measurements to be 
taken during very specific and known operation modes.  
The memory benchmark MultiMAPS[11] has been 
expanded to accommodate these requirements.   
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 MultiMAPS is implemented as a loop that steps 
through a dataset.  The data-set size and the step-size 
(stride) are varied to explore the performance of the 
memory subsystem.  The memory bandwidth achieved 
during the execution of the loop is recorded for each 
dataset size and stride pair.  The size and stride pair is 
measured for approximately two seconds, a long enough 
period to allow for power measurements to be taken.   
 For this work, MultiMAPS was expanded in order to 
explore the energy costs associated with separate 
functional units.  The original benchmark performed one 
floating point operation per memory access.  This work 
uses two additional variations: first, a variation that does 
no floating point operations, but focuses only on the 
integer unit; and second, a version that does four floating 
point operations per memory access.   
 
3.  Energy Consumption Model 
 
 The energy consumption model provides a 
mechanism to estimate the energy requirements of an 
application-resource pair without ever having executed 
the application on the resource.  Informing acquisition 
decisions requires the ability to make cross-architectural 
predictions, since often full-scale implementations of the 
offered resources have not yet been built and executing 
full-scale applications is thus not possible.   
 Conducting an evaluation of hardware choices for a 
given workload with respect to energy consumption 
requires an O(m n) process, if the resources can be 
accessed.  As an illustration, assume that a given 
workload is composed of 10 applications and that vendors 
are offering 10 resources.  A full evaluation requires that 
all 100 application-resource pairs be tested, and energy 
data collected.  Our models make it possible to trace the 
applications once (not even on one of the newly-offered 
systems, but on any available system), and take an energy 
profile of each offered system once.  That data can be 
combined using our modeling framework offline, 
reducing the complexity to O(m+n). 
 Energy consumption management is becoming such a 
focal point for HPC systems that future resources, such as 
the Intel Rock Creek, will have fine-grained energy 
monitoring and management policies.  On systems with 
these capabilities, creating energy profiles will no longer 
require external hardware, making the data much easier to 
collect.  Self-aware applications that are given this profile 
will be able to manage the system power levels in the 
most energy-efficient manner possible.  Our models have 
the potential to inform decisions of this type.   
 The energy consumption model follows the PMaC 
Prediction Framework[11].  The tracing infrastructure is 
used directly, while a new machine profile and model 
have been developed.   

A. Performance Modeling Framework  
 
 The PMaC Framework[11] is a well-established HPC 
performance modeling toolkit.  It is utilized by the 
Department of Defense (DoD) to evaluate potential 
resource acquisitions and is consistently accurate, 
averaging 10% error, for full-scale HPC applications.  
The framework is specifically designed to perform cross-
architectural predictions, and has been shown to be 
scalable to long-running HPC applications.   
 The framework separates communication and 
computation into separate models.  The communication 
model represents the application as a trace of 
communication events.  Between communication events, 
work is performed on the processor.  These bursts of work 
are referred to as CPU bursts and they are summarized in 
the computation model.   
 The communication and computation models are 
broken down using similar principles.  Figure 3 shows the 
breakdown of each into three main categories: a) 
application signatures which are detailed but compact 
representations of the fundamental operations inherent to 
an application collected via trace tools, b) machine 
profiles that represent the capability of systems to perform 
fundamental operations measured via benchmarks, or 
estimated via system specifications, and c) convolutions2 
that rapidly combine application signatures with machine 
profiles via simulation to predict performance.  In this 
work we focus on the computational model component 
(the shaded portion of Figure 3) of the PMaC framework 
to develop our energy consumption model.   

 
Figure 3. Overview of the PMaC Prediction Framework 

 
 The application signature for the computational 
model is obtained by tracing the application.  It consists 
of the memory address stream, the floating point 
operation count, and the memory operation count for each 
basic block in the application.  An address stream is the 
list of memory addresses requested by the application, 
and a basic block is a unit of code that has a single entry 
and exit point.   

                                                            
2 The term convolution is used to refer to the processes used to combine 
the application signature and machine profiles together to achieve a 
performance prediction.   
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 The address stream is sent through a cache simulator 
on-the-fly (during collection).  The cache simulator 
simulates the memory hierarchy of the target resource.  
Collection is achieved using binary instrumentation[12,13].  
The cache hit-rates for each level of cache, as well as the 
collected operation counts, compose the saved application 
signature.   
 The machine profile is gathered using benchmarks 
and/or machine specifications depending on availability 
of the machine hardware.  The benchmark, MultiMAPS[4], 
is run on the target machine and collects information on 
the achievable memory bandwidths for each level of the 
memory hierarchy.  The benchmarks used to collect the 
machine profile of the target system are small and simple.  
They only need 1–2 nodes of the target system to be 
available.   
 The convolution method combines the application 
signature with the machine profile in order to produce an 
estimated execution time for each basic block of the 
execution.  The process of determining the achieved 
memory bandwidth and execution time is described in 
detail in Reference 4.   
 The performance model provides insight to the data 
movement rates that are achieved by the application, and 
indicates where in the memory subsystem the working set 
for each basic block resides.  This information is exported 
to the energy consumption model for the work done in 
this paper.   
 
B. Energy Model  
 
 The energy model combines an application signature 
from the PMaC framework, with a machine energy profile 
in order to predict the energy (joules) required for 
execution.  The model is a mathematical combination of 
the two sets of data.   
 The model is created at a basic block level.  The total 
energy cost of each basic block is predicted based on the 
average energy cost-per-operation and the visit count 
(number of times the basic block was executed) 
information.  The energy cost of each basic block is 
summed in order to get a full execution energy cost 
estimate.   
 The obvious first attempt at such a model is a simple 
linear combination of cache hit-rates and operation costs 
described by Equation. 2.  Ebb is the energy cost-per-
operation in basic block, HLn is the hit-rate for the nth-
level of cache and ELn is the energy required to access the 
nth-level cache:   
Ebb = HL1  EL1 + HL2  EL2 + HL3  EL3 + HMM  EMM (2) 
The cache hit-rates are available for each basic block in 
the application signature.  This simplistic approach does 
not capture the realities of energy consumption in a node 
and, therefore, produces predictions with errors as high as 

85%.  The majority of the power consumption variation 
comes from the powering-up and down of main memory.  
This model ignores the fact that DIMMs are not powered- 
up and down on a small time-scale.   
 As an example, consider an access pattern that 
requires a cache-line be loaded from main memory.  Once 
in main memory, the line is accessed three more times.  
This yields an L1 cache hit-rate of 75% with the 
remaining 25% of accesses going out to main memory.  It 
is unlikely that main memory will be powered-down 
during the three L1 cache hits and, therefore, during those 
accesses the higher main memory power rate is used, but 
for a shorter amount of time than a main memory access.  
This indicates the need to change the energy consumption 
rate when main memory accesses are present.   
 The lasting effect of DIMM activations are modeled 
by separating the operation rate from the energy 
consumption rate.  The energy consumption rate is 
assumed to remain constant for some time after a main 
memory access.  The energy consumption rate during a 
main memory access is used in conjunction with the data 
rate achieved by L1 cache to calculate the cost of 
accessing L1 after a recent main memory access (EL1/MM).  
This pattern is followed to calculate similar values for all 
levels of the memory hierarchy expressed as ELn/Lm.  Ln is 
the level of cache being accessed and Lm is the level of 
cache that the energy consumption rate is associated with.   
 The energy consumption rate for each term in the 
equation is found by determining which level of the 
memory hierarchy dominates energy consumption-wise.  
To achieve this, we dilate each cache hit-rate by 
multiplying it by a weight.  The weight is proportional to 
the memory bandwidth achieved by L1 cache.  For 
instance, if L1 is twice as fast as L2, the weight for L2 is 
2.  The weight for L1 is always 1.   
 Table 1 shows an example of the weighting scheme 
applied to a few basic blocks.  The first basic block has an 
L1 hit-rate of 50%, and the remaining accesses take place 
in main memory.  After the weighting scheme, it is 
obvious that the main memory energy consumption rate is 
dominant in this case.   
 
Table 1. An example of the weighting scheme used to 
choose the dominant level of the memory hierarchy 

Simulated Weighted 
L1 L2 L3 MM L1 L2 L3 MM 

50.00 0 0 50.00 50.00 0 0 885.0 
66.66 0 0 33.33 66.66 0 0 590.9 
98.62 0 1.37 0.002 98.62 0 6.16 0.04 

 
 The weighted values are used to choose the term PLD 
the power level of the dominant cache level.  In this 
equation, LD refers to the dominant memory hierarchy 
level.  If the power consumption rate of the current level 
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of cache is higher than that of the dominant level, the 
current level is used, e.g., max (PL2, PLD). 
 The energy consumed accessing each level of cache 
is summed to produce the energy consumption for the 
entire basic block.  The hit rate for each level is multiplied 
by a new energy term.  The energy term is determined by 
multiplying the power consumption rate of the dominant 
level of cache by the rate of access achievable in that 
level, as seen in Equation 3: 
   EL1,LD = PLD*(1/BWL1)*bytes (3) 
Ebb=HL1*EL1,LD+HL2*EL2,max(L2,LD)+HL3*EL1,max(L3,LD)+HMM*EMM,MM (4) 
 The energy requirements for the entire application are 
calculated by summing the energy requirements of each 
of the basic blocks in the execution.  The basic block 
frequency information is retrieved from the PMaC 
application signature. 
 The goal of the energy model is to achieve accuracy 
without becoming overly complicated.  Our verification 
study shows that this model has an average error of 7.4%. 
 
4.  Experimental Results 
 
 The goal of this work is to accurately model the 
energy consumption of HPC resources.  A necessary step 
to achieving this goal is identifying the major causes of 
variation in energy consumption rates.  This section 
begins by presenting experimental data showing that we 
have captured the variation, and then moves on to present 
a high-level verification study using HPC benchmarks.   
 All of the experiments described in this section were 
conducted on Dash at San Diego Supercomputer Center 
(SDSC).  Dash has two main types of nodes: 64 compute 
nodes and 4 dedicated IO-nodes.  Both node-types contain 
two quad-core 2.4GHz Intel Nehalem Processors and 
48GB of DRAM (12 4GB DDR3 DIMMs).   
 
A. Identifying Energy Consumption Rate 
Variations  
 
 The variations in energy consumption rates are 
captured by the DC power measurements.  We show that 
the CPUs and DIMMs are the main source of this 
variation.  By measuring this subset of node components 
the energy consumption of the entire node can be 
characterized.   
 All of the power consumption data is presented using 
a format based on a MultiMAPS curve.  Figure 4 is the 
MultiMAPS curve for a Dash-node.  The Y-axis is the 
achieved memory bandwidth and the X-axis represents a 
series of working-set sizes increasing to the right.  The 
curves shown represent accesses with strides 2, 4, and 8.   

 
Figure 4. The memory bandwidth achieved by MultiMAPS 

 
 Each plateau in the curves represents a different level 
in the memory hierarchy.  The Nehalem processor has L1, 
L2, and L3 caches, and the first three plateaus correspond 
to those.  The rest of the curve represents main memory.  
There are four performance levels in main memory (only 
two are easily visible at this scale).   
 Recall that the machine energy profile is created by 
running three versions of the MultiMAPS benchmark on 
Dash.  The original has one floating-point operation 
corresponding to each 8-byte load from memory (labeled 
floating point).  Additionally, a version with an extra 
floating point add-multiply operation (labeled floating-
point+), and a version using only integer operations 
(labeled integer) were run.  The performance and energy 
consumption rates are combined to create the profiles.   

 
Figure 5. Performance difference between integer- and 

floating point operations 
 
 Figure 5 shows the performance for the stride 4 case 
of each.  The floating point and floating point + cases 
match closely.  The integer case is faster, especially when 
in L1.  Similar results are observed for the stride 1, 2, and 
8 cases as well.   
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Figure 6. Performance difference between integer and 

floating point operations 
 
 The variations in CPU energy consumption depend 
both on the instructions being executed and the operand 
location.  As with performance, the energy consumption 
rates for the floating point and floating point + cases 
matched very closely.  The energy consumption rate of 
the CPU during the integer benchmark execution varied 
only slightly.  In the L1 case, the energy consumption rate 
increased by 2 Watts during integer execution.   
 Figure 6 shows the CPU energy consumption rates 
for MultiMAPS (floating point).  The consumption 
patterns for both CPUs are the same, but at different 
levels.  One of the CPUs consistently consumes 5 Watts 
more.  We believe that this difference is due to the 
QuickPath Interconnect.   
 The CPU energy consumption data is impacted by 
the power management policy used on the node.  During 
machine profiling, the frequency throttling mechanism 
was enabled.  Several governors (policies) are available 
for this processor; the on-demand governor is the default 
and is used for all measurements.  The on-demand 
governor does not throttle frequency during application 
execution; dynamic voltage frequency throttling can be 
used to increase energy-efficiency during execution[14].   
 The energy consumption rate of the DIMMs changes 
with the memory bandwidth as well.  Figures 7a and 7b 
show the changes for two cases.  The first is MultiMAPS 
(floating point) run on a large data-set.  The DIMMs 
remain in a standby-state consuming less than 3 Watts 
until the working-set no longer fits in cache.  The number 
of DIMMs activated and the level that they are activated 
to depends on where the data was allocated.  The data-set 
allocated for the second figure is smaller than the first, but 
it was laid out over all of the DIMMs, and therefore 
requires that they all be active during execution.   

 
Figures 7a and 7b. Energy consumption rates for the stride 4 

multiMAPS case on Dash 
 
 Figure 8 confirms that the targeted components of the 
compute-node are, in fact, producing the variations in 
power consumption.  The solid sections at the bottom of 
the graph represent the sum of all of the measured DC 
power components.  The DC measurements were taken on 
an IO-node of Dash.  The top line is the AC power 
measured on a single compute-node of Dash.  Before 
powering on the node, the constant power demands of the 
sub-rack were measured at 174 Watts.  The sub-rack 
contains three power supplies, each of which has some 
operational overhead, as well as networking 
infrastructure.  This shows that we are capturing all but a 
constant 65 Watts.  This energy is being consumed by the 
motherboard and other components such as disk and fans.  
The majority of the variation is being captured within the 
DC measurements.   
 Most importantly, Figure 8 shows that DC 
measurements taken on matching configurations, even if 
they are running on a different motherboard, can be used 
to characterize the compute-node power consumption.  
All of the DC measurements are taken on the IO-node, 
which has the same CPUs and DIMMs as the compute- 
nodes, but in a more accessible configuration.  The AC 
measurements are taken outside of the sub-rack that 
contains the power supply and the compute node.  For the 
measurements, only a single compute node was active.   

 
Figure 8. The CPU and node energy consumption rates for 

Dash 
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 Table 2 shows the energy consumption values used 
for the machine energy profile.  The energy required per 
integer operation is significantly lower than those 

required for floating point operations.  The largest 
variation is found during the step from L3 cache to main 
memory during floating point execution.   

 
 

Table 2. The power and energy components used by the energy model 
 Floating-Point Integer 

CPU 
Watts 

Memory 
Watts 

Total 
Watts nJ/op 

CPU 
Watts 

Memory 
Watts 

Total 
Watts nJ/op 

L1 120 33 153 126 126 33 159 92 
L2 125 34 159 225 127 33 160 127 
L3 124 34 158 576 130 33 163 158 
MM 137 69 206 2,965 142 73 215 788 

 
 
B. Model Verification  
 
 The energy model should be capable of accurately 
predicting the energy consumption of an application run 
on a specific machine, without actually running it there.  
This implies the application signature should be generated 
on a machine other than the machine that the energy 
profile was created on.  The main advantage to our 
approach is that the machine characterization only has to 
be done once per machine and the application 
characterization only has to be run once per application; 
one can quickly generate the cross-product of the two sets 
of characterizations.   
 We verified the accuracy of our energy consumption 
model by predicting the energy consumption of a set of 
HPC benchmarks on Dash.  Dash has dual quad-core 
Nehalem processors and therefore, each benchmark was 
executed on 8 cores.  The set of benchmarks and 
applications chosen for verification includes a subset of 
the NAS parallel benchmarks (NPBs)[15] and S3D.  The 
NPBs are each run using two data-sets, A and B.  A is the 
smallest NPB data-set available and B is the next-largest.  
This enables us to see the difference in how the model 
handles larger working-set sizes.  S3D solves the full- 
compressible Navier-Stokes equations that describe the 
conservation of mass, momentum, and energy, and laws 
of gas behavior, while simultaneously tracking the 
evolution of reactive species on a rectangular mesh.  It 
uses the Message Passing Interface (MPI) to efficiently 
distribute the calculation among parallel processors, and 
is built on a hierarchical, modular structure.   

 The machine energy profile collected from Dash is 
shown in Table 2.  The model used only the energy 
consumption values collected from the floating point 
version of MultiMAPS.  The DC measurements were 
taken using one of the dedicated IO-nodes.  The 
benchmark measurements are also taken using DC 
measurements.   
 The predictions are cross-architectural predictions.  
The application signatures were not collected on the target 
resource.  The S3D signature was collected on a Power 4 
resource using pmacInst[12], and the NPB signatures were 
collected on an SGI ICE system using pebil[13].  The 
overhead for collecting application signatures is less than 
a 10X-slowdown.   
 The energy consumption of each of the benchmarks 
was measured during execution on the Dash IO-node.  
The same DC measurement harness was used during the 
benchmark measurements.  The average energy 
consumption rate was measured during execution between 
the MPI initialization and finalization.  The execution 
time (between MPI initialization and finalization) was 
multiplied by this rate to produce an overall energy 
consumption value.   
 Table 3 shows the results of the model.  The DC 
power consumption of the node varied between 154 
(EP.A) and 227 (S3D) Watts.  This variation implies that 
a large range of conditions was covered.  A consumption 
rate of 154 Watts is only achieved during operation 
exclusively out of L1 cache, and a rate of 227 Watts 
implies that all of the DIMMs were active at their highest 
level.  This was not recorded in the execution of the 
floating point benchmark, which explains why the 
prediction of S3D was low.   
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Table 3. Measured execution time, energy consumption rate, and energy consumption compared to predicted 
energy consumption 

Benchmark 

Measured Predicted Relative Error 
Time 
sec 

Power 
watts 

Energy 
joules 

Energy 
joules Energy 

CG.A 0.84 212 180 162 10% 
CG.B 22.5 211 4,762 4,550 4.5% 
EP.A 2.1 154 324 337 -3.9% 
EP.B 8.0 156 1,251 1,342 -7.3% 
FT.A 1.8 200 361 361 -.01% 
FT.B 19.5 199 3,886 4,085 -5% 
IS.B 2.3 192 445 369 -17% 
LU.A 14.6 188 2,744 2,977 -8.5% 
LU.B 59.2 191 11,316 12,359 -9.2% 
MG.A 1.04 210 218 200 8.7% 
MG.B 3.4 209 706 727 -3% 
S3D 776 227 176,421 155,840 11.7% 

 
 
 The energy model predicts a wide range of execution 
times and energy consumption rates with impressive 
accuracy.  The average error (using absolute values) is 
7.4%.  This is very accurate for such a simple model.  The 
highest error occurred for IS.B.  This benchmark is 
difficult to model for two reasons.  First, it is the only one 
of the NPBs that does primarily integer-operations, and 
second, the majority of the access patterns are random 
accesses done using indexed-arrays.  The random 
accesses complicate the modeling process, because the 
current machine signatures do not estimate the 
performance achieved during random accesses.  This 
implies that the rate for stride-8 accesses is used to 
estimate random accesses.  Expanding the benchmarks 
and model to cover these cases is part of future work.   
 
5.  Related Work 
 
 Early work in energy consumption models is 
primarily focused on embedded-systems and used to 
improve the hardware design and software optimizations 
that will allow for longer battery life.  Our work focuses 
on large HPC centers, and specifically their variable 
workloads.  The other main difference is that we are 
performing cross-architectural predictions, while previous 
work has not included a cross-architectural component. 
 Instruction-level power analysis was introduced by 
Tiwari et al.[16,17] and later expanded to include 
component interactions using linear regression by 
Givargis[18].  Whole-system power estimates, including 
on-board interconnect memory and power conversion 
systems, were presented in Reference 19.  Instruction-
level power analysis estimates the overall energy 
consumption of an application by measuring the energy 
consumption of required instructions.  Complex cache 

structures, which can cause large variations in energy 
consumption, complicate the use of this method. 
 Projects that model the energy consumption on a 
processor by component; processing core, caches, and 
main memory[20–22], are specifically designed for systems-
on-a-chip (SOC).  In these systems-specific software will 
be run, and it is known a priori allowing for a higher-
level of optimization of both performance and energy 
consumption.  In these models, the memory energy 
consumption rate is estimated using a cost-per-access 
model, which does not model the different costs of 
different levels of memory. 
 A more recent approach, presented in Reference 23, 
combines multiple power estimators into one simulation 
engine, thus enabling detailed simulation of some 
components, while using high-level models for others.  
This approach is able to account for interaction between 
memory, cache and processor at run-time, but at the cost 
of potentially long run-times.  Longer run-times are 
caused by different abstraction levels of various 
simulators and by the overhead in communication 
between different components.  The techniques that 
enable significant simulation speed-up are presented, but 
at the cost of the loss-of-detail in software design and in 
the input data-trace. 
 Cycle accurate register transfer level energy 
estimation is presented in Reference 24.  Any kind of 
cycle-accurate simulation is not practical at large-scale 
data centers and HPC centers.  The long running 
applications, which run across hundreds of processors, 
would incur a tremendous slowdown. 
 An alternative approach for energy estimation using 
measurements as a basis for estimation is presented in the 
PowerScope tool[25].  PowerScope requires two computers 
to collect the measurement statistics, some changes to the 
operating system source code and a digital multimeter.  
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Although this system enables accurate code-profiling of 
an existing system, it would not be appropriate for use in 
cross-architectural estimates. 
 JouleTrack[26] is a tool for software energy profiling 
that is able to achieve an impressive 97% accuracy in 
power usage estimates.  It is; however, designed for 
embedded-systems and requires cycle accurate 
simulation.  Cycle accurate simulation is not reasonable at 
the level-of-data of HPC Centers. 
 SoftWatt[27] targets complete-system power profiles 
of high-end systems, that can be used for design and 
evaluation of power optimization techniques.  This tool is 
similarly aimed at high-end systems, but depends on 
cycle-accurate simulation.   
 A system-wide energy consumption model is created 
by Reference 7.  The model depends on the correlation of 
system bus traffic with task activities, memory-access 
metrics and board-level power measurements.  The result 
is a run-time energy consumption estimate for an 
application.  This method shows promise for use in a 
scheduled environment, given an intelligent scheduler.  
Our method offers a different insight to energy 
consumption by providing cross-architectural predictions, 
bypassing the need to execute the application on the target 
architecture.   
 
6.  Conclusion 
 
 Modeling energy consumption provides valuable 
information that can inform system acquisition and design 
decisions.  As energy costs grow to comprise a larger 
portion of the cost of operating large computer resources, 
more attention is being paid to the energy efficiency of 
next-generation resources.  Energy efficiency cannot be 
evaluated independent of workload, and the models 
presented here are a tool for better understanding the 
interactions that affect energy consumption. 
 Future resources, while operating at lower power 
levels per CPU, will suffer the same consequences of data 
movement that today’s resources do.  This is because the 
trend of large cost-increases associated with accessing 
larger areas of memory is likely to continue in future 
systems.  As systems begin to make energy counters and 
system management mechanisms, such as dynamic 
frequency-throttling, available to applications it becomes 
very important to understand how energy efficiency can 
be achieved by the application.  The models presented 
here provide an avenue for providing the necessary 
information. 
 Our models provide a means to greatly reduce the 
amount of work required to evaluate resource acquisition 
tradeoffs.  The amount of work is reduced significantly, 
and more importantly, if the machine doesn’t exist yet but 
the energy consumption can be forecast on simple 

benchmarks, our methods allow reasonable estimates of 
the actual energy consumption of real applications.   
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