
Fine-grained Energy Consumption Characterization and Modeling

Catherine Mills Olschanowsky, Tajana Rosing, and
Allan Snavely

Department of Computer Science and Engineering
University of California at San Diego, CA

cmills@ucsd.edu and {trosing,
asnavely}@cs.ucsd.edu

Laura Carrington, Mustafa M. Tikir, and
Michael Laurenzano

San Diego Supercomputer Center (SDSC),
San Diego, CA

{lcarring, mtikir, michaell}@sdsc.edu

Abstract

 Energy costs comprise a significant fraction of the
total cost of ownership of a large supercomputer. As with
performance, energy-efficiency is not an attribute of a
compute resource alone; it is a function of a resource-
workload combination. The operation mix and locality
characteristics of the applications in the workload affect
the energy consumption of the resource. Our experiments
confirm that data locality is the primary source of
variation in energy requirements.
 The major contributions of this work include a
method for performing fine-grained power measurements
on high performance computing (HPC) resources, a
benchmark infrastructure that exercises specific portions
of the node in order to characterize operation energy
costs, and a method of combining application information
with independent energy measurements in order to
estimate the energy requirements for specific application-
resource pairings. A verification study using the NAS
parallel benchmarks and S3D shows that our model has
an average prediction error of 7.4%.

1. Introduction

 Energy costs constitute an increasingly significant
fraction of high performance computing (HPC) resource
costs. This increase makes energy costs a major
consideration in resource acquisition decisions.
Acquisition committees weigh cost and performance
tradeoffs in order to choose the best HPC resource for an
anticipated workload[1]. Informing such choices requires
evaluating the performance and energy-efficiency of
candidate resources.
 Predicting the energy consumption of an HPC
resource requires understanding how the workload will
utilize it. Each application in the workload potentially
stresses different components of the resource. Since the

components consume energy at different rates, the overall
energy consumption changes with workload. For
instance, a computationally-intensive application
operating exclusively out of L1 cache will not require the
activation of any memory units (DIMMs). Deactivating
the DIMMs lowers the node energy consumption rate
significantly.
 In this paper, we present a modeling technique
capable of informing resource acquisition decisions. Our
model combines resource information with application
information, and provides an energy consumption
estimate. Resource information is collected using a
custom harness that records energy consumption
information during specialized benchmark execution.
Application information can be collected on any
x86/Linux or PowerPC/AIX system.
 Performance predictions are already part of the
Department of Defense (DoD) HPC Modernization
Program Office (HPCMPO) supercomputer acquisition
process,[2] and energy consumption predictions are the
obvious next step. Our energy consumption predictions
provide valuable insight to acquisition committees faced
with difficult decisions involving resource tradeoffs. For
example, a comparison of up-front hardware cost versus
long-term (energy) costs is enabled by our models.
 Our approach provides the ability to perform cross-
architectural predictions. A cross-architectural prediction
is one that does not require the application to be run on
the target resource (the resource under evaluation). The
implications of this ability with respect to resource
evaluation are far-reaching. For example, if you have 10
machines and 10 applications, you would normally be
forced to make 100 energy measurements (assuming such
measurements were possible); cross-architectural
predictions require only 10 measurements plus 10
application characterizations.

2010 DoD High Performance Computing Modernization Program Users Group Conference

978-0-7695-4392-5/10 $26.00 © 2010 IEEE
DOI 10.1109/HPCMP-UGC.2010.54

487

 More importantly, if the target machine does not yet
exist at full-scale, benchmarks can be run on a single
prototype node, and actual application energy
consumption can be predicted. Furthermore, if the
machine doesn’t exist at all, but the energy consumption
can be forecast on our simple benchmarks, our methods
allow reasonable estimate of real applications energy
consumption.
 Our models also allow for the early evaluation of
energy-proportionality for specific workloads. System
designs that successfully balance application requirements
and computing capability in order to maximize energy
efficiency are referred to as energy-proportional
designs[3]. Each application on a given resource may have
a different level of energy-efficiency; this is due to the
varying behaviors of HPC applications. Thus, a design
that is energy-proportional for one application may be
inadequate for another. This implies that energy-
proportional designs must be workload-specific or that
hardware must dynamically adapt to the workload.
 Data movement is a crucial factor in any energy-
proportional design. Experiments confirm that variations
in per-operation energy costs in memory-bound
applications depend mainly on data-movement. Most
HPC applications are memory-bound, meaning data-
movement limits performance[4,5]. The data-movement
determines, to a large extent, which components on the
node are active and at what level. The variations in terms
of components, active and power-consumed, on today’s
resources are significant, depending on workload. Future
systems are projected to have even more variability as
they employ dynamic methods to manage power and
performance.
 Kogge et al.[6] predict that the cost-per-memory
access in an exascale machine will be an order-of-
magnitude smaller than current cost due to technological
advances. However, the total energy costs will continue
to increase dramatically, both in absolute terms, and as a
fraction of total ownership costs, as datasets become
larger and move further away from the processor.
 Figure 1 shows the anticipated typical performance
and energy costs of accesses to each level of the memory
hierarchy in future architectures. The small register file
(represented as the top of the triangle) offers the cheapest
access to program operands, in terms of both performance
and energy. Moving down the triangle, as the dataset
grows and operands reside further away from the
processing core, the cost of each access increases
dramatically, energy cost per operand transfer increases
even more quickly than the performance cost (from 40 to
3,200 pJ per operand)1.

1 Projected energy per access numbers courtesy of Bill Dally (Stanford
University) via personal correspondence.

Figure 1. Anticipated operand fetch cost on future

architectures as a function of location in memory hierarchy

 The major contributions of this work include a
method for performing fine-grained power measurements
on an HPC resource, a benchmark infrastructure that
exercises specific portions of the node in order to
characterize operation energy costs, and a method of
combining existing application information in order to
estimate energy requirements for specific application-
resource pairings. The energy consumption predictions in
the included verification study have an average prediction
error of 7.4%.
 This paper is organized as follows: Section 2 presents
the power measurement harness and initial findings;
Section 3 describes the application signature and
modeling approach; Section 4 presents the measurements
and a verification study of the model; Section 5 presents
related work; and conclusions are in Section 6.

2. Characterizing Energy Consumption

 Our energy consumption characterizations, referred
to as machine energy profiles, focus specifically at on-
node power consumption. This includes the CPUs,
motherboard, memory and input/output (I/O) controllers,
memory, fans, hard disk, and power supply. On-node
power consumption is a large percentage of the total
system power consumption, and modeling it is a
necessary and significant step toward full system
modeling.
 The CPU and the memory subsystem dominate the
energy requirements of the system as a whole. Total
system power consumption is composed of three
components, reflecting the architecture of the HPC
resource: 1) on-node, 2) interconnect, and 3) provisioning
and cooling. According to the exascale report[6], the on-
node power consumption represents approximately 50%
of the overall consumption. The energy demands of the
cooling system correspond directly to the variations in on-
node energy requirements[7]. The network power
consumption represents approximately 27% of the total,

488

with an estimated 20% of that taking place on-node
(which our methodology captures).
 Our metric is a measure of energy for each operation
i.e., Watts s/operation or in other words Joules/operation.
Not all operations require the same amount of energy;
energy consumption is expressed as a function of
operation mode and operand location. The operation
modes we use are floating-point or integer. Significant
and consistent power consumption trends are apparent
with respect to operation and working-set size.
 The energy consumption profiles presented in this
section characterize the energy consumption required to
execute operations whose operands are resident in each
level of the memory hierarchy. Specialized hardware and
software produce the energy consumption
characterization. The hardware, referred to as the power
measurement harness, is physically attached to a single
node of the target system and records power
measurements, while the software exercises specific
components of the system.

A. Power Measurement Harness

 Energy consumption rates can be measured by
monitoring one of two signals, alternating current (AC) or
direct current (DC). A standard 220-volt AC supplies the
compute-node with power. The AC signal is converted to
a DC signal at a variety of voltage levels by the power
supply. Measurements taken on the AC signal provide a
high-level, but coarse-grain dataset. Measurements taken
on the DC signals provide a more fine-grained, but less
complete dataset. Our measurement harness utilizes both
types of measurements.
 Compute nodes on HPC resources present significant
DC measurement challenges. Specifically, the nodes are
small and tightly-packed into a rack. Several compute
nodes will share a single power-supply, and intercepting
the DC signal is not always possible. In order to
overcome these challenges, the DC measurements can be
taken on a separate system that uses the same key
components. The components that need to be consistent
are the CPUs and the memory units. The DC
measurements taken on the separate machine are verified
by comparing them to AC measurements taken on the
compute-node.
 The energy consumption rates of specific, highly-
variable components are measured by monitoring their
DC signals. The DC signals are redirected through a set
of current-sensing resistors connected to two areas of the
compute-node: first, the sockets providing power to the
CPUs and second, each memory bank (DIMM). These
components were chosen because they are the source of a
vast majority of variation in the energy consumption
rates.

 A current-sensing resistor has a small resistance and
is placed in series with an existing circuit. High-side
measurements, meaning that the resistor is between the
power supply and the load rather than between the load
and the ground, are used in order to obtain accurate
current measurements. The voltage drop across the
current-sensing resistor is measured, and Ohm’s law is
used to calculate the current. Power consumption is
calculated using Equation. 1. Rld is the equivalent
resistance of the load, in this case, the CPU or the DIMM.
 P = I2 Rld (1)
 The form of the power measurement harness is
shown in Figure 2. The left-side of the figure labels each
measurement point numerically. The right-side shows the
circuit diagrams for how each of the measurements is
taken. Measurement one is the AC measurement, and is
taken using an external device, the WattsUp?[8] Power
Analyzer/Data Logger. All measurements, except for the
AC measurement, are taken and recorded using a Data
Acquisition Device (DAQ), the NI-DAQ 6255[9]. The NI-
DAQ 6255 is able to measure up to 40 differential
channels at a sampling rate of 1.25 Mega-Samples/second
with 16-bit accuracy. The input range is between −10 and
10 volts.

Figure 2. The measurement harness

 The DAQ provides a time-series dataset describing
the voltage-drop across each resistor. These values are
averaged, and the result is the average power
consumption rate (Watts) over a period of time. The
period of time is set in the software. A software call is
made that triggers a voltage to turn on and off. The
voltage is controlled via USB, and is used as a hardware
trigger to the DAQ indicating that measuring should start
or stop. This trigger mechanism allows for accurate
power consumption rate sampling to take place during
benchmarking. The USB control is implemented using a
Phidgets USB interface kit[10].

B. Power Measurement Benchmark

 The goal of the power measurement benchmark is to
activate each level in the memory hierarchy in a
controlled manner, and exercise different functional units
at the same time. This enables power measurements to be
taken during very specific and known operation modes.
The memory benchmark MultiMAPS[11] has been
expanded to accommodate these requirements.

489

 MultiMAPS is implemented as a loop that steps
through a dataset. The data-set size and the step-size
(stride) are varied to explore the performance of the
memory subsystem. The memory bandwidth achieved
during the execution of the loop is recorded for each
dataset size and stride pair. The size and stride pair is
measured for approximately two seconds, a long enough
period to allow for power measurements to be taken.
 For this work, MultiMAPS was expanded in order to
explore the energy costs associated with separate
functional units. The original benchmark performed one
floating point operation per memory access. This work
uses two additional variations: first, a variation that does
no floating point operations, but focuses only on the
integer unit; and second, a version that does four floating
point operations per memory access.

3. Energy Consumption Model

 The energy consumption model provides a
mechanism to estimate the energy requirements of an
application-resource pair without ever having executed
the application on the resource. Informing acquisition
decisions requires the ability to make cross-architectural
predictions, since often full-scale implementations of the
offered resources have not yet been built and executing
full-scale applications is thus not possible.
 Conducting an evaluation of hardware choices for a
given workload with respect to energy consumption
requires an O(m n) process, if the resources can be
accessed. As an illustration, assume that a given
workload is composed of 10 applications and that vendors
are offering 10 resources. A full evaluation requires that
all 100 application-resource pairs be tested, and energy
data collected. Our models make it possible to trace the
applications once (not even on one of the newly-offered
systems, but on any available system), and take an energy
profile of each offered system once. That data can be
combined using our modeling framework offline,
reducing the complexity to O(m+n).
 Energy consumption management is becoming such a
focal point for HPC systems that future resources, such as
the Intel Rock Creek, will have fine-grained energy
monitoring and management policies. On systems with
these capabilities, creating energy profiles will no longer
require external hardware, making the data much easier to
collect. Self-aware applications that are given this profile
will be able to manage the system power levels in the
most energy-efficient manner possible. Our models have
the potential to inform decisions of this type.
 The energy consumption model follows the PMaC
Prediction Framework[11]. The tracing infrastructure is
used directly, while a new machine profile and model
have been developed.

A. Performance Modeling Framework

 The PMaC Framework[11] is a well-established HPC
performance modeling toolkit. It is utilized by the
Department of Defense (DoD) to evaluate potential
resource acquisitions and is consistently accurate,
averaging 10% error, for full-scale HPC applications.
The framework is specifically designed to perform cross-
architectural predictions, and has been shown to be
scalable to long-running HPC applications.
 The framework separates communication and
computation into separate models. The communication
model represents the application as a trace of
communication events. Between communication events,
work is performed on the processor. These bursts of work
are referred to as CPU bursts and they are summarized in
the computation model.
 The communication and computation models are
broken down using similar principles. Figure 3 shows the
breakdown of each into three main categories: a)
application signatures which are detailed but compact
representations of the fundamental operations inherent to
an application collected via trace tools, b) machine
profiles that represent the capability of systems to perform
fundamental operations measured via benchmarks, or
estimated via system specifications, and c) convolutions2
that rapidly combine application signatures with machine
profiles via simulation to predict performance. In this
work we focus on the computational model component
(the shaded portion of Figure 3) of the PMaC framework
to develop our energy consumption model.

Figure 3. Overview of the PMaC Prediction Framework

 The application signature for the computational
model is obtained by tracing the application. It consists
of the memory address stream, the floating point
operation count, and the memory operation count for each
basic block in the application. An address stream is the
list of memory addresses requested by the application,
and a basic block is a unit of code that has a single entry
and exit point.

2 The term convolution is used to refer to the processes used to combine
the application signature and machine profiles together to achieve a
performance prediction.

490

 The address stream is sent through a cache simulator
on-the-fly (during collection). The cache simulator
simulates the memory hierarchy of the target resource.
Collection is achieved using binary instrumentation[12,13].
The cache hit-rates for each level of cache, as well as the
collected operation counts, compose the saved application
signature.
 The machine profile is gathered using benchmarks
and/or machine specifications depending on availability
of the machine hardware. The benchmark, MultiMAPS[4],
is run on the target machine and collects information on
the achievable memory bandwidths for each level of the
memory hierarchy. The benchmarks used to collect the
machine profile of the target system are small and simple.
They only need 1–2 nodes of the target system to be
available.
 The convolution method combines the application
signature with the machine profile in order to produce an
estimated execution time for each basic block of the
execution. The process of determining the achieved
memory bandwidth and execution time is described in
detail in Reference 4.
 The performance model provides insight to the data
movement rates that are achieved by the application, and
indicates where in the memory subsystem the working set
for each basic block resides. This information is exported
to the energy consumption model for the work done in
this paper.

B. Energy Model

 The energy model combines an application signature
from the PMaC framework, with a machine energy profile
in order to predict the energy (joules) required for
execution. The model is a mathematical combination of
the two sets of data.
 The model is created at a basic block level. The total
energy cost of each basic block is predicted based on the
average energy cost-per-operation and the visit count
(number of times the basic block was executed)
information. The energy cost of each basic block is
summed in order to get a full execution energy cost
estimate.
 The obvious first attempt at such a model is a simple
linear combination of cache hit-rates and operation costs
described by Equation. 2. Ebb is the energy cost-per-
operation in basic block, HLn is the hit-rate for the nth-
level of cache and ELn is the energy required to access the
nth-level cache:
Ebb = HL1 EL1 + HL2 EL2 + HL3 EL3 + HMM EMM (2)
The cache hit-rates are available for each basic block in
the application signature. This simplistic approach does
not capture the realities of energy consumption in a node
and, therefore, produces predictions with errors as high as

85%. The majority of the power consumption variation
comes from the powering-up and down of main memory.
This model ignores the fact that DIMMs are not powered-
up and down on a small time-scale.
 As an example, consider an access pattern that
requires a cache-line be loaded from main memory. Once
in main memory, the line is accessed three more times.
This yields an L1 cache hit-rate of 75% with the
remaining 25% of accesses going out to main memory. It
is unlikely that main memory will be powered-down
during the three L1 cache hits and, therefore, during those
accesses the higher main memory power rate is used, but
for a shorter amount of time than a main memory access.
This indicates the need to change the energy consumption
rate when main memory accesses are present.
 The lasting effect of DIMM activations are modeled
by separating the operation rate from the energy
consumption rate. The energy consumption rate is
assumed to remain constant for some time after a main
memory access. The energy consumption rate during a
main memory access is used in conjunction with the data
rate achieved by L1 cache to calculate the cost of
accessing L1 after a recent main memory access (EL1/MM).
This pattern is followed to calculate similar values for all
levels of the memory hierarchy expressed as ELn/Lm. Ln is
the level of cache being accessed and Lm is the level of
cache that the energy consumption rate is associated with.
 The energy consumption rate for each term in the
equation is found by determining which level of the
memory hierarchy dominates energy consumption-wise.
To achieve this, we dilate each cache hit-rate by
multiplying it by a weight. The weight is proportional to
the memory bandwidth achieved by L1 cache. For
instance, if L1 is twice as fast as L2, the weight for L2 is
2. The weight for L1 is always 1.
 Table 1 shows an example of the weighting scheme
applied to a few basic blocks. The first basic block has an
L1 hit-rate of 50%, and the remaining accesses take place
in main memory. After the weighting scheme, it is
obvious that the main memory energy consumption rate is
dominant in this case.

Table 1. An example of the weighting scheme used to
choose the dominant level of the memory hierarchy

Simulated Weighted
L1 L2 L3 MM L1 L2 L3 MM

50.00 0 0 50.00 50.00 0 0 885.0
66.66 0 0 33.33 66.66 0 0 590.9
98.62 0 1.37 0.002 98.62 0 6.16 0.04

 The weighted values are used to choose the term PLD
the power level of the dominant cache level. In this
equation, LD refers to the dominant memory hierarchy
level. If the power consumption rate of the current level

491

of cache is higher than that of the dominant level, the
current level is used, e.g., max (PL2, PLD).
 The energy consumed accessing each level of cache
is summed to produce the energy consumption for the
entire basic block. The hit rate for each level is multiplied
by a new energy term. The energy term is determined by
multiplying the power consumption rate of the dominant
level of cache by the rate of access achievable in that
level, as seen in Equation 3:
 EL1,LD = PLD*(1/BWL1)*bytes (3)
Ebb=HL1*EL1,LD+HL2*EL2,max(L2,LD)+HL3*EL1,max(L3,LD)+HMM*EMM,MM (4)
 The energy requirements for the entire application are
calculated by summing the energy requirements of each
of the basic blocks in the execution. The basic block
frequency information is retrieved from the PMaC
application signature.
 The goal of the energy model is to achieve accuracy
without becoming overly complicated. Our verification
study shows that this model has an average error of 7.4%.

4. Experimental Results

 The goal of this work is to accurately model the
energy consumption of HPC resources. A necessary step
to achieving this goal is identifying the major causes of
variation in energy consumption rates. This section
begins by presenting experimental data showing that we
have captured the variation, and then moves on to present
a high-level verification study using HPC benchmarks.
 All of the experiments described in this section were
conducted on Dash at San Diego Supercomputer Center
(SDSC). Dash has two main types of nodes: 64 compute
nodes and 4 dedicated IO-nodes. Both node-types contain
two quad-core 2.4GHz Intel Nehalem Processors and
48GB of DRAM (12 4GB DDR3 DIMMs).

A. Identifying Energy Consumption Rate
Variations

 The variations in energy consumption rates are
captured by the DC power measurements. We show that
the CPUs and DIMMs are the main source of this
variation. By measuring this subset of node components
the energy consumption of the entire node can be
characterized.
 All of the power consumption data is presented using
a format based on a MultiMAPS curve. Figure 4 is the
MultiMAPS curve for a Dash-node. The Y-axis is the
achieved memory bandwidth and the X-axis represents a
series of working-set sizes increasing to the right. The
curves shown represent accesses with strides 2, 4, and 8.

Figure 4. The memory bandwidth achieved by MultiMAPS

 Each plateau in the curves represents a different level
in the memory hierarchy. The Nehalem processor has L1,
L2, and L3 caches, and the first three plateaus correspond
to those. The rest of the curve represents main memory.
There are four performance levels in main memory (only
two are easily visible at this scale).
 Recall that the machine energy profile is created by
running three versions of the MultiMAPS benchmark on
Dash. The original has one floating-point operation
corresponding to each 8-byte load from memory (labeled
floating point). Additionally, a version with an extra
floating point add-multiply operation (labeled floating-
point+), and a version using only integer operations
(labeled integer) were run. The performance and energy
consumption rates are combined to create the profiles.

Figure 5. Performance difference between integer- and

floating point operations

 Figure 5 shows the performance for the stride 4 case
of each. The floating point and floating point + cases
match closely. The integer case is faster, especially when
in L1. Similar results are observed for the stride 1, 2, and
8 cases as well.

492

Figure 6. Performance difference between integer and

floating point operations

 The variations in CPU energy consumption depend
both on the instructions being executed and the operand
location. As with performance, the energy consumption
rates for the floating point and floating point + cases
matched very closely. The energy consumption rate of
the CPU during the integer benchmark execution varied
only slightly. In the L1 case, the energy consumption rate
increased by 2 Watts during integer execution.
 Figure 6 shows the CPU energy consumption rates
for MultiMAPS (floating point). The consumption
patterns for both CPUs are the same, but at different
levels. One of the CPUs consistently consumes 5 Watts
more. We believe that this difference is due to the
QuickPath Interconnect.
 The CPU energy consumption data is impacted by
the power management policy used on the node. During
machine profiling, the frequency throttling mechanism
was enabled. Several governors (policies) are available
for this processor; the on-demand governor is the default
and is used for all measurements. The on-demand
governor does not throttle frequency during application
execution; dynamic voltage frequency throttling can be
used to increase energy-efficiency during execution[14].
 The energy consumption rate of the DIMMs changes
with the memory bandwidth as well. Figures 7a and 7b
show the changes for two cases. The first is MultiMAPS
(floating point) run on a large data-set. The DIMMs
remain in a standby-state consuming less than 3 Watts
until the working-set no longer fits in cache. The number
of DIMMs activated and the level that they are activated
to depends on where the data was allocated. The data-set
allocated for the second figure is smaller than the first, but
it was laid out over all of the DIMMs, and therefore
requires that they all be active during execution.

Figures 7a and 7b. Energy consumption rates for the stride 4

multiMAPS case on Dash

 Figure 8 confirms that the targeted components of the
compute-node are, in fact, producing the variations in
power consumption. The solid sections at the bottom of
the graph represent the sum of all of the measured DC
power components. The DC measurements were taken on
an IO-node of Dash. The top line is the AC power
measured on a single compute-node of Dash. Before
powering on the node, the constant power demands of the
sub-rack were measured at 174 Watts. The sub-rack
contains three power supplies, each of which has some
operational overhead, as well as networking
infrastructure. This shows that we are capturing all but a
constant 65 Watts. This energy is being consumed by the
motherboard and other components such as disk and fans.
The majority of the variation is being captured within the
DC measurements.
 Most importantly, Figure 8 shows that DC
measurements taken on matching configurations, even if
they are running on a different motherboard, can be used
to characterize the compute-node power consumption.
All of the DC measurements are taken on the IO-node,
which has the same CPUs and DIMMs as the compute-
nodes, but in a more accessible configuration. The AC
measurements are taken outside of the sub-rack that
contains the power supply and the compute node. For the
measurements, only a single compute node was active.

Figure 8. The CPU and node energy consumption rates for

Dash

493

 Table 2 shows the energy consumption values used
for the machine energy profile. The energy required per
integer operation is significantly lower than those

required for floating point operations. The largest
variation is found during the step from L3 cache to main
memory during floating point execution.

Table 2. The power and energy components used by the energy model
 Floating-Point Integer

CPU
Watts

Memory
Watts

Total
Watts nJ/op

CPU
Watts

Memory
Watts

Total
Watts nJ/op

L1 120 33 153 126 126 33 159 92
L2 125 34 159 225 127 33 160 127
L3 124 34 158 576 130 33 163 158
MM 137 69 206 2,965 142 73 215 788

B. Model Verification

 The energy model should be capable of accurately
predicting the energy consumption of an application run
on a specific machine, without actually running it there.
This implies the application signature should be generated
on a machine other than the machine that the energy
profile was created on. The main advantage to our
approach is that the machine characterization only has to
be done once per machine and the application
characterization only has to be run once per application;
one can quickly generate the cross-product of the two sets
of characterizations.
 We verified the accuracy of our energy consumption
model by predicting the energy consumption of a set of
HPC benchmarks on Dash. Dash has dual quad-core
Nehalem processors and therefore, each benchmark was
executed on 8 cores. The set of benchmarks and
applications chosen for verification includes a subset of
the NAS parallel benchmarks (NPBs)[15] and S3D. The
NPBs are each run using two data-sets, A and B. A is the
smallest NPB data-set available and B is the next-largest.
This enables us to see the difference in how the model
handles larger working-set sizes. S3D solves the full-
compressible Navier-Stokes equations that describe the
conservation of mass, momentum, and energy, and laws
of gas behavior, while simultaneously tracking the
evolution of reactive species on a rectangular mesh. It
uses the Message Passing Interface (MPI) to efficiently
distribute the calculation among parallel processors, and
is built on a hierarchical, modular structure.

 The machine energy profile collected from Dash is
shown in Table 2. The model used only the energy
consumption values collected from the floating point
version of MultiMAPS. The DC measurements were
taken using one of the dedicated IO-nodes. The
benchmark measurements are also taken using DC
measurements.
 The predictions are cross-architectural predictions.
The application signatures were not collected on the target
resource. The S3D signature was collected on a Power 4
resource using pmacInst[12], and the NPB signatures were
collected on an SGI ICE system using pebil[13]. The
overhead for collecting application signatures is less than
a 10X-slowdown.
 The energy consumption of each of the benchmarks
was measured during execution on the Dash IO-node.
The same DC measurement harness was used during the
benchmark measurements. The average energy
consumption rate was measured during execution between
the MPI initialization and finalization. The execution
time (between MPI initialization and finalization) was
multiplied by this rate to produce an overall energy
consumption value.
 Table 3 shows the results of the model. The DC
power consumption of the node varied between 154
(EP.A) and 227 (S3D) Watts. This variation implies that
a large range of conditions was covered. A consumption
rate of 154 Watts is only achieved during operation
exclusively out of L1 cache, and a rate of 227 Watts
implies that all of the DIMMs were active at their highest
level. This was not recorded in the execution of the
floating point benchmark, which explains why the
prediction of S3D was low.

494

Table 3. Measured execution time, energy consumption rate, and energy consumption compared to predicted
energy consumption

Benchmark

Measured Predicted Relative Error
Time
sec

Power
watts

Energy
joules

Energy
joules Energy

CG.A 0.84 212 180 162 10%
CG.B 22.5 211 4,762 4,550 4.5%
EP.A 2.1 154 324 337 -3.9%
EP.B 8.0 156 1,251 1,342 -7.3%
FT.A 1.8 200 361 361 -.01%
FT.B 19.5 199 3,886 4,085 -5%
IS.B 2.3 192 445 369 -17%
LU.A 14.6 188 2,744 2,977 -8.5%
LU.B 59.2 191 11,316 12,359 -9.2%
MG.A 1.04 210 218 200 8.7%
MG.B 3.4 209 706 727 -3%
S3D 776 227 176,421 155,840 11.7%

 The energy model predicts a wide range of execution
times and energy consumption rates with impressive
accuracy. The average error (using absolute values) is
7.4%. This is very accurate for such a simple model. The
highest error occurred for IS.B. This benchmark is
difficult to model for two reasons. First, it is the only one
of the NPBs that does primarily integer-operations, and
second, the majority of the access patterns are random
accesses done using indexed-arrays. The random
accesses complicate the modeling process, because the
current machine signatures do not estimate the
performance achieved during random accesses. This
implies that the rate for stride-8 accesses is used to
estimate random accesses. Expanding the benchmarks
and model to cover these cases is part of future work.

5. Related Work

 Early work in energy consumption models is
primarily focused on embedded-systems and used to
improve the hardware design and software optimizations
that will allow for longer battery life. Our work focuses
on large HPC centers, and specifically their variable
workloads. The other main difference is that we are
performing cross-architectural predictions, while previous
work has not included a cross-architectural component.
 Instruction-level power analysis was introduced by
Tiwari et al.[16,17] and later expanded to include
component interactions using linear regression by
Givargis[18]. Whole-system power estimates, including
on-board interconnect memory and power conversion
systems, were presented in Reference 19. Instruction-
level power analysis estimates the overall energy
consumption of an application by measuring the energy
consumption of required instructions. Complex cache

structures, which can cause large variations in energy
consumption, complicate the use of this method.
 Projects that model the energy consumption on a
processor by component; processing core, caches, and
main memory[20–22], are specifically designed for systems-
on-a-chip (SOC). In these systems-specific software will
be run, and it is known a priori allowing for a higher-
level of optimization of both performance and energy
consumption. In these models, the memory energy
consumption rate is estimated using a cost-per-access
model, which does not model the different costs of
different levels of memory.
 A more recent approach, presented in Reference 23,
combines multiple power estimators into one simulation
engine, thus enabling detailed simulation of some
components, while using high-level models for others.
This approach is able to account for interaction between
memory, cache and processor at run-time, but at the cost
of potentially long run-times. Longer run-times are
caused by different abstraction levels of various
simulators and by the overhead in communication
between different components. The techniques that
enable significant simulation speed-up are presented, but
at the cost of the loss-of-detail in software design and in
the input data-trace.
 Cycle accurate register transfer level energy
estimation is presented in Reference 24. Any kind of
cycle-accurate simulation is not practical at large-scale
data centers and HPC centers. The long running
applications, which run across hundreds of processors,
would incur a tremendous slowdown.
 An alternative approach for energy estimation using
measurements as a basis for estimation is presented in the
PowerScope tool[25]. PowerScope requires two computers
to collect the measurement statistics, some changes to the
operating system source code and a digital multimeter.

495

Although this system enables accurate code-profiling of
an existing system, it would not be appropriate for use in
cross-architectural estimates.
 JouleTrack[26] is a tool for software energy profiling
that is able to achieve an impressive 97% accuracy in
power usage estimates. It is; however, designed for
embedded-systems and requires cycle accurate
simulation. Cycle accurate simulation is not reasonable at
the level-of-data of HPC Centers.
 SoftWatt[27] targets complete-system power profiles
of high-end systems, that can be used for design and
evaluation of power optimization techniques. This tool is
similarly aimed at high-end systems, but depends on
cycle-accurate simulation.
 A system-wide energy consumption model is created
by Reference 7. The model depends on the correlation of
system bus traffic with task activities, memory-access
metrics and board-level power measurements. The result
is a run-time energy consumption estimate for an
application. This method shows promise for use in a
scheduled environment, given an intelligent scheduler.
Our method offers a different insight to energy
consumption by providing cross-architectural predictions,
bypassing the need to execute the application on the target
architecture.

6. Conclusion

 Modeling energy consumption provides valuable
information that can inform system acquisition and design
decisions. As energy costs grow to comprise a larger
portion of the cost of operating large computer resources,
more attention is being paid to the energy efficiency of
next-generation resources. Energy efficiency cannot be
evaluated independent of workload, and the models
presented here are a tool for better understanding the
interactions that affect energy consumption.
 Future resources, while operating at lower power
levels per CPU, will suffer the same consequences of data
movement that today’s resources do. This is because the
trend of large cost-increases associated with accessing
larger areas of memory is likely to continue in future
systems. As systems begin to make energy counters and
system management mechanisms, such as dynamic
frequency-throttling, available to applications it becomes
very important to understand how energy efficiency can
be achieved by the application. The models presented
here provide an avenue for providing the necessary
information.
 Our models provide a means to greatly reduce the
amount of work required to evaluate resource acquisition
tradeoffs. The amount of work is reduced significantly,
and more importantly, if the machine doesn’t exist yet but
the energy consumption can be forecast on simple

benchmarks, our methods allow reasonable estimates of
the actual energy consumption of real applications.

Acknowledgments

 This work was supported in part by the DoD High
Performance Computing Modernization Program and by
Defense Advanced Research Projects Agency (DARPA)
award and by the DARPA Multi-Scale Systems Center
(MuSyC). The authors would like to thank Eva Hocks
and Jeffrey Bennett for their support during the use of
Dash.

References

1. Kramer, W.T.C., “Best practice in hpc procurements.” SC
’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing. New York, NY, USA: ACM, p. 230, 2006.
2. Post, D.E., “Guest editor’s introduction: Computational
science and engineering for the US Department of Defense.”
Computing in Science and Engineering, vol. 9, pp. 10–11, 2007.
3. Barroso, L.A. and U. Hölzle, “The case for energy-
proportional computing.” Computer, vol. 40, no. 12, pp. 33–37,
2007.
4. Tikir, M., L. Carrington, E. Strohmaier, and A. Snavely, “A
genetic algorithms approach to modeling the performance of
memory-bound computations.” Proceedings of SC07, Reno, NV,
November 2007.
5. Carrington, L., M. Laurenzano, A. Snavely, R. Campbell, and
L. Davis, “How well can simple metrics represent the
performance of hpc applications?” Proceedings of the
ACM/IEEE SC2005 Conference on High Performance
Networking and Computing, 2005.
6. P.K., et al., “Exascale computing study: Technology
challenges in exascale computing study: Technology challenges
in achieving exascale systems.” DARPA Tech. Rep., September
2008.
7. Lewis, A., S. Ghosh, and N.F. Tzeng, “Run-time energy
consumption estimation based on workload in server systems.”
HotPower ’08: Workshop on Power Aware Computing and
Systems, December 2008.
8. Available, https://www.wattsupmeters.com/secure/index.php.
9. Available, http://sine.ni.com/nips/cds/view/p/lang/en/nid/
203822.
10. Available, http://www.phidgets.com/index.php.
11. Snavely, A., L. Carrington, N. Wolter, J. Labarta, R. Badia,
and A. Purkayastha, “A framework for application performance
modeling and prediction.” ACM/IEEE Conference on High
Performance Networking and Computing, 2002.
12. Tikir, M., M. Laurenzano, L. Carrington, and A. Snavely,
“The pmac binary instrumentation library for powerpc.”
Workshop on Binary Instrumentation and Applications, 2006.
13. Laurenzano, M.A., M.M. Tikir, L. Carrington, and A.
Snavely, “Pebil: Efficient static binary instrumentation for

496

linux.” International Symposium on the Performance Analysis of
Systems and Software, Mar. 2010.
14. Dhiman, G. and T.V. Rosing, “System-level power
management using online learning.” Trans. Comp.-Aided Des.
Integ. Cir. Sys., vol. 28, no. 5, pp. 676–689, 2009.
15. Available, http://www.nas.nasa.gov/Resources/Software/
npb.html, 2008.
16. Tiwari, V., S. Malik, A. Wolfe, and M.-C. Lee, “Instruction
level power analysis and optimization of software.” VLSI
Design, Proceedings of the Ninth International Conference, pp.
326–328, Jan. 1996.
17. Tiwari, V., S. Malik, and A. Wolfe, “Power analysis of
embedded software: a first step towards software power
minimization.” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions, vol. 2, no. 4, pp. 437–445, Dec. 1994.
18. Givargis, T., F. Vahid, and J. Henkel, “Fast cache and bus
power estimation for parameterized system-on-a-chip design.”
Design, Automation and Test in Europe Conference and
Exhibition Proceedings, pp. 333–338, 2000.
19. Simunic, T., L. Benini, and G.D. Micheli, “Energy-efficient
design of battery-powered embedded systems.” Special Issue of
IEEE Transactions on VLSI, May 2001.
20. Li, Y. and J. Henkel, “A framework for estimating and
minimizing energy dissipation of embedded HW/SW systems.”
Design Automation Conference Proceedings, pp. 188–193, June
1998.
21. Kapoor, B., “Low power memory architectures for video
applications.” VLSI: Proceedings of the 8th Great Lakes
Symposium, pp. 2–7, Feb. 1998.

22. Landman, P. and J. Rabaey, “Activity-sensitive architectural
power analysis.” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions, vol. 15, no. 6, pp. 571–587,
June 1996.
23. Lajolo, M., A. Raghunathan, S. Dey, and L. Lavagno,
“Efficient power co-estimation techniques for system-on-chip
design.” Design, Automation and Test in Europe Conference
and Exhibition Proceedings, pp. 27–34, 2000.
24. Vijaykrishnan, N., M. Kandemir, M.J. Irwin, H.S. Kim, and
W. Ye, “Energy-driven integrated hardware-software
optimizations using simple power.” SIGARCH Comput. Archit.
News, vol. 28, no. 2, pp. 95–106, 2000.
25. Flinn, J. and M. Satyanarayanan, “Powerscope: a tool for
profiling the energy usage of mobile applications.” Mobile
Computing Systems and Applications, Proceedings WMCSA ’99,
pp. 2–10, Feb. 1999.
26. Sinha, A. and A.P. Chandrakasan, “Jouletrack: a web based
tool for software energy profiling.” DAC ’01: Proceedings of the
38th Annual Design Automation Conference, New York, NY, pp.
220–225, 2001.
27. Gurumurthi, S., A. Sivasubramaniam, M. Irwin, N.
Vijaykrishnan, and M. Kandemir, “Using complete machine
simulation for software power estimation: the softwatt
approach.” High-Performance Computer Architecture,
Proceedings, Eighth International Symposium, pp. 141–
150, Feb. 2002.

497

