
Modeling and Predicting Disk I/O Time of HPC Applications 
 
 

Mitesh R. Meswani, Michael A. Laurenzano, Laura Carrington, and Allan Snavely 
San Diego Supercomputer Center, University of California, San Diego, CA, USA 

{mitesh, michaell, lcarring, allans}@sdsc.edu 
 

 
Abstract 

 
 Understanding input/output (I/O) performance in 
high performance computing (HPC) is becoming 
increasingly important as the gap between the 
performance of computation and I/O widens.  In this 
paper, we propose a methodology to predict an 
application’s disk I/O time while running on High 
Performance Computing Modernization Program 
(HPCMP) systems.  Our methodology consists of the 
following steps: 1) Characterize the I/O operations of an 
application running on a reference system.  2) Using a 
configurable I/O benchmark, collect statistics on the 
reference and target systems about the I/O operations that 
are relevant to the application on the reference and target 
systems.  3) Calculate a ratio between the measured I/O 
performance of the application on the reference system 
with respect to target systems to predict the application’s 
I/O time on the target systems.  Our results show that this 
methodology can accurately predict the I/O time of 
relevant HPC applications on HPCMP systems that have 
reasonably stable I/O performance run to run while 
systems that have wide variability in I/O performance are 
more difficult to predict accurately. 
 
1.  Introduction 
 
 As the gap between the speed of computing elements 
and the disk subsystem widens, it becomes increasingly 
important to understand and model disk input/output 
(I/O).  While the speed of computational resources 
continues to grow, potentially scaling to multiple peta 
flops and millions of cores, traditionally the growth in the 
performance of I/O systems has lagged well behind.  
Data-intensive applications that run on current and future 
systems will be required to efficiently process very large 
data sets.  As a result, the ability of the disk I/O system to 
move data to the distributed memories can become a 
bottleneck for application performance.  Additionally, due 
to the higher risk of component failure that results from 
larger scales, the frequency of application check-pointing 

should be expected to grow and put an additional burden 
on the disk I/O system[7]. 
 To address this problem it is important to understand 
an application’s I/O characteristics and be able to produce 
models that are capable of predicting I/O performance in 
current and future systems.  In this research, we present 
such a modeling approach.  Our approach consists of the 
following three steps: 1) Characterize an application’s I/O 
characteristics on a reference system.  2) Using a 
configurable I/O benchmark, collect statistics on the 
reference and target systems about the I/O operations that 
are relevant to the application.  3) Calculate a ratio 
between the measured I/O performance of the application 
on the reference system with respect to target systems to 
predict the application’s I/O time on the target systems 
without actually running the application on the target 
system.  This cross-platform prediction can greatly reduce 
the effort needed to characterize the I/O performance of 
an application across a wide set of machines, and can be 
used to predict the I/O performance of the application on 
systems that have not been built.  The cornerstone of this 
approach is that the I/O operations in the application have 
to be measured once on the reference system.  The target 
systems then need only to be characterized by how well 
they can perform certain fundamental I/O operations, 
from which we can predict the I/O performance of the 
application on the target system. 
 We evaluate our methodology by predicting the total 
I/O time of the MADbench2[1] benchmark (representing 
the I/O characteristics of a suite of applications) for both 
the POSIX and MPIIO application programming 
interfaces (APIs).  We make predictions on seven high 
performance computing (HPC) systems by running 
MADbench2 on a single reference system, then running 
Interoperable Object Reference (IOR)[3] in order to 
characterize the other six target systems.  Our results 
show our methodology has prediction errors that range 
from 8.17% to 55.74%, with an average of 23.87%.  The 
accuracy of our methodology depends on the system—
systems which exhibit a high degree of variability of a 
single I/O operation are more difficult to predict.  The rest 
of the paper is organized as follows: Section 2 describes 
our I/O performance prediction methodology in detail; 
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Section 3 describes the workloads and systems used for 
evaluation of the methodology; Section 4 presents the 
results of our evaluation; Section 5 presents conclusions 
and future work; and Section 6 presents related work. 
 
2.  Methodology 
 
 This section describes the modeling and prediction 
methodology used in our research.  First, Section 2.1 
describes IOR, which is a configurable I/O benchmark 
that is used to collect statistics about an applications I/O 
operations on different target systems.  Section 2.2 
describes the I/O operation tracing tool, which is based on 
the PEBIL instrumentation framework.  Section 2.3 gives 
an overview of our modeling methodology. 
 
2.1 IOR Benchmark 
 
 The IOR benchmark is a configurable benchmark that 
can be used to simulate the read and write operations of 
real applications.  IOR can be configured for different I/O 
protocols, modes, and file sizes.  The basic operation of 
IOR is reading and writing data from either a shared or 
exclusive file.  Figure 1 shows how data is organized and 
transferred to the different processors when operating on a 
shared file.  The files are represented as sequence of 
segments, each of which can be thought of as a variable of 
a time-step or different variables.  Each segment is 
divided among N processors in units of blocks.  Data 
from a block for a given processor is transferred in units 
of the transfer size and thus, represents the size of the data 
for each I/O call.  In case of one file per processor, the 
blocks for each processor are stored contiguously in 
separate files. 

 
Figure 1. IOR Design for Shared File, a block is transferred in 

units of Transfer Size 

 The relevant IOR parameters are shown below: 
1. API: POSIX, MPIIO, HDF5, NETCDF 
2. NumTasks: number of MPI processes 
3. BlockSize: Size in bytes that each processor 

will operate on 
4. FilePerProc: one file-per-processor or 

shared-file 
5. SegCount: number of segments 
6. TransferSize: the amount of data for each 

I/O operation 
7. WriteFile/ReadFile: If set to true write/read 

operation is performed 
 
2.2 PEBIL Tracing Tool 
 
 In order to collect information about the I/O activity 
that occurs in an application, we have developed an I/O 
tracing tool based on the PEBIL framework[4].  PEBIL is a 
static binary instrumentation toolkit that provides a 
mechanism for arbitrarily redirecting any function call to 
a target supplied by the tool writer.  Using this 
mechanism we have built an I/O tracing tool that redirects 
the calls of several classes of I/O calls, which currently 
includes the core I/O functions of the standard C library 
and of the Message Passing Interface (MPI) standard.  
The redirection of a function is accomplished by 
determining which call instructions in the application 
code refer to that function, then by replacing that 
instruction to transfer control to some code generated by 
the instrumentation tool, which in turn can perform some 
tasks then call the wrapper function, as shown in Figure 2. 
 These calls in the original application are redirected 
to wrapper functions that call the original I/O function in 
an identical fashion to the original application then record 
some information about was being done in the call.  
Figure 2b shows an example of a simple wrapper for the 
fflush C library function.  Because the I/O tracer uses 
binary instrumentation that operates on each call-site, as 
opposed to operating on the targeted function or the 
interface to that function, it is able to retrieve information 
about the state of the program, or the context, at the time 
the I/O event occurs.  This is one of several advantages to 
taking the redirecting approach to wrapping functions, 
rather than taking a traditional approach to function call 
wrapping that may involve modifying the source code or 
re-linking the application to use a wrapper library, as can 
be done with MPI wrapper libraries[5]. 

 
Figure 2a. Original application code example, which shows a 

function call to fflush 
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Figure 2b. Application code that has been instrumented to 
redirect the call from fflush to instead call wrap_fflush 

 
 Currently the I/O tracing tool presents the file and 
line number from whence the call originated, but in 
principle is limited only by the limitations of the 
underlying instrumentation tool.  It is therefore possible to 
provide much more detailed information about the context 
of any I/O event, such as the functions that comprise the 
call stack or whether control is in a loop when the event 
occurs.  By recording detailed information about the I/O 
calls in the application, this I/O tracing tool allows us to 
capture all of the information that may be necessary both 
for the modeling efforts discussed in this work and for 
future models that can utilize more information about 
what occurred in the application. 
 
2.3 Modeling and Prediction 
 
 Given a reference system and target systems for 
which prediction is required, Figure 3 shows the modeling 
and prediction workflow used in our experiments.  As 
shown in this figure, using PEBIL we first instrument all 
I/O calls in the application.  The instrumented application 
is then executed on the reference system and the 
application’s I/O profile is stored for further analysis.  
The profile contains the time spent by each MPI task in 
all I/O calls.  Additionally, we also collect data that 
pertains to each call; for example, we collect data size for 
read/write calls, and for seeks we collect the seek 
distance.  At this time; however, we have not incorporated 
seek distance into the modeling.  Next, for each I/O call 
we simulate its execution using IOR.  We collect the time 
spent by IOR running on the reference system and target 
systems.  An I/O ratio is calculated as shown in 
Equation 1.  This ratio is our prediction for the predicted 
speedup or slowdown of the application’s I/O on the 
target system relative to the reference system.  We then 
use these ratios, as shown in Equation 2, to predict the 
application’s total I/O time on target systems.  To 
calculate accuracy of our predictions, we run the 
application on the target systems and compare the 
predicted times with the actual time spent in I/O. 

 
Figure 3. Methodology Overview 

 
 For each I/O call i, target system x, calculate ratios as 
follows: 

    ,
,

,
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i reference

IORTime
Ratio

IORTime
�  (1) 

 For each target system x, calculate predicted total 
time spent in I/O as follows: 

, , .0

n

i x i x i referencei
PredictedTime Ratio ApplicationTime

�
� �� (2) 

 
3.  Workloads and Systems 
 
 This section describes the workloads used in our 
experiments in Section 3.1 and experimental systems in 
Section 3.2. 
 
3.1 Workload 
 
 MADbench2 is a benchmark that is derived from 
Microwave Anisotropy Dataset Computational Analysis 
Package (MADCAP) Cosmic Microwave Background 
(CMB) power spectrum estimation code[2].  CMB data is a 
snapshot of the universe 400,000 years after the big bang.  
MADbench2 retains the most computationally 
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challenging aspect of MADCAP, to calculate the spectra 
from the sky map.  MADbench2 retains the full 
complexity of computation, communication, and I/O, 
while removing the redundant details of MADCAP.  
Hence, MADbench2 permits performance studies of HPC 
systems under a real application’s workload.  
MADbench2s’ I/O characteristics are similar to those 
found in applications such as FLASH, NWCHEM, 
MESKIT[6], and thus the modeling approach for 
MADbench2 may be largely applicable to those 
applications as well. 
 MADbench2 consists of four steps: 

1. For each bin, recursively build a Legendre 
polynomial-based CMB signal pixel-pixel 
matrix, writing it to disk (loop over 
calculate, write). 

2. Form and invert the full CMB signal+noise 
correlation matrix (calculate/communicate). 

3. From the disk, read each CMB signal 
correlation component matrix, multiply it by 
the inverse CMB data correlation matrix 
(using PDGEMM), and write the resulting 
matrix to disk (loop over read, 
calculate/communicate, write). 

4. Read each of the result matrix and then 
calculate the trace of their product (loop 
over read, calculate, communicate). 

 Note that step 2 does not involve any I/O, while only 
step 3 requires both reading and writing.  The nature of 
the large calculations required for CMB data means that 
the large matrices used do not fit in memory; hence the 
benchmark uses an out-of-core algorithm.  Each processor 
requires enough memory to fit five matrices at a given 
time.  MADbench2 stores the matrices to disk when they 
are first calculated and reads them when required. 
 We configured MADbench2 to run in I/O mode.  In 
this mode, calculations are replaced by busy-work that 
can be configured by the user.  The relevant configuration 
parameters available are shown below: 

1. NPIX: The dimension of the matrix; size of 
the matrix is NPIX*NPIX 

2. NBIN: Number of matrices 
3. IOMETHOD: POSIX or MPIIO 
4. IMODE: Synchronous or Asynchronous 
5. BWEXP: the component of busy-work α, 

this translates to O(NPIX2α) operations, 
tuning this value to less than 0.1, lets 
MADbench2 to spend most of its time in I/O 

6. NOGANG: the number of gangs 
7. FBLOCKSIZE: each file read/write happens 

at an integer number of these blocks into a 
file 

8. RMOD/WMOD: the number of concurrent 
readers/writers 

 The most critical parameter that determines disk I/O 
performance is the file size.  Typically UNIX systems 
have a memory space called the buffer cache, which can 
be used to store the most recently accessed pages of a file 
in memory.  This allows the system to achieve high-
bandwidth while performing disk I/O and significantly 
improves application execution time.  However, CMB 
applications process large data sets and it’s expected that 
their data sets will not fit in memory, and thus the need 
for out-of-core algorithms.  Hence, we choose NBIN and 
NPIX so that the data does not fit in memory for any of 
the nodes for the systems we used in this research and 
described in Section 3.2.  To avoid unusual speed-ups 
some systems may experience from the use of local disk, 
we chose to use a single shared-file. 
 The configuration parameters used in this research 
are shown in Table 1.  The total file size is NPIX * NPIX 
* NBIN * size of real=50,000*50,000*8*8=160GB.  We 
ran this benchmark using 64 processors, and hence, each 
processor reads/writes 2.4GB data, which is more than the 
available memory to an application for any processor core 
on our experimental systems.  We set the value of 
BWEXP, busy-work, low so that I/O dominates run-time.  
For simplicity, we chose to experiment only with 
Synchronous I/O to avoid complications with calculating 
computational overlap; however, we may do so in the 
future.  Similarly, again for simplicity, we set the number 
of concurrent readers/writers and number of gangs to 1; 
however, in the future we shall try different values. 
 

Table 1. MADbench2 configuration 
MADbench2 Parameter Name Value 

NPIX 50,000 
NBIN 8 

IOMETHOD POSIX, MPIIO 
IOMODE Synchronous 
BWEXP 0.01 

NOGANG 1 
FBLOCKSIZE 1MB 
RMOD/WMOD 1 

 
Table 2. Experimental systems architecture summary 

Machine 
Name 

File 
System 

Interconnect 
Compute to 
I/O nodes Processor 

Total 
Disk 
(TB) 

Jade – 
reference 

Lustre Seastar2 Opteron 379 

Sapphire Lustre Seastar2 Opteron 372 
Diamond Lustre Infiniband Xeon 

Nehalem 
830 

Pingo Lustre Seastar2 Opteron 100 
Mana Lustre Inifiniband Nehalem 400 

Einstein Lustre Not known Opteron 516 
Jaguar Lustre Seastart2 Opteron 600 
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3.2 Experimental Systems 
 
 In general, the disk I/O architecture of these systems 
is quite similar.  All systems have the Lustre parallel file 
system, and have separate sets of I/O and compute nodes.  
All the nodes are connected over the network, and all disk 
I/O requests are serviced by the I/O nodes.  The I/O nodes 
may have a combination of locally attached disks or 
remote storage devices connected on the backend of the 
I/O nodes over a different dedicated network.  Lustre 
separates bulk I/O requests and metadata requests, (open, 
close, permissions) and sends bulk I/O requests to I/O 
nodes and metadata requests to metadata servers.  Table 2 
highlights the systems used for our experiments, Jade is 
the reference system in our modeling, and the remaining 
are target systems.  A brief overview of each system is 
provided in the sub-sections below. 
 
3.2.1 Jade – Reference System 
 
 Jade is a Cray XT4 system, and has a total of 2,152 
compute nodes.  Each node runs Compute Node Linux 
(CNL) and has one quad-core AMD Opteron processor 
and 8GB of main memory.  All nodes are connected in a 
three-dimensional (3D) torus using a HyperTransport link 
to a Cray Seastar2 engine.  The system has a total of 
379TB fiber-channel redundant array of inexpensive disks 
(RAID) disk space that is managed by a Lustre file 
system. 
 
3.2.2 Sapphire 
 
 Sapphire is a Cray XT3 system, and has a total of 
4,160 nodes.  Each node has one dual-core AMD Opteron 
processor and 4GB of main memory.  There are a total of 
4,096 compute nodes available for computation, and each 
node runs CNL.  All nodes are connected in a 3D torus 
using a HyperTransport link to a Cray Seastar engine.  
The system has a total of 372TB fiber-channel RAID disk 
space that is managed by a Lustre file system. 
 
3.2.3 Diamond 
 
 Diamond is an SGI Altix ICE 8200LX, and is a 
single-plane DDR 4X InfiniBand hypercube super-cluster.  
Diamond has 1,920 compute nodes, each of which runs 
CNL.  Each node has two quad-core Intel Xeon Nehalem 
processors and 24GB of main memory.  All nodes are 
connected via a single-rail DDR 4X InfiniBand (IB) 
interconnect.  This system has a total of 830TB of 
Infiniband-connected RAID disk space that is managed 
by a Lustre file system. 

3.2.4 Pingo 
 
 Pingo is a Cray XT5 system with 432 compute nodes.  
Each node has two quad-core AMD Opteron processors 
and 32GB of main memory.  All nodes are connected by 
Cray Seastar2 compute engine.  This system has a total of 
100TB of Infiniband-connected RAID disk space that is 
managed by a Lustre file system. 
 
3.2.5 Mana 
 
 Mana is based on Dell’s M610 series with 1,152 
compute nodes.  Each node has two quad-core Intel 
Nehalem processors with 24GB of main memory.  All 
nodes are connected by DDR Infiniband.  This system has 
400TB of disk space managed by a Lustre file system. 
 
3.2.6 Einstein 
 
 Einstein is a Cray XT5 system, and has 1,592 
compute nodes.  Each node runs CNL and has two quad-
core AMD Opteron processors and 16GB of main 
memory.  This system has a total of 516TB of disk space 
that is managed by a Lustre file system. 
 
3.2.7 Jaguar 
 
 Jaguar has both a Cray XT5 and an XT4 partition.  In 
this research we use the Cray XT4 partition that has 7,832 
compute nodes.  Each node runs CNL and has a quad-
core AMD Opteron processors and 8GB of main memory.  
The nodes are connected by a SeaStar2 router and they 
use the same network to access the file system.  The XT4 
partition has a total of 600TB of disk space that is 
managed by a Lustre file system. 
 
4.  Results 
 
 For each target system, ratios and predictions were 
calculated using Equations 1 and 2 respectively.  Since 
wall-clock time of an application may differ from run to 
run, each application was executed five times on the 
machine and an average run-time was used in these two 
equations.  Thus, the average run-times of IOR were used 
to predict the run-time of MADbench2.  To calculate 
accuracy, the predicted time is compared against the 
average run-time of five executions of MADbench2 on 
the target system.  Accuracy for each target system x is 
calculated using Equation 3. 

100 x x
x

x

PredictedTime ActualTimeAccuracy
ActualTime

�
� �  (3) 

 As described in Section 3.1, MADbench2 has four 
main I/O operations: two reads and two writes.  During an 
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I/O call, 312MB of data are accessed from the disk.  A 
total of 160GB of data are evenly divided among 64 MPI 
tasks, and thus each MPI tasks uses 2.4GB of data.  From 
the I/O trace of MADbench2 we observe that a total of 16 
read calls are made and 16 write calls are made.  As 
described in Section 3.1, MADbench2 in step 1 writes 8 
matrices, and then in step 3 reads them back and again 
writes them to disk, and finally reads them again in step 4.  
Thus, as expected, the I/O trace confirms that each task 
performs 16 reads and 16 writes.  Additionally, the I/O 
trace also confirms that each read/write call operates on 
312MB of data.  In I/O mode MADbench2 spends most 
of its time doing I/O, and computation time was 
configured to be negligible.  Hence, the time spent in 
steps 1, 3, and 4 correspond to time spent in the two read 
and two write calls, which are reported by the benchmark.  
In absence of such information, we can easily calculate 
this information using timers that are written into the I/O 

call wrappers; however, for this benchmark that was not 
needed. 
 Table 3 shows the prediction accuracy, which is 
calculated using Equation 3.  In this table, the predicted 
and actual times used in Equation 3 are calculated using 
an average of 5 runs each of IOR and MADbench2 on 
reference and target systems.  A negative value indicates 
that actual I/O time was greater than the predicted time, 
and a positive value indicates that the actual I/O time was 
less than the predicted time.  For example, consider 
prediction for Sapphire for POSIX API, errors are 
18.27%, 1.61%, and 12.75% for reads, writes, and total 
I/O time respectively.  The highest prediction accuracy 
for reads was 3.76% error for Jaguar using MPIIO, for 
writes was 0.00% error for Jaguar using POSIX, and for 
total I/O time was 8.17% error for Jaguar using POSIX.  
On an average the absolute prediction error is 41.16% 
error for reads, 12.99% error for writes, and 23.87% error 
for total I/O. 

 
 

Table 3. Accuracy for MADbench2 

Machine Name API 
Accuracy of 
Read Time % 

Accuracy of 
Read Time % 

Accuracy of 
Read Time % 

Diamond POSIX −68.68 17.81 −45.38 
Sapphire POSIX 18.27 1.61 12.75 

Pingo POSIX −62.82 2.38 −16.85 
Einstein POSIX 37.60 11.46 13.69 
Mana POSIX 41.23 24.94 30.06 

Jaguar POSIX 16.46 0.00 8.17 
Diamond MPIIO −64.55 8.42 −42.87 
Sapphire MPIIO 16.36 5.07 12.55 

Pingo MPIIO −70.61 −1.99 −22.08 
Einstein MPIIO 39.02 5.06 17.59 
Mana MPIIO 54.55 56.34 55.74 

Jaguar MPIIO 3.76 −20.83 −8.65 
 
 
 To understand why our predictions may be more 
accurate for systems such as Jaguar, and relatively poorer 
for systems such as Diamond and Mana, we calculated the 
relative standard deviations (RSD) of 5 run times each of 
IOR and MADbench2.  RSD is calculated as ratio of 
standard deviation divided by mean and expressed as a 
percentage.  This statistic allows us to meaningfully 
compare different systems, which identify those that have 
significant variability in disk I/O times from run to run. 
 The results of RSD analysis are shown in Table 4.  
For example, the first row shows RSD on Jade using 
POSIX and shows that: 1) for MADbench2 RSDs are 
4.32%, 6.15%, and 4.78% for reads, writes, and total I/O 
respectively; and 2) for IOR RSDs are 5.94%, 9.52%, and 

6.48% for reads, writes, and total I/O respectively.  
Hence, for Jade, the base system, both IOR and 
MADbench2 have small percentage deviation in I/O time 
across different runs.  Next, consider Sapphire for both 
MPIIO and POSIX APIs, the RSDs for reads of 
MADbench2 and IOR are nearly the same and very small, 
and in fact they are less than 10% each.  Consequently our 
predictions for Sapphire are quite accurate.  In contrast 
consider Diamond using MPIIO, RSDs of read for 
MADbench2 and IOR are very different, and especially 
note the large RSD of Diamond IOR read and, hence our 
predictions have more error.  A similar analysis applies to 
Mana which also has high variability in I/O performance. 
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Table 4. Relative Standard Deviations (RSD) for reads/writes for IOR and MADbench2 

  MADbench2 IOR 

Machine Name API 
RSD1 

Read % 
RSD 

Write % 
RSD Total 

IO % 
RSD 

Read % 
RSD 

Write % 
RSD Total 

IO % 
Jade - reference POSIX 4.32 6.15 4.78 5.94 9.52 6.48 

Diamond POSIX 5.06 12.34 3.03 30.12 4.90 9.80 
Sapphire POSIX 9.41 8.48 8.48 4.64 6.23 4.90 

Pingo POSIX 6.55 4.01 4.50 14.62 12.50 12.23 
Einstein POSIX 6.89 4.34 5.19 6.12 4.33 4.84 
Mana POSIX 1.61 4.37 2.77 77.01 19.70 21.26 

Jaguar POSIX 7.61 15.90 11.25 23.34 32.51 20.30 
Jade - reference MPIIO 3.79 5.56 4.19 7.21 9.52 7.88 

Diamond MPIIO 5.60 16.96 2.05 38.54 5.44 10.75 
Sapphire MPIIO 4.26 5.23 4.55 7.49 6.39 6.84 

Pingo MPIIO 5.44 3.22 3.27 15.40 3.32 1.89 
Einstein MPIIO 10.27 12.05 11.09 3.73 6.56 4.33 
Mana MPIIO 2.02 4.67 3.13 101.37 45.99 41.11 

Jaguar MPIIO 6.07 16.15 9.44 25.17 5.93 13.36 
1RSD – Relative Standard Deviation =  (standard_deviation/mean)*100 

 
 
 
 The RSD difference between IOR and MADbench2 
indicate the variation experienced by IOR and 
MADbench2 when running on the system.  If the 
variation is similar and small then our predictions are 
close and vice-versa.  This is not surprising, the I/O time 
of an application is dependent on a number factors such as 
available memory to cache files, contention for the disk 
I/O system, and synchronization delays which can change 
the I/O events rate.  These factors may need to be 
modeled to accurately capture variation and are not 
currently part of IOR, but in the future work we discuss 
these and other factors.  At the same time, one can argue 
that repeatability and stability of performance of I/O run 
to run is a nice attribute of a well-provisioned file system, 
so in a sense a measure of predictability is also a measure 
of quality of the I/O system. 
 
5.  Conclusions and Future Work 
 
 In this paper we presented a methodology to predict 
disk I/O time of HPC applications.  Our method used a 
configurable I/O benchmark to measure speed-up ratios of 
each I/O operation of an application, and used them to 
predict an applications total I/O time.  Our evaluation 
showed that reasonable accuracy maybe obtained by 
using this simple model, and in the best case our 
prediction error is only 8.17%. 
 However, since our model and real run-times 
experience variability in the inputs (IOR) as well as in the 
target (Madbench2), our prediction error for total I/O time 
in the worst case is as high as 55.74%.  To make our 

predictions more accurate, we would like to consider 
other factors that effect an applications I/O time.  Some of 
the factors that we would like to model are as follows: 1) 
File caching: The ability to cache files in the memory sub-
system significantly speeds up disk I/O.  2) Seek distance: 
the distance between two consecutive calls affects the 
distance that disk head must travel before reading/writing 
the data.  Consequently, the greater the distance the more 
the time to service the I/O call.  3) Concurrent 
reads/writes: In parallel applications, multiple 
readers/writers could be accessing a single file, thus the 
mix of I/O calls may determine the service time for each 
call.  4) Contention: The contention for disk systems by 
other applications affects the I/O time each application 
receives, and thus is important to model.  5) 
Synchronization delays: In parallel applications, barrier 
synchronization and other data dependencies may change 
the rate at which I/O calls are made, and thus may affect 
disk I/O time. 
 At the same time we want to suggest that if the I/O 
performance of the same test or application varies a lot 
from run to run on the same system, then in a sense high-
error in prediction is to be expected—in other words, 
predictability is a nice feature of a well-designed I/O 
system, while those that are not predicted accurately by 
simple models are probably also insufficiently engineered 
to meet the workload demands being placed upon them. 
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6.  Related Work 
 
 Related work has pursued I/O modeling and 
prediction by using script-based benchmarks to replay an 
applications causal I/O behavior[8,9], or using 
parameterized I/O benchmarks[10] to predict run-time on 
the target system.  Our modeling approach differs from 
the related work by using parameterized benchmarks to 
compute speed-up ratios on target systems for each call 
and use that to predict an applications I/O time. 
 Pianola[8] is a script-based I/O benchmark that 
captures causal information of I/O calls made by a 
sequential application.  The information is captured by a 
binary instrumenter that, for each call, captures wall clock 
time of the call, the time spent servicing the call, and 
arguments passed to the call.  Using this information, a 
script is constructed which has sufficient information to 
replay an application’s I/O calls and time between two 
successive calls.  Additionally, the script is also 
augmented to simulate the memory used by an application 
between calls.  A replay engine can then use this script to 
replay an application’s I/O behavior on any platform. 
 Like Pianola[8], TRACE[9] is a script-based I/O 
benchmark that simulates an I/O behavior of an 
application using causal information about the I/O calls.  
Unlike Pianola, TRACE used interposed I/O calls to 
capture information regarding I/O calls.  TRACE is 
targeted for parallel applications, and thus captures I/O 
events for each parallel task.  In addition to I/O events, for 
each task, TRACE includes information related to 
synchronization delays and computation time.  Using this 
information a replayer simulates the I/O characteristic of 
each task of the original application. 
 In Reference 10, IOR was used to simulate the I/O 
behavior of HPC applications.  In this research, an 
application’s I/O behavior is first obtained by code and 
algorithm analysis, and then this information is used to 
prepare inputs for the IOR benchmark.  Next, IOR is run 
on the target system to predict the actual I/O time of an 
application.  Unlike in Reference 10, we use IOR to 
capture speed up ratios for prediction. 
 While IOR provided the widest range of parameters, 
there are other I/O benchmarks[11–13] that provide a subset 
of the parameters.  Similarly there are a number of binary 
instrumentation toolkits besides PEBIL that can be used 
to instrument binaries.  For example, DyninstAPI[14] 
provides both dynamic and static instrumentation, while 
PIN[15] provides dynamic instrumentation only.  We chose 
to use PEBIL to instrument binaries because of the low 
overhead that it adds onto an application’s execution time 
as compared to other tools[4]. 
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