
Modeling and Predicting Disk I/O Time of HPC Applications

Mitesh R. Meswani, Michael A. Laurenzano, Laura Carrington, and Allan Snavely
San Diego Supercomputer Center, University of California, San Diego, CA, USA

{mitesh, michaell, lcarring, allans}@sdsc.edu

Abstract

 Understanding input/output (I/O) performance in
high performance computing (HPC) is becoming
increasingly important as the gap between the
performance of computation and I/O widens. In this
paper, we propose a methodology to predict an
application’s disk I/O time while running on High
Performance Computing Modernization Program
(HPCMP) systems. Our methodology consists of the
following steps: 1) Characterize the I/O operations of an
application running on a reference system. 2) Using a
configurable I/O benchmark, collect statistics on the
reference and target systems about the I/O operations that
are relevant to the application on the reference and target
systems. 3) Calculate a ratio between the measured I/O
performance of the application on the reference system
with respect to target systems to predict the application’s
I/O time on the target systems. Our results show that this
methodology can accurately predict the I/O time of
relevant HPC applications on HPCMP systems that have
reasonably stable I/O performance run to run while
systems that have wide variability in I/O performance are
more difficult to predict accurately.

1. Introduction

 As the gap between the speed of computing elements
and the disk subsystem widens, it becomes increasingly
important to understand and model disk input/output
(I/O). While the speed of computational resources
continues to grow, potentially scaling to multiple peta
flops and millions of cores, traditionally the growth in the
performance of I/O systems has lagged well behind.
Data-intensive applications that run on current and future
systems will be required to efficiently process very large
data sets. As a result, the ability of the disk I/O system to
move data to the distributed memories can become a
bottleneck for application performance. Additionally, due
to the higher risk of component failure that results from
larger scales, the frequency of application check-pointing

should be expected to grow and put an additional burden
on the disk I/O system[7].
 To address this problem it is important to understand
an application’s I/O characteristics and be able to produce
models that are capable of predicting I/O performance in
current and future systems. In this research, we present
such a modeling approach. Our approach consists of the
following three steps: 1) Characterize an application’s I/O
characteristics on a reference system. 2) Using a
configurable I/O benchmark, collect statistics on the
reference and target systems about the I/O operations that
are relevant to the application. 3) Calculate a ratio
between the measured I/O performance of the application
on the reference system with respect to target systems to
predict the application’s I/O time on the target systems
without actually running the application on the target
system. This cross-platform prediction can greatly reduce
the effort needed to characterize the I/O performance of
an application across a wide set of machines, and can be
used to predict the I/O performance of the application on
systems that have not been built. The cornerstone of this
approach is that the I/O operations in the application have
to be measured once on the reference system. The target
systems then need only to be characterized by how well
they can perform certain fundamental I/O operations,
from which we can predict the I/O performance of the
application on the target system.
 We evaluate our methodology by predicting the total
I/O time of the MADbench2[1] benchmark (representing
the I/O characteristics of a suite of applications) for both
the POSIX and MPIIO application programming
interfaces (APIs). We make predictions on seven high
performance computing (HPC) systems by running
MADbench2 on a single reference system, then running
Interoperable Object Reference (IOR)[3] in order to
characterize the other six target systems. Our results
show our methodology has prediction errors that range
from 8.17% to 55.74%, with an average of 23.87%. The
accuracy of our methodology depends on the system—
systems which exhibit a high degree of variability of a
single I/O operation are more difficult to predict. The rest
of the paper is organized as follows: Section 2 describes
our I/O performance prediction methodology in detail;

2010 DoD High Performance Computing Modernization Program Users Group Conference

978-0-7695-4392-5/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCMP-UGC.2010.27

478

Section 3 describes the workloads and systems used for
evaluation of the methodology; Section 4 presents the
results of our evaluation; Section 5 presents conclusions
and future work; and Section 6 presents related work.

2. Methodology

 This section describes the modeling and prediction
methodology used in our research. First, Section 2.1
describes IOR, which is a configurable I/O benchmark
that is used to collect statistics about an applications I/O
operations on different target systems. Section 2.2
describes the I/O operation tracing tool, which is based on
the PEBIL instrumentation framework. Section 2.3 gives
an overview of our modeling methodology.

2.1 IOR Benchmark

 The IOR benchmark is a configurable benchmark that
can be used to simulate the read and write operations of
real applications. IOR can be configured for different I/O
protocols, modes, and file sizes. The basic operation of
IOR is reading and writing data from either a shared or
exclusive file. Figure 1 shows how data is organized and
transferred to the different processors when operating on a
shared file. The files are represented as sequence of
segments, each of which can be thought of as a variable of
a time-step or different variables. Each segment is
divided among N processors in units of blocks. Data
from a block for a given processor is transferred in units
of the transfer size and thus, represents the size of the data
for each I/O call. In case of one file per processor, the
blocks for each processor are stored contiguously in
separate files.

Figure 1. IOR Design for Shared File, a block is transferred in

units of Transfer Size

 The relevant IOR parameters are shown below:
1. API: POSIX, MPIIO, HDF5, NETCDF
2. NumTasks: number of MPI processes
3. BlockSize: Size in bytes that each processor

will operate on
4. FilePerProc: one file-per-processor or

shared-file
5. SegCount: number of segments
6. TransferSize: the amount of data for each

I/O operation
7. WriteFile/ReadFile: If set to true write/read

operation is performed

2.2 PEBIL Tracing Tool

 In order to collect information about the I/O activity
that occurs in an application, we have developed an I/O
tracing tool based on the PEBIL framework[4]. PEBIL is a
static binary instrumentation toolkit that provides a
mechanism for arbitrarily redirecting any function call to
a target supplied by the tool writer. Using this
mechanism we have built an I/O tracing tool that redirects
the calls of several classes of I/O calls, which currently
includes the core I/O functions of the standard C library
and of the Message Passing Interface (MPI) standard.
The redirection of a function is accomplished by
determining which call instructions in the application
code refer to that function, then by replacing that
instruction to transfer control to some code generated by
the instrumentation tool, which in turn can perform some
tasks then call the wrapper function, as shown in Figure 2.
 These calls in the original application are redirected
to wrapper functions that call the original I/O function in
an identical fashion to the original application then record
some information about was being done in the call.
Figure 2b shows an example of a simple wrapper for the
fflush C library function. Because the I/O tracer uses
binary instrumentation that operates on each call-site, as
opposed to operating on the targeted function or the
interface to that function, it is able to retrieve information
about the state of the program, or the context, at the time
the I/O event occurs. This is one of several advantages to
taking the redirecting approach to wrapping functions,
rather than taking a traditional approach to function call
wrapping that may involve modifying the source code or
re-linking the application to use a wrapper library, as can
be done with MPI wrapper libraries[5].

Figure 2a. Original application code example, which shows a

function call to fflush

479

Figure 2b. Application code that has been instrumented to
redirect the call from fflush to instead call wrap_fflush

 Currently the I/O tracing tool presents the file and
line number from whence the call originated, but in
principle is limited only by the limitations of the
underlying instrumentation tool. It is therefore possible to
provide much more detailed information about the context
of any I/O event, such as the functions that comprise the
call stack or whether control is in a loop when the event
occurs. By recording detailed information about the I/O
calls in the application, this I/O tracing tool allows us to
capture all of the information that may be necessary both
for the modeling efforts discussed in this work and for
future models that can utilize more information about
what occurred in the application.

2.3 Modeling and Prediction

 Given a reference system and target systems for
which prediction is required, Figure 3 shows the modeling
and prediction workflow used in our experiments. As
shown in this figure, using PEBIL we first instrument all
I/O calls in the application. The instrumented application
is then executed on the reference system and the
application’s I/O profile is stored for further analysis.
The profile contains the time spent by each MPI task in
all I/O calls. Additionally, we also collect data that
pertains to each call; for example, we collect data size for
read/write calls, and for seeks we collect the seek
distance. At this time; however, we have not incorporated
seek distance into the modeling. Next, for each I/O call
we simulate its execution using IOR. We collect the time
spent by IOR running on the reference system and target
systems. An I/O ratio is calculated as shown in
Equation 1. This ratio is our prediction for the predicted
speedup or slowdown of the application’s I/O on the
target system relative to the reference system. We then
use these ratios, as shown in Equation 2, to predict the
application’s total I/O time on target systems. To
calculate accuracy of our predictions, we run the
application on the target systems and compare the
predicted times with the actual time spent in I/O.

Figure 3. Methodology Overview

 For each I/O call i, target system x, calculate ratios as
follows:

 ,
,

,

i x
i x

i reference

IORTime
Ratio

IORTime
� (1)

 For each target system x, calculate predicted total
time spent in I/O as follows:

, , .0

n

i x i x i referencei
PredictedTime Ratio ApplicationTime

�
� �� (2)

3. Workloads and Systems

 This section describes the workloads used in our
experiments in Section 3.1 and experimental systems in
Section 3.2.

3.1 Workload

 MADbench2 is a benchmark that is derived from
Microwave Anisotropy Dataset Computational Analysis
Package (MADCAP) Cosmic Microwave Background
(CMB) power spectrum estimation code[2]. CMB data is a
snapshot of the universe 400,000 years after the big bang.
MADbench2 retains the most computationally

480

challenging aspect of MADCAP, to calculate the spectra
from the sky map. MADbench2 retains the full
complexity of computation, communication, and I/O,
while removing the redundant details of MADCAP.
Hence, MADbench2 permits performance studies of HPC
systems under a real application’s workload.
MADbench2s’ I/O characteristics are similar to those
found in applications such as FLASH, NWCHEM,
MESKIT[6], and thus the modeling approach for
MADbench2 may be largely applicable to those
applications as well.
 MADbench2 consists of four steps:

1. For each bin, recursively build a Legendre
polynomial-based CMB signal pixel-pixel
matrix, writing it to disk (loop over
calculate, write).

2. Form and invert the full CMB signal+noise
correlation matrix (calculate/communicate).

3. From the disk, read each CMB signal
correlation component matrix, multiply it by
the inverse CMB data correlation matrix
(using PDGEMM), and write the resulting
matrix to disk (loop over read,
calculate/communicate, write).

4. Read each of the result matrix and then
calculate the trace of their product (loop
over read, calculate, communicate).

 Note that step 2 does not involve any I/O, while only
step 3 requires both reading and writing. The nature of
the large calculations required for CMB data means that
the large matrices used do not fit in memory; hence the
benchmark uses an out-of-core algorithm. Each processor
requires enough memory to fit five matrices at a given
time. MADbench2 stores the matrices to disk when they
are first calculated and reads them when required.
 We configured MADbench2 to run in I/O mode. In
this mode, calculations are replaced by busy-work that
can be configured by the user. The relevant configuration
parameters available are shown below:

1. NPIX: The dimension of the matrix; size of
the matrix is NPIX*NPIX

2. NBIN: Number of matrices
3. IOMETHOD: POSIX or MPIIO
4. IMODE: Synchronous or Asynchronous
5. BWEXP: the component of busy-work α,

this translates to O(NPIX2α) operations,
tuning this value to less than 0.1, lets
MADbench2 to spend most of its time in I/O

6. NOGANG: the number of gangs
7. FBLOCKSIZE: each file read/write happens

at an integer number of these blocks into a
file

8. RMOD/WMOD: the number of concurrent
readers/writers

 The most critical parameter that determines disk I/O
performance is the file size. Typically UNIX systems
have a memory space called the buffer cache, which can
be used to store the most recently accessed pages of a file
in memory. This allows the system to achieve high-
bandwidth while performing disk I/O and significantly
improves application execution time. However, CMB
applications process large data sets and it’s expected that
their data sets will not fit in memory, and thus the need
for out-of-core algorithms. Hence, we choose NBIN and
NPIX so that the data does not fit in memory for any of
the nodes for the systems we used in this research and
described in Section 3.2. To avoid unusual speed-ups
some systems may experience from the use of local disk,
we chose to use a single shared-file.
 The configuration parameters used in this research
are shown in Table 1. The total file size is NPIX * NPIX
* NBIN * size of real=50,000*50,000*8*8=160GB. We
ran this benchmark using 64 processors, and hence, each
processor reads/writes 2.4GB data, which is more than the
available memory to an application for any processor core
on our experimental systems. We set the value of
BWEXP, busy-work, low so that I/O dominates run-time.
For simplicity, we chose to experiment only with
Synchronous I/O to avoid complications with calculating
computational overlap; however, we may do so in the
future. Similarly, again for simplicity, we set the number
of concurrent readers/writers and number of gangs to 1;
however, in the future we shall try different values.

Table 1. MADbench2 configuration
MADbench2 Parameter Name Value

NPIX 50,000
NBIN 8

IOMETHOD POSIX, MPIIO
IOMODE Synchronous
BWEXP 0.01

NOGANG 1
FBLOCKSIZE 1MB
RMOD/WMOD 1

Table 2. Experimental systems architecture summary

Machine
Name

File
System

Interconnect
Compute to
I/O nodes Processor

Total
Disk
(TB)

Jade –
reference

Lustre Seastar2 Opteron 379

Sapphire Lustre Seastar2 Opteron 372
Diamond Lustre Infiniband Xeon

Nehalem
830

Pingo Lustre Seastar2 Opteron 100
Mana Lustre Inifiniband Nehalem 400

Einstein Lustre Not known Opteron 516
Jaguar Lustre Seastart2 Opteron 600

481

3.2 Experimental Systems

 In general, the disk I/O architecture of these systems
is quite similar. All systems have the Lustre parallel file
system, and have separate sets of I/O and compute nodes.
All the nodes are connected over the network, and all disk
I/O requests are serviced by the I/O nodes. The I/O nodes
may have a combination of locally attached disks or
remote storage devices connected on the backend of the
I/O nodes over a different dedicated network. Lustre
separates bulk I/O requests and metadata requests, (open,
close, permissions) and sends bulk I/O requests to I/O
nodes and metadata requests to metadata servers. Table 2
highlights the systems used for our experiments, Jade is
the reference system in our modeling, and the remaining
are target systems. A brief overview of each system is
provided in the sub-sections below.

3.2.1 Jade – Reference System

 Jade is a Cray XT4 system, and has a total of 2,152
compute nodes. Each node runs Compute Node Linux
(CNL) and has one quad-core AMD Opteron processor
and 8GB of main memory. All nodes are connected in a
three-dimensional (3D) torus using a HyperTransport link
to a Cray Seastar2 engine. The system has a total of
379TB fiber-channel redundant array of inexpensive disks
(RAID) disk space that is managed by a Lustre file
system.

3.2.2 Sapphire

 Sapphire is a Cray XT3 system, and has a total of
4,160 nodes. Each node has one dual-core AMD Opteron
processor and 4GB of main memory. There are a total of
4,096 compute nodes available for computation, and each
node runs CNL. All nodes are connected in a 3D torus
using a HyperTransport link to a Cray Seastar engine.
The system has a total of 372TB fiber-channel RAID disk
space that is managed by a Lustre file system.

3.2.3 Diamond

 Diamond is an SGI Altix ICE 8200LX, and is a
single-plane DDR 4X InfiniBand hypercube super-cluster.
Diamond has 1,920 compute nodes, each of which runs
CNL. Each node has two quad-core Intel Xeon Nehalem
processors and 24GB of main memory. All nodes are
connected via a single-rail DDR 4X InfiniBand (IB)
interconnect. This system has a total of 830TB of
Infiniband-connected RAID disk space that is managed
by a Lustre file system.

3.2.4 Pingo

 Pingo is a Cray XT5 system with 432 compute nodes.
Each node has two quad-core AMD Opteron processors
and 32GB of main memory. All nodes are connected by
Cray Seastar2 compute engine. This system has a total of
100TB of Infiniband-connected RAID disk space that is
managed by a Lustre file system.

3.2.5 Mana

 Mana is based on Dell’s M610 series with 1,152
compute nodes. Each node has two quad-core Intel
Nehalem processors with 24GB of main memory. All
nodes are connected by DDR Infiniband. This system has
400TB of disk space managed by a Lustre file system.

3.2.6 Einstein

 Einstein is a Cray XT5 system, and has 1,592
compute nodes. Each node runs CNL and has two quad-
core AMD Opteron processors and 16GB of main
memory. This system has a total of 516TB of disk space
that is managed by a Lustre file system.

3.2.7 Jaguar

 Jaguar has both a Cray XT5 and an XT4 partition. In
this research we use the Cray XT4 partition that has 7,832
compute nodes. Each node runs CNL and has a quad-
core AMD Opteron processors and 8GB of main memory.
The nodes are connected by a SeaStar2 router and they
use the same network to access the file system. The XT4
partition has a total of 600TB of disk space that is
managed by a Lustre file system.

4. Results

 For each target system, ratios and predictions were
calculated using Equations 1 and 2 respectively. Since
wall-clock time of an application may differ from run to
run, each application was executed five times on the
machine and an average run-time was used in these two
equations. Thus, the average run-times of IOR were used
to predict the run-time of MADbench2. To calculate
accuracy, the predicted time is compared against the
average run-time of five executions of MADbench2 on
the target system. Accuracy for each target system x is
calculated using Equation 3.

100 x x
x

x

PredictedTime ActualTimeAccuracy
ActualTime

�
� � (3)

 As described in Section 3.1, MADbench2 has four
main I/O operations: two reads and two writes. During an

482

I/O call, 312MB of data are accessed from the disk. A
total of 160GB of data are evenly divided among 64 MPI
tasks, and thus each MPI tasks uses 2.4GB of data. From
the I/O trace of MADbench2 we observe that a total of 16
read calls are made and 16 write calls are made. As
described in Section 3.1, MADbench2 in step 1 writes 8
matrices, and then in step 3 reads them back and again
writes them to disk, and finally reads them again in step 4.
Thus, as expected, the I/O trace confirms that each task
performs 16 reads and 16 writes. Additionally, the I/O
trace also confirms that each read/write call operates on
312MB of data. In I/O mode MADbench2 spends most
of its time doing I/O, and computation time was
configured to be negligible. Hence, the time spent in
steps 1, 3, and 4 correspond to time spent in the two read
and two write calls, which are reported by the benchmark.
In absence of such information, we can easily calculate
this information using timers that are written into the I/O

call wrappers; however, for this benchmark that was not
needed.
 Table 3 shows the prediction accuracy, which is
calculated using Equation 3. In this table, the predicted
and actual times used in Equation 3 are calculated using
an average of 5 runs each of IOR and MADbench2 on
reference and target systems. A negative value indicates
that actual I/O time was greater than the predicted time,
and a positive value indicates that the actual I/O time was
less than the predicted time. For example, consider
prediction for Sapphire for POSIX API, errors are
18.27%, 1.61%, and 12.75% for reads, writes, and total
I/O time respectively. The highest prediction accuracy
for reads was 3.76% error for Jaguar using MPIIO, for
writes was 0.00% error for Jaguar using POSIX, and for
total I/O time was 8.17% error for Jaguar using POSIX.
On an average the absolute prediction error is 41.16%
error for reads, 12.99% error for writes, and 23.87% error
for total I/O.

Table 3. Accuracy for MADbench2

Machine Name API
Accuracy of
Read Time %

Accuracy of
Read Time %

Accuracy of
Read Time %

Diamond POSIX −68.68 17.81 −45.38
Sapphire POSIX 18.27 1.61 12.75

Pingo POSIX −62.82 2.38 −16.85
Einstein POSIX 37.60 11.46 13.69
Mana POSIX 41.23 24.94 30.06

Jaguar POSIX 16.46 0.00 8.17
Diamond MPIIO −64.55 8.42 −42.87
Sapphire MPIIO 16.36 5.07 12.55

Pingo MPIIO −70.61 −1.99 −22.08
Einstein MPIIO 39.02 5.06 17.59
Mana MPIIO 54.55 56.34 55.74

Jaguar MPIIO 3.76 −20.83 −8.65

 To understand why our predictions may be more
accurate for systems such as Jaguar, and relatively poorer
for systems such as Diamond and Mana, we calculated the
relative standard deviations (RSD) of 5 run times each of
IOR and MADbench2. RSD is calculated as ratio of
standard deviation divided by mean and expressed as a
percentage. This statistic allows us to meaningfully
compare different systems, which identify those that have
significant variability in disk I/O times from run to run.
 The results of RSD analysis are shown in Table 4.
For example, the first row shows RSD on Jade using
POSIX and shows that: 1) for MADbench2 RSDs are
4.32%, 6.15%, and 4.78% for reads, writes, and total I/O
respectively; and 2) for IOR RSDs are 5.94%, 9.52%, and

6.48% for reads, writes, and total I/O respectively.
Hence, for Jade, the base system, both IOR and
MADbench2 have small percentage deviation in I/O time
across different runs. Next, consider Sapphire for both
MPIIO and POSIX APIs, the RSDs for reads of
MADbench2 and IOR are nearly the same and very small,
and in fact they are less than 10% each. Consequently our
predictions for Sapphire are quite accurate. In contrast
consider Diamond using MPIIO, RSDs of read for
MADbench2 and IOR are very different, and especially
note the large RSD of Diamond IOR read and, hence our
predictions have more error. A similar analysis applies to
Mana which also has high variability in I/O performance.

483

Table 4. Relative Standard Deviations (RSD) for reads/writes for IOR and MADbench2

 MADbench2 IOR

Machine Name API
RSD1

Read %
RSD

Write %
RSD Total

IO %
RSD

Read %
RSD

Write %
RSD Total

IO %
Jade - reference POSIX 4.32 6.15 4.78 5.94 9.52 6.48

Diamond POSIX 5.06 12.34 3.03 30.12 4.90 9.80
Sapphire POSIX 9.41 8.48 8.48 4.64 6.23 4.90

Pingo POSIX 6.55 4.01 4.50 14.62 12.50 12.23
Einstein POSIX 6.89 4.34 5.19 6.12 4.33 4.84
Mana POSIX 1.61 4.37 2.77 77.01 19.70 21.26

Jaguar POSIX 7.61 15.90 11.25 23.34 32.51 20.30
Jade - reference MPIIO 3.79 5.56 4.19 7.21 9.52 7.88

Diamond MPIIO 5.60 16.96 2.05 38.54 5.44 10.75
Sapphire MPIIO 4.26 5.23 4.55 7.49 6.39 6.84

Pingo MPIIO 5.44 3.22 3.27 15.40 3.32 1.89
Einstein MPIIO 10.27 12.05 11.09 3.73 6.56 4.33
Mana MPIIO 2.02 4.67 3.13 101.37 45.99 41.11

Jaguar MPIIO 6.07 16.15 9.44 25.17 5.93 13.36
1RSD – Relative Standard Deviation = (standard_deviation/mean)*100

 The RSD difference between IOR and MADbench2
indicate the variation experienced by IOR and
MADbench2 when running on the system. If the
variation is similar and small then our predictions are
close and vice-versa. This is not surprising, the I/O time
of an application is dependent on a number factors such as
available memory to cache files, contention for the disk
I/O system, and synchronization delays which can change
the I/O events rate. These factors may need to be
modeled to accurately capture variation and are not
currently part of IOR, but in the future work we discuss
these and other factors. At the same time, one can argue
that repeatability and stability of performance of I/O run
to run is a nice attribute of a well-provisioned file system,
so in a sense a measure of predictability is also a measure
of quality of the I/O system.

5. Conclusions and Future Work

 In this paper we presented a methodology to predict
disk I/O time of HPC applications. Our method used a
configurable I/O benchmark to measure speed-up ratios of
each I/O operation of an application, and used them to
predict an applications total I/O time. Our evaluation
showed that reasonable accuracy maybe obtained by
using this simple model, and in the best case our
prediction error is only 8.17%.
 However, since our model and real run-times
experience variability in the inputs (IOR) as well as in the
target (Madbench2), our prediction error for total I/O time
in the worst case is as high as 55.74%. To make our

predictions more accurate, we would like to consider
other factors that effect an applications I/O time. Some of
the factors that we would like to model are as follows: 1)
File caching: The ability to cache files in the memory sub-
system significantly speeds up disk I/O. 2) Seek distance:
the distance between two consecutive calls affects the
distance that disk head must travel before reading/writing
the data. Consequently, the greater the distance the more
the time to service the I/O call. 3) Concurrent
reads/writes: In parallel applications, multiple
readers/writers could be accessing a single file, thus the
mix of I/O calls may determine the service time for each
call. 4) Contention: The contention for disk systems by
other applications affects the I/O time each application
receives, and thus is important to model. 5)
Synchronization delays: In parallel applications, barrier
synchronization and other data dependencies may change
the rate at which I/O calls are made, and thus may affect
disk I/O time.
 At the same time we want to suggest that if the I/O
performance of the same test or application varies a lot
from run to run on the same system, then in a sense high-
error in prediction is to be expected—in other words,
predictability is a nice feature of a well-designed I/O
system, while those that are not predicted accurately by
simple models are probably also insufficiently engineered
to meet the workload demands being placed upon them.

484

6. Related Work

 Related work has pursued I/O modeling and
prediction by using script-based benchmarks to replay an
applications causal I/O behavior[8,9], or using
parameterized I/O benchmarks[10] to predict run-time on
the target system. Our modeling approach differs from
the related work by using parameterized benchmarks to
compute speed-up ratios on target systems for each call
and use that to predict an applications I/O time.
 Pianola[8] is a script-based I/O benchmark that
captures causal information of I/O calls made by a
sequential application. The information is captured by a
binary instrumenter that, for each call, captures wall clock
time of the call, the time spent servicing the call, and
arguments passed to the call. Using this information, a
script is constructed which has sufficient information to
replay an application’s I/O calls and time between two
successive calls. Additionally, the script is also
augmented to simulate the memory used by an application
between calls. A replay engine can then use this script to
replay an application’s I/O behavior on any platform.
 Like Pianola[8], TRACE[9] is a script-based I/O
benchmark that simulates an I/O behavior of an
application using causal information about the I/O calls.
Unlike Pianola, TRACE used interposed I/O calls to
capture information regarding I/O calls. TRACE is
targeted for parallel applications, and thus captures I/O
events for each parallel task. In addition to I/O events, for
each task, TRACE includes information related to
synchronization delays and computation time. Using this
information a replayer simulates the I/O characteristic of
each task of the original application.
 In Reference 10, IOR was used to simulate the I/O
behavior of HPC applications. In this research, an
application’s I/O behavior is first obtained by code and
algorithm analysis, and then this information is used to
prepare inputs for the IOR benchmark. Next, IOR is run
on the target system to predict the actual I/O time of an
application. Unlike in Reference 10, we use IOR to
capture speed up ratios for prediction.
 While IOR provided the widest range of parameters,
there are other I/O benchmarks[11–13] that provide a subset
of the parameters. Similarly there are a number of binary
instrumentation toolkits besides PEBIL that can be used
to instrument binaries. For example, DyninstAPI[14]
provides both dynamic and static instrumentation, while
PIN[15] provides dynamic instrumentation only. We chose
to use PEBIL to instrument binaries because of the low
overhead that it adds onto an application’s execution time
as compared to other tools[4].

Acknowledgements

 This work was supported in part by the DoD High
Performance Computing Modernization Program and by
National Science Foundation (NSF) under NSF OCI
award #0951583 entitled “I/O Modeling EAGER”.

References

1. Borrill, J., L. Oliker, J. Shalf, H. Shan, and A. Uselton, “HPC
global file system performance analysis using a scientific-
application derived benchmark.” Parallel Computing, 35, 6, pp.
358–373, 2009.
2. Borrill, J., “MADCAP: The microwave anisotropy dataset
computational analysis package.” Fifth European SGI/Cray
MPP Workshop, 1999.
3. IOR, http://sourceforge.net/projects/ior-sio/.
4. Laurenzano, M.A., M.M. Tikir, L.C. Carrington, and A.E.
Snavely, “PEBIL: Efficient Static Binary Instrumentation for
Linux.” Proceedings of the IEEE Symposium on Performance
Analysis of Systems and Software, White Plains, NY, March
2010.
5. Tikir, M.M., M.A. Laurenzano, L.C. Carrington, and A.E.
Snavely, “PSiNS: An Open Source Event Tracer and Execution
Simulator for MPI Applications.” Proceedings of Euro-par,
August 2009.
6. Seelam, R.S., A. Kerstens, and P.J. Teller, “Throttling I/O
Streams to Accelerate File-IO Performance.” Proceedings of
HPCC, 2007.
7. Oldfield, R.A., S. Arunagiri, P.J. Teller, S. Seelam, M.R.
Varela, R., Riesen, and P.C., Roth, “Modeling the Impact of
Checkpoints on Next-Generation Systems.” 24th IEEE
Conference on Mass Storage Systems and Technologies (MSST
2007), 2007.
8. May, J., “Pianola: A script-based i/o benchmark.”
Proceedings of the 2008 ACM Petascale Data Storage
Workshop (PDSW 08), November 2008.
9. Mesnier, M.P., M. Wachs, R.R. Sambasivan, J. Lopez, J.
Hendricks, G.R. Ganger, and D. O’Hallaron, “Trace: Parallel
Trace Replay with Approximate Causal Events.” Proceedings of
the 5th USENIX Conference on File and Storage Technologies,
February 2007.
10. Shan, H., K. Antypas, and J. Shalf, “Characterizing and
predicting the I/O performance of HPC applications using a
parameterized synthetic benchmark.” Proceedings of the 2008
ACM/IEEE Conference on Supercomputing (SC), 2008.
11. IOzone file system benchmark, http://www.iozone.org.
12. High performance I/O, http://cholera.ece.northwestern.edu/∼

aching/research webpage/hpio.html.
13. SPIOBENCH: Streaming Parallel I/O Benchmark,
http://www.nsf.gov/pubs/2006/nsf0605/spiobench.tar.gz, 2005.
14. Buck, B. and J.K. Hollingsworth, “An API for runtime code
patching.” International Journal of High Performance
Computing Applications, 2000.

485

15. Luk, C.K., R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V.J. Reddi, and K. Hazelwood, “Pin:
Building Customized Program Analysis Tools with Dynamic

Instrumentation.” Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, 2005.

486

