
PSnAP: Accurate Synthetic Address Streams Through
Memory Profiles

Catherine Mills Olschanowsky1, Mustafa M. Tikir2, Laura Carrington2, and Allan
Snavely2

1 Department of Computer Science and Engineering
University of California at San Diego

cmills@cs.ucsd.edu
2 San Diego Supercomputer Center

{mtikir,lcarring,allans}@sdsc.edu

Abstract. Memory address traces are an important information source; they drive
memory simulations for performance modeling, systems design and application
tuning. For long running applications, the direct use of an address traceis compli-
cated by its size. Previous attempts to reduce address trace size incurreda substan-
tial penalty with respect to trace accuracy. We propose a novel method of memory
profiling that enables the generation of highly accurate synthetic traces withspace
requirements typically under 1% of the original traces. We demonstrate thesyn-
thetic trace accuracy in terms of cache hit rates, spatial-temporal locality scores
and locality surfaces. Simulated cache hit rates from synthetic traces arewithin
3.5% of observed and on average are within 1.0% for L1 cache. Our profiles are
on average 60 times smaller than compressed traces. The combination ofsmall
profile size and high similarity to original traces makes our technique uniquely
applicable to performance modeling and trace driven simulation of large-scale
parallel scientific applications.

1 Introduction

Trace-driven memory simulation is applicable to system design and evaluation, compi-
lation (via trace-driven optimizations), and performancetuning. Today it is a standard
practice to use address traces to explore the memory behavior of applications [1–5].
Simulation allows for the evaluation of new memory hierarchy designs without hard-
ware implementation, this benefits both system design and evaluation for procurement.
Modeling current workloads on proposed systems via simulation provides valuable in-
sights, aiding in procurement decisions[6, 7]. Compiler optimization choices can be
guided and evaluated through the examination and simulation of the resulting address
streams. The accuracy and usefulness of each of these applications depends directly on
the availability of relevant input, specifically relevant address traces.

Using traces from an actual anticipated scientific workloadis the best policy for
achieving accurate performance predictions and evaluations. The validity of a simula-
tion driven study depends heavily on the chosen input workload; in the case of memory
simulations the input is an address trace [8, 9]. VanderWiel[10] points out in a compar-
ison study of two prefetching techniques, the performance improvement varied widely



for each workload complicating the choice of prefetching technique. The performance
results obtained by traces of small benchmarks chosen to represent a high performance
computing (HPC) workload are of questionable relevance; choosing appropriate bench-
marks is a difficult task, especially when applied to an HPC workload [11].

The direct collection and storage of full address traces is no longer practical due to
the growth in the size of traces, driven by the increase in processor speed over the last
three decades. Compounding this growth is the fact that HPC applications are scaling
to larger and larger core counts where each processor produces a seperate stream of
address requests at this rate. As a simple illustration, it is possible for a processor to is-
sue more than a hundred million memory instructions per second. Assuming that each
address is represented by 8 bytes, a full address trace growsby 800 million bytes a sec-
ond, approximately 44GB a minute and 2.6TB an hour per processing core. Collecting
an address trace for an application that runs several hours on thousands of processors
is therefore not reasonable unless one leverages some regularity or recurring patterns in
the application [12], but even with 90% compression the trace file sizes quickly become
impractical [13].

Obtaining and storing relevant address traces is a fundamental requirement for trace-
driven memory simulation of large parallel and HPC applications and the question must
be asked:how does one provide valid and relevant input of substantialsize to a simu-
lation? Methods such as trace compression, truncation, on-the-fly processing, and syn-
thetic trace generation have each been explored as an answerto this question. Each of
the previously proposed solutions has shortcomings. Compression techniques incur a
large slowdown [14, 15], and some of them require that the entire trace be stored before
being compressed [14], truncating the trace loses valuableinformation. On-the-fly pro-
cessing is done successfully, but uses a large amount of timeon valuable HPC resources
and has to be rerun each time the evaluation study changes [6]. Previous synthetic trace
generation approaches have not reached high accuracy [16, 17].

A new method of address stream profile collection to be used insynthetic stream
generation is presented in this paper.PMaC Synthetic streams from address stream
profiles(PSnAP) offers accuracy at a granularity not before possible in synthetic trace
generation. The size of the profiles is small enough that collecting them for an HPC
application utilizing thousands of processors is possible.

Rather than taking a holistic view of an address trace as pastattempts have, PSnAP
breaks the trace down into two constituent parts, 1) programstructure and 2) memory
access pattern. PSnAP is able to capture both temporal and spatial locality characteris-
tics as well as mimic fine-grained access patterns. Another important attribute of PSnAP
is that the profiles are human readable and manipulatable.

There are several uses for the PSnAP streams. Almost any application for trace-
driven performance analysis can potentially benefit from the ability to store and share
memory streams. It is now possible to build a memory trace repository available to re-
searchers for memory behavior research. Moreover, direct uses for the profiles are also
possible. The profiles are small and human readable meaning that they can be manipu-
lated in order to experiment with changing the behavior of the source application. This
opens the possibility for automated code tuning and providing feedback to compilers
on optimization decisions.



The unique contribution of this work is a method to summarizean address trace as it
is generated, and to characterize it in a succinct and accurate fashion such that the result
can be saved in a memory profile that can then be used to generate representative syn-
thetic traces without going to the trouble of compiling, re-running and re-instrumenting
the target application, as well as avoiding the space requirements for storing full address
traces.

2 Methodology

PSnAP has two distinct phases 1)captureand 2)replay. During the capture phase an
instrumented version of the application generates a compact profile that summarizes
the important properties of the full application trace, using a binary rewriting tool,
PMaCInst [18]. The replay phase, which can be done at any point in time after capture
and does not require the use of an HPC system, uses the compactprofile to generate a
synthetic address trace that closely mimics the original trace.

A full application address trace can be viewed as a series of address traces result-
ing from the execution of loops which compose an application. In this work, astream
profile is a hierarchical representation of a full application address trace. Most scien-
tific applications are composed of a series of loops. Throughexploring the behavior
within the constituent loops, we propose the application behavior is best characterized.
Moreover, the address stream of each loop orloop streamcan be viewed as accesses
to disjoint regions in the memory. Figure 1 shows an application address stream for a
pedagogical example consisting of a single loop. The loop stream is broken down into
memory region streamsas shown in the top right hand corner of the figure, where each
region stream represents the accesses to a distinct area of memory.

To identify each loop stream within a full stream, the loops of an application are
identified using static analysis and each basic block in the application is assigned to a
loop. During the execution of instrumented executable (capture), each memory access
is associated to a basic block which allows for mapping back to a loop. Basic blocks
that appear within nested loops are assigned to the inner most loop.

For identifying the memory region streams within a loop stream, address member-
ship in a memory region is determined using spatial characteristics. All of the addresses
requested in an application refer to various areas of memory. Figure 1 shows how a
simple loop’s data structures may be laid out in memory. Variablesi, max, andtotal are
statically allocated and reside within close proximity to one another. ArraysA andB are
each dynamically allocated and can be found separately in the heap. All the memory
references which refer to a contiguous region of memory are referred to as memory
region streams or justregions.

Each memory reference is assigned to a region by comparing its address to the
range of addresses in the previously encountered regions. If the address falls within a
(parameterized) distance to any of the addresses in these regions it is assumed to belong
to the closest region3. Otherwise it is assumed that the address is part of a new region.

3 The parameterized distance used for our experiments is 256 bytes, which was found to be
adequate for accurate results for the applications we used.



Fig. 1.An example of a loop stream broken down into a stream profile.

Once the regions have been defined each region stream is further characterized using
three basic metrics:access pattern, working set sizeandaccess count. To characterize
the access pattern of a region, a histogram of stride frequencies and a graph of stride or-
dering are maintained for each region. A stride is computed by comparing an incoming
address to the one received immediately before, within the same region. Stride distances
of 0 to28 in increasing powers of 2 in both directions from the addressare counted. The
strides larger than28 are counted as random; accesses with long strides and those with
random srides tend to cause cache misses. The working set size of a region is identified
by determining the minimum and maximum addresses encountered for that region. The
number of addresses referring to each region is also stored.

In the case that a memory region is accessed in a random or incontiguous manner
each access may result in the creation of a new region, preventing accurate profiling.
For the loop streams that contain large strides or access an area of memory in a seem-
ingly random manner (pointer chasing), we include amergeoperation in our technique.
The merge operation identifies groups of regions that have each been accessed a small
number of times, generates a synthetic address stream representing those regions, and
profiles the synthetic stream making sure to save all of the recorded information into
a single memory region. This approach minimizes the number of regions and enables
better working set size and access pattern identification.

A given loop stream is comprised of multiple region streams that are interleaved in
a pattern that is stored in the pattern buffer. That pattern may be a simple alternating
pattern as depicted in the pattern buffer in Figure 1 or it maybe more complex and



require a regular expression or function to express it. The current implementation uses a
pattern buffer of a fixed size and simply saves the order that the regions are encountered
until the buffer is full.4

The second phase, replay, is the process of synthesizing an address stream that can
act as a representative proxy of the original. Each level of the hierarchically structured
profile plays a part in the construction of the synthetic address stream for an application.
The region metrics are used to generate addresses, the pattern buffers in the loop are
used to interleave addresses and all of the loop streams are concatenated to create a full
synthetic stream.

3 Results

In order to evaluate the effectiveness of PSnAP both the accuracy and efficiency are
evaluated and compared to past work. The accuracy is measureusing simulated cache
hit rates and locality surfaces. PSnAP proves to be more accurate than any past attempts
of lossy compression or synthetic trace generation. The size of the resulting profiles is
shown to be small and a function of code complexity rather than execution time.

The evaluation uses a set of HPC benchmark kernals (listed inTable 2) and a set
of memory hierarchies from recent HPC systems (listed in Table 1). The set of cache
structures varies the three main cache characteristics: size, line size and associativity.
The resulting cache structures are listed in Table 1. Structures one through three were
chosen as modern examples of small, medium and large sized caches. Structures four
and five are the Opteron and Budapest respectively, both are popular modern chips.
Structure 6 is the cache structure used on the Power6 architecture from IBM and was
chosen to represent the state-of-the-art in memory subsystem design. The remainder
of the caches are variations on cache 3 with different line sizes and associativities. Our
experiments show that the synthetic traces generated usingour method are very accurate
and the size requirements are extremely small.

3.1 Cache Simulation Results

The standard of accuracy measure for synthetic trace generation techniques is a compar-
ison of cache simulation results between the synthetic stream and the original stream.
Previously, the majority of cache simulation results have been presented using the cache
hit rate average across the entire execution of a benchmark.It is well understood that as
an execution proceeds, the cache hit rate of that execution changes dynamically. This
may be due to changes in the code being executed (phases) or bychanges over time
due to data irregularity. Either way, estimating the similarity of two address streams
over an entire execution may lead to error cancelation. Errors incurred during various
program phases can cancel each other out causing the overallcache hit rates to appear
more accurate than they really are. Hence, to investigate the accuracy of our approach,
we have broken the execution and subsequent address streamsdown into sub streams;
one stream per relevant loop or function as appropriate. This breakdown enables us to
perform an accuracy comparison at a more granular level.

4 Currently we use 1K accesses as the size of the pattern buffer.



L1 L2 L3 Architecture
ID Size Line Assoc. Size Line Assoc. Size Line Assoc.

(KB) (Bytes) (KB) (Bytes) (KB) (Bytes)

1 32 128 2 1024 128 8 PowerPC
2 256 128 8 9216 128 12 IT2
3 64 64 2 512 64 16 MIPS SiCortex
4 32 32 4 128 64 2 Opteron
5 64 64 2 512 64 16 1024 64 48 Budapest
6 64 128 8 4096 128 8 16384 128 16 IBM P6
7 64 64 2 512 64 8
8 64 64 2 512 64 32
9 64 64 2 512 32 16
10 64 64 2 512 128 16

Table 1.A summary of the cache structures used for cache hit rate accuracy verification.

Benchmark Source Average (%)
Error

L1 L2 L3

CG NPB [19] 0.2 0.2 0.2
FT NPB 0.1 0.1 0.1
Stream HPCC 0.2 0.3 1.6
NBody Aarseth Code [20] 1.8 1.2 1.6
Jacobi3D Sci. Comp. at UCSD 2.7 3.0 3.4
HPL HPCC 0.0 0.0 0.0

Table 2.A summary of the combined cache hit rate comparisons for benchmarks (All errors are
averaged as absolute values).

Using an existing framework [18] the observed address stream of each benchmark
was fed into a series of cache simulators. The cache simulations produce cache hit rates
for each loop in the application. These cache hit rates are compared with the cache hit
rates that result from the simulation driven by the synthetic generated streams.

Figure 2 presents the error between the cache hit rates for the observed and synthetic
address streams for the most significant loop in each benchmark. The significance of a
loop is determined by the number of memory operations that result from its full execu-
tion. The x-axis of the plots represent the different cache structures (the ids correspond
to those in Table 1). Each figure shows the synthetic hit rate(blue stripes) and observed
hit rate(solid yellow) as well as the absolute difference between the rates(black square).
The figures representing L1 cache data have an addition pieceof information, the esti-
mated error that this synthetic stream could impose on a fullperformance execution time
prediction(red asterisk). This is calculated using the basic equation for average memory
access time found in Hennessy and Patterson [21]. The data point is only available for
a subset of the cache structures.

Table 2 summarizes the error in cache hit rates averaged overall of the relevant loops
of an application and all the cache structures used. The set of figures along with the table
summarizing the cache hit rate errors for all benchmarks demonstrate very clearly that



Fig. 2. Comparison of synthetic stream cache hit rates and rates for original stream across all 10
cache structures for the most dominant loop in each benchmark. Note that cache hit rates are
high, as is expected of well-optimized HPC applications.

the synthetic streams are very similar to the observed in terms of performance. The
error is consistently below 3%. The CG, FT, Stream and HPL benchmarks are almost
perfectly reproduced with this method; Jacobi3D and Nbody both have much more
complex access patterns, and are still well represented. The error in memory access
time indicates a need for high accuracy, as any error in cachehit rate is multiplied in
the full performance prediction. This shows that our approach is effective in generating
synthetic traces that mimic the original trace.

3.2 Locality Surfaces

Another method of evaluating the accuracy of synthetic traces is to compare locality
surfaces. Locality surfaces are one of the most effective ways to visualize the temporal
and spatial locality characteristics of an address stream.Hence, by comparing the lo-
cality surfaces of a synthetically generated stream and itsoriginal counterpart, one can
compare whether two streams exhibit the same locality behavior. If the locality surfaces



look similar in shape, one can conclude the synthetic streammimics the original one in
terms of temporal and spatial locality.

We generate locality surfaces for both address streams for each benchmark. For
locality surface generation, we used the implementation described by Grimsrud [17]
and limited the field of the surface to strides within 256 bytes and distances within
64K. These limits still capture most of the interesting characteristics of the surface, and
keep the overhead bearable (locality surfaces are notoriously expensive to construct).
For our experiments, locality surfaces are generated on a per loop basis for the same
reasons described above.

In Grimsrud [17], a locality surface is generated by tabulating a large histogram.
Each address is compared to all of those that come after it until it is compared to it-
self. The bin in the histogram that corresponds to the strideand distance between each
address is incremented during the comparison. The stride isthe distances between the
two memory addresses and the distance is the number of addresses that were encoun-
tered between them in the stream. The locality surface is a 3Drepresentation of the
histogram.

Grimsrud presents a discussion of how to interpret the characteristics of each sur-
face [17]. The keys for comparison are that the same constructs appear in both surfaces
and that their scale with respect to other constructs in the surface are similar. Key con-
structs aresequential ridgesindicating a fixed stride through a data array anddecaying
temporal ridgeindicating a value being reused over time.

Figure 3 presents a direct view of the locality surfaces for the benchmark CG for
both the synthetic address stream(left) generated by our approach and the original
stream(right). Figure 3 shows that the locality surface of the synthetic stream is very
similar to original stream. In both surfaces the ratio of accesses with a stride between
−23 and24 are similar. The ridge down the center of the surface (a decaying tempo-
ral ridge) represents temporally repeated accesses and is present in both surfaces. The
synthetic stream has smoothed the ridge out rather than reflecting the true behavior
with two spikes. This can occur when the separate region streams have become out of
synch with the pattern buffer. When this occurs the correct accesses are represented
in the stream, but the distance between them may be skewed. Itis interesting to note
that the synthetic surface captures the sequential ridge, the ridge moving at a diagonal
from the center. Strided accesses such as this have a large effect on performance and
are therefore important to capture. PSnAP is able to reproduce the locality surfaces for
loops with high accuracy for the synthetic streams indicating that our approach does
not change the locality characteristics of the original stream and exhibits very similar
behavior.

3.3 Comparison to Related Projects

Two categories of research warrant direct comparison to PSnAP: 1) trace compression
algorithms and 2) synthetic trace generation methods. Lossless compression techniques
have perfect accuracy at the expense of lower compression ratios and larger overhead
times as compared to its lossy counterpart. Lossy compression algorithms represent an
improvement in time and space overhead, with the addition ofsome inaccuracy.



Fig. 3. The locality surfaces resulting from the observed and synthetic traces for the most influ-
ential loop in CG.A.1.

BenchmarkFull Trace SizeStream/Profile Size% Abs Err in Cache Hit Rates
PGGTC PSnAP PGGTC PSnAP

(GB) (KB) (KB) (L1) (L2) (L3) (L1) (L2) (L3)

CG.A 5.4 22,620 153 1.5 1.0 0.2 0.2 0.1 0.03
EP.A 7.4 9,369 55 0.1 0.7 0.2 3.0 2.6 1.7
FT.A 18.7 1,129 317 2.9 1.6 0.3 0.1 0.1 0.05
IS.A 3.1 700 58 3.1 2.1 0.2 2.6 1.9 1.8
MG.A 12.6 5,033 324 3.8 2.9 0.8 1.1 0.9 0.6

Table 3.The compression achieved and the time required by PGGTC and our approach.

Sequitor [14] and Path Grammar Guided Trace Compression (PGGTC) [15] are
both trace compression techniques developed specifically for address traces, they are
lossless and lossy respectively. Both depend on the creation of a context free grammar
(CFG) that represents repeated portions of the address trace. Sequitor creates the CFG
dynamically and PGGTC creates the CFG using the control flow graph determined
through static analysis of the application.

Table 3 presents a summary of the results for data compression accomplished using
PGGTC for the NAS parallel benchmarks5. The data is extracted from Gao et al. [15].
It also includes the results of our approach in terms of the size of the stream profiles.
This data shows that our approach has space requirements that is significantly smaller
than PGGTC, on average 60X smaller.

5 The measurements for CG and FT vary from table 2 to table 3. Two factorscause this dis-
crepancy. First, table 2 uses data collected on benchmarks run acrossonly a single processor
versus table 3 that is run across four. Second, and more importantly theerrors are calculated
differently. In order to do a direct comparison with PGGTC the errors in table 3 are calculated
using the difference between the average hit rate recorded over the entire address stream. The
data in table 2 is calculated by averaging the absolute error across all of thesignificant sections
of the stream, preventing any cancellation in error.



Table 3 also presents the percentage error between the hit rates for the original
stream and the cache hit rates for the synthetic traces generated by both lossy portion
of PGGTC and our approach. Table shows that hit rates for the traces generated by
the lossy portion of PGGTC is similar to the hit rates of the traces generated by our
approach. Both PGGTC and our approach maintained an error rate of less than 4% for
L1 cache hit rates, 2% for L2 and 1% for L3 compared to the original address streams.
Our approach performed slightly better than PGGTC for L1 caches.

Table 3 demonstrates that our approach is more effective compared to the compres-
sion techniques in two ways. First, the resulting size of thememory profiles is signifi-
cantly smaller than the compressed traces by PGGTC. Second,the memory profiles are
in a human readable format that enables them to be used to gaininsight to the behavior
of the application.

In a comparable area of synthetic trace generation, Weinburg [22] presented a syn-
thetic trace generation tool called Chameleon. Chameleon is able to reproduce cache
hit rates for a series of single level LRU caches for a sampling of address stream of the
NAS parallel benchmarks. Using the same cache structures, our approach consistently
resulted in a lower absolute error between the hit rates for actual traces and the synthetic
traces generated. For IS.B.1 benchmark, Chameleon reported a maximum error of 30%
in cache hit rates between the actual and synthetic trace whereas the maximum error for
our method is around 10%.

Grimsrud [17], followed later by Sorenson [23], used locality surfaces and cache
hit rates to measure the accuracy of five categories of synthetic address stream gener-
ation techniques. The conclusion drawn by both Grimsrud andSorenson was that the
synthetic trace generation techniques did not offer satisfactory accuracy with respect to
representing the spatial and temporal locality characteristics of real traces.

In order to compare our synthetic trace generation technique with those evaluated
by Sorenson, we implemented the described locality surfacemethod and generated a
surface for the same trace used in their comparison [16]. In order to match more closely
the results found by Sorenson and Grimsrud, we used a trace obtained fromTwolf from
SPEC CPU2000 benchmark suite as the application. We used theaddress stream of the
most important loop of Twolf to generate locality surfaces.This essentially zooms in the
view of the surface and gives a higher level of detail. Moreover, the Twolf benchmark
executes simulating annealing and produces a stream that isvery difficult to summarize
in a concise way.

Figure 4 presents the locality surfaces resulting from the observed address stream
and the PSnAP synthetic stream. Figure 4 shows that the locality surfaces of original
address stream and synthetic stream generated matches fairly in terms of its shape, espe-
cially for the most dominant part of lower stride-accesses.The most visible difference
is the peak at stride two, distance two (in the middle by the back wall). PSnAP has
moved some of the stride two references to a distance of four and overestimated the
ratio of access with stride -16, making the ratio of accessesat the center peak shrink.
This change, while visibly obvious, does not have a large affect on performance. Figure
4 demonstrates that the synthetic stream generated by our approach is able to maintain
similar spatial and temporal locality behavior of the actual address stream.



Fig. 4. Locality surfaces for Twolf for an observed stream and synthetic stream generated by our
approach.

3.4 Size and Slowdown

The size and scaling behavior of the memory profiles are majoradvantages of the
PSnAP approach. Each of the benchmarks used for the accuracyevaluation produced
memory profiles of less than 250MB. This amount of data can easily be shared among
collaborators. Even more interesting is that the profile size is not a function of execution
time, but a function of code complexity.

Fig. 5. The profile sizes and execution times of each benchmark plotted against acomplexity
measure.

We define the complexity measure(CM) of an application to be acombination of the
number of loops and the number of distance memory regions used within those loops.
The following equation shows how those code attributes are combined with attributes of
the profile format: LoopCount and RegionCount are attributes of the code and the con-
stants 1000,80, and 3610 represent the maximum number of bytes used by the pattern
buffer, region histogram, and stride order graph respectively.



CM = (1000∗LoopCount+(80+3610)∗RegionCount)/(1000+80+3610) (1)

Figure 5 demonstrates that the profile sizes(blue dots corresponding to left axis) are
a linear function of CM(x-axis). It is obvious that the corresponding execution times(red
squares corresponding to right axis) are not dependent on the CM. The execution time
is directly above or below the corresponding profile size.

The slowdown incurred during the instrumented runs is typical of binary instrumen-
tation projects. The average observed slowdown is 169X (min: 7X max: 292X). This
overhead presents a challenge for the use of this instrumentation, but it is important
to note that the measurements were taken using the initial implementation of the tool
and that performance improvements are expected. Possibilities for code optimization as
well as sampling methods are being explored.

If we interpret these results in the light of the suitabilityof this work for capturing
large address streams of long parallel running applications we note that, as to size, the
worst case we experienced (HPL) was about 1 MB, a more than 100x compression over
the raw address storage rate (you could store 1,000 processor’s worth in 1 GB) and also
note that this trace representation would NOT grow as a function of time but only as a
function of complexity and different functions accessed during the program run (in the
case of HPL it would not grow at all regardless of runtime). Asto time, the slowdown
may seem onerous for a long running program, is not beyond therealm of what in-depth
performance studies may entail. For example, it is described in [24], how one million
processor hours were used to characterize a strategic workload.

4 Related Work

Previous work in the area of synthetic stream generation covers a wide area of projects,
some of which are described below. The independent reference model (IRM) [25, 26]
profiles an execution to determine the frequency with which each page in the working
set is accessed. A synthetic stream is then generated that contains the same frequency
for each page. The accuracy resulting from this method is nothigh enough because it
models each page independently and important patterns due to locality are lost. Wein-
berg[22] applied a modified version of IRM that recorded the probability of accessing
an area of memory using a tree structure that represented increasingly smaller areas of
memory. This model also suffers from inaccuracy due to an inability to preserve key
patterns in the address stream, especially regular stridedaccesses resulting from loop
constructs, a characteristic we are able to preserve.

The distance model[27] models the probability of specific distances between neigh-
boring addresses rather than modeling the frequency of the appearance of the addresses
themselves. Thiebaut et al[28] extended the distance modelusing a hyperbolic prob-
ability function to model the size of the steps between references. This approach can
maintain some of the statistical properties of the stream, but the underlying patterns are
lost.

Agarwal[29] suggested the Partial Markov Model (PMM). Thismodel depends on a
two state Markov chain, where state 0 produces strided addresses and state 1 produces



random. The state transitions are controlled by a probability function. This model is
not able to capture relevant temporal locality traits of theaddress stream and does not
capture the behavior of two strided streams being called in turn, a very common pattern.

Berg[30] modeled the reuse distance between addresses using a probability func-
tion. The reuse distance is the number of addresses accessedbetween accesses to the
same address. Recording reuse distance during tracing is anexpensive operation and im-
practical for large scientific applications. The stack distance model[2, 31] maintains an
ordered list of encountered addresses and models the probability of accessing an address
some distance from the top of the list or stack. It is related to the reuse distance, because
the stack distance is the number ofuniquereferences which appear between accesses to
the same reference. Hassan[32] extends the stack model withthe edition of a Markov
chain and generates synthetic traces for the purpose of driving trace-driven simulations
of cache memory. This approach is the most accurate of the presented projects, but re-
sults are only presented for single level LRU caches, whereas our approach is shown
to be accurate on a large collection of multi-level realistic cache structures. Tracing
overhead time and space requirements are also not presented, preventing an in depth
comparison.

Grimsrud[17] and later Sorenson[16] evaluated the accuracy of several address
stream models using locality surfaces. The surfaces are able to capture both spatial and
temporal locality characteristics. We apply similar surfaces to our synthetics streams,
however, they are applied to portions of the execution rather than the entirety in order
to demonstrate that the behavior of applications changes over time.

All of the above attempt to describe the address stream of an application in a holistic
manner. We are able to achieve a higher level of accuracy and maintain complex patterns
in the streams, which prove important for simulation drivenanalysis.

The stack distance model, mentioned above, was used by Cascaval et. al [33] to
perform compile-time based performance predictions. Thisapplication of the stack dis-
tance model has no requirement for address trace storage, but this work may be com-
plementary in that the PSnaP profiles can be partially generated from compile-time
statistics and yields higher accuracy than the stack distance model.

5 Conclusion

We present a method of creating a compact profile of an application to generate accurate
synthetic traces for the application. The profiles are a compact and succinct summary
of a full address streams, more compact than any previous approach. In this method,
rather than taking a holistic view of an address trace as previous attempts have, a full
trace of an application is broken down into constituent parts using the program structure
and memory access patterns.

We evaluate the accuracy of synthetic traces by comparing their cache hit rates and
locality surfaces to those of observed traces. Our experiments demonstrate that PSnAP
synthetic traces closely mimic the observed address tracesof applications in terms of
cache-ability. The average error between the hit rates for synthetic and original traces is
2.2% for L1 caches, 1.9% for L2 caches and 1.8% for L3 caches. More importantly, the
locality surfaces for synthetic traces match the locality surfaces for the observed traces



indicating that our approach exhibits the same locality characteristics of the observed
streams.

We demonstrate that highly accurate synthetic traces can begenerated from very
compact stream profiles. This combination of traits makes this method uniquely suitable
for performance modeling of large-scale scientific HPC workloads. Due to the charac-
teristic that the stream profiles’ size scales with code complexity rather than runtime, it
is possible to collect a stream profile for even long running parallel applications.

References

1. K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and V. S. Pai, “Challenges
in computer architecture evaluation,”Computer, vol. 36, no. 8, pp. 30–36, 2003.

2. R. Mattson, J. Gecsei, D. Slutz, and I. Traiger, “Evaluation techniques for storage hierar-
chies,”IBM Systems Journal, vol. 9, pp. 78 – 117, 1970.

3. P. Calingaert, “System performance evaluation: survey and appraisal,” Commun. ACM,
vol. 10, no. 1, pp. 12–18, 1967.

4. W. Anacker and C. P. Wang, “Evaluation of computing systems with memory hierarchies,”
IEEE Transactions on Electronic Computers, vol. EC-16, no. 6, pp. 670–679, December
1967.

5. W. Anacker and C. Wang, “Performance evaluation of computing systems with memory
hierarchies,”Electronic Computers, IEEE Transactions on, vol. EC-16, no. 6, pp. 764–773,
Dec. 1967.

6. A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha, “A framework
for application performance modeling and prediction,” inACM/IEEE Conference on High
Performance Networking and Computing, 2002.

7. L.Carrington, N.Wolter, A.Snavely, and C.Lee, “Applying an automated framework to pro-
duce accurate blind performance predictions of full-scale hpc applications,” in UGC, 2004.

8. J. Flanagan, B. Nelson, and G. Thompson, “The inaccuracy of trace-driven simulation using
incomplete multiprogramming trace data,” inMASCOTS, 1996.

9. D. R. Kaeli, “Issues in trace-driven simulation,” inPerformance Evaluation of Computer
and Communication Systems, Joint Tutorial Papers of Performance ’93and Sigmetrics ’93.
London, UK: Springer-Verlag, 1993, pp. 224–244.

10. S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,”ACM Comput. Surv., vol. 32,
no. 2, pp. 174–199, 2000.

11. R. C. Murphy and P. M. Kogge, “On the memory access patterns ofsupercomputer applica-
tions: Benchmark selection and its implications,”IEEE Trans. Comput., vol. 56, no. 7, pp.
937–945, 2007.

12. M. Laurenzano, B. Simon, A. Snavely, and M. Gunn, “Low cost trace-driven memory simu-
lation using simpoint,” inWorkshop on Binary Instrumentation and Applications, 2005.

13. X. Gao, “Reducing time and space costs of memory tracing,” Ph.D.dissertation, University
of California at San Diego, La Jolla, CA, USA, 2006.

14. S. Mitarai, M. Hirao, T. Matsumoto, A. Shinohara, M. Takeda, and S. Arikawa, “Compressed
pattern matching for SEQUITUR,” inData Compression Conference, 2001, pp. 469+.

15. X. Gao, A. Snavely, and L. Carter, “Path grammar guided trace compression and trace ap-
proximation,” inThe 15th IEEE International Symposium on High Performance Distributed
Computing, 2006.

16. E. Sorenson and J. Flanagan, “Evaluating synthetic trace models using locality surfaces,”
Workload Characterization, 2002. WWC-5. 2002 IEEE International Workshop on, pp. 23–
33, Nov. 2002.



17. K. Grimsrud, J. Archibald, R. Frost, and B. Nelson, “On the accuracy of memory reference
models,” inProceedings of the 7th international conference on Computer performance eval-
uation : modelling techniques and tools. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 1994, pp. 369–388.

18. M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely, “The pmac binary instrumentation
library for powerpc,” inWorkshop on Binary Instrumentation and Applications, 2006.

19. R. C. Agarwal, B. Alpern, L. Carter, F. G. Gustavson, D. J. Klepacki, R. Lawrence, and
M. Zubair, “High-performance parallel implementations of the NAS kernel benchmarks on
the IBM sp2,”IBM Systems Journal, vol. 34, no. 2, pp. 263–272, 1995.

20. S. Aarseth, “Nbody2: a direct n-body integration code,”New Astronomy, vol. 6, p. 277, 2001.
21. J. Hennessy and D. Patterson,Computer Architecture: A Quantitative Approach, Third, Ed.

Morgan Kaufmann, 2003.
22. J. Weinberg and A. Snavely, “Chameleon: A framework for observing, understanding, and

imitating memory behavior,” inPARA08: Workshop on State-of-the-Art in Scientific and Par-
allel Computing, Trondheim, Norway, May 2008.

23. E. S. Sorenson and J. K. Flanagan, “Using locality surfaces to characterize the specint 2000
benchmark suite,” inIn Lizy Kurian John and Ann Marie Grizza Maynard, editors, Workload
Characterization of Emerging Computer Applications. Kluwer Academic Publishers, 2001,
pp. 101–120.

24. X. Gao, M. Laurenzano, B. Simon, and A. Snavely, “Reducing overheads for acquiring dy-
namic traces,” inInternational Symposium on Workload Characterization, 2005.

25. P. J. Denning, “On modeling program behavior,” inAFIPS ’71 (Fall): Proceedings of the
November 16-18, 1971, fall joint computer conference. New York, NY, USA: ACM, 1971,
pp. 937–944.

26. A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of optimal page replacement,”J.
ACM, vol. 18, no. 1, pp. 80–93, 1971.

27. J. Spirn, “Distance string models for program behavior,”Computer, vol. 9, no. 11, pp. 14–20,
Nov. 1976.

28. D. Thiebaut, J. Wolf, and H. Stone, “Synthetic traces for trace-driven simulation of cache
memories,”IEEE Transactions on Computers, vol. 41, no. 4, pp. 388–410, 1992.

29. A. Agarwal, J. Hennessy, and M. Horowitz, “An analytical cache model,” ACM Trans. Com-
put. Syst., vol. 7, no. 2, pp. 184–215, 1989.

30. E. Berg and E. Hagersten, “Statcache: a probabilistic approach to efficient and accurate data
locality analysis,” inISPASS ’04: Proceedings of the 2004 IEEE International Symposium
on Performance Analysis of Systems and Software. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 20–27.

31. J. Archibald and J.-L. Baer, “Cache coherence protocols: evaluation using a multiprocessor
simulation model,”ACM Trans. Comput. Syst., vol. 4, no. 4, pp. 273–298, 1986.

32. R. Hassan, A. Harris, N. Topham, and A. Efthymiou, “Synthetic trace-driven simulation
of cache memory,”Advanced Information Networking and Applications Workshops, 2007,
AINAW ’07. 21st International Conference on, vol. 1, pp. 764–771, May 2007.

33. C. Cascaval, L. DeRose, D. A. Padua, and D. A. Reed, “Compile-time based performance
prediction,” inIn Twelfth International Workshop on Languages and Compilers for Parallel
Computing, 1999, pp. 365–379.


