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Abstract. Memory address traces are an important information source; they dri
memory simulations for performance modeling, systems design anidatm
tuning. For long running applications, the direct use of an addressisraoepli-
cated by its size. Previous attempts to reduce address trace size irecsutestan-
tial penalty with respect to trace accuracy. We propose a novel metinoeioory
profiling that enables the generation of highly accurate synthetic tracespeite
requirements typically under 1% of the original traces. We demonstraythe
thetic trace accuracy in terms of cache hit rates, spatial-temporal loceditgss
and locality surfaces. Simulated cache hit rates from synthetic tracegthie
3.5% of observed and on average are within 1.0% for L1 cache. @fitgs are
on average 60 times smaller than compressed traces. The combinasioralbf
profile size and high similarity to original traces makes our technique ulyique
applicable to performance modeling and trace driven simulation of kogke
parallel scientific applications.

1 Introduction

Trace-driven memory simulation is applicable to systemgeand evaluation, compi-
lation (via trace-driven optimizations), and performatoging. Today it is a standard
practice to use address traces to explore the memory behavapplications [1-5].
Simulation allows for the evaluation of new memory hiergrdesigns without hard-
ware implementation, this benefits both system design aalda&tion for procurement.
Modeling current workloads on proposed systems via sinaungirovides valuable in-
sights, aiding in procurement decisions[6, 7]. Compiletimation choices can be
guided and evaluated through the examination and simulatidhe resulting address
streams. The accuracy and usefulness of each of theseajgpiedepends directly on
the availability of relevant input, specifically relevamidsess traces.

Using traces from an actual anticipated scientific workl@athe best policy for
achieving accurate performance predictions and evahsmtibhe validity of a simula-
tion driven study depends heavily on the chosen input waiklin the case of memory
simulations the input is an address trace [8, 9]. Vander{¥@lpoints out in a compar-
ison study of two prefetching techniques, the performanmgaévement varied widely



for each workload complicating the choice of prefetchinthtéque. The performance
results obtained by traces of small benchmarks chosen tesemt a high performance
computing (HPC) workload are of questionable relevancepsimg appropriate bench-
marks is a difficult task, especially when applied to an HPGCklead [11].

The direct collection and storage of full address tracesikbnger practical due to
the growth in the size of traces, driven by the increase icgssor speed over the last
three decades. Compounding this growth is the fact that HipGcations are scaling
to larger and larger core counts where each processor peduseperate stream of
address requests at this rate. As a simple illustratios gbssible for a processor to is-
sue more than a hundred million memory instructions perrsgtcAssuming that each
address is represented by 8 bytes, a full address trace §5o8B0 million bytes a sec-
ond, approximately 44GB a minute and 2.6 TB an hour per peicgsore. Collecting
an address trace for an application that runs several houtisomsands of processors
is therefore not reasonable unless one leverages somariggat recurring patterns in
the application [12], but even with 90% compression theetfde sizes quickly become
impractical [13].

Obtaining and storing relevant address traces is a fundahrequirement for trace-
driven memory simulation of large parallel and HPC appil@z and the question must
be askedhow does one provide valid and relevant input of substastizg to a simu-
lation? Methods such as trace compression, truncation, on-thedhegsing, and syn-
thetic trace generation have each been explored as an atwsthés question. Each of
the previously proposed solutions has shortcomings. Cesspn techniques incur a
large slowdown [14, 15], and some of them require that thieeetiaice be stored before
being compressed [14], truncating the trace loses valuafiemation. On-the-fly pro-
cessing is done successfully, but uses a large amount obtiraaluable HPC resources
and has to be rerun each time the evaluation study changd&jous synthetic trace
generation approaches have not reached high accuracy7[16, 1

A new method of address stream profile collection to be usexyrthetic stream
generation is presented in this papeMaC Synthetic streams from address stream
profile{PSnAP) offers accuracy at a granularity not before possibkynthetic trace
generation. The size of the profiles is small enough thaectitig them for an HPC
application utilizing thousands of processors is possible

Rather than taking a holistic view of an address trace asgp@shpts have, PSnAP
breaks the trace down into two constituent parts, 1) progtacture and 2) memory
access pattern. PSnAP is able to capture both temporal atidldpcality characteris-
tics as well as mimic fine-grained access patterns. Anotiygoitant attribute of PSnAP
is that the profiles are human readable and manipulatable.

There are several uses for the PSnAP streams. Almost anicapmh for trace-
driven performance analysis can potentially benefit froeahility to store and share
memory streams. It is now possible to build a memory tracegiépry available to re-
searchers for memory behavior research. Moreover, disas for the profiles are also
possible. The profiles are small and human readable meamanghey can be manipu-
lated in order to experiment with changing the behavior efgburce application. This
opens the possibility for automated code tuning and progideedback to compilers
on optimization decisions.



The unigue contribution of this work is a method to summaaiz@ddress trace as it
is generated, and to characterize it in a succinct and aecfashion such that the result
can be saved in a memory profile that can then be used to gememesentative syn-
thetic traces without going to the trouble of compilingruening and re-instrumenting
the target application, as well as avoiding the space regquints for storing full address
traces.

2 Methodology

PSnAP has two distinct phasescgptureand 2)replay. During the capture phase an
instrumented version of the application generates a conpafile that summarizes
the important properties of the full application trace,ngsk binary rewriting tool,
PMaClnst [18]. The replay phase, which can be done at any potime after capture
and does not require the use of an HPC system, uses the copnpfilet to generate a
synthetic address trace that closely mimics the origiraletr

A full application address trace can be viewed as a serieddreas traces result-
ing from the execution of loops which compose an applicatibrihis work, astream
profile is a hierarchical representation of a full application &ddrtrace. Most scien-
tific applications are composed of a series of loops. Throagsioring the behavior
within the constituent loops, we propose the applicatidmeleor is best characterized.
Moreover, the address stream of each loofioop streamcan be viewed as accesses
to disjoint regions in the memory. Figure 1 shows an apptcaaddress stream for a
pedagogical example consisting of a single loop. The loggast is broken down into
memory region streamess shown in the top right hand corner of the figure, where each
region stream represents the accesses to a distinct areznuiny

To identify each loop stream within a full stream, the loopso application are
identified using static analysis and each basic block in gptieation is assigned to a
loop. During the execution of instrumented executablet(o&p, each memory access
is associated to a basic block which allows for mapping back lbop. Basic blocks
that appear within nested loops are assigned to the innerlougs

For identifying the memory region streams within a loop &tne address member-
ship in a memory region is determined using spatial chariatits. All of the addresses
requested in an application refer to various areas of menkdgure 1 shows how a
simple loop’s data structures may be laid out in memory.aldesi, max andtotal are
statically allocated and reside within close proximity tee@nother. Arrayé andB are
each dynamically allocated and can be found separatelyeiméap. All the memory
references which refer to a contiguous region of memory eferned to as memory
region streams or juségions

Each memory reference is assigned to a region by compasnadiress to the
range of addresses in the previously encountered regibtie hddress falls within a
(parameterized) distance to any of the addresses in thgisasét is assumed to belong
to the closest regioh Otherwise it is assumed that the address is part of a nearregi

% The parameterized distance used for our experiments is 256 bytes) whifound to be
adequate for accurate results for the applications we used.
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Fig. 1. An example of a loop stream broken down into a stream profile.

Once the regions have been defined each region stream isrfanthracterized using
three basic metricaccess pattern, working set sigedaccess counflo characterize
the access pattern of a region, a histogram of stride frazsjggeand a graph of stride or-
dering are maintained for each region. A stride is compugecbimparing an incoming
address to the one received immediately before, withindheesegion. Stride distances
of 0to2% in increasing powers of 2 in both directions from the addegesounted. The
strides larger thad® are counted as random; accesses with long strides and tlihse w
random srides tend to cause cache misses. The working setfsizegion is identified
by determining the minimum and maximum addresses encashter that region. The
number of addresses referring to each region is also stored.

In the case that a memory region is accessed in a random artiggous manner
each access may result in the creation of a new region, piegesiccurate profiling.
For the loop streams that contain large strides or accessearnhmemory in a seem-
ingly random manner (pointer chasing), we includaergeoperation in our technique.
The merge operation identifies groups of regions that haste been accessed a small
number of times, generates a synthetic address streansespirgy those regions, and
profiles the synthetic stream making sure to save all of therded information into
a single memory region. This approach minimizes the numbeggions and enables
better working set size and access pattern identification.

A given loop stream is comprised of multiple region streahad are interleaved in
a pattern that is stored in the pattern buffer. That pattesy bre a simple alternating
pattern as depicted in the pattern buffer in Figure 1 or it lnaymore complex and



require a regular expression or function to express it. The=at implementation uses a
pattern buffer of a fixed size and simply saves the order tgatdgions are encountered
until the buffer is full.#

The second phase, replay, is the process of synthesizinddnass stream that can
act as a representative proxy of the original. Each leveéhetterarchically structured
profile plays a part in the construction of the synthetic addistream for an application.
The region metrics are used to generate addresses, thengdaitéers in the loop are
used to interleave addresses and all of the loop streamsiacatenated to create a full
synthetic stream.

3 Results

In order to evaluate the effectiveness of PSnAP both theracgland efficiency are
evaluated and compared to past work. The accuracy is measinge simulated cache
hit rates and locality surfaces. PSnAP proves to be moreaiecthan any past attempts
of lossy compression or synthetic trace generation. Thedfithe resulting profiles is
shown to be small and a function of code complexity rathem tzxaecution time.

The evaluation uses a set of HPC benchmark kernals (listddhte 2) and a set
of memory hierarchies from recent HPC systems (listed irléTap The set of cache
structures varies the three main cache characteristis, léhe size and associativity.
The resulting cache structures are listed in Table 1. Strastone through three were
chosen as modern examples of small, medium and large sipbdsaStructures four
and five are the Opteron and Budapest respectively, bothaelgr modern chips.
Structure 6 is the cache structure used on the Power6 arthitefrom IBM and was
chosen to represent the state-of-the-art in memory sudrsydesign. The remainder
of the caches are variations on cache 3 with different linessand associativities. Our
experiments show that the synthetic traces generated agimgethod are very accurate
and the size requirements are extremely small.

3.1 Cache Simulation Results

The standard of accuracy measure for synthetic trace g@retachniques is a compar-
ison of cache simulation results between the synthetiestrand the original stream.
Previously, the majority of cache simulation results haaerbpresented using the cache
hit rate average across the entire execution of a benchmékvell understood that as
an execution proceeds, the cache hit rate of that executianges dynamically. This
may be due to changes in the code being executed (phases)chabges over time
due to data irregularity. Either way, estimating the sinityaof two address streams
over an entire execution may lead to error cancelation.rEiirecurred during various
program phases can cancel each other out causing the cxech# hit rates to appear
more accurate than they really are. Hence, to investigatadhuracy of our approach,
we have broken the execution and subsequent address stleamsnto sub streams;
one stream per relevant loop or function as appropriates Blgakdown enables us to
perform an accuracy comparison at a more granular level.

4 Currently we use 1K accesses as the size of the pattern buffer.



L1 L2 L3 Architecture

ID| Siz Line|Assoc| Siz Line|Assoc| Siz Line|Assoc
(KBj(Bytes (KBj(Bytes (KBj(Bytes

1 32| 128 2/1024 128 8 PowerPC
2 | 256 128 8/9216 128 12 IT2
3 64 64 2| 512 64 16 MIPS SiCorte
4 32 32 4| 128 64 2 Opteron
5 64 64 2| 512 64 16| 1024 64 48 Budapest
6 64 128 8/4096 128 8/16384 128 16| IBM P6
7 64 64 2| 512 64 8
8 64 64 2| 512 64 32
9 64 64 2| 512 32 16
10, 64 64 2| 512 128 16|

Table 1. A summary of the cache structures used for cache hit rate accueatigation.

Benchmark |Source Average (%)
Error
L1 L2 L3
CG NPB [19] 0.2 0.2 0.2
FT NPB 0.1 0.1 0.1
Stream HPCC 0.2 0.3 1.6
NBody Aarseth Code [20] 1.8 1.2 1.6
Jacobi3D Sci. Comp. at UCSD 2.7 3.0 3.4
HPL HPCC 0.0 0.0 0.0
Table 2. A summary of the combined cache hit rate comparisons for benclsnjatikerrors are

averaged as absolute values).

Using an existing framework [18] the observed address sti@aeach benchmark
was fed into a series of cache simulators. The cache sironfagiroduce cache hit rates
for each loop in the application. These cache hit rates argaced with the cache hit
rates that result from the simulation driven by the synthgéinerated streams.

Figure 2 presents the error between the cache hit ratesfobiterved and synthetic
address streams for the most significant loop in each ben&hifiae significance of a
loop is determined by the number of memory operations trsattrérom its full execu-
tion. The x-axis of the plots represent the different catchectures (the ids correspond
to those in Table 1). Each figure shows the synthetic hitlbhie(stripes) and observed
hit rate(solid yellow) as well as the absolute differenceneen the rates(black square).
The figures representing L1 cache data have an addition pfénéormation, the esti-
mated error that this synthetic stream could impose on @éufbrmance execution time
prediction(red asterisk). This is calculated using thedsaguation for average memory
access time found in Hennessy and Patterson [21]. The dathiponly available for
a subset of the cache structures.

Table 2 summarizes the error in cache hit rates averagedlheéthe relevant loops
of an application and all the cache structures used. Thd figtices along with the table
summarizing the cache hit rate errors for all benchmarksotetnate very clearly that
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high, as is expected of well-optimized HPC applications.
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the synthetic streams are very similar to the observed mgef performance. The
error is consistently below 3%. The CG, FT, Stream and HPIcherarks are almost
perfectly reproduced with this method; Jacobi3D and Nbodth thave much more
complex access patterns, and are still well representeel.eftor in memory access
time indicates a need for high accuracy, as any error in chithate is multiplied in
the full performance prediction. This shows that our appihda effective in generating
synthetic traces that mimic the original trace.

3.2 Locality Surfaces

Another method of evaluating the accuracy of syntheticesde to compare locality
surfaces. Locality surfaces are one of the most effectiuesw@visualize the temporal
and spatial locality characteristics of an address strétance, by comparing the lo-
cality surfaces of a synthetically generated stream aratiggnal counterpart, one can
compare whether two streams exhibit the same locality behdfithe locality surfaces



look similar in shape, one can conclude the synthetic stmaamics the original one in
terms of temporal and spatial locality.

We generate locality surfaces for both address streamsafdr benchmark. For
locality surface generation, we used the implementatistiileed by Grimsrud [17]
and limited the field of the surface to strides within 256 Bysmd distances within
64K. These limits still capture most of the interesting euderistics of the surface, and
keep the overhead bearable (locality surfaces are noglyi@xpensive to construct).
For our experiments, locality surfaces are generated on bpp basis for the same
reasons described above.

In Grimsrud [17], a locality surface is generated by tabotag large histogram.
Each address is compared to all of those that come afteriitiuist compared to it-
self. The bin in the histogram that corresponds to the saikdistance between each
address is incremented during the comparison. The stridheidistances between the
two memory addresses and the distance is the number of addrdmt were encoun-
tered between them in the stream. The locality surface is aepesentation of the
histogram.

Grimsrud presents a discussion of how to interpret the cleviatics of each sur-
face [17]. The keys for comparison are that the same cornstappear in both surfaces
and that their scale with respect to other constructs inuh@ace are similar. Key con-
structs aresequential ridge#ndicating a fixed stride through a data array aedaying
temporal ridgeindicating a value being reused over time.

Figure 3 presents a direct view of the locality surfaces fier benchmark CG for
both the synthetic address stream(left) generated by oomoaph and the original
stream(right). Figure 3 shows that the locality surfacehef $ynthetic stream is very
similar to original stream. In both surfaces the ratio ofesses with a stride between
—23 and2* are similar. The ridge down the center of the surface (a degagmpo-
ral ridge) represents temporally repeated accesses anesisr in both surfaces. The
synthetic stream has smoothed the ridge out rather tharctiefiethe true behavior
with two spikes. This can occur when the separate regioarsisehave become out of
synch with the pattern buffer. When this occurs the correcesses are represented
in the stream, but the distance between them may be skewisdnteresting to note
that the synthetic surface captures the sequential ritigejdge moving at a diagonal
from the center. Strided accesses such as this have a |degé @fi performance and
are therefore important to capture. PSnAP is able to remethe locality surfaces for
loops with high accuracy for the synthetic streams indigathat our approach does
not change the locality characteristics of the originatatn and exhibits very similar
behavior.

3.3 Comparison to Related Projects

Two categories of research warrant direct comparison taAPSh) trace compression

algorithms and 2) synthetic trace generation methods.lésssompression techniques
have perfect accuracy at the expense of lower compressiios end larger overhead

times as compared to its lossy counterpart. Lossy compressgorithms represent an
improvement in time and space overhead, with the additigoofe inaccuracy.
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Fig. 3. The locality surfaces resulting from the observed and synthetic tracéisefanost influ-
ential loop in CG.A.1.

BenchmarkFull Trace SizéStream/Profile SiZé6 Abs Err in Cache Hit Rateés
PGGTQ PSnAH PGGTC PSnAP
(GB)| (KB) (KB) (Ll)[(LZ)[(L3) (Ll)[(LZ)[(L?,)
CG.A 5.4 22,620 153 1.5/ 1.0 0.2 0.2 0.1/0.03
EP.A 7.4 9,369 55/ 0.1 0.7 0.2 3.0 2.6/ 1.7
FT.A 18.71 1,129 317 2.9 1.6 0.3 0.1 0.1/0.05
IS.A 3.1 700 58 3.1 2.1 0.2 2.6/ 1.9 1.8
MG.A 12. 5,033 324 3.8 2.9 0.8 1.1 0.9 0.6

Table 3. The compression achieved and the time required by PGGTC and owaappr

Sequitor [14] and Path Grammar Guided Trace CompressioG{RE} [15] are
both trace compression techniques developed specifiaailgddress traces, they are
lossless and lossy respectively. Both depend on the creatia context free grammar
(CFG) that represents repeated portions of the address Baquitor creates the CFG
dynamically and PGGTC creates the CFG using the control fleaply determined
through static analysis of the application.

Table 3 presents a summary of the results for data compreasammplished using
PGGTC for the NAS parallel benchmafk3 he data is extracted from Gao et al. [15].
It also includes the results of our approach in terms of the of the stream profiles.
This data shows that our approach has space requirements fignificantly smaller
than PGGTC, on average 60X smaller.

5 The measurements for CG and FT vary from table 2 to table 3. Two factmrse this dis-
crepancy. First, table 2 uses data collected on benchmarks run aolgsssingle processor
versus table 3 that is run across four. Second, and more importantiyribrs are calculated
differently. In order to do a direct comparison with PGGTC the errorshitetd are calculated
using the difference between the average hit rate recorded overtiteeagidress stream. The
datain table 2 is calculated by averaging the absolute error across allsiitiificant sections
of the stream, preventing any cancellation in error.



Table 3 also presents the percentage error between thetdnst fiar the original
stream and the cache hit rates for the synthetic traces afexddny both lossy portion
of PGGTC and our approach. Table shows that hit rates forriees$ generated by
the lossy portion of PGGTC is similar to the hit rates of thecés generated by our
approach. Both PGGTC and our approach maintained an eteoofess than 4% for
L1 cache hit rates, 2% for L2 and 1% for L3 compared to the pabaddress streams.
Our approach performed slightly better than PGGTC for Lhheac

Table 3 demonstrates that our approach is more effectivgpared to the compres-
sion techniques in two ways. First, the resulting size ofrttemory profiles is signifi-
cantly smaller than the compressed traces by PGGTC. Settwohemory profiles are
in a human readable format that enables them to be used tingaiht to the behavior
of the application.

In a comparable area of synthetic trace generation, Wein22] presented a syn-
thetic trace generation tool called Chameleon. Chamele@ale to reproduce cache
hit rates for a series of single level LRU caches for a sargpiraddress stream of the
NAS parallel benchmarks. Using the same cache structunespproach consistently
resulted in a lower absolute error between the hit ratesctoightraces and the synthetic
traces generated. For I1S.B.1 benchmark, Chameleon re@rtexximum error of 30%
in cache hit rates between the actual and synthetic traceeatéhe maximum error for
our method is around 10%.

Grimsrud [17], followed later by Sorenson [23], used loyaiurfaces and cache
hit rates to measure the accuracy of five categories of sijothédress stream gener-
ation techniques. The conclusion drawn by both Grimsrud@omnson was that the
synthetic trace generation techniques did not offer satisfy accuracy with respect to
representing the spatial and temporal locality charasttesi of real traces.

In order to compare our synthetic trace generation teclenigith those evaluated
by Sorenson, we implemented the described locality sunfaethod and generated a
surface for the same trace used in their comparison [16fdardo match more closely
the results found by Sorenson and Grimsrud, we used a traamel fromTwolf from
SPEC CPU2000 benchmark suite as the application. We useditiiess stream of the
most important loop of Twolf to generate locality surfacBsis essentially zooms in the
view of the surface and gives a higher level of detail. Mosxpthe Twolf benchmark
executes simulating annealing and produces a stream trelislifficult to summarize
in a concise way.

Figure 4 presents the locality surfaces resulting from th&eoved address stream
and the PSnAP synthetic stream. Figure 4 shows that thetiosakfaces of original
address stream and synthetic stream generated matctemfeerms of its shape, espe-
cially for the most dominant part of lower stride-acces3émwe most visible difference
is the peak at stride two, distance two (in the middle by thekbaall). PSnAP has
moved some of the stride two references to a distance of fodirogerestimated the
ratio of access with stride -16, making the ratio of accesséise center peak shrink.
This change, while visibly obvious, does not have a largecafin performance. Figure
4 demonstrates that the synthetic stream generated by ptoagh is able to maintain
similar spatial and temporal locality behavior of the ataddress stream.
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Fig. 4. Locality surfaces for Twolf for an observed stream and syntheticretgenerated by our
approach.

3.4 Size and Slowdown

The size and scaling behavior of the memory profiles are megoantages of the
PSnAP approach. Each of the benchmarks used for the accevalyation produced
memory profiles of less than 250MB. This amount of data caiydas shared among
collaborators. Even more interesting is that the profile &not a function of execution
time, but a function of code complexity.

Profile Sizes and Benchmark Execution Times
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Fig. 5. The profile sizes and execution times of each benchmark plotted agadeshexity
measure.

We define the complexity measure(CM) of an application to @mbination of the
number of loops and the number of distance memory regiordswihin those loops.
The following equation shows how those code attributes amgxined with attributes of
the profile format: LoopCount and RegionCount are attributethe code and the con-
stants 1000,80, and 3610 represent the maximum number ed bged by the pattern
buffer, region histogram, and stride order graph respelgtiv



CM = (1000 x LoopCount + (804 3610) * RegionCount)/(1000+ 80+ 3610) (1)

Figure 5 demonstrates that the profile sizes(blue dotsgmoraling to left axis) are
a linear function of CM(x-axis). It is obvious that the capending execution times(red
squares corresponding to right axis) are not dependenteo@th The execution time
is directly above or below the corresponding profile size.

The slowdown incurred during the instrumented runs is gfmé binary instrumen-
tation projects. The average observed slowdown is 169X:(@¥nmax: 292X). This
overhead presents a challenge for the use of this instrati@mt but it is important
to note that the measurements were taken using the initigleimentation of the tool
and that performance improvements are expected. Posisibftir code optimization as
well as sampling methods are being explored.

If we interpret these results in the light of the suitabilitiythis work for capturing
large address streams of long parallel running applicatiea note that, as to size, the
worst case we experienced (HPL) was about 1 MB, a more thaxndd@@pression over
the raw address storage rate (you could store 1,000 pratessoth in 1 GB) and also
note that this trace representation would NOT grow as a fomaif time but only as a
function of complexity and different functions accessedrythe program run (in the
case of HPL it would not grow at all regardless of runtime).té$ime, the slowdown
may seem onerous for a long running program, is not beyonetim of what in-depth
performance studies may entail. For example, it is desdribbg24], how one million
processor hours were used to characterize a strategicaaorkl

4 Related Work

Previous work in the area of synthetic stream generatioprsc wide area of projects,
some of which are described below. The independent refereraclel (IRM) [25, 26]
profiles an execution to determine the frequency with whimthepage in the working
set is accessed. A synthetic stream is then generated thiatiic®the same frequency
for each page. The accuracy resulting from this method idight enough because it
models each page independently and important patternsodaeality are lost. Wein-
berg[22] applied a modified version of IRM that recorded thabpbility of accessing
an area of memory using a tree structure that representszhsingly smaller areas of
memory. This model also suffers from inaccuracy due to ahilitato preserve key
patterns in the address stream, especially regular stedeesses resulting from loop
constructs, a characteristic we are able to preserve.

The distance model[27] models the probability of specifstatices between neigh-
boring addresses rather than modeling the frequency oftpeasiance of the addresses
themselves. Thiebaut et al[28] extended the distance meiey) a hyperbolic prob-
ability function to model the size of the steps between exfees. This approach can
maintain some of the statistical properties of the streamithz underlying patterns are
lost.

Agarwal[29] suggested the Partial Markov Model (PMM). Timedel depends on a
two state Markov chain, where state 0 produces strided aglelseand state 1 produces



random. The state transitions are controlled by a proltgbilnction. This model is
not able to capture relevant temporal locality traits of dldelress stream and does not
capture the behavior of two strided streams being callegrim & very common pattern.

Berg[30] modeled the reuse distance between addresseagaigirobability func-
tion. The reuse distance is the number of addresses acdestsegken accesses to the
same address. Recording reuse distance during tracingigansive operation and im-
practical for large scientific applications. The stackaliste model[2, 31] maintains an
ordered list of encountered addresses and models the fiitbattaccessing an address
some distance from the top of the list or stack. It is relatetthé reuse distance, because
the stack distance is the numbewiiquereferences which appear between accesses to
the same reference. Hassan[32] extends the stack modethgitdition of a Markov
chain and generates synthetic traces for the purpose dfigtirace-driven simulations
of cache memory. This approach is the most accurate of trsepted projects, but re-
sults are only presented for single level LRU caches, wiseogia approach is shown
to be accurate on a large collection of multi-level reaistache structures. Tracing
overhead time and space requirements are also not presprégdnting an in depth
comparison.

Grimsrud[17] and later Sorenson[16] evaluated the acguodicseveral address
stream models using locality surfaces. The surfaces aegt@alshpture both spatial and
temporal locality characteristics. We apply similar soefato our synthetics streams,
however, they are applied to portions of the execution rethen the entirety in order
to demonstrate that the behavior of applications changestiwe.

All of the above attempt to describe the address stream gfjglication in a holistic
manner. We are able to achieve a higher level of accuracy aimtamn complex patterns
in the streams, which prove important for simulation drieslysis.

The stack distance model, mentioned above, was used by \@astaal [33] to
perform compile-time based performance predictions. &pication of the stack dis-
tance model has no requirement for address trace storagthidvwork may be com-
plementary in that the PSnaP profiles can be partially gésgrfaom compile-time
statistics and yields higher accuracy than the stack disterodel.

5 Conclusion

We present a method of creating a compact profile of an apialiceo generate accurate
synthetic traces for the application. The profiles are a @rhpnd succinct summary
of a full address streams, more compact than any previoumagp. In this method,
rather than taking a holistic view of an address trace asique\attempts have, a full
trace of an application is broken down into constituentgasing the program structure
and memory access patterns.

We evaluate the accuracy of synthetic traces by compargig¢hche hit rates and
locality surfaces to those of observed traces. Our expatisrdemonstrate that PSnAP
synthetic traces closely mimic the observed address ti@cagplications in terms of
cache-ability. The average error between the hit rates/fthgtic and original traces is
2.2% for L1 caches, 1.9% for L2 caches and 1.8% for L3 cachese Mnportantly, the
locality surfaces for synthetic traces match the localitsfesces for the observed traces



indicating that our approach exhibits the same localityratieristics of the observed
streams.

We demonstrate that highly accurate synthetic traces cageberated from very

compact stream profiles. This combination of traits makisstiethod uniquely suitable
for performance modeling of large-scale scientific HPC waalls. Due to the charac-
teristic that the stream profiles’ size scales with code derily rather than runtime, it
is possible to collect a stream profile for even long runniagafiel applications.
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