
High-Frequency Simulations of Global Seismic Wave Propagation Using
SPECFEM3D_GLOBE

Laura Carringtona, Dimitri Komatitschb,c, Michael Laurenzanoa, Mustafa M Tikira ,

David Michéab, Nicolas Le Goffb, Allan Snavelya , Jeroen Trompd
a Performance Modeling and Characterization Lab, San Diego Supercomputer Center, La Jolla, CA, USA
b Université de Pau, CNRS and INRIA Magique-3D, Laboratoire de Modélisation et d'Imagerie en Géos-

ciences, Pau, France
c Institut Universitaire de France, Paris, France

d Seismological Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract

SPECFEM3D_GLOBE is a spectral-element application

enabling the simulation of global seismic wave propagation

in 3D anelastic, anisotropic, rotating and self-gravitating

Earth models at unprecedented resolution. A fundamental

challenge in global seismology is to model the propagation

of waves with periods between 1 and 2 seconds, the highest

frequency signals that can propagate clear across the Earth.

These waves help reveal the 3D structure of the Earth's deep

interior and can be compared to seismographic recordings.

We broke the 2 second barrier using the 62K processor

Ranger system at TACC. Indeed we broke the barrier using

just half of Ranger, by reaching a period of 1.84 seconds

with sustained 28.7 Tflops on 32K processors. We obtained

similar results on the XT4 Franklin system at NERSC and

the XT4 Kraken system at University of Tennessee Knox-

ville, while a similar run on the 28K processor Jaguar sys-

tem at ORNL, which has more memory per processor, sus-

tained 35.7 Tflops (a higher flops rate) with a 1.94 shortest

period. For the final run we obtained access to the ORNL

Petaflop System, a new very large XT5 just coming online,

and achieved 1.72 shortest period and 161 Tflops using

149,784 cores.

With this landmark calculation we have enabled a powerful

new tool for seismic wave simulation, one that operates in

the same frequency regimes as nature; in seismology there

is no need to pursue periods much smaller because higher

frequency signals do not propagate across the entire globe.

We employed performance modeling methods to identify

performance bottlenecks and worked through issues of par-

allel I/O and scalability. Improved mesh design and num-

bering results in excellent load balancing and few cache

misses. The primary achievements are not just the scalabil-

ity and high teraflops number, but a historic step towards

understanding the physics and chemistry of the Earth's inte-

rior at unprecedented resolution.

1 Introduction

The calculation of accurate synthetic seismograms

for 3D global Earth models poses a significant compu-

tational challenge, both in terms of the demands on the

numerical algorithm and with regards to computer

hardware (i.e., memory and CPU requirements). Glob-

al seismologists routinely analyze recorded seismic

signals with period between 1 and 2 seconds. Previous

large-scale simulations in 3D Earth models have only

been capable of reaching 3.5 seconds [11]. Therefore,

our objective is to simulate global seismic wave prop-

agation down to periods between 1 and 2 seconds, the

highest frequency signals that can propagate clear

across the Earth. Shorter periods get attenuated before

reaching the other side of the Earth
1
. These waves at

periods of 1 to 2 seconds, generated when large earth-

quakes (typically of magnitude 6.5 or above) occur in

the Earth, help reveal the detailed 3D structure of the

Earth's deep interior, in particular near the core-mantle

boundary (CMB), the inner core boundary (ICB), and

in the enigmatic inner core composed of solid iron.

The CMB region is highly heterogeneous with evi-

dence for ultra-low velocity zones, anisotropy, small-

scale topography, and a recently discovered post-

perovskite phase transition. The Earth's inner core ap-

pears to be anisotropic, with dramatic differences be-

tween its eastern and western hemispheres, and there

are suggestions that it rotates at a slightly different rate

than the Earth's mantle. Being able to simulate 3D

global seismic wave propagation at these frequencies

will thus help us understand and image these complex

structures, an endeavor that will enhance our under-

standing of the physics and chemistry of the Earth's in-

terior. The SPECFEM3D_GLOBE package has been

designed to compute these simulations.

Since the record-breaking 3.5 second frequency run

of 2003 which used the Earth Simulator[11], the team

has expended a major R&D effort towards breaking

the 2 second barrier. Achieving this goal required rad-

ical algorithmic changes to SPECFEM3D enabling

peta-scalability (beyond 10Ks of processors) and in-

1 A period of 1 second corresponds to a wavelength of compres-

sional waves of 15 km or less, and a wavelength of shear waves of

8 km or less.

corporation of new algorithms that are both more sci-

entifically accurate and more computationally scala-

ble. Recent algorithm and tuning work is described in

Section 4, previous such work involved optimizations

to reduce cache misses, a new mesh design to improve

spatial resolution for the seismic waves and to nearly

eliminate load imbalance, and improvements to the in-

ner Earth core resolution based upon an “inflated”

central cube instead of a real cube with flat faces [7];

reduction of the “central cube” bottleneck by cutting

the cube in two, reduction of MPI messages by 33%

inside each chunk by handling crust mantle and inner

core simultaneously, and finally non-iterative coupling

between fluid and solid based on the displacement

vector [4] instead of velocity as in previous versions

of the application. In addition to these enhancements

and optimizations, the model has been improved to in-

clude more complex Earth models and the capacity to

compute sensitivity kernels for inverse problems in

addition to forward problems [13]. Thus with the ad-

vanced domain science and computer science incorpo-

rated in SPECFEM3D it amounts to practically a new

code and we were able to break the 2 second barrier

using it.

The paper is laid out as follows: in Section 2, a de-

scription of the spectral-element method used to solve

the seismic wave propagation problem is given. Sec-

tion 3 briefly describes the current usage for the

SPECFEM3D application and challenges in moving to

shorter seismic periods. In Section 4, we describe the

challenges associated with running at large scales (e.g.

>10K+ cores), plus the performance analysis, code

modifications, and tuning we carried out to address

those challenges. Section 5 presents the results;

ground breaking simulations of global seismic wave

propagation down to wave periods of 1 to 2 seconds at

more than 160 Tflops sustained, and section 6 illus-

trates the deep investigations that will be carried out

now with this tool to explore the Earth’s inner struc-

tures.

2 Description of the method

To simulate global seismic wave propagation in 3D

anelastic, anisotropic, rotating and self-gravitating

Earth models we have developed and implemented a

spectral-element method (SEM). The SEM was intro-

duced more than twenty years ago in computational

fluid dynamics [14]. It has gained interest for prob-

lems related to 2-D [5, 15] and 3-D [8, 9, 12] seismic

wave propagation (for instance following a large

earthquake). The method accurately represents the

propagation of both body waves and surface waves,

and lends itself well to parallel computation with dis-

tributed memory [6, 11].

2.1 Equations of motion

We seek to determine the displacement field pro-

duced by an earthquake in a finite Earth model, as

shown in Figure 1. The equations of motion that gov-

ern the propagation of seismic waves in the Earth may

be solved based upon either a strong or a weak formu-

lation of the problem. In the strong formulation one

works directly with the equations of motion and asso-

ciated boundary conditions written in differential

form; this approach is used, for instance, in finite-

difference or global-pseudo spectral modeling tech-

niques. In the weak formulation one uses an integral

form of the equations of motion, as in finite-element

(FEM) and direct solution methods. The SEM is based

upon a weak formulation of the equations of motion.

Figure 1. Finite Earth model with volume Ω and

free surface ∂Ω. An artificial absorbing boundary

Γ is introduced if the physical model is not of finite

size, and n̂ denotes the unit outward normal to all

boundaries. The model can be fully heterogeneous

or composed of any number of layers.

2.1.1 Strong form

The displacement field s produced by an earthquake

is governed by the momentum equation

fst 2 (1)

The distribution of density is denoted by ρ. The

stress tensor Τ is linearly related to the displacement

gradient  s by Hooke's law, which in an elastic, ani-

sotropic solid may be written in the form

sc  : (2)

The elastic properties of the Earth model are deter-

mined by the fourth-order elastic tensor c, which has

21 independent components in the case of general ani-

sotropy.

The earthquake source is represented by the point

force f, which may be written in terms of a moment

tensor M

   tSxxf 0  (3)

The location of the point source is denoted by xs,

 0xx  denotes the Dirac delta distribution located

at xs, and the source-time function is given by S(t).

The momentum equation (1) must be solved subject

to a stress-free boundary condition at the Earth's sur-

face  :

0


n (4)

2.1.2 Weak form

Rather than using the equations of motion and asso-

ciated boundary conditions directly, one can use an in-

tegrated form. This is accomplished by dotting the

momentum equation (1) with an arbitrary vector w, in-

tegrating by parts over the model volume Ω, and im-

posing the stress-free boundary condition (4). This

gives

)()(:: 0

332 tSxwxdwxsdw t   


 (5)

where the stress tensor T is determined in terms of the

displacement gradient  s by Hooke's law (2). The

source term has 


 xwdf 3 been explicitly integrated

using the properties of the Dirac delta distribution.

2.2 Definition of the mesh

As in a classical FEM, the model volume Ω is sub-

divided into a number of non-overlapping elements

Ωe, e = 1,…,ne, as shown in Figure 2. Each hexahedral

volume element Ωe is mapped to a reference cube. The

mapping is defined by the so-called classical Jacobian

matrix. Points within this reference cube are denoted

by the vector ξ = (ξ,η,ζ), where −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1

and −1 ≤ ζ ≤ 1.

2.3 Representation of functions and numerical

integration on the elements

To solve the weak form of the equations of motion

(5), integrations over the volume Ω are subdivided in

terms of smaller integrals over the volume elements

Ωe. A high-degree Lagrange interpolant is used to ex-

press functions on the elements. The control points

needed in the definition of the Lagrange polynomials

of degree nℓ are chosen to be the classical nℓ +1 so-

called Gauss-Lobatto-Legendre (GLL) quadrature

points. Note that they always include +1 and −1;

therefore in a SEM some points always lie exactly on

the boundaries of the elements.

Figure 2. For the purpose of computations, the

Earth model Ω shown in Figure 1 is subdivided in-

to curved hexahedra whose shape is adapted to the

edges of the model ∂Ω and Γ and to the main geo-

logical interfaces.

Any smooth function f can then be interpolated in a

3D hexahedral element by triple products of Lagrange

polynomials of degree nℓ at these GLL points. In a

SEM for seismic wave propagation problems one typ-

ically uses a polynomial degree nℓ between 4 and 10 to

represent a function on the element [8]. The derivative

of function f can then be computed by computing the

derivative of the Lagrange polynomials. And numeri-

cal integration of this function over volume elements

Ωe may be approximated using the Gauss-Lobatto-

Legendre integration rule, whose weights can easily be

computed numerically and stored once and for all [3].

2.4 Assembling and marching the global sys-

tem in time

In the SEM mesh, grid points that lie on the sides,

edges, or corners of an element are shared amongst

neighboring elements, as illustrated in Figure 3.

Therefore, the need arises to distinguish between the

grid points that define an element, the local mesh, and

all the grid points in the model, many of which are

shared amongst several spectral elements, the global

mesh. One needs to determine a mapping between grid

points in the local mesh and grid points in the global

mesh; efficient routines are available for this purpose

from finite-element modeling. Before the system can

be marched forward in time, the contributions from all

the elements that share a common global grid point

need to be summed. In a traditional FEM this is re-

ferred to as the assembly of the system. Computation-

ally, this assembly stage is a costly part of the calcula-

tion on parallel computers, because information from

individual elements needs to be shared with neighbor-

ing elements, an operation that involves communica-

tion between distinct CPUs (based on message passing

with MPI in our case, see for instance Komatitsch et

al. [11]).

Figure 3. Illustration of the local and global meshes

for a four-element spectral-element discretization

with polynomial degree N = 4. Each spectral ele-

ment contains (N + 1)
3
 = 125 Gauss-Lobatto-

Legendre points that constitute the local mesh for

each element. These points are non-evenly spaced,

but have been drawn evenly spaced here for sim-

plicity. In the global mesh, points lying on faces,

edges or corners are shared between elements. The

contributions to the global system of degrees of

freedom, computed separately on each element,

have to be summed at these common points. Exact-

ly two elements share points inside a face, while

corners can be shared by any number of elements

depending on the topology of the mesh, which can

be non-structured.

Let U denote the displacement vector of the global

system, i.e., U contains the displacement vector at all

the grid points in the global mesh, classically referred

to as the global degrees of freedom of the system. The

ordinary differential equation that governs the time

dependence of the global system may be written in the

form

MÜ + KU = F, (6)

where M denotes the global mass matrix, K the

global stiffness matrix, and F the source term. Explicit

expressions for the local contributions to the mass and

stiffness matrices and further details on the construc-

tion of the global mass and stiffness matrices from

their elemental expression may be found for instance

in [8],[9].

A highly desirable property of a SEM, which allows

for a very significant reduction in the complexity and

cost of the algorithm, is the fact that the mass matrix

M is diagonal by construction. Therefore, no costly

linear system resolution algorithm is needed to march

the system in time.

Time discretization of the second-order ordinary

differential equation (6) is achieved based upon a clas-

sical explicit second-order finite-difference scheme,

which is conditionally stable (i.e., the time step has an

upper limit above which the simulation becomes un-

stable).

3 The SPECFEM3D GLOBE package

The SPECFEM3D_GLOBE package was designed

to simulate three-dimensional global and regional

seismic wave propagation based upon the SEM to

solve the equations described in Section 2. The pack-

age is maintained under GNU GPL license on a

source code release server at Computational Infra-

structure for Geodynamics (CIG) [1], and is being ac-

tively developed by a core group of approximately 15

scientists. The package has been extensively bench-

marked against semi-analytical normal-mode synthetic

seismograms (i.e., curves showing the evolution of

displacement with time after the earthquake at a given

mesh point) for spherically-symmetric Earth models

[9][10]. These benchmarks are very challenging be-

cause they involve solid-fluid domain decomposition

and coupling, attenuation, anisotropy, self-gravitation,

and the effect of the ocean layer located at the surface

of the Earth. Our simulations incorporate effects due

to topography and bathymetry as well as fluid-solid

boundaries, such as the ocean floor, the core-mantle

boundary (CMB), and the inner-core boundary (ICB).

Thus far, only SPECFEM3D_GLOBE has been capa-

ble of accurately incorporating all of these effects.

 SPECFEM3D_GLOBE consists of two major sub-

programs: meshfem3D, the mesher, which generates

the spectral-element mesh and specfem3D, the solver,

which uses the generated mesh to run the simulation.

The mesher is designed to generate a spectral-

element mesh for either regional or entire globe simu-

lations. This work focuses on simulations of the entire

globe, which are the most expensive and therefore by

far the most challenging. These simulations use a

spectral-element mesh which is based upon an analyti-

cal mapping from the cube to the sphere called the

‘gnomonic mapping’ or the ‘cubed sphere’ (see e.g.

[17],[16]), which splits the globe into 6 chunks, each

of which is further subdivided into n
2

mesh slices for a

total of 6 x n
2
 slices, as shown in Figure 4. The work

for the mesher code is distributed to a parallel system

by distributing the slices.

Figure 4. cubed-sphere mapping of the globe: here

we represent a mesh of 6 x 18
2
 = 1944 slices.

Given the shortest desired period, the grid spacing is

determined by a requirement of at least 5 grid points

(GLL points) per shortest seismic wavelength that we

want to accurately model, and the Courant stability

condition determines the upper bound of the associat-

ed time step. Current tomographic models reveal only

large-scale features of the Earth's interior, features

with dimensions much larger than the wavelengths of

1-second to 2-second waves.

4 Overcoming large-scale challenges

To meet our objective to simulate global seismic

wave propagation down to seismic wave periods of 1

to 2 seconds (i.e., up to maximum seismic frequencies

of 0.5 to 1 Hz) the mesher and solver would each re-

quire at least 37 TBs of data. This would require

around 62K cores of an HPC system having around

1.85 GB of memory per core available to the running

application. Running any application at this scale can

create bottlenecks and challenges not seen at smaller

scale.

There were four separate efforts working on the

SPECFEM3D_GLOBE package to enable efficient

runs at large scale. The first was to remove the I/O

bottleneck created between the mesher and solver. The

second was to make sure the mesh layout was optimal.

The third effort was to do some single processor opti-

mization on the computation routine that dominates

the runtime. The fourth effort was to implement a fast-

er way of assigning material properties to mesh ele-

ments and to design a simpler algorithm to locate

seismic recording stations in order to improve perfor-

mance and get higher overall FLOPS. These are each

expanded upon below.

4.1 Removing the I/O bottleneck

The original mode of running the SPECFEM3D

code was to first run the MESHFEM3D code which

generated the mesh and wrote it to local disks. The

SPECFEM3D code then ran immediately after this

and read in those local disk files. For a system with

good local disks this method of running can be quite

efficient (although sensitive to hardware failures of

these disks, or to the fact that one of them can be full

or almost full etc.). But many newly installed larger

systems use diskless nodes (to decrease power con-

sumption and to increase node stability by getting rid

of mechanical parts). This means that each of these

mesher files would then have to be written to a global-

ly mounted file system (for instance LUSTRE or

GPFS), creating a large bottleneck for both the mesher

and the solver due to I/O contention. The original (cur-

rent stable) version of the code (version 4.0) writes

and reads up to 51 files per core. At around 62K cores,

this corresponds to over 3.2 million files that would

have to be written and then subsequently read. Fur-

thermore, the amount of data transferred between the

two parts of the application will become a factor for a

large-scale simulation. Figure 5 shows a simple re-

gression model of the disk space used for a series of

resolutions along with the actual disk usage. This

model predicts that in order to obtain a simulation ac-

curate down to a seismic period of 2 seconds, over 14

TB of data would have to be transferred between the

mesher and the solver; and to obtain a simulation ac-

curate down to a seismic period of 1 second, over 108

TB of data transfer is required.

T otal Dis k S pac e Us ed for All C ores

1.E +06

1.E +07

1.E +08

1.E +09

0 100 200 300 400 500 600 700

S imulation R es olution

D
is

k
S

p
ac

e
(K

B
)

Measured

Model

Figure 5. Total disk space used for communication

between MESHFEM3D and SPECFEM3D in the

initial stable version of the package. Resolution =

256*17 / Wave Period. (Higher resolution is higher

frequency).

This amount of data transfer was deemed a major

performance bottleneck; the bottleneck was removed

by merging the mesher and solver into a single appli-

cation and making them communicate via shared

memory rather than with I/O. Merging the codes was

technically difficult because it brought challenges in

memory management and bookkeeping across the two

originally separate applications.

We were able to completely remove the use of I/O

to communicate between the two parts of the applica-

tion, eliminating the need to use any disk space for in-

termediate files along with the associated I/O penalties

of using these files. Initially, removing the I/O bottle-

neck created an additional challenge by using more

memory because in the initial merged version some of

the arrays from the mesher and from the solver had to

be present in memory simultaneously. This was prob-

lematic because the more memory per core required,

the more cores we will need to meet the goal of simu-

lations accurate down to seismic periods of 1 to 2 se-

conds. To reduce this memory usage, optimizations

were performed to lower the memory high water mark

of the merged application. This was achieved by reus-

ing the data structures allocated by the mesher in the

solver via allocating these data structures on the data

segment of the application as well as allocating some

of the data structures on the call stack such that

memory fragmentation would be prevented.

4.2 Point renumbering and multilevel Cuthill-

McKee sorting

In the SEM algorithm, one spends a lot of time

looping on all the elements (the so-called spectral el-

ements) of the 3D mesh and computing local contribu-

tions (local forces and resulting acceleration vectors)

at all the internal grid points of each element. Contri-

butions computed at element faces, edges or corners

shared between two or more elements are then

summed. Therefore in principle (i.e. mathematically)

one can loop on the elements in any order and get the

same final result because of the associativity and

commutativity of the sum operator. (Note that formal-

ly this ceases to be true on a computer because of dif-

ferent roundoff depending on the order in which the

sub-sums are performed, but in practice only the last

one or two decimals are affected and therefore one can

still choose any order, and the result is “almost” invar-

iant by permutation down to the last digits). We have

checked this experimentally: the same mesh computed

with different loop orders on the elements give two

sets of synthetic seismograms that are indistinguisha-

ble when plotted superimposed.

However, processors have caches and therefore it is

important to try to maximize cache reuse and also

maximize the effect of prefetching by trying to loop

on the neighbors of an element first once the calcula-

tions in that element are finished; this way we will in-

crease the probability for common faces, edges or cor-

ners to already be in the cache.

To increase spatial and temporal locality for the

global access of the points that are common to several

elements, the order in which we access the elements

can then be optimized. The goal is to find an order that

minimizes the memory strides for the global arrays.

We use the classical reverse Cuthill-McKee [17] algo-

rithm, which consists of renumbering the vertices of a

graph to reduce the bandwidth of its adjacency matrix.

Sorting the elements with the Cuthill-McKee algo-

rithm before renumbering the global index table also

increases the spatial and temporal locality: spatial lo-

cality, because the common points of the connected

elements will be stored statistically closer in memory;

temporal locality, because these common points will

be re-accessed sooner. We have designed an improved

version of that algorithm in which we use multi-level

sorting to define groups of typically 50 to 100 ele-

ments which all fit together in the L2 cache. Tests per-

formed with SPECFEM3D_GLOBE on the same

mesh with and without sorting show that unfortunately

we do not gain much based on sorting: at most 5% in

practice. But this is probably in fact good news: it

means that previous work we performed to reduce

cache misses based on point renumbering [7], which is

crucial, has worked very well and there are already so

few L2 cache misses that it is difficult to further re-

duce them. An additional explanation is the fact that in

the SEM we perform a lot of local operations in each

element therefore in percentage the time it takes to

move new data in the L2 cache is not crucial com-

pared to the total time it takes to perform the calcula-

tions in that element. This implies that using more

modern element renumbering algorithms such as Pea-

no/Hilbert curves instead of Cuthill-McKee sorting

would probably not help much.

4.3 Manual use of SSE instructions

The initial performance model for the

SPECFEM3D_GLOBE application indicates that a

large fraction of time (greater than 70%) is spent in

two computational routines in which we compute the

internal forces and related acceleration vectors in each

spectral element of the mesh in two regions of the

Earth: the large solid mantle and crust, and the smaller

fluid outer core. Inside these two routines, which have

a very similar structure, we perform small matrix-

matrix products (each matrix has a size of 5 x 5 typi-

cally) along cutplanes of 3D arrays (first cut along the

i axis, then cut along the j axis, and then cut along the

k axis).

It is therefore important to study how we can opti-

mize this crucial section of the two routines. When

talking about matrix-matrix products, one immediately

thinks about calling a vendor-optimized implementa-

tion of the Basic Linear Algebra Subprograms (BLAS-

3) subroutine SGEMM, but in our case this turns out

to be a poor idea for two reasons. First. the matrices

are very small (5 x 5) and therefore the overhead of

the BLAS routine is higher than what we can hope to

gain. Second, because we have to handle cutplanes

along three different directions of a 3D memory block,

several of these calls to BLAS would be for blocks not

linearly aligned in memory and would therefore first

require a memory copy to an aligned 2D block, before

the call; this would be more expensive than any poten-

tial gain from the BLAS routine.

Tests that we have performed have confirmed that

using BLAS calls actually significantly slows down

the code compared to our existing regular Fortran

loops. We therefore tried another option, which is to

use vector instructions provided by a SSE unit (for in-

stance on Intel or AMD processors) or an Al-

tivec/VMX unit (for instance on IBM PowerPC pro-

cessors). These units can handle four single-precision

floating-point operations in a vector and are very well

suited for our small matrix products since we can load

a vector unit with 4 floats, perform several “multiply

and add” (MADD) operations to compute the matrix-

matrix product, and store the results in four consecu-

tive elements of the result matrix (Note that MADD

does not exist explicitly in SSE but is rather imple-

mented as a combination of "multiply" and then

"add").

These three types of operations (load, MADD and

store) are standard in both SSE and Altivec. Note that,

since our matrices are of size 5 x 5 and not 4 x 4, we

use vector instructions for 4 out of each set of 5 values

and compute the last one serially in regular Fortran.

Also note that to improve performance we align our

3D blocks of 5 x 5 x 5 = 125 floats on 128 in memory

using padding with three dummy values set to zero.

This induces a negligible waste of memory of 128 /

125 = 2.4%.

The tests we performed show that we typically gain

between 15% and 20% (with respect to the stable ver-

sion 4.0 of our code) both with SSE on AMD proces-

sors and with Altivec on another machine equipped

with IBM PowerPC970 processors. The relative gain

is limited by two factors: first, the limited number of

vector registers present in the hardware (16 for SSE

and 32 for Altivec); and second the fact that modern

compilers can automatically unroll loops and generate

SSE or Altivec instructions to perform something sim-

ilar to what we implement manually; therefore the ref-

erence time may already include some of the effects of

using SSE instructions.

4.4 Optimizations to improve FLOPS

When using 10K+ cores, many things that have

worked fine for years in the application on tens or

hundreds of cores can start to either fail or become

very slow and significantly reduce performance and

may need to be partially or entirely redesigned. In

SPECFEM3D_GLOBE we found and fixed two such

problems:

1. Due to legacy code, the mesher was actually

run twice internally: once to generate the

mesh of elements (i.e., the geometry) and a

second time to populate this geometry with

material properties (i.e., the velocity of the

seismic waves and the density of the rocks in

each mesh element); this slowed down the

mesher by a factor of two, which may be ac-

ceptable on a small in-house cluster but not on

10K+ cores on a machine shared with other

users; we therefore merged these two steps

(assigning properties to each mesh element

right after its creation)

2. At low resolution, the mesher used to use a

costly non linear algorithm to locate the seis-

mic recording stations in the mesh (the loca-

tion of these stations may not fall exactly on a

grid point and at low resolution choosing the

closest point leads to a large error, therefore

one needs to use a more precise algorithm to

locate them between grid points; as a result, a

costly interpolation process also had to be

used in the solver to compute the wave field at

the right location between grid points. At very

high resolution, this resulted in a significant

slowdown of the whole application and signif-

icant load imbalance because some mesh slic-

es carry more seismic stations than others and

therefore would spend more time performing

the interpolation. We noticed that at high reso-

lution the best option was to suppress the cost-

ly interpolation process and to locate these

stations at the closest grid point because the

mesh is so dense that the error made is then

very small (and negligible from a geophysical

point of view)

5 Performance measurements and models

To meet our objective to simulate global seismic

wave propagation down to seismic wave periods under

2 seconds we needed to run on 30K cores or more. We

used four different systems to investigate how to reach

this goal.

The first is Texas Advanced Computing Center

(TACC) Sun Constellation Linux cluster, named

Ranger, which has 62,976 processing cores connected

with a full-CLOS InfiniBand interconnect. Each com-

pute node in Ranger consists of four 2.0 GHz quad-

core AMD Opteron processors with a theoretical peak

performance of 32 Gflops and 8 GBytes of memory.

The theoretical peak performance of Ranger is thus

about 504 Tflops (its Rmax is 326 Tflops).

The second is National Energy Research Scientific

Computing Center (NERSC) Cray XT4 system,

named Franklin. Each of its compute nodes consists

of a 2.6 GHz dual-core AMD Opteron processor with

a theoretical peak performance of 10.4 Gflops and 4

GBytes of memory. The theoretical peak performance

of Franklin is thus about 101.5 Tflops, its measured

Rmax is 85 Tflops. Each compute node is connected

to a dedicated SeaStar2 router through Hypertransport

with a 3D torus topology

The third one is National Institute for Computation-

al Sciences' (NICS) Kraken is a Cray XT4 system.

Kraken has a total of 4512 compute nodes where each

compute node contains a 2.3 GHz quad-core AMD

Opteron processor and 4 GB of memory resulting in a

total of 18048 compute cores. The theoretical peak

performance of Kraken is about 166 Tflops. (Rmax

unknown at time of publication). Kraken runs Com-

pute Node Linux (CNL) on each compute node. Each

node is connected to a Cray SeaStar router through

HyperTransport, and the SeaStars are all interconnect-

ed in a 3-D-torus topology.

The fourth one is Oak Ridge National Laboratory's

(ORNL) Cray XT4 system, named Jaguar. Jaguar has

a total of 7,832 XT4 compute nodes where each com-

pute node contains a quad-core 2.1 GHz AMD Op-

teron processor and 8GB of memory. The overall the-

oretical peak performance of Jaguar is 263 Tflops.

(Rmax is 205 Tflops). Each node is connected to a

Cray SeaStar router through HyperTransport, and the

SeaStars are all interconnected in a 3-D-torus topolo-

gy.

The initial step was to model the communication

behavior of SPECFEM3D. To accomplish this we ran

several experiments varying the input resolution and

the number of processors. In SPECFEM3D, resolution

can be changed based on an input parameter called

NEX_XI, which defines the number of elements at the

surface along the two sides of each of the six chunks,

whereas the number of processor cores can be changed

based on an input parameter called NPROC_XI, which

defines the number of MPI processor cores to be used

along the two sides of each of the six chunks. For our

initial investigation, we varied the processor count

from 24 to 1536 and the mesh resolution from 96 to

640 (which corresponds to minimum seismic periods

from 45.3 seconds to 6.8 seconds, respectively).

We measured the communication time for each run

with IPM (Integrated Performance Monitoring) tool

[2], which is a portable profiling tool that provides a

performance summary of the computations and com-

munications in a parallel program. IPM has extremely

low overhead and is scalable to thousands of proces-

sors, which makes it ideal for this purpose.

We measured the total communication time spent in

the main loop of the solver component for each run.

We ran these experiments on Franklin. Even though

we used only Franklin for our modeling runs, we ex-

pected similar behavior on other balanced systems for

SPECFEM3D. The results showed that the communi-

cation time spent in the main loop of the solver com-

ponent ranges from 1.9% to 4.2% (with an average of

3.2%) of the overall execution time for the runs. More

importantly, the lower communication percentages in-

dicate that SPECFEM3D_GLOBE is dominated by the

computation time and is a good candidate to scale up

to tens of thousands of processors before the commu-

nication time becomes a bottleneck.

The results of modeling runs also showed that the

total communication time spent for all processors

tends to increase both when the resolution increases

and when the number of processors increases. Howev-

er, it also shows that for a given resolution, the com-

munication time per core decreases as the number of

processor increases. Using these observations and

measured overall communication time for all proces-

sors, we fitted a function to the actual measured com-

munication times for a given resolution. Figure 6 pre-

sents the measured and modeled total communication

times for all cores for two resolutions. Other resolu-

tions were fitted with similar results. Based on the fit-

ted models for all resolutions used in our modeling

runs, we were also able to model the increase in over-

all communication time for all cores as the resolution

increases.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 300 400 500 600 700

Processor count

T
o

ta
l

M
P

I
ti

m
e

 b
y

 a
ll

 p
ro

c
e

s
s

o
rs

 (
s

)

Measured communication time res=144

Modeled communication time res=144

Measured communication time res=320

Modeled communication time res=320

Figure 6. Fitted curves for total communication

time (in seconds) for all cores for different resolu-

tions.

Using the overall model, we were able to predict the

total communication time for all cores of a hypothet-

ical SPECFEM3D run with 12K processors and a

resolution of NEX_XI = 1440 to be around 7.3E6 se-

conds, which corresponds to 599 seconds per core and

3.2% of overall execution time. Similarly, we predict

the communication time per core for a SPECFEM3D

run with 62K processors and a resolution of NEX_XI

= 4848 to be around 28K seconds, which also corre-

sponds to 4.7% of overall execution time. More im-

portantly, the results of modeling runs as well as the

models we devised using these results indicate that the

overall execution time of a SPECFEM3D run is domi-

nated by the computation time and communication is

not expected to be the bottleneck for scaling the appli-

cation to tens of thousands of processors.

Similar to the communication model we also mod-

eled the total runtime for all cores in order to estimate

the runtime of a run with a minimum seismic period

under 2 seconds and also confirm that the larger 12K

core run did not exhibit any unforeseen bottlenecks.

The results of modeling experiments showed that the

overall execution time totaled for all computation

cores is defined by the resolution used and is inde-

pendent of the number of cores used. That is, for a

given resolution, the execution time per core decreases

but the totaled execution time for all cores is almost

always the same.

Figure 7 shows the actual (e.g. measured) and fitted

total execution times for all cores (normalized with re-

spect to the minimum) for different resolutions.

Totaled E xec ution T imes for all C ores

1

51

101

151

201

251

301

res 96 res 144 res 288 res 320 res 512 res 640

R es olution (NE X _X I)

N
o

rm
a

li
z

e
d

T

im
e

Model

Measured

Figure 7. Predicted and actual total time spent for

all cores for different resolutions.

Figure 7 shows that total execution time of

SPECFEM3D for all cores increases significantly

(quadratic) as the resolution increases. Using the fitted

function, we were able to predict the totaled execution

time of all cores of SPECFEM3D run with a 12K pro-

cessors and a resolution of NEX_XI = 1440 within

12% error, indicating that no unforeseen bottlenecks

emerged as the scaling was increased.

Similar to modeling communication we developed a

model for the overall sustained FLOPS rate of the ap-

plication using the modeling runs. The results show

that the sustainable FLOPS rate for SPECFEM3D in-

creases directly proportional to the number of proces-

sors it is run on and for the same number of processors

slightly increases as the resolution increases.

6 Results of actual large simulations

The merged SPECFEM code run on the NERSC

system Franklin was successfully completed on

12,150 cores running for nearly 6 hours achieving

around 24 Tflops (44% of Rmax) to model a shortest

seismic period of 3 seconds. We experimented with

turning attenuation (i.e., loss of energy due to the fact

that the rocks are viscoelastic) on and off. Attenuation

was turned off initially to reduce the runtime in our in-

itial modeling runs. Once the initial modeling runs

confirmed the scaling, attenuation was turned on for

the final science runs. This resulted in a 1.8 increase in

execution time but only an almost imperceptible drop

in Tflops.

Next, simulation of a few seconds of an earthquake

in Argentina with attenuation turned on was run suc-

cessively on 9,600 cores (12.1 Tflops sustained),

12,696 cores (16.0 Tflops sustained), and then 17,496

cores of NICS’s Kraken system. The 17K core run

sustained 22.4 Tflops and had a seismic period length

of 2.52 seconds; temporarily a new resolution record.

The Tflops number in these and subsequent reported

runs was measured using PSiNSlight [18].

On the Jaguar system at ORNL we simulated the

same event and achieved a seismic period length of

1.94 seconds and a sustained 35.7 Tflops (our current

flops record) using 29K cores.

On the Ranger system at TACC the same event

achieved a seismic period length 1.84 seconds (our

current resolution record) with sustained 28.7 Tflops

using 32K cores.

Finally, we obtained “friendly user” access to the

new ORNL Petaflop System, the world’s largest XT5-

Kraken is being upgraded to XT5 the end of the year.

There are 200 cabinets, each holding 768 cores. They

are 2.3 GHZ with 2 GB/core. The nodes contain two

Barcelona Sockets with Seastar 2+ interconnect. The

interconnect is 4 GB/sec bi-directional on a 3-D torus,

theoretical peak is 1.4 P, Rmax unknown at time of

publication. Using this system we simulated the same

event and achieved 1.72 shortest period and 161

Tflops using 149,784 cores. This is the shortest wave

period ever obtained in seismic wave propagation, the

highest level of parallelism, the first sustained perfor-

mance of seismic wave propagation > 160 TFlops.

But of more significance, it now enables simulations

at the resolution of nature.

7 Future work and conclusion

The runs reported here are just precursors that mod-

eled a few seconds of each earthquake event. It takes

about 25 minute of real time and about 1 week we es-

timate of dedicated ORNL Petaflop (in other words a

true petascale calculation) to model wave propagation

clear through the Earth to predict structure.

The simulations we enabled, at under 2 seconds will

help reveal the detailed 3D structure of the Earth's

deep interior, in particular near the core-mantle

boundary (CMB), the inner core boundary (ICB), and

in the enigmatic inner core. Earth, help reveal the de-

tailed 3D structure of the Earth's deep interior, in par-

ticular near the core-mantle boundary (CMB), the in-

ner core boundary (ICB), and in the enigmatic inner

core composed of solid iron. The CMB region is high-

ly heterogeneous with evidence for ultra-low velocity

zones, anisotropy, small-scale topography, and a re-

cently discovered post-perovskite phase transition.

The Earth's inner core appears to be anisotropic, with

dramatic differences between its eastern and western

hemispheres, and there are suggestions that it rotates

at a slightly different rate than the Earth's mantle. Be-

ing able to simulate 3D global seismic wave propaga-

tion at these frequencies will thus help us understand

and image these complex structures, an endeavor that

will enhance our understanding of the physics and

chemistry of the Earth's interior.

Acknowledgements

Some improvements in the package were implemented

while D. Komatitsch and D. Michéa were visitors at

the Barcelona Supercomputing Center (BSC, Catalo-

nia, Spain) in the context of the HPC-Europa program.

The help of Jesús Labarta, Sergi Girona, José Cela,

David Vincente, and of their ParaVer analysis tool

was invaluable. The authors would also like to thank

Rogeli Grima from BSC and Sébastien Deldon from

the Portland Group Inc. for fruitful discussion regard-

ing Altivec and SSE instructions. This research used

resources of the National Energy Research Scientific

Computing Center, which is supported by the Office

of Science of the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231. This research

used resources of the National Center for Computa-

tional Sciences at Oak Ridge National Laboratory

(ORNL), which is supported by the Office of Science

of the U.S. Department of Energy under Contract No.

DE-AC05-00OR22725. We especially thank Don

Maxwell and Steve Poole of ORNL for their help and

time. This research used resources provided by the

National Institute for Computational Sciences, operat-

ed by the University of Tennessee and funded by the

National Science Foundation. We especially thank

Phil Andrews, Victor Hazelwood, Bruce Loftis, and

John Walsh of NICS and Arthur Funk of Cray for their

help and time.

A very special thank-you to John Levesque of Cray

stationed at ORNL; he ran the record setting calcula-

tions on the new ORNL Petaflop System. Chapeau!

This research used resources of Texas Advanced

Computing Center (TACC) at The University of Texas

at Austin. We especially thank John R. Boisseau,

Tommy Minyard, and Karl W. Schulz of TACC for

their help and time.

This work was supported in part by Performance

Evaluation Research Institute (PERI), (DE-FC02-

06ER25760), a DoE Office of Science SciDAC2 Insti-

tute, The Cyberinfrastructure Evaluation Center,

(NSF-OCI-0516162), and Workshop on Petascale

Computing and the Geosciences, (NSF-GEO-

0621611). This material is based in part upon research

supported by French ANR grant NUMASIS ANR-05-

CIGC-002 and European FP6 Marie Curie Interna-

tional Reintegration Grant MIRG-CT-2005-017461.

References

1. Computational Infastructure for Geodynamics (CIG).

2. IPM: Integrated Performance Monitoring.

3. Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang,

T.A. Spectral methods in fluid dynamics. Springer-

Verlag, New York, 1998.

4. Chaljub, E. and Valette, B. Spectral element modelling

of three-dimensional wave propagation in a self-

gravitating Earth with an arbitrarily stratified outer core.

Geophys. J. Int., 158 (131-141).

5. Cohen, G., Joly, P. and Tordjman, N. Construction and

analysis of higher-order finite elements with mass lump-

ing for the wave equation. Proceedings of the second in-

ternational conference on mathematical and numerical

aspects of wave propagation, SIAM. 152-160.

6. Fischer, P.F. and Rønquist, E.M. Spectral-element

methods for large scale parallel Navier-Stokes calcula-

tions. Comput. Methods Appl. Mech. Engrg., 116. 69-76.

7. Komatitsch, D., Labarta, J. and Michéa, D. A 21 billion

degrees of freedom, 2.5 terabytes simulation of seismic

wave propagation in the inner core of the Earth on Ma-

reNostrum. Proceedings of the 8th World Congress on

Computational Mechanics (WCCM8) and the 5th Euro-

pean Congress on Computational Methods in Applied

Sciences and Engineering (ECCOMAS 2008).

8. Komatitsch, D. and Tromp, J. Introduction to the spec-

tral-element method for 3-D seismic wave propagation.

Geophys. J. Int., 139 (3). 806-822.

9. Komatitsch, D. and Tromp, J. Spectral-element simula-

tions of global seismic wave propagation-I. Validation.

Geophys. J. Int., 149 (2). 390-412.

10. Komatitsch, D. and Tromp, J. Spectral-element Simula-

tions of Global Seismic Wave Propagation-II. 3-D Mod-

els, Oceans, Rotation, and Self-Gravitation. Geophys. J.

Int., 150. 303-318.

11. Komatitsch, D., Tsuboi, S., Ji, C. and Tromp, J., A 14.6

billion degrees of freedom, 5 teraflops, 2.5 terabyte

earthquake simulation on the Earth Simulator. in Pro-

ceedings of the ACM/IEEE Supercomputing SC'2003

conference, (Phoenix, Arizona, USA, 2003).

12. Komatitsch, D. and Vilotte, J.P. The Spectral-element

method: an efficient tool to simulate the seismic re-

sponse of 2D and 3D geological structures. Bull. Seis-

mol. Soc. Am., 88 (2). 368-392.

13. Liu, Q. and Tromp, J. Finite-Frequency Kernel Based on

Adjoint Methods. Bulletin of the Seismological Society

of America, 96 (6). 2383-2397.

14. Patera, A.T. A Spectral element method for fluid dy-

namics: laminar flow in a channel expansion. J. Comput.

Phys., 54. 468-488.

15. Priolo, E., Carcione, J.M. and Seriani, G. Numerical

simulation of interface waves by high-order spectral

modeling techniques. J. Acoust. Soc. Am., 95 (2). 681-

693.

16. Ronchi, C., Ianoco, R. and Paolucci, P.S. The "Cubed

Sphere": a new method for the solution of partial differ-

ential equations in spherical geometry. J. Comput. Phys.,

124. 94-114.

17. Sadourny, R. Conservative finite-difference approxima-

tions of the primitive equations on quasi-uniform spheri-

cal grids. Mon. Wea. Rev, 100. 136-144.

18. PSiNS Tracer and Simulator, Performance Modeling

and Characterization Lab, SDSC, San Diego, CA,

http://www.sdsc.edu/pmac/projects/psins.html

