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Abstract 

SPECFEM3D_GLOBE is a spectral-element application 

enabling the simulation of global seismic wave propagation 

in 3D anelastic, anisotropic, rotating and self-gravitating 

Earth models at unprecedented resolution. A fundamental 

challenge in global seismology is to model the propagation 

of waves with periods between 1 and 2 seconds, the highest 

frequency signals that can propagate clear across the Earth. 

These waves help reveal the 3D structure of the Earth's deep 

interior and can be compared to seismographic recordings. 

We broke the 2 second barrier using the 62K processor 

Ranger system at TACC. Indeed we broke the barrier using 

just half of Ranger, by reaching a period of 1.84 seconds 

with sustained 28.7 Tflops on 32K processors.  We obtained 

similar results on the XT4 Franklin system at NERSC and 

the XT4 Kraken system at University of Tennessee Knox-

ville, while a similar run on the 28K processor Jaguar sys-

tem at ORNL, which has more memory per processor, sus-

tained 35.7 Tflops (a higher flops rate) with a 1.94 shortest 

period. For the final run we obtained access to the ORNL 

Petaflop System, a new very large XT5 just coming online, 

and achieved 1.72 shortest period and 161 Tflops using 

149,784 cores. 

With this landmark calculation we have enabled a powerful 

new tool for seismic wave simulation, one that operates in 

the same frequency regimes as nature; in seismology there 

is no need to pursue periods much smaller because higher 

frequency signals do not propagate across the entire globe. 

We employed performance modeling methods to identify 

performance bottlenecks and worked through issues of par-

allel I/O and scalability. Improved mesh design and num-

bering results in excellent load balancing and few cache 

misses. The primary achievements are not just the scalabil-

ity and high teraflops number, but a historic step towards 

understanding the physics and chemistry of the Earth's inte-

rior at unprecedented resolution. 

1 Introduction 

The calculation of accurate synthetic seismograms 

for 3D global Earth models poses a significant compu-

tational challenge, both in terms of the demands on the 

numerical algorithm and with regards to computer 

hardware (i.e., memory and CPU requirements). Glob-

al seismologists routinely analyze recorded seismic 

signals with period between 1 and 2 seconds. Previous 

large-scale simulations in 3D Earth models have only 

been capable of reaching 3.5 seconds [11].  Therefore, 

our objective is to simulate global seismic wave prop-

agation down to periods between 1 and 2 seconds, the 

highest frequency signals that can propagate clear 

across the Earth. Shorter periods get attenuated before 

reaching the other side of the Earth
1
. These waves at 

periods of 1 to 2 seconds, generated when large earth-

quakes (typically of magnitude 6.5 or above) occur in 

the Earth, help reveal the detailed 3D structure of the 

Earth's deep interior, in particular near the core-mantle 

boundary (CMB), the inner core boundary (ICB), and 

in the enigmatic inner core composed of solid iron. 

The CMB region is highly heterogeneous with evi-

dence for ultra-low velocity zones, anisotropy, small-

scale topography, and a recently discovered post-

perovskite phase transition. The Earth's inner core ap-

pears to be anisotropic, with dramatic differences be-

tween its eastern and western hemispheres, and there 

are suggestions that it rotates at a slightly different rate 

than the Earth's mantle. Being able to simulate 3D 

global seismic wave propagation at these frequencies 

will thus help us understand and image these complex 

structures, an endeavor that will enhance our under-

standing of the physics and chemistry of the Earth's in-

terior.  The SPECFEM3D_GLOBE package has been 

designed to compute these simulations.  

Since the record-breaking 3.5 second frequency run 

of 2003 which used the Earth Simulator[11], the team 

has expended a major R&D effort towards breaking 

the 2 second barrier. Achieving this goal required rad-

ical algorithmic changes to SPECFEM3D enabling 

peta-scalability (beyond 10Ks of processors) and in-

                                                           

 
1 A period of 1 second corresponds to a wavelength of compres-

sional waves of 15 km or less, and a wavelength of shear waves of 

8 km or less. 



corporation of new algorithms that are both more sci-

entifically accurate and more computationally scala-

ble. Recent algorithm and tuning work is described in 

Section 4, previous such work involved optimizations 

to reduce cache misses, a new mesh design to improve 

spatial resolution for the seismic waves and to nearly 

eliminate load imbalance, and improvements to the in-

ner Earth core resolution based upon an “inflated” 

central cube instead of a real cube with flat faces [7]; 

reduction of the “central cube” bottleneck by cutting 

the cube in two, reduction of MPI messages by 33% 

inside each chunk by handling crust mantle and inner 

core simultaneously, and finally non-iterative coupling 

between fluid and solid based on the displacement 

vector [4] instead of velocity as in previous versions 

of the application. In addition to these enhancements 

and optimizations, the model has been improved to in-

clude more complex Earth models and the capacity to 

compute sensitivity kernels for inverse problems in 

addition to forward problems [13]. Thus with the ad-

vanced domain science and computer science incorpo-

rated in SPECFEM3D it amounts to practically a new 

code and we were able to break the 2 second barrier 

using it.   

The paper is laid out as follows: in Section 2, a de-

scription of the spectral-element method used to solve 

the seismic wave propagation problem is given. Sec-

tion 3 briefly describes the current usage for the 

SPECFEM3D application and challenges in moving to 

shorter seismic periods. In Section 4, we describe the 

challenges associated with running at large scales (e.g. 

>10K+ cores), plus the performance analysis, code 

modifications, and tuning we carried out to address 

those challenges. Section 5 presents the results; 

ground breaking simulations of global seismic wave 

propagation down to wave periods of 1 to 2 seconds at 

more than 160 Tflops sustained, and section 6 illus-

trates the deep investigations that will be carried out 

now with this tool to explore the Earth’s inner struc-

tures. 

2 Description of the method 

To simulate global seismic wave propagation in 3D 

anelastic, anisotropic, rotating and self-gravitating 

Earth models we have developed and implemented a 

spectral-element method (SEM). The SEM was intro-

duced more than twenty years ago in computational 

fluid dynamics [14]. It has gained interest for prob-

lems related to 2-D [5, 15]  and 3-D [8, 9, 12]  seismic 

wave propagation (for instance following a large 

earthquake). The method accurately represents the 

propagation of both body waves and surface waves, 

and lends itself well to parallel computation with dis-

tributed memory [6, 11]. 

2.1 Equations of motion 

We seek to determine the displacement field pro-

duced by an earthquake in a finite Earth model, as 

shown in Figure 1. The equations of motion that gov-

ern the propagation of seismic waves in the Earth may 

be solved based upon either a strong or a weak formu-

lation of the problem. In the strong formulation one 

works directly with the equations of motion and asso-

ciated boundary conditions written in differential 

form; this approach is used, for instance, in finite-

difference or global-pseudo spectral modeling tech-

niques. In the weak formulation one uses an integral 

form of the equations of motion, as in finite-element 

(FEM) and direct solution methods. The SEM is based 

upon a weak formulation of the equations of motion. 

 

Figure 1. Finite Earth model with volume Ω and 

free surface ∂Ω. An artificial absorbing boundary 

Γ is introduced if the physical model is not of finite 

size, and n̂  denotes the unit outward normal to all 

boundaries. The model can be fully heterogeneous 

or composed of any number of layers. 

2.1.1 Strong form 

The displacement field s produced by an earthquake 

is governed by the momentum equation 

fst 2          (1)  

The distribution of density is denoted by ρ. The 

stress tensor Τ is linearly related to the displacement 

gradient  s by Hooke's law, which in an elastic, ani-

sotropic solid may be written in the form 

sc  :          (2) 

The elastic properties of the Earth model are deter-

mined by the fourth-order elastic tensor c, which has 



21 independent components in the case of general ani-

sotropy. 

The earthquake source is represented by the point 

force f, which may be written in terms of a moment 

tensor M  

   tSxxf 0          (3) 

The location of the point source is denoted by xs, 

 0xx   denotes the Dirac delta distribution located 

at xs, and the source-time function is given by S(t). 

The momentum equation (1) must be solved subject 

to a stress-free boundary condition at the Earth's sur-

face  : 

0


n          (4) 

2.1.2 Weak form 

Rather than using the equations of motion and asso-

ciated boundary conditions directly, one can use an in-

tegrated form. This is accomplished by dotting the 

momentum equation (1) with an arbitrary vector w, in-

tegrating by parts over the model volume Ω, and im-

posing the stress-free boundary condition (4). This 

gives 

)()(:: 0

332 tSxwxdwxsdw t   


      (5) 

where the stress tensor T is determined in terms of the 

displacement gradient  s by Hooke's law (2). The 

source term has 


 xwdf 3  been explicitly integrated 

using the properties of the Dirac delta distribution. 

2.2 Definition of the mesh 

As in a classical FEM, the model volume Ω is sub-

divided into a number of non-overlapping elements 

Ωe, e = 1,…,ne, as shown in Figure 2. Each hexahedral 

volume element Ωe is mapped to a reference cube. The 

mapping is defined by the so-called classical Jacobian 

matrix. Points within this reference cube are denoted 

by the vector ξ = (ξ,η,ζ), where −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1 

and −1 ≤ ζ ≤ 1. 

2.3 Representation of functions and numerical 

integration on the elements 

To solve the weak form of the equations of motion 

(5), integrations over the volume Ω are subdivided in 

terms of smaller integrals over the volume elements 

Ωe. A high-degree Lagrange interpolant is used to ex-

press functions on the elements. The control points 

needed in the definition of the Lagrange polynomials 

of degree nℓ are chosen to be the classical nℓ +1 so-

called Gauss-Lobatto-Legendre (GLL) quadrature 

points. Note that they always include +1 and −1; 

therefore in a SEM some points always lie exactly on 

the boundaries of the elements. 

 

Figure 2. For the purpose of computations, the 

Earth model Ω shown in Figure 1 is subdivided in-

to curved hexahedra whose shape is adapted to the 

edges of the model ∂Ω and Γ and to the main geo-

logical interfaces. 

Any smooth function f can then be interpolated in a 

3D hexahedral element by triple products of Lagrange 

polynomials of degree nℓ at these GLL points. In a 

SEM for seismic wave propagation problems one typ-

ically uses a polynomial degree nℓ between 4 and 10 to 

represent a function on the element [8]. The derivative 

of function f can then be computed by computing the 

derivative of the Lagrange polynomials. And numeri-

cal integration of this function over volume elements 

Ωe may be approximated using the Gauss-Lobatto-

Legendre integration rule, whose weights can easily be 

computed numerically and stored once and for all [3]. 

2.4 Assembling and marching the global sys-

tem in time 

In the SEM mesh, grid points that lie on the sides, 

edges, or corners of an element are shared amongst 

neighboring elements, as illustrated in Figure 3. 

Therefore, the need arises to distinguish between the 

grid points that define an element, the local mesh, and 

all the grid points in the model, many of which are 

shared amongst several spectral elements, the global 

mesh. One needs to determine a mapping between grid 

points in the local mesh and grid points in the global 

mesh; efficient routines are available for this purpose 

from finite-element modeling. Before the system can 

be marched forward in time, the contributions from all 

the elements that share a common global grid point 

need to be summed. In a traditional FEM this is re-

ferred to as the assembly of the system. Computation-



ally, this assembly stage is a costly part of the calcula-

tion on parallel computers, because information from 

individual elements needs to be shared with neighbor-

ing elements, an operation that involves communica-

tion between distinct CPUs (based on message passing 

with MPI in our case, see for instance Komatitsch et 

al. [11]). 

 

Figure 3. Illustration of the local and global meshes 

for a four-element spectral-element discretization 

with polynomial degree N = 4. Each spectral ele-

ment contains (N + 1)
3
 = 125 Gauss-Lobatto-

Legendre points that constitute the local mesh for 

each element. These points are non-evenly spaced, 

but have been drawn evenly spaced here for sim-

plicity. In the global mesh, points lying on faces, 

edges or corners are shared between elements. The 

contributions to the global system of degrees of 

freedom, computed separately on each element, 

have to be summed at these common points. Exact-

ly two elements share points inside a face, while 

corners can be shared by any number of elements 

depending on the topology of the mesh, which can 

be non-structured. 

Let U denote the displacement vector of the global 

system, i.e., U contains the displacement vector at all 

the grid points in the global mesh, classically referred 

to as the global degrees of freedom of the system. The 

ordinary differential equation that governs the time 

dependence of the global system may be written in the 

form 

MÜ + KU = F,         (6) 

where M denotes the global mass matrix, K the 

global stiffness matrix, and F the source term. Explicit 

expressions for the local contributions to the mass and 

stiffness matrices and further details on the construc-

tion of the global mass and stiffness matrices from 

their elemental expression may be found for instance 

in [8],[9]. 

A highly desirable property of a SEM, which allows 

for a very significant reduction in the complexity and 

cost of the algorithm, is the fact that the mass matrix 

M is diagonal by construction. Therefore, no costly 

linear system resolution algorithm is needed to march 

the system in time. 

Time discretization of the second-order ordinary 

differential equation (6) is achieved based upon a clas-

sical explicit second-order finite-difference scheme, 

which is conditionally stable (i.e., the time step has an 

upper limit above which the simulation becomes un-

stable). 

3 The SPECFEM3D GLOBE package 

The SPECFEM3D_GLOBE package was designed 

to simulate three-dimensional global and regional 

seismic wave propagation based upon the SEM to 

solve the equations described in Section 2. The pack-

age  is maintained under GNU GPL license on a 

source code release server at Computational Infra-

structure for Geodynamics (CIG) [1], and is being ac-

tively developed by a core group of approximately 15 

scientists. The package has been extensively bench-

marked against semi-analytical normal-mode synthetic 

seismograms (i.e., curves showing the evolution of 

displacement with time after the earthquake at a given 

mesh point) for spherically-symmetric Earth models 

[9][10]. These benchmarks are very challenging be-

cause they involve solid-fluid domain decomposition 

and coupling, attenuation, anisotropy, self-gravitation, 

and the effect of the ocean layer located at the surface 

of the Earth. Our simulations incorporate effects due 

to topography and bathymetry as well as fluid-solid 

boundaries, such as the ocean floor, the core-mantle 

boundary (CMB), and the inner-core boundary (ICB). 

Thus far, only SPECFEM3D_GLOBE has been capa-

ble of accurately incorporating all of these effects.  

 SPECFEM3D_GLOBE consists of two major sub-

programs: meshfem3D, the mesher, which generates 

the spectral-element mesh and specfem3D, the solver, 

which uses the generated mesh to run the simulation.  

The mesher is designed to generate a spectral-

element mesh for either regional or entire globe simu-

lations. This work focuses on simulations of the entire 

globe, which are the most expensive and therefore by 

far the most challenging. These simulations use a 

spectral-element mesh which is based upon an analyti-

cal mapping from the cube to the sphere called the 



‘gnomonic mapping’ or the ‘cubed sphere’ ( see e.g. 

[17],[16]), which splits the globe into 6 chunks, each 

of which is further subdivided into n
2 

mesh slices for a 

total of 6 x n
2
 slices, as shown in Figure 4. The work 

for the mesher code is distributed to a parallel system 

by distributing the slices.  

 

Figure 4. cubed-sphere mapping of the globe: here 

we represent a mesh of  6 x 18
2
 = 1944 slices. 

Given the shortest desired period, the grid spacing is 

determined by a requirement of at least 5 grid points 

(GLL points) per shortest seismic wavelength that we 

want to accurately model, and the Courant stability 

condition determines the upper bound of the associat-

ed time step. Current tomographic models reveal only 

large-scale features of the Earth's interior, features 

with dimensions much larger than the wavelengths of 

1-second to 2-second waves.  

4 Overcoming large-scale challenges 

To meet our objective to simulate global seismic 

wave propagation down to seismic wave periods of 1 

to 2 seconds (i.e., up to maximum seismic frequencies 

of 0.5 to 1 Hz) the mesher and solver would each re-

quire at least 37 TBs of data. This would require 

around 62K cores of an HPC system having around 

1.85 GB of memory per core available to the running 

application. Running any application at this scale can 

create bottlenecks and challenges not seen at smaller 

scale.  

There were four separate efforts working on the 

SPECFEM3D_GLOBE package to enable efficient 

runs at large scale. The first was to remove the I/O 

bottleneck created between the mesher and solver. The 

second was to make sure the mesh layout was optimal. 

The third effort was to do some single processor opti-

mization on the computation routine that dominates 

the runtime. The fourth effort was to implement a fast-

er way of assigning material properties to mesh ele-

ments and to design a simpler algorithm to locate 

seismic recording stations in order to improve perfor-

mance and get higher overall FLOPS. These are each 

expanded upon below. 

4.1 Removing the I/O bottleneck 

The original mode of running the SPECFEM3D 

code was to first run the MESHFEM3D code which 

generated the mesh and wrote it to local disks. The 

SPECFEM3D code then ran immediately after this 

and read in those local disk files. For a system with 

good local disks this method of running can be quite 

efficient (although sensitive to hardware failures of 

these disks, or to the fact that one of them can be full 

or almost full etc.). But many newly installed larger 

systems use diskless nodes (to decrease power con-

sumption and to increase node stability by getting rid 

of mechanical parts). This means that each of these 

mesher files would then have to be written to a global-

ly mounted file system (for instance LUSTRE or 

GPFS), creating a large bottleneck for both the mesher 

and the solver due to I/O contention. The original (cur-

rent stable) version of the code (version 4.0) writes 

and reads up to 51 files per core. At around 62K cores, 

this corresponds to over 3.2 million files that would 

have to be written and then subsequently read. Fur-

thermore, the amount of data transferred between the 

two parts of the application will become a factor for a 

large-scale simulation. Figure 5 shows a simple re-

gression model of the disk space used for a series of 

resolutions along with the actual disk usage. This 

model predicts that in order to obtain a simulation ac-

curate down to a seismic period of 2 seconds, over 14 

TB of data would have to be transferred between the 

mesher and the solver; and to obtain a simulation ac-

curate down to a seismic period of 1 second, over 108 

TB of data transfer is required. 
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Figure 5. Total disk space used for communication 

between MESHFEM3D and SPECFEM3D in the 

initial stable version of the package.  Resolution = 

256*17 / Wave Period. (Higher resolution is higher 

frequency). 

This amount of data transfer was deemed a major 

performance bottleneck; the bottleneck was removed 

by merging the mesher and solver into a single appli-

cation and making them communicate via shared 

memory rather than with I/O. Merging the codes was 

technically difficult because it brought challenges in 

memory management and bookkeeping across the two 

originally separate applications.  

We were able to completely remove the use of I/O 

to communicate between the two parts of the applica-

tion, eliminating the need to use any disk space for in-

termediate files along with the associated I/O penalties 

of using these files. Initially, removing the I/O bottle-

neck created an additional challenge by using more 

memory because in the initial merged version some of 

the arrays from the mesher and from the solver had to 

be present in memory simultaneously. This was prob-

lematic because the more memory per core required, 

the more cores we will need to meet the goal of simu-

lations accurate down to seismic periods of 1 to 2 se-

conds. To reduce this memory usage, optimizations 

were performed to lower the memory high water mark 

of the merged application. This was achieved by reus-

ing the data structures allocated by the mesher in the 

solver via allocating these data structures on the  data 

segment of the application as well as allocating some 

of the data structures on the call stack such that 

memory fragmentation would be prevented.  

4.2 Point renumbering and multilevel Cuthill-

McKee sorting 

In the SEM algorithm, one spends a lot of time 

looping on all the elements (the so-called spectral el-

ements) of the 3D mesh and computing local contribu-

tions (local forces and resulting acceleration vectors) 

at all the internal grid points of each element. Contri-

butions computed at element faces, edges or corners 

shared between two or more elements are then 

summed. Therefore in principle (i.e. mathematically) 

one can loop on the elements in any order and get the 

same final result because of the associativity and 

commutativity of the sum operator. (Note that formal-

ly this ceases to be true on a computer because of dif-

ferent roundoff depending on the order in which the 

sub-sums are performed, but in practice only the last 

one or two decimals are affected and therefore one can 

still choose any order, and the result is “almost” invar-

iant by permutation down to the last digits). We have 

checked this experimentally: the same mesh computed 

with different loop orders on the elements give two 

sets of synthetic seismograms that are indistinguisha-

ble when plotted superimposed. 

However, processors have caches and therefore it is 

important to try to maximize cache reuse and also 

maximize the effect of prefetching by trying to loop 

on the neighbors of an element first once the calcula-

tions in that element are finished; this way we will in-

crease the probability for common faces, edges or cor-

ners to already be in the cache.  

To increase spatial and temporal locality for the 

global access of the points that are common to several 

elements, the order in which we access the elements 

can then be optimized. The goal is to find an order that 

minimizes the memory strides for the global arrays. 

We use the classical reverse Cuthill-McKee [17] algo-

rithm, which consists of renumbering the vertices of a 

graph to reduce the bandwidth of its adjacency matrix. 

Sorting the elements with the Cuthill-McKee algo-

rithm before renumbering the global index table also 

increases the spatial and temporal locality: spatial lo-

cality, because the common points of the connected 

elements will be stored statistically closer in memory; 

temporal locality, because these common points will 

be re-accessed sooner. We have designed an improved 

version of that algorithm in which we use multi-level 

sorting to define groups of typically 50 to 100 ele-

ments which all fit together in the L2 cache. Tests per-

formed with SPECFEM3D_GLOBE on the same 

mesh with and without sorting show that unfortunately 

we do not gain much based on sorting: at most 5% in 

practice. But this is probably in fact good news: it 

means that previous work we performed to reduce 

cache misses based on point renumbering [7], which is 

crucial, has worked very well and there are already so 

few L2 cache misses that it is difficult to further re-

duce them. An additional explanation is the fact that in 

the SEM we perform a lot of local operations in each 

element therefore in percentage the time it takes to 

move new data in the L2 cache is not crucial com-

pared to the total time it takes to perform the calcula-

tions in that element. This implies that using more 

modern element renumbering algorithms such as Pea-

no/Hilbert curves instead of Cuthill-McKee sorting 

would probably not help much. 

4.3 Manual use of SSE instructions 

The initial performance model for the 

SPECFEM3D_GLOBE application indicates that a 

large fraction of time (greater than 70%) is spent in 



two computational routines in which we compute the 

internal forces and related acceleration vectors in each 

spectral element of the mesh in two regions of the 

Earth: the large solid mantle and crust, and the smaller 

fluid outer core. Inside these two routines, which have 

a very similar structure, we perform small matrix-

matrix products (each matrix has a size of 5 x 5 typi-

cally) along cutplanes of 3D arrays (first cut along the 

i axis, then cut along the j axis, and then cut along the 

k axis). 

It is therefore important to study how we can opti-

mize this crucial section of the two routines. When 

talking about matrix-matrix products, one immediately 

thinks about calling a vendor-optimized implementa-

tion of the Basic Linear Algebra Subprograms (BLAS-

3) subroutine SGEMM, but in our case this turns out 

to be a poor idea for two reasons. First. the matrices 

are very small (5 x 5) and therefore the overhead of 

the BLAS  routine is higher than what we can hope to 

gain. Second, because we have to handle cutplanes 

along three different directions of a 3D memory block, 

several of these calls to BLAS would be for blocks not 

linearly aligned in memory and would therefore first 

require a memory copy to an aligned 2D block, before 

the call; this would be more expensive than any poten-

tial gain from the BLAS routine. 

Tests that we have performed have confirmed that 

using BLAS calls actually significantly slows down 

the code compared to our existing regular Fortran 

loops. We therefore tried another option, which is to 

use vector instructions provided by a SSE unit (for in-

stance on Intel or AMD processors) or an Al-

tivec/VMX unit (for instance on IBM PowerPC pro-

cessors). These units can handle four single-precision 

floating-point operations in a vector and are very well 

suited for our small matrix products since we can load 

a vector unit with 4 floats, perform several “multiply 

and add” (MADD) operations to compute the matrix-

matrix product, and store the results in four consecu-

tive elements of the result matrix (Note that MADD 

does not exist explicitly in SSE but is rather imple-

mented as a combination of "multiply" and then 

"add"). 

These three types of operations (load, MADD and 

store) are standard in both SSE and Altivec. Note that, 

since our matrices are of size 5 x 5 and not 4 x 4, we 

use vector instructions for 4 out of each set of 5 values 

and compute the last one serially in regular Fortran. 

Also note that to improve performance we align our 

3D blocks of 5 x 5 x 5 = 125 floats on 128 in memory 

using padding with three dummy values set to zero. 

This induces a negligible waste of memory of 128 / 

125 = 2.4%. 

The tests we performed show that we typically gain 

between 15% and 20% (with respect to the stable ver-

sion 4.0 of our code) both with SSE on AMD proces-

sors and with Altivec on another machine equipped 

with IBM PowerPC970 processors. The relative gain 

is limited by two factors: first, the limited number of 

vector registers present in the hardware (16 for SSE 

and 32 for Altivec); and second the fact that modern 

compilers can automatically unroll loops and generate 

SSE or Altivec instructions to perform something sim-

ilar to what we implement manually; therefore the ref-

erence time may already include some of the effects of 

using SSE instructions. 

4.4 Optimizations to improve FLOPS  

When using 10K+ cores, many things that have 

worked fine for years in the application on tens or 

hundreds of cores can start to either fail or become 

very slow and significantly reduce performance and 

may need to be partially or entirely redesigned. In 

SPECFEM3D_GLOBE we found and fixed two such 

problems: 

1. Due to legacy code, the mesher was actually 

run twice internally: once to generate the 

mesh of elements (i.e., the geometry) and a 

second time to populate this geometry with 

material properties (i.e., the velocity of the 

seismic waves and the density of the rocks in 

each mesh element); this slowed down the 

mesher by a factor of two, which may be ac-

ceptable on a small in-house cluster but not on 

10K+ cores on a machine shared with other 

users; we therefore merged these two steps 

(assigning properties to each mesh element 

right after its creation) 

2. At low resolution, the mesher used to use a 

costly non linear algorithm to locate the seis-

mic recording stations in the mesh (the loca-

tion of these stations may not fall exactly on a 

grid point and at low resolution choosing the 

closest point leads to a large error, therefore 

one needs to use a more precise algorithm to 

locate them between grid points; as a result, a 

costly interpolation process also had to be 

used in the solver to compute the wave field at 

the right location between grid points. At very 

high resolution, this resulted in a significant 

slowdown of the whole application and signif-

icant load imbalance because some mesh slic-

es carry more seismic stations than others and 



therefore would spend more time performing 

the interpolation. We noticed that at high reso-

lution the best option was to suppress the cost-

ly interpolation process and to locate these 

stations at the closest grid point because the 

mesh is so dense that the error made is then 

very small (and negligible from a geophysical 

point of view) 
 

5 Performance measurements and models 

To meet our objective to simulate global seismic 

wave propagation down to seismic wave periods under 

2 seconds we needed to run on 30K cores or more. We 

used four different systems to investigate how to reach 

this goal.  

The first is Texas Advanced Computing Center 

(TACC) Sun Constellation Linux cluster, named 

Ranger, which has 62,976 processing cores connected 

with a full-CLOS InfiniBand interconnect. Each com-

pute node in Ranger consists of four 2.0 GHz quad-

core AMD Opteron processors with a theoretical peak 

performance of 32 Gflops and 8 GBytes of memory. 

The theoretical peak performance of Ranger is thus 

about 504 Tflops (its Rmax is 326 Tflops). 

The second is National Energy Research Scientific 

Computing Center (NERSC) Cray XT4 system, 

named Franklin.  Each of its compute nodes consists 

of a 2.6 GHz dual-core AMD Opteron processor with 

a theoretical peak performance of 10.4 Gflops and 4 

GBytes of memory. The theoretical peak performance 

of Franklin is thus about 101.5 Tflops, its measured 

Rmax is 85 Tflops. Each compute node is connected 

to a dedicated SeaStar2 router through Hypertransport 

with a 3D torus topology 

The third one is National Institute for Computation-

al Sciences' (NICS) Kraken is a Cray XT4 system. 

Kraken has a total of 4512 compute nodes where each 

compute node contains a 2.3 GHz quad-core AMD 

Opteron processor and 4 GB of memory resulting in a 

total of 18048 compute cores. The theoretical peak 

performance of Kraken is about 166 Tflops. (Rmax 

unknown at time of publication). Kraken runs Com-

pute Node Linux (CNL) on each compute node. Each 

node is connected to a Cray SeaStar router through 

HyperTransport, and the SeaStars are all interconnect-

ed in a 3-D-torus topology. 

The fourth one is Oak Ridge National Laboratory's 

(ORNL) Cray XT4 system, named Jaguar. Jaguar has 

a total of 7,832 XT4 compute nodes where each com-

pute node contains a quad-core 2.1 GHz AMD Op-

teron processor and 8GB of memory. The overall the-

oretical peak performance of Jaguar is 263 Tflops. 

(Rmax is 205 Tflops). Each node is connected to a 

Cray SeaStar router through HyperTransport, and the 

SeaStars are all interconnected in a 3-D-torus topolo-

gy. 

The initial step was to model the communication 

behavior of SPECFEM3D. To accomplish this we ran 

several experiments varying the input resolution and 

the number of processors. In SPECFEM3D, resolution 

can be changed based on an input parameter called 

NEX_XI, which defines the number of elements at the 

surface along the two sides of each of the six chunks, 

whereas the number of processor cores can be changed 

based on an input parameter called NPROC_XI, which 

defines the number of MPI processor cores to be used 

along the two sides of each of the six chunks. For our 

initial investigation, we varied the processor count 

from 24 to 1536 and the mesh resolution from 96 to 

640 (which corresponds to minimum seismic periods 

from 45.3 seconds to 6.8 seconds, respectively). 

We measured the communication time for each run 

with IPM (Integrated Performance Monitoring) tool 

[2], which is a portable profiling tool that provides a 

performance summary of the computations and com-

munications in a parallel program. IPM has extremely 

low overhead and is scalable to thousands of proces-

sors, which makes it ideal for this purpose.  

We measured the total communication time spent in 

the main loop of the solver component for each run. 

We ran these experiments on Franklin. Even though 

we used only Franklin for our modeling runs, we ex-

pected similar behavior on other balanced systems for 

SPECFEM3D. The results showed that the communi-

cation time spent in the main loop of the solver com-

ponent ranges from 1.9% to 4.2% (with an average of 

3.2%) of the overall execution time for the runs. More 

importantly, the lower communication percentages in-

dicate that SPECFEM3D_GLOBE is dominated by the 

computation time and is a good candidate to scale up 

to tens of thousands of processors before the commu-

nication time becomes a bottleneck.  

The results of modeling runs also showed that the 

total communication time spent for all processors 

tends to increase both when the resolution increases 

and when the number of processors increases. Howev-

er, it also shows that for a given resolution, the com-

munication time per core decreases as the number of 

processor increases. Using these observations and 

measured overall communication time for all proces-

sors, we fitted a function to the actual measured com-

munication times for a given resolution. Figure 6 pre-



sents the measured and modeled total communication 

times for all cores for two resolutions. Other resolu-

tions were fitted with similar results. Based on the fit-

ted models for all resolutions used in our modeling 

runs, we were also able to model the increase in over-

all communication time for all cores as the resolution 

increases.  
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Figure 6.  Fitted curves for total communication 

time (in seconds) for all cores for different resolu-

tions. 

Using the overall model, we were able to predict the 

total communication time for all cores of a hypothet-

ical SPECFEM3D run with 12K processors and a 

resolution of NEX_XI = 1440 to be around 7.3E6 se-

conds, which corresponds to 599 seconds per core and 

3.2% of overall execution time. Similarly, we predict 

the communication time per core for a SPECFEM3D 

run with 62K processors and a resolution of NEX_XI 

= 4848 to be around 28K seconds, which also corre-

sponds to 4.7% of overall execution time.  More im-

portantly, the results of modeling runs as well as the 

models we devised using these results indicate that the 

overall execution time of a SPECFEM3D run is domi-

nated by the computation time and communication is 

not expected to be the bottleneck for scaling the appli-

cation to tens of thousands of processors. 

Similar to the communication model we also mod-

eled the total runtime for all cores in order to estimate 

the runtime of a run with a minimum seismic period 

under 2 seconds and also confirm that the larger 12K 

core run did not exhibit any unforeseen bottlenecks. 

The results of modeling experiments showed that the 

overall execution time totaled for all computation 

cores is defined by the resolution used and is inde-

pendent of the number of cores used. That is, for a 

given resolution, the execution time per core decreases 

but the totaled execution time for all cores is almost 

always the same.  

Figure 7 shows the actual (e.g. measured) and fitted 

total execution times for all cores (normalized with re-

spect to the minimum) for different resolutions. 
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Figure 7. Predicted and actual total time spent for 

all cores for different resolutions. 

Figure 7 shows that total execution time of 

SPECFEM3D for all cores increases significantly 

(quadratic) as the resolution increases. Using the fitted 

function, we were able to predict the totaled execution 

time of all cores of SPECFEM3D run with a 12K pro-

cessors and a resolution of NEX_XI = 1440 within 

12% error, indicating that no unforeseen bottlenecks 

emerged as the scaling was increased. 

Similar to modeling communication we developed a 

model for the overall sustained FLOPS rate of the ap-

plication using the modeling runs. The results show 

that the sustainable FLOPS rate for SPECFEM3D in-

creases directly proportional to the number of proces-

sors it is run on and for the same number of processors 

slightly increases as the resolution increases.  

 

6 Results of actual large simulations 

The merged SPECFEM code run on the NERSC 

system Franklin was successfully completed on 

12,150 cores running for nearly 6 hours achieving 

around 24 Tflops (44% of Rmax) to model a shortest 

seismic period of 3 seconds. We experimented with 

turning attenuation (i.e., loss of energy due to the fact 

that the rocks are viscoelastic) on and off. Attenuation 

was turned off initially to reduce the runtime in our in-

itial modeling runs. Once the initial modeling runs 

confirmed the scaling, attenuation was turned on for 

the final science runs. This resulted in a 1.8 increase in 



execution time but only an almost imperceptible drop 

in Tflops. 

Next, simulation of a few seconds of an earthquake 

in Argentina with attenuation turned on was run suc-

cessively on 9,600 cores (12.1 Tflops sustained), 

12,696 cores (16.0 Tflops sustained), and then 17,496 

cores of NICS’s Kraken system. The 17K core run 

sustained 22.4 Tflops and had a seismic period length 

of 2.52 seconds; temporarily a new resolution record. 

The Tflops number in these and subsequent reported 

runs was measured using PSiNSlight [18]. 

On the Jaguar system at ORNL we simulated the 

same event and achieved a seismic period length of 

1.94 seconds and a sustained 35.7 Tflops (our current 

flops record) using 29K cores.  

On the Ranger system at TACC the same event 

achieved a seismic period length 1.84 seconds (our 

current resolution record) with sustained 28.7 Tflops 

using 32K cores. 

Finally, we obtained “friendly user” access to the 

new ORNL Petaflop System, the world’s largest XT5- 

Kraken is being upgraded to XT5 the end of the year. 

There are 200 cabinets, each holding 768 cores. They 

are 2.3 GHZ with 2 GB/core. The nodes contain two 

Barcelona Sockets with Seastar 2+ interconnect. The 

interconnect is 4 GB/sec bi-directional on a 3-D torus, 

theoretical peak is 1.4 P,  Rmax unknown at time of 

publication. Using this system we simulated the same 

event and achieved 1.72 shortest period and 161 

Tflops using 149,784 cores. This is the shortest wave 

period ever obtained in seismic wave propagation, the 

highest level of parallelism, the first sustained perfor-

mance of seismic wave propagation > 160 TFlops.  

But of more significance, it now enables simulations 

at the resolution of nature.  

7 Future work and conclusion 

The runs reported here are just precursors that mod-

eled a few seconds of each earthquake event. It takes 

about 25 minute of real time and about 1 week we es-

timate of dedicated ORNL Petaflop (in other words a 

true petascale calculation) to model wave propagation 

clear through the Earth to predict structure. 

The simulations we enabled, at under 2 seconds will 

help reveal the detailed 3D structure of the Earth's 

deep interior, in particular near the core-mantle 

boundary (CMB), the inner core boundary (ICB), and 

in the enigmatic inner core. Earth, help reveal the de-

tailed 3D structure of the Earth's deep interior, in par-

ticular near the core-mantle boundary (CMB), the in-

ner core boundary (ICB), and in the enigmatic inner 

core composed of solid iron. The CMB region is high-

ly heterogeneous with evidence for ultra-low velocity 

zones, anisotropy, small-scale topography, and a re-

cently discovered post-perovskite phase transition. 

The Earth's inner core appears to be anisotropic, with 

dramatic differences between its eastern and western 

hemispheres, and there are suggestions that it rotates 

at a slightly different rate than the Earth's mantle. Be-

ing able to simulate 3D global seismic wave propaga-

tion at these frequencies will thus help us understand 

and image these complex structures, an endeavor that 

will enhance our understanding of the physics and 

chemistry of the Earth's interior. 
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