
Performance Prediction and Ranking of

Supercomputers

Tzu-Yi Chen
Department of Computer Science

Pomona College
Claremont, CA 91711
tzuyi@cs.pomona.edu

Omid Khalili
Department of Computer Science and Engineering

University of California, San Diego
9500 Gilman Drive, Mail Code 0404

La Jolla, CA 92093-0404
okhalili@cs.ucsd.edu

Roy L. Campbell, Jr.
Army Research Laboratory

Major Shared Resource Center
Aberdeen Proving Ground, MD 21005

rcampbell@arl.army.mil

Laura Carrington, Mustafa M. Tikir, and Allan Snavely
Performance Modeling and Characterization (PMaC) Lab, UCSD

9500 Gilman Dr
La Jolla, CA 92093-0505

{lcarring,mtikir,allans}@sdsc.edu

Contents

1 Introduction 3

2 Methods for predicting performance 4
2.1 Benchmarks . 5
2.2 Weighted benchmarks . 6
2.3 Building detailed performance models 7
2.4 Simulation . 8
2.5 Other approaches . 8

1

3 A method for weighting benchmarks 8
3.1 Machine and application characteristics 9
3.2 General performance model . 10
3.3 Evaluating performance predictions 11
3.4 Evaluating rankings . 12

3.4.1 Predicting runtimes for ranking 12
3.4.2 Thresholded inversions . 12

4 Examples 13
4.1 Machines . 13
4.2 Applications . 16

5 Using end-to-end runtimes 18
5.1 Basic least squares . 19

5.1.1 Results for performance prediction 19
5.1.2 Results for ranking . 20

5.2 Least squares with basis reduction 21
5.2.1 Results for prediction . 21
5.2.2 Results for ranking . 22

5.3 Linear Programming . 22
5.3.1 Results . 23

5.4 Discussion . 24

6 Using basic trace data 25
6.1 Predicting performance . 25
6.2 Ranking . 27
6.3 Discussion . 27

7 Application-independent rankings 28
7.1 Rankings using only machine metrics 28
7.2 Rankings incorporating application characteristics 29
7.3 Discussion . 32

8 Conclusion 32

9 Acknowledgments 33

Abstract

Performance prediction asks how much time executing an application
is likely to take on a particular machine. Machine ranking asks which of
a set of machines is likely to execute an application most quickly. These
two questions are discussed within the context of large parallel applica-
tions run on supercomputers. Different techniques are surveyed, including
a framework for a general approach that weights the results of machine
benchmarks run on all systems of interest. Variations within the frame-
work are described and tested on data from large-scale applications run

2

on modern supercomputers, helping to illustrate the trade-offs in accu-
racy and effort that are inherent in any method for answering these two
questions.

1 Introduction

Given a parallel application, consider answering the following two questions:
how much time is executing the application likely to take on a particular ma-
chine, and which of a set of machines is likely to execute the application most
quickly? Answers to these questions could enable users to tune their applications
for specific machines, or to choose a machine on which to run their applications.
Answers could help a supercomputing center schedule applications across re-
sources more effectively, or provide them data for decisions regarding machine
acquisitions. More subtly, answers might enable computer architects to design
machines on which particular applications are likely to run quickly.

But answering these questions is not easy. Since the performance of a par-
allel application is a function of both the application and the machine it runs
on, accurate performance prediction has become increasingly difficult as both
applications and computer architectures become more complex. Consider Fig-
ure 1, which plots the normalized relative runtimes of 8 large-scale applications
on 6 supercomputers, both described in Section 4.1 The plot shows that across
these applications, no single machine is always the fastest, suggesting that there
is no trivial way to predict even relative performance across a set of machines.

Since different machines can be best for different applications, this chapter
discusses techniques for answering the original two questions:

• How can one accurately predict the running time of a specific application,
on a given input, on a particular number of processors, on a given machine?
(performance prediction)

• How can one accurately predict which of a set of machines is likely to
execute an application fastest? (machine ranking)

Note that while the ability to do the former gives us a way to do the latter,
the reverse is not true. In practice, however, while any method for predicting
performance (including the many that are described in Section 2) could also
be used to rank machines, users may consider the work required for the initial
prediction to be excessive. Since sometimes the only information desired is that
of expected relative performance across a set of machines, this scenario is also
addressed. In addition, Section 7 considers an even further generalization where
the goal is to find an application independent machine ranking that is sufficiently
accurate to provide useful information.

1Since the machines shown are only a subset of those on which each application was run,
the highest bar is not at 1 for every application. In addition, not all applications were run on
all machines with the chosen number of processors.

3

Figure 1: This graph shows the relative runtimes of 8 applications on 6 super-
computers. The x-axis gives the name of the application, with the number of
processors on which it was run in parentheses. The y-axis gives the runtime
divided by the maximum time taken by any of a larger set of 14 machines to
run the particular application.

The rest of this chapter is laid out as follows. Section 2 surveys some gen-
eral approaches for both performance prediction and machine ranking, orga-
nized by the type of information and level of expertise required for each. The
trade-offs inherent in choosing a particular performance prediction technique
or a particular ranking technique are studied in the context of a methodology
that attempts to achieve a balance between accuracy and effort in Sections 3
through 6. The basic framework for the methodology is covered in Section 3,
details are addressed in Section 4, and examples of how different techniques fit
into this framework are discussed in Sections 5 and 6. An exploration of how
to apply the techniques to generate application-independent machine rankings
is presented in Section 7. Results are given and analyzed in each section.

2 Methods for predicting performance

Methods for predicting the performance of an application on a parallel machine
begin with the assumption that the running time is a function of application
and system characteristics. Currently the most accurate predictions are made by

4

creating detailed models of individual applications which describe the running
time as a function of system characteristics. These characteristics can then
be carefully measured on all systems of interest. However, in many situations
the time and/or expertise required to build a detailed model of an individual
application are not available, and sometimes even the system characteristics can
not be measured (for example, when performance predictions are used to help
decide which of a number of proposed supercomputers to build). And even when
data are available, there are situations in which precise performance prediction
is unnecessary: for example, when the question is which of a set of machines is
expected to run a particular application most quickly.

In this section we give an overview of some of the approaches to performance
prediction, noting connections to ranking as appropriate. The techniques are
distinguished by the amount of information they use about a system and an
application, as well as by the sophistication of the ways in which they use that
information to predict the performance of an application.

While the focus here is on predicting the performance of large-scale applica-
tions on parallel machines, there has also been considerable work on predicting
the performance of single processor applications (see, for example, [30]).

2.1 Benchmarks

At one extreme are benchmarks, which can be used to predict performance using
only information about the machine. Consider that low-level performance met-
rics such as processor speed and peak floating-point issue rate are commonly
reported, even in mass-market computer advertisements. The implication is
that these numbers can be used to predict how fast applications will run on
different machines, hence faster is better. Of course, manufacturer specifica-
tions such as theoretical peak floating-point issue rates are rarely achieved in
practice, so simple benchmarks may more accurately predict relative application
performance on different machines.

A particularly well-known parallel benchmark is Linpack [14], which has been
used since 1993 to rank supercomputers for inclusion on the Top 500 list [45].
The Top 500 list is popular partly because it is easy to read, is based on a simple
metric that is easy to measure (essentially peak FLOPS), and is easy to update.
Unfortunately, simple benchmarks such as Linpack may not be sufficient for
accurately predicting runtimes of real applications [7]. This is not surprising,
since Linpack gives a single number for a machine which, at best, allows the
execution time to be modelled as some application-specific number divided by
that particular system’s performance on Linpack.

To better predict the performance of individual applications, two approaches
have been taken. One is to provide benchmarks which more closely mimic actual
applications. The best known of these is perhaps the NAS Parallel Benchmark
suite [3], which consists of scaled down versions of real applications. The other
is to provide benchmarks which take into consideration the performance of mul-
tiple system components. An early example of the latter considered the ratio of
FLOPS to memory bandwidth [31], which has the advantage of allowing sim-

5

ple comparisons between machines since it also gives a single number for each
machine.

More recently benchmark suites that give multiple performance numbers
measuring assorted system characteristics have been proposed. These include
the IDC Balanced Rating [20], which has been used to rank machines based
on measurements in the broad areas of processor performance, memory system
capability, and scaling capabilities; and the HPC Challenge (HPCC) bench-
mark [29], which consists of 7 tests measuring performance on tasks such as
dense matrix multiplication and the Fast Fourier Transform. Of course, with
such benchmark suites it becomes incumbent on the user to decide which mea-
surements are most relevant for predicting the performance of a particular ap-
plication.

Note that a benchmark such as Linpack, which generates a single number for
each machine, produces an application independent ranking of machines. While
their usefulness is limited, such rankings are still of significant interest, as the
use of Linpack in generating the popular Top 500 list [45] demonstrates. Al-
ternative methods for generating application independent rankings are explored
in Section 7. In contrast, a benchmark suite that generates multiple numbers
for each machine has the potential to produce more useful application specific
rankings, but requires a user to interpret the benchmark numbers meaningfully.

2.2 Weighted benchmarks

If several benchmarks are run on a machine, a user must determine how to
interpret the collection of results in light of an individual application. With
a benchmark such as the NAS Parallel Benchmarks [3], a user can choose the
benchmark that most closely resembles their particular application. For lower
level benchmark suites such as HPCC [19], users can turn to research on per-
formance prediction techniques that consist of weighting the results of simple
benchmarks. The amount of information assumed to be available about the
application in generating the weights can range from end-to-end runtimes on a
set of machines, to more detailed information.

For example, Gustafson and Todi [16] used the term convolution to describe
work relating “mini-application” performance to that of full applications. Mc-
Calpin [31] showed improved correlation between simple benchmarks and appli-
cation performance, though the focus was on sequential applications rather than
the parallel applications of interest here. Other work focussing on sequential
applications includes that of Marin and Mellor-Crummey [30], who described
a clever scheme for combining and weighting the attributes of applications by
the results of simple probes. Using a full run of an application on a reference
system, along with partial application runtimes on the reference and a target
system, Yang et. al. [48] describe a technique for predicting the full application
performance using the relative performance of the short runs. While the re-
ported accuracy is quite good, this type of approach could miss computational
behavior that changes over the runtime of the application; in addition, the ac-
curacy was reduced when using the partial runtime to predict the application’s

6

performance on a different problem size or number of processors.
Section 3 in this chapter discusses another general method for weighting

benchmark measurements. Sections 4 and 5 discuss the use of a least squares
regression to calculate weights for any set of machine benchmarks, and demon-
strate their use for both performance prediction and machine ranking.

2.3 Building detailed performance models

For the most accurate performance predictions, users must employ time and
expertise to build detailed models of individual applications of interest.

With this approach the user begins with an in-depth understanding of how
the application works, including details about the computational requirements,
the communication patterns, and so on. This understanding is then used to
build a performance model consisting of a potentially complex equation that
describes the running time in terms of variables that specify, for example, the
size of the input, processor characteristics, and network characteristics. While
this approach can generate highly accurate predictions, building the model is
generally acknowledged to be a time-consuming and complex task [43]. Never-
theless, if there is significant interest in a critical application, the investment
may be deemed worthwhile.

Other research focusses on highly accurate modelling of specific applica-
tions [17, 18, 23, 28]. The very detailed performance models built as a result
have been used both to compare advanced architectures [22, 24], and to guide
the performance optimizations of applications on specific machines [35].

Due to the difficulty of constructing detailed models, an assortment of gen-
eral techniques for helping users build useful performance models has also been
proposed.

Many of these methods are based on a hierarchical framework that is de-
scribed in [1]. First the application is described at a high level as a set of tasks
that communicate with one another in some order determined by the program.
The dependencies are represented as a graph, which is assumed to expose all
the parallelism in the application. This task graph is then used to predict the
overall performance of the application, using low level information about how
efficiently each task can be executed.

Examples that can be fit into this framework include work on modelling
applications as collections of independent abstract Fortran tasks [36, 37, 38], as
well as using graphs that represent the dependencies between processes to create
accurate models [32, 33, 39]. Other work describes tools for classifying overhead
costs and methods for building performance models based on an analysis of
those overheads [11]. Another technique that also begins by building graphs
that reveal all possible communication continues by measuring the potential
costs on the target machine and uses those partial measurements for predicting
the performance of the overall application [47].

7

2.4 Simulation

One way to try and approach the accuracy of detailed performance models, but
without the same need for human expertise, is through simulation.

For example, one could use cycle accurate simulations of an application [4, 5,
6, 27, 34, 44]. Of course, the main drawback of this approach is the time required.
Due to the level of detail in the simulations, it could take several orders of
magnitude more time to simulate an application than to run it. Again, if there
is significant interest in a single application, this expense may be considered
acceptable.

A related technique described in detail in [42] and briefly referred to in Sec-
tion 6 starts by profiling the application to get memory operation counts and
information on network messages. This model is coarser than the detailed mod-
els described previously in that there is no attempt to capture the structure of
the application; rather, the data collected provides a higher level model of what
the application does. This information can later be convolved with the rates of
memory operations — possibly by modeling the cache hierarchy of the target
architecture on the application trace — and combined with a simulation of the
network messages in order to predict the performance of the given application
on the specified machine.

Other methods that attempt to avoid the overhead of cycle accurate simu-
lations include those that instrument the application at a higher level [12, 15]
in order to predict performance.

2.5 Other approaches

It is also worth noting other approaches that have been proposed for predicting
the performance of large scale applications.

For example, attempts have been made to employ machine learning tech-
niques. In [10] the authors examine statistical methods for estimating machine
parameters and then describe how to use these random variables in a perfor-
mance model. Neural networks are used in [21, 40] to make performance pre-
dictions for an application as a function of its input parameter space, without
building performance models. This methodology can find nonlinear patterns in
the training input in order to make accurate performance predictions; however,
it requires first running the target application numerous times (over 10, 000 in
the example in [21]) with a range of input parameters, which may not always
be practical.

3 A method for weighting benchmarks

The rest of this chapter explores a few methods for predicting performance and
for ranking machines. These methods are unified by their assumption that all
knowledge regarding machine characteristics come from results of simple bench-
mark probes. That this is enough to distinguish the machines is demonstrated
in Figure 2, which shows that different machines are best at different types of

8

operations. For example, when compared to the other machines, the machine
labelled ARL Xeon 36 has a very high FLOPS rate (as one would expect from
its clock speed, shown in Table 1 in Section 4.1), but poor network bandwidth.

Figure 2: A plot of machine characteristics for a set of supercomputers. The
characteristics along the x-axis are described in Table 2 in Section 4.1. The
highest count for each characteristic is normalized to 1.

Almost all of the methods discussed also assume that information about the
application is limited to end-to-end runtimes (although Sections 6 and 7 consider
what can be done through incorporating the results of lightweight traces). Just
as Figure 2 shows that different machines are best at different operations, Fig-
ure 3 demonstrates that different applications stress different types of machine
operations. As a result, changing the behavior of a single system component
can affect the overall performance of two applications in very different ways.

3.1 Machine and application characteristics

As noted previously, methods for predicting performance and generating ma-
chine rankings typically assume that performance is a function of machine and
application characteristics. The question is then how to get the most accurate
predictions and rankings using data about the machines and applications that
is as cheap as possible to gather.

The examples explored in the rest of this chapter assume that basic bench-
mark measurements can be taken on all machines of interest (or, at a minimum,
accurately estimated, as in the case where the system of interest has yet to be
built). The same benchmarks must be run across all the machines, although no
further assumptions are made. In particular, these benchmarks could consist
of microbenchmarks (e.g., a benchmark measuring the network latency between

9

Figure 3: A plot of application characteristics for a set of parallel applications.
From left to right, the x-axis refers to the average count over all processors of
floating point operations, strided memory accesses, random memory accesses,
barriers, other collective communications, the total number of bytes received
as a result of those collective communications, the number of point to point
messages sent, and the number of bytes sent as a result of those point to point
communications. The highest count for each application characteristic is nor-
malized to 1.

two nodes), or computational kernels (e.g., the FFT component of the HPC
Challenge suite [19]), or something even closer to full-scale applications (e.g.,
the NAS Parallel Benchmarks [3]). This assumption is reasonable since, by their
nature, these benchmarks tend to be easy to acquire and to run.

The examples in this chapter are of two types when it comes to the data
needed regarding the applications. Those discussed in Section 5 require only
end-to-end runtimes on some small number of machines; those discussed in Sec-
tions 6 and 7 use simple trace information about the application, including the
number of floating point operations and/or the number of memory references.
Memory and network trace information can be collected using tools such as the
PMaC MetaSim Tracer [8] and MPIDTrace [2] tools, respectively. All the tech-
niques also assume that the input parameters to the application during tracing
and measurement of runtimes are the same across all machines. Note that while
these techniques could be used even if the above assumption was not true, the
resulting accuracy of the predictions could be arbitrarily poor.

3.2 General performance model

The other, more fundamental, assumption made by the techniques described in
this chapter is that the performance of an application can be modelled to an

10

acceptable accuracy as a linear combination of the benchmark measurements.
As a small example, say three benchmarks are run on some machine and that the
benchmarks take m1, m2, and m3 seconds, respectively. Then the assumption is
that the running time P of any application (with some specified input data and
run on some specific number of processors) on that machine can be approximated
by the following equation:

P ≈ m1w1 + m2w2 + m3w3 = m ·w (1)

Here w1, w2, and w3 are constants that may depend on the application, the
machine, the input, and the number of processors with which the application
was run.

This model helps illustrate the trade-off between expertise/time and accu-
racy. While the linear model is appealingly simple, it could have difficulty
capturing, say, the benefits of overlapping communication and computation in
an application.

Given application runtimes on a set of machines, and benchmarks measure-
ments on those machines, Section 5 describes how to use a least squares regres-
sion to obtain weights w that are optimal in the sense that they minimize the
sum of the squares of the errors in the predicted times over a set of machines.

A less restrictive approach to the performance model can also be taken; an
example is the method briefly summarized in Section 6. Instead of the dot-
product in Equation 1, this method combines machine and application charac-
teristics using a more complex convolution function.

3.3 Evaluating performance predictions

To test the methods that are based on linear regression, cross-validation is used.
In other words, each machine in the data set is considered individually as the
target machine for performance prediction. That machine is not included when
calculating the weights w in Equation 1. Then, after the weights are calculated
using only the other machines, those weights are used to predict the performance
on the target machine. The absolute value of the relative error in the predicted
time (given by Equation 2) is then calculated.∣∣∣∣predictedRT − actualRT

actualRT

∣∣∣∣ (2)

After repeating this process for each machine in the data set, the average of all
the relative errors is reported. This process becomes clearer when looking at
the examples in Section 5.

Note that cross-validation simulates the following real world usage of the
method: a researcher has run their application on different systems, has access
to the benchmark measurements on both those systems and a target system,
and would like to predict the running time of the application on the target
system without having to actually run the application on that machine.

11

Sections 5.3 and 6 briefly describe two other methods for performance pre-
diction. There, again, the absolute value of the relative error is calculated, and
the average over all machines is reported.

3.4 Evaluating rankings

The performance prediction models can also be used to rank a set of machines
in order of the predicted runtimes of an application on those systems. Those
rankings, or rankings generated in any other way, can be evaluated using the
metric of threshold inversions, proposed in [9] and summarized here.

3.4.1 Predicting runtimes for ranking

Testing a predicted ranking requires predicting the performance on more than
one machine at a time. So, instead of removing a single target machine as is done
with the cross-validation procedure described previously, now a set of machines
is randomly selected and the performance on all of those machines is predicted
using some performance prediction methodology. Once the predicted runtimes
are calculated, the number of threshold inversions between the predictions and
the true runtimes can be determined. This is repeated 5000 times, each time
choosing a random set of machines to rank and to count thresholded inversions
for, to get a strong mix of randomly selected validation machines. While some
sets may be repeated in the 5000 trials, because they are chosen at random, this
should not greatly affect the average accuracies reported.

3.4.2 Thresholded inversions

A simple inversion occurs when a machine ranking predicts machine A will be
faster than machine B on some application, but actual runtimes on the two
machines show the opposite is true. For example, if machine A has larger net-
work bandwidth than machine B, then the ranking based on network bandwidth
would contain an inversion if, in practice, some application runs faster on ma-
chine B. The number of inversions in a ranking, then, is the number of pairs of
machines that are inverted. In the above example this is the number of pairs of
machines for which the inter-processor network bandwidth incorrectly predicts
which machine should execute a given application faster. Note that if there
are n machines, the number of inversions is at least 0 and is no larger than
n(n− 1)/2.

A threshold is added to the concept of an inversion in order to account for
variations in collected application runtimes and/or benchmark measurements.
These variations can be caused by a variety of reasons including, for example,
system architectural and design decisions [26].

For evaluating the ranking methods presented here, two thresholds are used.
One (α) accounts for variance in the measured runtimes, while the other (β)
accounts for variance in the benchmark measurements. Both α and β are re-
quired to have values between 0 and 1, inclusive. For example, let the predicted

12

runtimes of A and B be R̂TA and R̂TB and the measured runtimes be RTA and
RTB . If the predicted runtimes R̂TA < R̂TB , then A would be ranked better
than B, and, if the measured runtimes RTA > RTB , then there is an inversion.
Yet, when using threshold inversions with α, that would only count as an inver-
sion if RTA > (1+α)×RTB . β is used in a similar fashion to allow for variance
in benchmark measurements, and is usually set to be less than α. The different
values for α and β are because one generally expects less variance in benchmark
times than in full application runtimes due to the fact that benchmarks are
typically simpler than large scale real applications and so their execution times
are more consistent.

The examples in this chapter use values of α = .01 (which means a differ-
ence of up to 1% in the application runtimes is considered insignificant) and
β = .001 (which means a difference of up to .1% in the benchmark times is con-
sidered insignificant). In addition, Table 7 in Section 5 demonstrates the effect
of changing the threshold values on the number of inversions for a particular
scenario.

This metric based on thresholded inversions is particularly appealing because
it is monotonic in the sense that adding another machine and its associated
runtime cannot decrease the number of inversions in a ranking. Within our
context of large parallel applications, this feature is highly desirable because
often only partial runtime data is available: in other words, rarely have all
applications of interest been run with the same inputs and on the same number
of processors on all machines of interest.

4 Examples

While the techniques described in the following sections could be used for any
set of benchmarks in order to study any parallel application, the examples in
this chapter use the following machines, benchmarks, and applications. To see
these techniques applied to other combinations of benchmarks and applications,
see [25].

4.1 Machines

Table 1 summarizes the set of machines on which benchmark timings were col-
lected and applications were run; the locations are abbreviations for the sites
noted in the Acknowledgments at the end of the chapter. Regarding the bench-
marks, information was collected about the FLOPS, the bandwidth to different
levels of the memory hierarchy, and network bandwidth and latency.

To determine the FLOPS, results from the HPC Challenge benchmarks [19]
were used. Although the HPC Challenge benchmarks were not run directly on
the machines in Table 1, results on similar machines (determined based on their
processor type, the processor frequency, and the number of processors) were
always available and so were used instead. In practice, memory accesses always
take significantly longer than floating point operations and so getting the exact

13

Location Vendor Processor Frequency # Processors
ASC SGI Altix 1.600GHz 2000

SDSC IBM IA64 1.500GHz 512
ARL IBM Opteron 2.200GHz 2304
ARL IBM P3 0.375GHz 1024

MHPCC IBM P3 0.375GHz 736
NAVO IBM P3 0.375GHz 928
NAVO IBM p655 1.700GHz 2832
NAVO IBM p655 1.700GHz 464
ARSC IBM p655 1.500GHz 784

MHPCC IBM p690 1.300GHz 320
NAVO IBM p690 1.300GHz 1328

ARL IBM p690 1.700GHz 128
ERDC HP SC40 0.833GHz 488

ASC HP SC45 1.000GHz 768
ERDC HP SC45 1.000GHz 488
ARSC Cray X1 0.800GHz 504
ERDC Cray X1 0.800GHz 240

AHPCRC Cray X1E 1.130GHz 960
ARL LNX Xeon 3.060GHz 256
ARL LNX Xeon 3.600GHz 2048

Table 1: Systems used for the examples in this chapter.

14

FLOPS measurement on each machine would be unlikely to make a significant
difference in the results presented in this chapter.

Because increases in clock speed have far outpaced increases in the band-
width between processors and memory, the bottleneck for today’s applications
is as, if not more, likely to be memory bandwidth than FLOPS [46]. As a
result, the FLOPS measurement was augmented by the results of the MAPS
benchmark in Membench [7], which measures the bandwidth to different levels
of the memory hierarchy for both strided and random accesses. Note that the
fundamental difference between strided and random memory references is that
the former are predictable, and thus prefetchable. Because random memory
references are not predictable, the bandwidth of random accesses actually re-
flects the latency of an access to some particular level of the memory hierarchy.
As an example, Figure 4 demonstrates the result of running MAPS on an IBM
p690 node to measure the bandwidth of strided accesses. As the size of the
array increases, eventually it will no longer fit into smaller, faster caches — as
a result, the effective bandwidth drops. A region for a memory level is defined
as a range of data array sizes where the array fits into the level and achievable
bandwidth from the level is fairly stable (each plateau in the MAPS curve).
Once the regions for L1, L2, L3 caches, and main memory have been identified
by a human expert, a single point in each region is used as the bandwidth metric
for that level of the memory hierarchy.

Finally, Netbench [7] was used to measure network bandwidth and latency.

Figure 4: MAPS bandwidth measurements (in Gigabytes/second) for an IBM
p690 node as a function of array size.

The benchmark metrics used for the examples in this chapter are summarized
in Table 2.

15

Abbreviation Description Benchmark Suite
L1 (s) Bandwidth of strided accesses to L1 cache MAPS
L1 (r) Bandwidth of random accesses to L1 cache MAPS
L2 (s) Bandwidth of strided accesses to L2 cache MAPS
L2 (r) Bandwidth of random accesses to L2 cache MAPS
L3 (s) Bandwidth of strided accesses to L3 cache MAPS
L3 (r) Bandwidth of random accesses to L3 cache MAPS
MM (s) Bandwidth of strided accesses to main memory MAPS
MM (r) Bandwidth of random accesses to main memory MAPS
NW bw Bandwidth across interprocessor network Netbench
NW lat Latency for interprocessor network Netbench
FLOPS Floating point operations per second HPCC

Table 2: Benchmark metrics used for the examples in this chapter.

4.2 Applications

The applications used in this chapter are from the Department of Defense’s
Technical Insertion 2006 (TI-06) program [13]. The following are short descrip-
tions of the eight applications:

AVUS: Developed by the Air Force Research Laboratory, AVUS is used to
determine the fluid flow and turbulence of projectiles and air vehicles. The
parameters used calculates 100 time-steps of fluid flow and turbulence for
a wing, flap, and end plates using 7 million cells.

CTH: The CTH application measures effects of multi-material, large defor-
mation, strong shock wake, solid mechanics and was developed by the
Sandia national Laboratories. CTH models multi-phase, elastic viscoplas-
tic, porous and explosive materials on 3D and 2D rectangular grids, as
well as 1D rectilinear, cylindrical, and spherical meshes.

GAMESS: Developed by the Gordon research group at Iowa State University,
GAMESS computes ab initio molecular quantum chemistry.

HYCOM: HYCOM models all of the world’s oceans as one global body of
water at a resolution of one-fourth of a degree measured at the Equator.
It was developed by the Naval Research Laboratory, Los Alamos National
Laboratory and the University of Miami.

LAMMPS: Developed by the Sandia National Laboratories, LAMMPS is gen-
erally used as a parallel particle simulator for particles at the mesoscale
or continuum levels.

OOCORE: An out-of-core matrix solver, OOCORE was developed by the
SCALAPACK group at the University of Tennessee at Knoxville. OOCORE
has been included in past benchmark suites and is typically I/O bound.

16

OVERFLOW: NASA Langley and NASA Ames developed OVERFLOW to
solve CFD equations on a set of overlapped, adaptive grids, so that the
resolution near an obstacle is higher than other portions of the scene. With
this approach, computations of both laminar and turbulent fluid flows over
geometrically complex non-stationary boundaries can be solved.

WRF: A weather forecasting model that uses multiple dynamical cores and a
3D variational data assimilation system with the ability to scale to many
processors. WRF was developed by a partnership between the National
Center for Atmospheric Research, the National Oceanic and Atmospheric
Administration, the Air Force Weather Agency, the Naval Research Lab-
oratory, Oklahoma University, and the Federal Aviation Administration.

These eight applications were each run multiple times with a variety of pro-
cessor counts ranging from 16 to 384 on the HPC systems summarized in Table 1.
Each application was run using the DoD “standard” input set. Each application
was run on no fewer than 10, and no more than 19, of the machines. Some-
times applications were not run on particular machines with particular processor
counts either because those systems lacked the required number of processors
or because the amount of main memory was insufficient. But, more generally,
the examples in this chapter were meant to reflect real world conditions and, in
the real world, it is not unusual for timings that have been collected at different
times on different machines by different people to be incomplete in this way.

At a minimum, for each run, the end-to-end runtime was collected. This
is the cheapest data to collect, and is the only information used by the meth-
ods discussed in Section 5. However, in some cases trace information was also
collected and used, in varying levels of detail, for the methods described in
Sections 6 and 7.

In addition to counting the number of FLOPS and memory accesses, some
of the methods required partitioning the memory accesses between strided and
random accesses. Since there is a standard understanding of what it means to
count the total number of memory accesses in an application, but not of what
it means to partition memory accesses into strided and random, a little more
detail is presented on how this was done.

These examples categorize memory accesses by using the Metasim tracer [8],
which partitions the code for an application into non-overlapping basic blocks.
Each block is then categorized as exhibiting either primarily strided or primar-
ily random behavior using both dynamic and static analysis techniques. For
the examples in this chapter, if either method classifies the block as containing
at least 10% random accesses, all memory accesses in that block are counted
as random. While the number 10% is somewhat arbitrary, it is based on the
observation that on many machines the sustainable bandwidth of random ac-
cesses is less than the sustainable bandwidth of strided accesses by an order of
magnitude.

The dynamic method for determining if a block exhibits primarily random
or strided behavior uses a trace of the memory accesses in each basic block and

17

considers each access to be strided if there has been an access to a sufficiently
nearby memory location within some small number of immediately preceding
memory accesses. The advantage of a dynamic approach is that every memory
access is evaluated, so nothing is overlooked. The disadvantage is that the
number of preceding accesses considered must be chosen carefully. If the size
is too small, some strided accesses may be misclassified as random. If the size
is too large, the process becomes too expensive computationally. In contrast,
the static analysis method searches for strided references based on an analysis
of dependencies in the assembly code. Static analysis is less expensive than
dynamic analysis and also avoids the potential for misclassifying accesses due
to a window size that is too small. On the other hand, static analysis may
miss some strided accesses because of the difficulty of analyzing some types of
indirect accesses. Since the two types of analysis are predisposed to misclassify
different types of strided accesses as random, both methods are applied and an
access is considered to be strided if either method classifies it as such.

5 Using end-to-end runtimes

If the only information available for the applications are end-to-end runtimes
on some set of machines, then the weights in Equation 1 can be estimated by
finding w in the equation M × w = P , where M is a matrix containing the
benchmark measurements for a set of machines. Written out in matrix form,
the equation looks as follows:

m1,1 ... m1,b

m2,1 ... m2,b

m3,1 ... m3,b

. .

.

. .
mn,1 ... mn,b

×

w1

w2

w3

...
wb

 =

p1

p2

p3

.

.

.
pn

(3)

Again, the matrix M contains all the benchmark measurements on all the
machines. Each row represents a single machine and each column a particular
benchmark. Hence, for the M in Equation 3, there are benchmark measure-
ments for b resources on n machines. The vector P contains the end-to-end,
measured runtimes for the target application on the n machines in M . (Note the
assumption that each of these times was gathered running on the same number
of processors, on the same input.) Furthermore, in addition to assuming that
the linear model described in Section 3.2 holds, the assumption is also made
that the weight vector w varies relatively little across machines. Obviously this
is a simplifying assumption which affects the accuracy of the predictions; the
techniques in Section 6 relax this assumption.

Some basic preprocessing is done before proceeding with any of the tech-
niques described here. First, since all measurements must be in the same units,

18

the inverse of all non-latency measurements (e.g., FLOPS, memory and network
bandwidths, etc.) must be used. Next, the measurements in M are normalized
by scaling the columns of M so that the largest entry in each column is 1. This
allows us to weight different operations similarly, despite the fact that the cost
of different types of operations can vary by orders of magnitude (e.g., network
latency versus time to access the L1 cache).

After the preprocessing step, the weights for the benchmark measurements
can be estimated by finding the “best” w in M×w = P (Equation 3). If n < b,
then the system is underdetermined and there is not enough data to choose a
single “best” value for w. As a result, this technique assumes that n ≥ b. Since
this means that equality in Equation 3 may not be achievable, the metric for
evaluating the quality of any given value of w must be specified.

Finally, having obtained w, it can be used to make predictions for a new set
of machines which have benchmark measurements captured in a matrix Mnew.
The runtime predictions for the application on the new set of machines is then
Pnew = Mnew × w. Machine ranking can be done on the new machines by
sorting their respective application runtimes in Pnew.

5.1 Basic least squares

Perhaps the most natural way to find w is by using a least squares regression,
also known as solving the least squares problem, which computes the w that
minimizes the 2-norm of the residual r = P −M ×w.

With this technique the entire set of machine benchmarks given in Table 2,
also referred to here in this chapter as “the full basis set”, is used. This set
consists of:

< [FLOPS], L1(s), L2(s), L3(s),MM(s), L1(r), L2(r), L3(r),MM(r), NWbw, NWlat >

FLOPS is in brackets because sometimes it is included in the full basis set
and sometimes not. The distinction should always be clear from the context.

5.1.1 Results for performance prediction

The results shown in Table 3 were computed using a tool that reads the bench-
mark data and application runtimes for a set of machines and performs the
above analysis [25]. Because of the requirement that the number of machines
be no less than the number of machine benchmarks, some entries in the table
could not be computed.

Using just the MAPS and Netbench measurements, the performance predic-
tions are worse than FLOPS alone. Using a combination of the FLOPS, MAPS
and Netbench measurements, however, provides generally better performance
predictions than FLOPS alone. But regardless of the set of benchmarks used,
the performance predictions are poor, with average errors ranging from 51.6%
to 72.4%.

19

FLOPS MAPS + FLOPS + MAPS +
Netbench Netbench

avus 73.9 213.4 –
cth 61.2 64.8 59.2

gamess 72.6 – –
hycomm 67.6 70.8 –
lammps 58.4 54.3 84.8
oocore 62.9 33.3 40.2

overflow 74.8 23.2 28.6
wrf 58.2 69.6 45.2

Average 66.2 72.4 51.6

Table 3: Average absolute relative error for TI-06 applications using FLOPS,
the full MAPS+Netbench set and the full FLOP+MAPS+Netbench set.

5.1.2 Results for ranking

The least squares performance prediction method can be extended to make
predictions for several machines at a time, then to rank the machines based on
the predicted performance using the methodology described in Section 3.4.

In Table 4 the average number of thresholded inversions is reported. For
each entry 5 machines are chosen at random for ranking, hence the maximum
number of inversions is 10.

FLOPS MAPS + FLOPS + MAPS +
Netbench Netbench

cth 2.9 – –
lammps 2.9 3.6 –
oocore 3.1 3.1 2.9

overflow 3.3 2.2 2.2
wrf 3 3.6 –

Average 3.0 3.2 2.6

Table 4: Average number of thresholded inversions for TI-06 applications using
FLOPS, the full MAPS+Netbench set and the reduced MAPS+Netbench set.
(α = .01 and β = .001)

Using the MAPS and Netbench measurements provides more thresholded
inversions in these tests than FLOPS alone, similar to how its performance
prediction were worse. However when including FLOPS with the MAPS and
Netbench measurements, not only did the accuracy of the performance predic-
tions generally improve, but the rankings also became more accurate. Taken
together, this suggests that FLOPS cannot be completely ignored for accurate
performance predictions.

20

5.2 Least squares with basis reduction

One drawback of applying least squares in such a straightforward way to solve
Equation 3 is that the benchmark measurements may not be orthogonal. In
other words, if M contains several benchmarks whose measurements are highly
correlated, the redundant information may have an unexpected effect on the
accuracy of predicted runtimes on new systems.

This redundant information can be removed using the method of basis re-
duction [25]. After computing the correlations of all pairs of benchmark mea-
surements across all the machines in M , highly correlated pairs are identified
and one of each pair is dropped. For the purposes of this chapter, pairs are
considered to be highly correlated if the correlation coefficient between them is
greater than 0.8 or less than −0.8.

In the cross-validation tests, basis reduction is run on M after the inverse of
non-latency measurements is taken, but before the columns are normalized. M
is reduced to Mr, where Mr has equal or fewer columns than M , depending on
the correlation coefficients of the columns in M . From here, Mr is normalized
and the cross-validation tests are conducted in the same way as before, using
Mr instead of M .

5.2.1 Results for prediction

Since the applications were run on subsets of the single set of 20 machines,
basis reduction was run on all machines, instead of for each application’s set of
machines. Recall that the full basis set consisted of the following:

< [FLOPS], L1(s), L2(s), L3(s),MM(s), L1(r), L2(r), L3(r),MM(r), NWbw, NWlat >

On the machines in Table 1, measurements for strided access to L1 and L2
caches were highly correlated, and only L1-strided bandwidths were kept. In
addition, both strided access to L3 cache and main memory along with random
access to L3 cache and main memory were highly correlated, and only main
memory measurements were kept. The correlation between L3 cache and main
memory is not surprising since not all of the systems have L3 caches. As a result,
when the human expert looked at the MAPS plot (as described in Section 4.1)
and had to identify a particular region as representing the L3 cache, the region
chosen tended to have very similar behavior to that of the region identified for
the main memory.

While different combinations of eliminated measurements were tested, in
practice different combinations led to only minor differences in the results. As
a result, the first predictor in each highly correlated pair was always dropped.
This led to a reduced basis set consisting of:

< [FLOPS], L1(s),MM(s), L1(r), L2(r),MM(r), NWbw, NWlat >

Note that, in addition to using just the MAPS and Netbench measurements,
the FLOPS measurement was also included in the full basis set. FLOPS was

21

not correlated with any of the other measurements, and so its inclusion had no
effect on whether other metrics were included in the reduced basis set.

Table 5 presents the prediction results using the least squares solver (results
in bold are the most accurate predictions in their row). Reducing the full set
of measurements helps provide more accurate performance predictions for all
applications with and without including FLOPS in the basis set.

FLOPS MAPS + Netbench FLOPS + MAPS + Netbench
Full Reduced Full Reduced

avus 73.9 213.4 43.5 – 60.4
cth 61.2 64.8 36.0 59.2 33.4

gamess 72.6 – 55.0 – 35.2
hycomm 67.6 70.8 60.4 – 58.4
lammps 58.4 54.3 32.4 84.8 34.6
oocore 62.9 33.3 24.0 40.2 27.4

overflow 74.8 23.2 27.9 28.6 31.9
wrf 58.2 69.6 17.4 45.2 16.6

Average 66.2 72.4 37.1 51.6 42.4

Table 5: Average absolute relative prediction error for TI-06 applications using
FLOPS, the full MAPS+Netbench set with and without FLOPS and the reduced
MAPS+Netbench set with and without FLOPS.

5.2.2 Results for ranking

The average number of inversions for each application is presented in Table 6.
The table shows that using FLOPS alone provides the best ranking only for
CTH. Although using the reduced FLOPS, MAPS and Netbench basis set did
not provide the better performance predictions, it provides the best rankings,
on average, for the systems. Moreover, whether or not FLOPS is included in
the full basis set, after basis reduction the reduced basis set always provides
more accurate rankings than the full one.

Table 7 shows the effects on the number of inversions as α and β are varied.
This is only shown for the case where the MAPS and Netbench measurements,
not including FLOPS, are used. As α and β get larger, larger variances in the
collected runtimes and benchmark measurements are considered insignificant.
As a result, the number of thresholded inversions declines. Nonetheless, when
averaged over all applications, using the reduced basis set always provides more
accurate rankings compared to FLOPS alone or the full basis set.

5.3 Linear Programming

In [41] a method that uses linear programming to solve Equation 1 is described.
This method uses no more benchmark or application information than the least

22

FLOPS MAPS + Netbench FLOPS + MAPS + Netbench
Full Reduced Full Reduced

cth 2.9 – 3.2 – 3.4
lammps 2.9 3.6 3.1 – 2.8
oocore 3.1 3.1 2.4 2.9 2.4

overflow 3.3 2.2 2.1 2.2 2.0
wrf 3.0 3.6 1.9 – 1.8

Average 3.0 3.2 2.6 2.6 2.5

Table 6: Average number of thresholded inversions for TI-06 applications using
FLOPS, the full MAPS+Netbench set and the reduced MAPS+Netbench set.
(α = .01 and β = .001)

(α, β) (.01, .001) (.1, .01) (.2, .02) (.5, .05)
FLOPS 3.0 2.5 2.2 1.7

Full Basis Set 3.2 2.9 2.8 2.3
Reduced Basis Set 2.6 2.3 2.1 1.6

Table 7: The number of thresholded inversions, averaged over all applications,
with different values of α and β for the TI-06 applications using the MAPS and
Netbench benchmarks.

squares methods described previously, but it adds the ability to incorporate
human judgement and so demonstrates the impact that expert input can have.

The basic idea is to add a parameter γ to Equation 1 so that it is changed
from:

P ≈ m1w1 + m2w2 + m3w3, (4)

to:

P (1− γ) ≥ m1w1 + m2w2 + m3w3 (5)
P (1 + γ) ≤ m1w1 + m2w2 + m3w3. (6)

The goal is to find non-negative weights w that satisfy the above constraints,
while keeping γ small. When some constraints are determined to be difficult
to satisfy, a human expert can decide that either the end-to-end application
runtime measurement, or the benchmark measurements, are suspect and simply
eliminate that machine and the corresponding two constraints. Alternatively,
the decision could be made to rerun the application and/or benchmarks in the
hopes of getting more accurate measurements.

5.3.1 Results

The linear programming method tries to find the weights that best fit the entries
in M and P under the same assumptions as with the least squares methods.

23

However, with human intervention, it can also identify entries in M and P that
seem suspect and either ignore or correct them.

On the set of test data used here, a few runtimes and benchmark mea-
surements were found to be suspect. After correcting those errors, the linear
programming method was run again, giving the overall results presented in Ta-
ble 8. The fact that these predictions are so much more accurate than those in
Table 5 using the least squares method reflects the power of allowing a human
expert to examine the results and to eliminate (or to rerun and recollect) sus-
picious benchmark measurements and application runtimes. Significantly more
detail and analysis can be found in [41].

System Average Error
ASC SGI Altix 8%
SDSC IBM IA64 —
ARL IBM Opteron 8%
ARL IBM P3 4%
MHPCC IBM P3 6%
NAVO IBM P3 6%
NAVO IBM p655 (Big) 6%
NAVO IBM p655 (Sml) 5%
ARSC IBM p655 2%
MHPCC IBM p690 7%
NAVO IBM p690 9%
ARL IBM p690 6%
ERDC HP SC40 8%
ASC HP SC45 4%
ERDC HP SC45 6%
ARSC Cray X1 5%
ERDC Cray X1 3%
AHPCRC Cray X1E —
ARL LNX Xeon (3.06) 8%
ARL LNX Xeon (3.6) 8%
Overall Average Error 6%

Table 8: Average absolute error over all applications using linear programming
for performance prediction. The systems are identified by a combination of the
Department of Defense computer center, the computer manufacturer, and the
processor type.

5.4 Discussion

A simple approach to obtaining benchmark weights is to use least squares. Us-
ing this method is quick and simple, assuming that end to end runtimes of

24

the application on different machines, along with the results of simple machine
benchmarks, are available. Although the the accuracy of the performance pre-
diction (at best a relative error of 37% averaged over all TI-06 applications)
may be insufficient for scenarios such as a queue scheduler, they are accurate
relative to each other and so can be useful for ranking a set of machines.

Simply using the full set of benchmark measurements is not the best ap-
proach for the least squares method. For example, when using the full set of
MAPS and Netbench measurements, the average relative error for predictions
was as high as 72.4%, and there were an average of 3.2 thresholded inversions
when ranking a set of 5 systems. But, once the full set of measurements were
reduced using basis reduction to an orthogonal set, the performance predictions
improved to an average relative error of 37% and the thresholded inversions
reduced to an average of 2.6. In all cases but one, using the reduced set of
benchmark measurements for making performance predictions and ranking sys-
tems is better than using FLOPS alone. The only exception to this is ranking
systems for CTH.

The combination of MAPS and Netbench measurements with and without
FLOPS perform similarly: the performance predictions are better by 5% when
FLOPS are not included in the set. Although the average number of thresholded
inversions are lower when FLOPS is included in the set, the difference between
the two is quite small.

The linear programming method used exactly the same information about
the machines and the applications as the least squares methods, but added the
ability to factor in human expertise. This improved the results significantly,
indicating the power of having access to human expertise (in this case, the
ability to throw out results judged to be due to errors in either the benchmark
measurements or the measured application runtimes).

6 Using basic trace data

As noted previously, different applications with the same execution time on
a given machine may stress different system components. As a result, appli-
cations may derive varying levels of benefit from improvements to any single
system component. The techniques described in Section 5 do not take this into
consideration.

In contrast, this section discusses some techniques that incorporate more
application-specific information, in particular the lightweight trace data de-
scribed in Section 4.2. Note that the types of traces used are considerably
cheaper than those used for the cycle-accurate simulations described in Sec-
tion 2.4.

6.1 Predicting performance

In [41] the authors describe methods for performance prediction that assume
both M and w in Equation 3 are known, but that allow the operation for

25

combining them to be significantly more complex than matrix multiplication.
In addition, whereas M is determined as before, w is determined by tracing
the application. Most notably, w is allowed to vary depending on the system.
To keep costs down, the application is only traced on a single system, but the
data collected (summarized in Figure 5) is then simulated on other systems of
interest in order to generate w for those other machines.

A detailed description of the technique can be found in [41]; here it suffices
to note simply that the results they attained (presented in Table 9) are quite
accurate, with an average absolute error of under 10%.

Figure 5: Data collected on each basic block using the MetaSim Tracer.

Systems average error
ARL IBM Opteron 11%
NAVO IBM P3 7%
NAVO IBM p655 (Big) 6%
ARSC IBM p655 4%
MHPCC IBM p690 8%
NAVO IBM p690 18%
ASC HP SC45 7%
ERDC HP SC45 9%
ARL LNX Xeon (3.6) 5%
Overall Average Error 8%

Table 9: Absolute error averaged over all applications.

26

6.2 Ranking

As in Section 5, once performance predictions have been made for each system,
the times can be used to generate a machine ranking. In [7] the quality of
performance predictions using 9 methodologies of different sophistication are
evaluated. Using the methodologies and the data from [7], Table 10 gives the
summed number of thresholded inversions in the predicted runtimes.

The first 3 cases should produce rankings that are equivalent to rankings
based on only FLOPS, only the bandwidth of strided accesses to main memory,
and only the bandwidth of random accesses to main memory, respectively. The
ranking based on the bandwidth of strided access to main memory is the best of
these three. As expected from the description in [7], the first and fourth cases
produce equivalent rankings.

Case 5 is similar to a ranking based on a combination of FLOPS and the
bandwidth of strided and random accesses to memory. Case 6 is similar to Case
5, but with a different method for partitioning between strided and random
accesses. In Table 10, both of these rankings are significantly better than those
produced by the first four cases. As the rankings in these cases are application
dependent, it is not surprising that they outperform the application independent
rankings discussed in Section 7.

Cases 7 through 9 use more sophisticated performance prediction techniques.
These calculations consider combinations of FLOPS, MAPS memory band-
widths (case 7), Netbench network measurements (case 8) and loop and control
flow dependencies for memory operations (case 9). As expected, they result in
more accurate rankings.

Methodology (case #) 1 2 3 4 5 6 7 8 9
thresh. inversions 165 86 115 165 76 53 55 44 44

Table 10: Sum of the number of thresholded inversions for all applications and
numbers of processors, for each of the nine performance prediction strategies
described in [7].

6.3 Discussion

Although the methods in this section do not use any information about the
actual end-to-end runtimes of an application across a set of machines, the trace
information that these methods employ instead allows them to achieve high ac-
curacy. This represents another point on the trade-off line between accuracy and
expense/complexity. As with the other, more detailed, model-based methods
summarized in Section 2, this approach constructs an overall application perfor-
mance model from many small models of each basic block and communications
event. This model can then be used to understand where most of the time is
spent and where tuning efforts should be directed. The methods described in
Section 5 do not provide such detailed guidance.

27

Furthermore, generating more accurate predictions using these methods also
gives improved (application dependent) machine rankings.

7 Application-independent rankings

Thus far the techniques discussed have focussed on application-specific perfor-
mance prediction and rankings. When it comes to ranking machines, this means
one is given a set of machines and a specific application, and the goal is to pre-
dict which of those machines will execute the application fastest. However, there
is also interest in application-independent rankings (e.g., the Top 500 list [45]),
in which a set of machines is ranked and the general expectation is that the ma-
chine ranked, say, third, will execute most applications faster than the machine
ranked, say, tenth.

The Top 500 list ranks supercomputers based solely on their performance on
the Linpack benchmark which essentially measures FLOPS. This section studies
whether it is possible to improve on that ranking, and what the cost is of doing
so.

7.1 Rankings using only machine metrics

With the metric described in Section 3.4 for evaluating the quality of a ranking,
it is possible to objectively evaluate how FLOPS compares to other machine
benchmarks as a way for generating machine rankings. All rankings in this
section are tested on the set of applications described in Section 4.2, run on
subsets of the machines described in Section 4.1.

The first experiment considers the quality of rankings generated by the ma-
chine benchmarks summarized in Table 2: bandwidth of strided and random
accesses to L1 cache, bandwidth of strided and random accesses to L2 cache,
bandwidth of strided and random accesses to main memory, interprocessor net-
work bandwidth, interprocessor network latency, and peak FLOPS.

Table 11 sums the number of thresholded inversions over all the applications
and all the processor counts on which each was run. Because each application
is run on a different set of processor counts and not every application has been
run on every machine, the numbers in Table 11 should not be compared across
applications, but only on an application by application basis, across the rankings
by different machine characteristics.

The last row of Table 11 shows that the bandwidth of strided accesses to
main memory provides the single best overall ranking, with 309 total thresholded
inversions (in contrast, there is also a machine ranking that generates over 2000
thresholded inversions on this data). The ranking generated by the bandwidth
of random accesses to L1 cache is a close second; however, it is also evident
that there is no single ranking that is optimal for all applications. Although the
bandwidth of strided accesses to main memory is nearly perfect for avus, and
does very well on hycom, wrf, and cth7, it is outperformed by the bandwidth
of both strided and random accesses to L1 cache for ranking performance on

28

Metric L1(s) L1(r) L2(s) L2(r) MM(s) MM(r) 1/NW lat NW bw FLOPS

avus 51 26 44 42 1 61 19 30 22

cth 32 18 30 82 21 117 63 37 35

gamess 25 16 40 55 48 76 65 35 25

hycom 26 10 26 83 17 126 65 28 35

lammps 136 107 133 93 80 157 95 116 68

oocore 44 31 56 71 61 91 75 50 52

overflow 71 39 79 91 47 104 108 81 44

wrf 99 63 92 134 34 203 103 83 60

overall sum 484 310 500 651 309 935 593 460 341

Table 11: Sum of the number of thresholded inversions (α = .01, β = .001) for
all processor counts for each application. The smallest number (representing
the best metric) for each application is in bold. The last row is a sum of each
column and gives a single number representing the overall quality of the ranking
produced using that machine characteristic.

gamess. One interpretation of the data is that these applications fall into three
categories:

• codes dominated by time to perform floating-point operations,

• codes dominated by time to access main memory,

• and codes dominated by time to access L1 cache.

With 20 machines, there are 20! possible distinct rankings. Searching through
the subspace of “feasible” rankings reveals one that gives only 195 inversions
(although this number cannot be directly compared to those in Table 11 since
the parameter values used were α = .01 and β = 0). In this optimal ranking
the SDSC Itanium cluster TeraGrid was predicted to be the fastest machine.
However, across all of the benchmarks, the Itanium is only the fastest for the
metric of bandwidth of random access to main memory — and Table 11 shows
using random access to main memory alone to be the poorest of the single-
characteristic ranking metrics examined. This conundrum suggests trying more
sophisticated ranking heuristics.

Testing various simple combinations of machine metrics — for example, the
ratio of flops to the bandwidth of both strided and random accesses to different
levels of the memory hierarchy — gave rankings that were generally significantly
worse than the ranking based solely on the bandwidth of strided accesses to main
memory. This suggests a need to incorporate more information.

7.2 Rankings incorporating application characteristics

As in Section 6, one might try improving the rankings by incorporating appli-
cation characteristics and using those characteristics to weight the measured

29

machine characteristics. However, in order to generate a single application-
independent ranking, this requires either choosing a single representative appli-
cation, or using values that represent an “average” application. This section
considers the former approach.

Since the goal is to use as little information as possible, the first example
presented uses only the number of memory accesses m and the number of floating
point operations f . Recall that the goal is an application-independent ranking,
so while we evaluate the rankings generated by each of the applications, only the
best result over all the applications is reported. In other words, this is the result
of taking the characteristics of a single application and using it to generate a
ranking of the machines that is evaluated for all the applications in the test
suite.

If a memory reference consists of 8 bytes, m and f can be used in a natural
way by computing the following number for each machine mi:

ri =
8m

bw mem(i)
+

f

flops(i)
. (7)

Within Equation 7, m (and f) could be either the average number of memory
accesses over all the processors, or the maximum number of memory accesses
over all the processors. In addition, bw mem can be the strided or random
bandwidth of accesses to any level of the memory hierarchy.

Using the bandwidth of strided accesses to main memory for bw mem, re-
gardless of whether the average or the maximum counts for m and f are used,
leads to a ranking that is identical to a ranking based only on the bandwidth
of strided accesses to main memory. Since the increase in memory bandwidth
has not kept pace with the increase in processor speed, it is not surprising that
the memory term in Equation 7 overwhelms the processor term. The effect
would be even greater if the bandwidth of random accesses to main memory
for bw mem(i) was used, since the disparity between the magnitude of the two
terms would be even greater. Moreover, using the measurement that has the
fastest access time of all levels of the memory hierarchy, bandwidth of strided ac-
cesses to L1, for bw mem in Equation 7 results in a ranking that is independent
of f .

This suggests a model that accommodates more detail about the applica-
tion, perhaps by partitioning the memory accesses. One possibility would be
to partition m into m = ml1 + ml2 + ml3 + mmm, where ml1 is the number
of accesses that hit in the L1 cache, and so on. Another is to partition m into
m = m1 + mr, where m1 is the number of strided accesses and mr is the num-
ber of random accesses to memory. Partitioning into levels of the hierarchy is
dependent on the architecture chosen, which suggests trying the latter strategy
(using the technique described in Section 4 to partition the memory accesses).

Once the m memory accesses into random (mr) and strided (m1), Equation 8
can be used to compute the numbers r1, r2, . . . , rn from which the ranking is
generated:

ri =
8m1

bw mem1(i)
+

8mr

bw memr(i)
+

f

flops(i)
. (8)

30

Metric l1(1,r) mm(1,r) mm(1), l1(r)
avus 12 21 9
cth7 14 80 9
gamess 16 77 26
hycom 2 44 2
lammps 107 148 81
oocore 31 100 44
overflow2 34 78 34
wrf 63 158 44
overall sum 279 706 249

Table 12: Sum of the number of thresholded inversions for all numbers of pro-
cessors for each application, with α = .01 and β = .001. The smallest number
(representing the best metric) for each application is in bold.

Notice that there is again a choice to be made regarding what to use for
bw mem1 and bw memr. There are several options including: using the band-
widths of strided and random accesses to main memory; the bandwidths of
strided and random accesses to L1 cache; or, considering the data in Table 11,
the bandwidth of strided access to main memory and of random access to L1
cache. Furthermore, since the goal is a single, fixed ranking that can be applied
to all applications, a choice also has to made about which application’s m1, mr,
and f to use for generating the ranking. In theory one could also ask what
processor count of which application to use for the ranking; in practice, these
traces take time to perform, and so m1 and mr counts were only gathered for
one processor count per application.

Table 12 shows the results of these experiments. Each column shows the
number of thresholded inversions for each of the 8 applications using the speci-
fied choice of strided and random access bandwidths. In each column the results
use the application whose m1, mr, and f led to the smallest number of inversions
for all other applications. When using the random and strided bandwidths to L1
cache, the most accurate ranking was generated using overflow2; when using the
bandwidths to main memory, the best application was oocore; and when using
a combination of L1 and main memory bandwidths, avus and hycom generated
equally good rankings.

Comparing the results in Table 12 to those in Table 11 reveals that partition-
ing the memory accesses is useful as long as the random accesses are considered
to hit in L1 cache. Using the bandwidth of random access to L1 cache alone
did fairly well, but the ranking is improved by incorporating the bandwidth of
strided accesses to L1 cache, and is improved even more by incorporating the
bandwidth of strided accesses to main memory. When we use the bandwidth
of accesses to main memory only, the quality of the resulting order is between
those of rankings based on the bandwidth of random accesses and based on the
bandwidth of strided accesses to main memory.

31

In [9] the authors discuss possible reasons why the combined metric based
on mm(1) and l1(r) works so well. One observation is that this may be rep-
resentative of a more general fact: applications with a large memory footprint
that have many strided accesses benefit from high bandwidth to main memory
because the whole cache line is used and prefetching further utilizes the full
main memory bandwidth. For many of these codes main memory bandwidth
is thus the limiting performance factor. On the other hand, applications with
many random accesses are wasting most of the cache line and these accesses
do not benefit from prefetching. The performance of these codes is limited by
the latency hiding capabilities of the machine’s cache, which is captured by
measuring the bandwidth of random accesses to L1 cache.

7.3 Discussion

Two things that might further improve on the ranking would be partitioning
memory accesses between the different levels of the memory hierarchy and al-
lowing different rankings based on the processor count. The two possibilities
are not entirely independent since running the same size problem on a larger
number of processors means a smaller working set on each processor and there-
fore different cache behavior. However, allowing different rankings for different
processor counts takes us away from the original goal of finding a single fixed
ranking that can be used as a general guideline.

This leaves partitioning memory accesses between the different levels of the
memory hierarchy. As noted previously, this requires either choosing a rep-
resentative system or moving towards a more complex model that allows for
predictions that are specific to individual machines, as is done in [7, 30]. There-
fore, given the level of complexity needed for a ranking method that incorporates
so much detail, we simply observe that we achieved a ranking with about 28%
more thresholded inversions than the brute-force obtainable optimal ranking on
our data set without resorting to anything more complex than partitioning each
application’s memory accesses into strided and random accesses. This repre-
sents a significant improvement over the ranking based on FLOPS, which was
about 75% worse than the optimal ranking.

8 Conclusion

This chapter addressed two related issues of interest to various parties in the
world of supercomputing: performance prediction, and machine ranking. The
first is a long-standing problem that has been studied extensively, reflected in
part by the survey of work in Section 2. The second, while not as well studied,
is still of interest both when the goal is a machine ranking for a particular ap-
plication, and when the goal is a more general application independent ranking.

To illustrate the trade-offs between accuracy and effort that are inherent
in any approach, one framework for both prediction and ranking is presented.
The main assumption in this framework is that simple benchmarks can be run

32

(or accurately estimated) on all systems of interest. Then several variations
within the framework are examined: ones that use only end-to-end runtimes for
an application on any set of machines (Section 5), and those that also employ
basic trace data about an application (Section 6). Using trace data is more
expensive and, not surprisingly, gives significantly more accurate predictions
than a completely automatic method that is based on least squares and uses
only end-to-end runtimes. However, a linear programming method that also
only uses end-to-end runtimes can partially compensate by allowing human ex-
pert intervention. Finally, in Section 7 the question of application independent
machine rankings is addressed, again within the same framework. Once again,
reasonable results can be obtained using only the results of simple benchmark
measurements, but the results can be improved by incorporating limited appli-
cation trace information.

9 Acknowledgments

We would like to thank Michael Laurenzano and Raffy Kaloustian for help-
ing to collect trace data; and Xiaofeng Gao for writing the dynamic analysis
tool used in Section 4.2. The applications benchmarking data used in this
study was obtained by the following members of the Engineering Research and
Development Center (ERDC), Computational Science and Engineering Group:
Mr. Robert W. Alter, Dr. Paul M. Bennett, Dr. Sam B. Cable, Dr. Alvaro
A. Fernandez, Ms. Carrie L. Leach, Dr. Mahin Mahmoodi, Dr. Thomas C.
Oppe, and Dr. William A. Ward, Jr. This work was supported in part by
a grant from the DoD High Performance Computing Modernization Program
(HPCMP) along with HPCMP-sponsored computer time at the Army Research
Laboratory (ARL), the Aeronautical Systems Center (ASC), the Engineering
Research and Development Center (ERDC), and the Naval Oceanographic Of-
fice (NAVO) Major Shared Resource Centers (MSRCs) and the Army High
Performance Computing Research Center (AHPCRC), the Artic Region Super-
computing Center (ARSC), and the Maui High Performance Computing Center
(MHPCC). Computer time was also provided by SDSC. Additional computer
time was graciously provided by the Pittsburgh Supercomputer Center via an
NRAC award. This work was supported in part by a grant from the National
Science Foundation entitled “The Cyberinfrastructure Evaluation Center”, and
by NSF grant #CCF-0446604. This work was sponsored in part by the Depart-
ment of Energy Office of Science through SciDAC award “High-End Computer
System Performance: Science and Engineering”, and through the award entitled
“HPCS Execution Time Evaluation”.

References

[1] V. Adve. Analyzing the behavior and performance of parallel programs.
PhD thesis, University of Wisconsin, Madison, 1993.

33

[2] R. Badia, G. Rodriguez, and J. Labarta. Deriving analytical models from
a limited number of runs. In Parallel Computing: Software Technology,
Algorithms, Architectures, and Applications (PARCO 2003), pages 769–
776, Dresden, Germany, 2003.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The
NAS parallel benchmarks. Intl. J. Supercomp. Appl., 5(3):63–73, Fall 1991.

[4] R. S. Ballansc, J. A. Cocke, and H. G. Kolsky. The lookahead unit, planning
a computer system. McGraw-Hill, New York, NY, 1962.

[5] L. T. Boland, G. D. Granito, A. V. Marcotte, B. V. Messina, and J. W.
Smith. The IBM system 360/model9: storage system. IBM J. Res. and
Dev., 11:54–79, 1967.

[6] D. Burger, T. M. Austin, and S. Bennett. Evaluating future micropro-
cessors: the simplescalar tool set. Technical Report CS-TR-1996-1308,
University of Wisconsin-Madison, 1996.

[7] L. Carrington, M. Laurenzano, A. Snavely, R. L. Campbell, Jr., and
L. Davis. How well can simple metrics predict the performance of real
applications? In Proceedings of Supercomputing (SC|05), November 2005.

[8] L. Carrington, A. Snavely, N. Wolter, and X. Gao. A performance pre-
diction framework for scientific applications. In Proceedings of the Inter-
national Conference on Computational Science (ICCS 2003), Melbourne,
Australia, June 2003.

[9] T.-Y. Chen, M. Gunn, B. Simon, L. Carrington, and A. Snavely. Metrics for
ranking the performance of supercomputers. CTWatch Quarterly, 2(4B),
November 2006.

[10] M. J. Clement and M. J. Quinn. Multivariate statistical techniques for
parallel performance prediction. In HICSS ’95: Proceedings of the 28th
Hawaii International Conference on System Sciences, pages 446–455, 1995.

[11] M. E. Crovella and T. J. LeBlanc. Parallel performance prediction using lost
cycles analysis. In Supercomputing ’94: Proceedings of the 1994 ACM/IEEE
conference on Supercomputing, pages 600–609, Washington, D.C., 1994.

[12] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. LogP: Towards a realistic model
of parallel computation. In Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 1–
12, San Diego, CA, May 1993.

34

[13] Department of Defense High Performance Computing Mod-
ernization Program. Technology Insertion - 06 (TI-06).
http://www.hpcmo.hpc.mil/Htdocs/TI/TI06, May 2005.

[14] J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark: past,
present and future. Concurr. Comput. : Pract. Exper., 15:1–18, 2003.

[15] M. Faerman, A. Su, R. Wolski, and F. Berman. Adaptive performance
prediction for distributed data-intensive applications. In Supercomputing
’99: Proceedings of the 1999 ACM/IEEE conference on Supercomputing
(CDROM), page 36, Portland, OR, 1999.

[16] J. L. Gustafson and R. Todi. Conventional benchmarks as a sample of the
performance spectrum. J. Supercomp., 13(3):321–342, 1999.

[17] A. Hoisie, O. M. Lubeck, and H. J. Wasserman. Performance analysis of
wavefront algorithms on very-large scale distributed systems. In Workshop
on Wide Area Networks and High Performance Computing, pages 171–187,
London, UK, 1999. Springer-Verlag. Also Lecture Notes in Control and
Information Sciences, Vol. 249.

[18] A. Hoisie, O. M. Lubeck, and H. J. Wasserman. Scalability analysis of
multidimensional wavefront algorithms on large-scale SMP clusters. In
FRONTIERS ’99: Proceedings of the The 7th Symposium on the Frontiers
of Massively Parallel Computation, pages 4–15, Annapolis, MD, February
1999.

[19] HPC Challenge Benchmarks. http://icl.cs.utk.edu/hpcc/.

[20] IDC reports latest supercomputer rankings based on the IDC Balanced
Rating test. In EDP Weekly’s IT Monitor, December 2002.

[21] E. Ipek, B. R. de Supinski, M.Schulz, and S. A. McKee. Euro-Par 2005
Parallel Processing, volume 3648, chapter An approach to performance
prediction for parallel applications, pages 196–205. Springer Berlin / Hei-
delberg, 2005.

[22] D. J. Kerbyson, A. Hoisie, and H. J.Wasserman. A performance comparison
between the Earth Simulator and other terascale systems on a characteris-
tic ASCI workload. Concurr. Comput. : Pract. Exper., 17(10):1219–1238,
2005.

[23] D. J. Kerbyson and P. W. Jones. A performance model of the parallel ocean
program. Intl. J. High Perf. Comput. Appl., 19(3):261–276, Summer 2005.

[24] D. J. Kerbyson, H. J. Wasserman, and A. Hoisie. Exploring advanced
architectures using performance prediction. In IWIA ’02: Proceedings of the
International Workshop on Innovative Architecture for Future Generation
High-Performance Processors and Systems, pages 27–40, 2002.

35

[25] O. Khalili. Performance prediction and ordering of supercomputers using a
linear combination of benchmark measurements. Master’s thesis, University
of California at San Diego, La Jolla, CA, June 2007.

[26] W. T. C. Kramer and C. Ryan. Performance variability of highly parallel
architectures. In Proceedings of the International Conference on Computa-
tional Science (ICCS 2003), Melbourne, Australia, June 2003.

[27] J. Lo, S. Egger, J. Emer, H. Levy, R. Stamm, and D. Tullsen. Convert-
ing thread-level parallelism to instruction-level parallelism via simultaneous
multithreading. ACM Trans. Comput. Sys., August 1997.

[28] Y. Luo, O. M. Lubeck, H. Wasserman, F. Bassetti, and K. W. Cameron.
Development and validation of a hierarchical memory model incorporating
CPU- and memory-operation overlap model. In WOSP ’98: Proceedings
of the 1st International Workshop on Software and Performance, pages
152–163, Santa Fe, NM, 1998. ACM Press.

[29] P. Luszczek, J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner,
J. McCalpin, D. Bailey, and D. Takahashi. Introduction to the HPC chal-
lenge benchmark suite. Available at http://www.hpccchallenge.org/pubs/,
March 2005.

[30] G. Marin and J. Mellor-Crummey. Cross-architecture performance predic-
tions for scientific applications using parameterized models. In Proceedings
of SIGMETRICS/Performance’04, New York, NY, June 2004.

[31] J. D. McCalpin. Memory bandwidth and machine balance in current high
performance computers. IEEE Technical Committee on Computer Archi-
tecture Newsletter, December 1995.

[32] C. L. Mendes and D. A. Reed. Performance stability and prediction. In Pro-
ceedings of the IEEE/USP International Workshop on High Performance
Computing, 1994.

[33] C. L. Mendes and D. A. Reed. Integrated compilation and scalability anal-
ysis for parallel systems. In PACT ’98: Proceedings of the 1998 Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
pages 385–392, 1998.

[34] J. O. Murphey and R. M. Wade. The IBM 360/195. Datamation, 16(4):72–
79, 1970.

[35] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing super-
computer performance: achieving optimal performance on the 8,192 pro-
cessors of ASCI Q. In Proceedings of Supercomputing (SC’03), Phoeniz,
AZ, November 2003.

36

[36] R. H. Saavedra and A. J. Smith. Measuring cache and TLB perfor-
mance and their effect on benchmark runtimes. IEEE Trans. Comput.,
44(10):1223–1235, 1995.

[37] R. H. Saavedra and A. J. Smith. Performance characterization of optimizing
compilers. IEEE Trans. Softw. Eng., 21(7):615–628, 1995.

[38] R. H. Saavedra and A. J. Smith. Analysis of benchmark characteristics and
benchmark performance prediction. ACM Trans. Comput. Sys., 14(4):344–
384, 1996.

[39] J. Simon and J. Wierun. Accurate performance prediction for massively
parallel systems and its applications. In Proceedings of the 2nd Interna-
tional Euro-Par Conference, Lyon, France, August 1996.

[40] K. Singh, E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz, and R. Caru-
ana. Predicting parallel application performance via machine learning ap-
proaches. 2007.

[41] A. Snavely, L. Carrington, M. M. Tikir, R. L. Campbell Jr., and T.-Y.
Chen. Solving the convolution problem in performance modeling. 2006.

[42] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha. A framework for application performance modeling and
prediction. In Proceedings of Supercomputing (SC2002), Baltimore, MD,
November 2002.

[43] D. Spooner and D. Kerbyson. Identification of performance characteristics
from multi-view trace analysis. In Proceedings of the International Confer-
ence on Computational Science (ICCS 2003), Melbourne, Australia, June
2003.

[44] G. S. Tjaden and M. J. Flynn. Detection and parallel execution of inde-
pendent instruction. IEEE Trans. Comput., C-19:889–895, 1970.

[45] Top500 supercomputer sites. http://www.top500.org.

[46] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of
the obvious. SIGARCH Comput. Arch. News, 23(1):20–24, 1995.

[47] Z. Xu, X. Zhang, and L. Sun. Semi-empirical multiprocessor performance
predictions. J. Parallel Distrib. Comput., 39(1):14–28, 1996.

[48] L. T. Yang, X. Ma, and F. Mueller. Cross-platform performance prediction
of parallel applications using partial execution. In SC ’05: Proceedings of
the 2005 ACM/IEEE conference on Supercomputing, page 40, Seattle, WA,
2005.

37

