
PMaC Binary Instrumentation Library for PowerPC/AIX

Mustafa M. Tikir, Michael Laurenzano, Laura Carrington, Allan Snavely
Performance Modeling and Characterization Lab

San Diego Supercomputer Center
9500 Gilman Drive, La Jolla, CA 92093

{mtikir,michaell,lcarring,allans}@sdsc.edu

Abstract
The decommissioning of Alpha AXP-based systems
carrying the ATOM toolkit has left the need for an
efficient, flexible binary instrumentation tool-building
framework for another platform. PMaCinst is a binary
instrumentation toolkit that operates on XCOFF binaries
on AIX for PowerPC processors. PMaCinst has a C++
API that provides the means to inject code and data into a
binary file In this paper, we first present the mechanisms
for performing these modifications along with the key
parts of the API. We then present three example rewriting
tools that have been built using PMaCinst, which help to
highlight some of the correctness and efficiency issues that
can be encountered by tool writers. Finally, we show that
programs instrumented with PMaCinst slow down at rates
that are comparable to equivalently instrumented
programs created with ATOM.

1. Introduction

Program instrumentation tools [1-3] provide a unique and
important source of information for understanding and
tuning the execution behavior of applications. These tools
have proven to be effective during every stage of an
application’s development cycle. They have been
extensively used to evaluate how a program will perform
on new systems, to identify performance bottlenecks
during program execution, to gather information on
underlying systems for profile-driven optimizations, and to
identify bugs in programs [9].

In the Performance Modeling and Characterization
(PMaC) Lab at the San Diego Supercomputer Center, we
focus on developing methods and tools for understanding
and predicting the performance of scientific applications
on existing and future HPC systems. One of these tools,
called the MetaSim Tracer[4], provides the user with a
detailed summary of the fundamental operations carried
out by the application. MetaSim Tracer is a binary
rewriting tool currently implemented on top of the ATOM
toolkit [1] for Tru64 Unix on Alpha AXP processors.
However, due to the decommissioning of current Alpha-
based systems, the need has emerged for an efficient,
flexible instrumentation toolkit that operates on a different
platform.

In this paper we introduce PMaCinst, the PMaC
binary instrumentation library. PMaCinst enables
instrumentation of XCOFF [5] executables on the AIX
operating system on PowerPC processors [6]. PMaCinst is
a tool-building system similar in nature to popular toolkits
such as Dyninst [2], ATOM and Pin [3]. It is designed to
provide functionality that is similar to these tools in that it
allows arbitrary functions to be inserted at arbitrary points
in executables. Furthermore, it provides the facilities to
insert hand optimized low-level assembly code, which can
help keep instrumentation overhead minimal. PMaCinst
works on any compiled XCOFF binary (both 32 and 64-
bit), independent of the compiler and language system
used to generate the binary.

We also present several rewriting tools implemented
using the PMaCinst library. These tools include a basic
block tracing tool that prints function name and line
number information of basic blocks as they are executed, a
basic block counting tool that counts the number of times
each basic block is executed during a program run, and a
cache simulation tool that can simulate multiple memory
hierarchies with different numbers of cache levels using
the address stream of the program. The PMaCinst
instrumentation library source code and the previously
mentioned rewriting tools are available for download at
http://www.sdsc.edu/PMaC/PMaCinst/.

2. PMaCinst API

PMaCinst library provides an Application Programmer
Interface (API) in C++ for building program analysis and
rewriting tools. This API includes functionality to parse an
XCOFF executable and generate program objects, to inject
instrumentation code and data into the executable, and to
generate a modified XCOFF executable that includes
instrumentation code and the accompanying changes to
program objects. The general framework for PMaCinst is
shown in Figure 1.

2.1 Parsing the Executable
The PMaCinst API provides class definitions for XCOFF
file objects such as the file header, section header, symbol
table, relocation table and line information table, and
provides class definitions for program objects such as

instructions, basic blocks, functions, control flow graphs
(CFG), memory operations, and natural loops.

The parse method of the XCoffFile class (shown in
Figure 1) parses an input executable file, creates XCOFF
objects, and creates program objects for the entire
executable. The parse method parses every object at
startup instead of incremental parsing, where program
objects would be parsed as needed with a potentially
smaller overhead. Parsing every object at startup allows
PMaCinst to assign a unique and persistent ID, called a
hashcode, to each program object encountered in the
executable. This hashcode is based on a hierarchy of
container objects (such as instructions in a basic block,
basic blocks in a function, functions in a code section,
etc.), and parsing the executable in its entirety at startup
enables PMaCinst to assign the same hashcode to each
object every time the executable is parsed. Unlike parsing,
much of the remaining functionality of PMaCinst is
invoked on demand, such as constructing loops or
generating line number information for a particular
function or for all functions in a code section.

Figure 1. General PMaCinst Framework
Executable parsing is fairly straightforward as XCOFF

is a well defined and self contained object file format.
However, special processing is required in two notable
cases: identifying the sizes of some functions, and
generating the CFG for functions with indirect jumps
resulting from high-level constructs such as switch
statements (multi-target jumps that use lookup tables).

PMaCinst does not require that executables contain
debugging information. The minimal symbol table for an
XCOFF file, which is generated when the program is
compiled without the debug flag (e.g. –g), provides
information about the sizes of all control sections (CSECT
[5]) in the executable. It also provides size information for
some functions. However, a CSECT may contain several
functions for which the symbol table only provides
information about the containing CSECT. For these
functions, we use the start address of the function’s
traceback table to determine where the function ends. On
AIX, a traceback table for each function is generated by
the compiler for exception handling and inter-language call
mechanisms, and is placed the end of the function’s

address space. Each traceback table starts with a null word
(with a value of 0 also indicating an invalid instruction),
which can then be used to mark the end of its
accompanying function.

To generate the CFG for a function with indirect
jumps, we first identify whether the jump instruction is a
multi-target lookup table jump generated by a high level
code construct such as a switch statement or whether it is
simply an indirect call to a function. To identify multi-
target jumps, we search for compiler-specific instruction
sequence patterns generated for lookup table jumps similar
to general peephole optimization techniques used in
compilers. Such patterns contain instruction sequences to
compare the switch value with the lookup table size as
well as instruction sequences to calculate the jump
addresses. Using the information available in these
instruction sequences, we identify the locations of lookup
tables in the executable as well as the number of entries in
them. Later we parse the lookup table to generate the
potential target addresses for the indirect jump instruction.

Since we search for instruction sequence patterns to
identify the multi-target jump instructions, PMaCinst
requires prior knowledge about all potential patterns that
may be generated by the available compilers on the
system. In this early version of the PMaCinst library, we
handle common patterns for the GNU and native compilers
for C, C++, and Fortran. We plan to extend these patterns
in future versions of PMaCinst to include other languages
and compilers.

PMaCinst also provides on-demand methods that
discover and interface to more complex program
information such as dominator information, natural loops
and line number information. For loop discovery, we use
the algorithms presented in [12] along with the linear-
complexity dominator finding method presented by
Lenguar and Tarjan in [13].

Necessary line information can be found in the line
information and symbol tables of the XCOFF executable
when debugging information is present, but finding
relevant information from these sources can involve time-
wasting searches. For example, determining the source file
from which a particular instruction came from would
typically involve searching the line information table to
determine which symbol (function) is associated with that
instruction then searching backwards from this function in
the symbol table to find the file symbol that contains the
function. Such searching is inefficient and can be
incredibly redundant when many such lookups are being
done. Instead of working from scratch for each such
search, the user can invoke the setLineInfoFinder
method of the XCoffFile class to create data structures
that maintain intermediate information about how the
virtual addresses of instructions, line information, function
names and file names are related to one another. Returning
to our example, storing a pointer to the parent file symbol
for each function would save us the time of searching the

// Step I : Executable parsing
XCoffFile file(execName);
file.parse();

// Step II : Code/Data Injection
XCoffFileGen fileGen(file);
fileGen.instrument();

// Step III: New Executable
fileGen.dump();

symbol table for the containing symbol each time we
performed an address to function name lookup.

2.2 Modifying Program Objects
To perform actual instrumentation after the executable is
parsed, the PMaCinst API provides the user with a base
class called XCoffFileGen (shown in Figure 1). This
class provides virtual methods which must be implemented
for every new rewriting tool. It also hides other
abstractions that are common to all instrumentation
frameworks. The virtual methods in XCoffFileGen
include methods to select instrumentation points, print
information about each point, calculate the size and
generate the code for the point, query the name of the
shared library and its functions for which the calls will be
injected, and extend and initialize the DATA section of the
program. After implementing these virtual methods, the
instrument method of XCoffFileGen needs to be
called by the new tool to apply all of the necessary
modifications to the affected program objects. Several
examples of rewriting tools and how this base class is
extended are provided under the examples/ directory of
the PMaCinst source distribution.

PMaCinst provides two different ways of injecting
instrumentation code at an arbitrary instrumentation point.
First, a sequence of assembly instructions can be inserted.
This mainly enables users to insert hand optimized code.
Second, calls to functions from a shared library can be
inserted. In order to insert calls to the functions from
shared libraries, PMaCinst requires that intermediate call
stubs be generated to handle the saving/restoring of
registers before/after function calls to preserve machine
state as well as the passing of parameters to the library
functions through registers.

Figure 2. Instrumentation in PMaCinst
In both types of code insertion, instrumentation code

for each instrumentation point in a text section is placed at

the end of the text section, meaning that the address space
for the original code is left unperturbed (except for the
single replaced instruction at the instrumentation point).
Alternatively, instrumentation code could be inlined at
each instrumentation point, but such inlining would require
updating the offsets of all branch and call instructions
throughout the executable, making it extremely difficult to
ensure correctness of the instrumented executable as well
as potentially mitigating any code layout optimizations
done by the compiler.

Control into the instrumentation code is acquired by
relocating an instruction from the instrumentation point in
the original code into the instrumentation code, then
replacing the original instruction with a jump into the
instrumentation code. This is similar in concept to a base
trampoline in the Dyninst library [2] and can be seen in
Figure 2. At the end of each instrumentation code, a jump
back to the original code is inserted.

In PowerPC, a relative jump instruction can jump a
distance of +/- 32MB from the instruction itself. Thus if
instrumentation for a point requires jumping more than this
maximum distance, PMaCinst denies the instrumentation.
However, such cases are rare as typical TEXT sections in
executables tend to be smaller than the maximum range of
the relative jump instructions. Alternatively, for such
cases, indirect jumps based on the control and link
registers can be used to branch into the instrumentation
code, which requires determining which registers are live
at instrumentation points in order to keep the machine state
unchanged. We plan to include this feature in future
versions of PMaCinst.

Since PMaCinst enables insertion of assembly code,
developers are currently expected to have some knowledge
of the PowerPC instruction set and assembly code. Unlike
Dyninst, we do not provide the ability to generate
assembly code from high level C-like statements. Instead,
for high level code, PMaCinst enables insertion of calls to
shared library functions similar to ATOM. We chose to
involve developer more because small sequences of hand
written code are typically more efficient than automatically
generated code. It allows us to insert manually optimized
assembly code and to use efficient instrumentation code in
which only the registers that are used in the
instrumentation code are saved. However, in future
versions of PMaCinst, we plan to include a higher level
interface that will allow the user to generate and insert
code that is given as C-like statements.

In addition to allowing insertion of instrumentation
code, PMaCinst also provides interface to extend the
initialized data section (DATA) and to initialize the
extended space. This interface requires the user to define
the size of the extension in bytes, and the structure of the
additional space is unknown to PMaCinst. Rather, the user
is required to know the structure of the additional space
and how to use this structure during initialization and
while accessing this space from the instrumentation code.

Original Text Section

Instrumentation Section

Jump to Instrumentation

Jump to Original Code

Original Instruction Instrumentation
Code

Instrumentation Point

Similar to code insertion, the additional data is
injected at the end of DATA section. Thus the original data
in this section is left unperturbed. In XCOFF executables,
the Table Of Contents (TOC [5]), which is accessed via the
TOC register, is kept at the end of DATA section. Since
PMaCinst stores additional data at the end of the DATA
section, it follows that both the TOC and the extended part
of the DATA section can be accessed via TOC register in
the instrumentation code. This allows users to keep track
only of offsets to their new data with respect to TOC
register rather than the absolute addresses of the data.

2.3 Writing the Instrumented Executable
To generate the instrumented executable file, the
XCoffFileGen class provides a method called dump
(shown in Figure 1). This method iterates over all program
objects and generates XCOFF file objects from them, then
dumps these newly created XCOFF file objects to an
executable file that contains the instrumented program. It
is important to note that the newly created XCOFF
executable is run in similar fashion to the original
executable without any additional processes or
intermediate files to pass information (unless, of course,
any of the instrumentation code inserted by the user reads
or writes on files).

Even though PMaCinst keeps the original data and
TEXT sections unperturbed except relocating instructions
at instrumentation points, special handling is required to
generate a correct XCOFF executable if the data section of
the original executable has been extended. The un-
initialized data section (BSS [5]) generally follows the
DATA section in the virtual address space of the program.
Furthermore, the TOC in the DATA section includes
pointers to items in the BSS and TEXT section. Thus, for
program correctness the pointers to BSS objects need to be
updated when the DATA section (and thus the virtual
address of the BSS section) is extended. But since the
TEXT section generally lies before the DATA section, the
TOC pointers to the TEXT section remain unchanged.

3. Rewriting Tools and Experimental Results

We implemented three rewriting tools using the PMaCinst
instrumentation library. The BasicBlockTracer prints the
sequence number, the line number, and the function name
of a basic block as that block is executed. The
BasicBlockCounter counts the execution frequency of each
basic block during a program run, printing the execution
counts of all blocks at the end of execution. The
CacheSimulator simulates multiple memory hierarchies
using the address stream of some basic blocks where each
hierarchy may include varying levels of caches.

3.1 Example 1: BasicBlockTracer
The BasicBlockTracer tool selects the entry points of all
basic blocks in the executable for instrumentation. To be
able to print information for each basic block, the
BasicBlockTracer extends the DATA section and
initializes it with a sequence of records where each record
contains information about a basic block that will be
passed to the instrumentation function. Each record
contains the block sequence number (a unique ID assigned
at instrumentation point selection), line number, and
function name of the basic block.

At the entry point of each block, BasicBlockTracer
inserts a call to a function in a shared library, which takes a
pointer to that basic block’s record in the DATA section as
an argument and prints the information to standard output.
Since BasicBlockTracer prints the sequence number of
basic blocks rather than the virtual addresses, it also writes
information about mapping between sequence numbers
and virtual addresses of instrumented basic blocks to a file
while instrumentation is being performed, which may be
used for post-processing if desired.

Figure 3 shows a sample output of an executable
instrumented by BasicBlockTracer. The base printed for
each basic block is the virtual address of that block’s
record in the DATA section. Note that for
BasicBlockTracer to print source line numbers for basic
blocks, it is required that the program be compiled with
debug information (e.g. –g).

 Figure 3. A sample output from the BasicBlockTracer

Base 0x11000150c, Block 66 is at line 10 in function .foo
Base 0x11000153c, Block 69 is at line 17 in function .foo
Base 0x11000154c, Block 70 is at line 17 in function .foo
Base 0x11000155c, Block 71 is at line 17 in function .foo
Base 0x11000156c, Block 72 is at line 22 in function .foo
Base 0x1100013d4, Block 47 is at line 5 in function .main
Base 0x1100015a0, Block 75 is at line 1 in function .bar
Base 0x1100015b0, Block 76 is at line 4 in function .bar
Base 0x1100015c0, Block 77 is at line 7 in function .bar
Base 0x1100015d0, Block 78 is at line 8 in function .bar
Base 0x1100015e0, Block 79 is at line 9 in function .bar
Base 0x11000158c, Block 74 is at line 1 in function .bar_helper

3.2 Example 2: BasicBlockCounter
Like, BasicBlockTracer, the BasicBlockCounter selects the
entry point of every basic block as an instrumentation
point. To keep track of execution frequencies of basic
blocks, the BasicBlockCounter extends the DATA section
with an array of 64-bit counters that are indexed by the
block’s sequence number and initialized to 0.

For each basic block, the BasicBlockCounter tool
inserts assembly code that increments the counter for that
basic block. In addition, BasicBlockCounter inserts
instrumentation at the entry point of the exit function of
the program that writes the collected basic block execution
frequencies into a file at program termination. The
instrumentation code at the exit function includes a call to
a function in a shared library, which is passed a pointer to
the counter array and the size of the array as arguments. At
program termination, the tool writes the sequence number
and execution frequency of each basic block instrumented
in the program.

To relate the sequence numbers that are printed to
unique hashcodes for the instrumented basic blocks,
BasicBlockCounter also writes information about the
blocks to an output file during instrumentation, which
includes the hashcode, sequence number, virtual address,
function name, and source file name of the basic block.
Again, users could use this extra information to associate
all of the statically known information about a basic block
listed above with the collected runtime execution
frequencies.

3.3 Example 3: CacheSimulator
The CacheSimulator tool selects all of the memory
instructions from a user-defined list of basic blocks as
instrumentation points. Suppose that we select the list of
the most frequently executed basic blocks that correspond
to 95% of total program execution. This list of basic blocks
can be obtained by instrumenting the application with the
BasicBlockCounter tool.

A simple way for CacheSimulator to instrument a
memory instruction is to insert a call to a shared library
function and pass the effective address of the memory
instruction as an argument so that the function could
simulate this address being accessed in a series of caches.
But such instrumentation is computationally expensive, as
the number of memory operations in a program tends to be
large and calling the simulation function for each memory
operation separately will introduce a significant amount of
function call overhead. Instead, CacheSimulator first
extends the DATA section with a space that will act as a
buffer for memory operation records, where each memory
operation record is composed of the effective address,
basic block sequence number, and the index of the
memory instruction within the block.

The instrumentation code inserted by CacheSimulator
for each memory instruction stores information about the
effective address and the location of the instruction itself in
the first available record in the address buffer and
increments the buffer size. When the buffer is full, the
instrumentation code calls the cache simulation function
from a shared library, passing the start address of the
buffer as an argument. Like BasicBlockCounter,
CacheSimulator also inserts instrumentation code at the
entry of the exit function of the program to write the
results of the cache simulations, which is a call to another
function in the shared library.

By storing the program’s address stream in a buffer
and calling the cache simulation function when the buffer
is full, the simulation function is called less frequently
(every N memory accesses, where N is the size of the
buffer and can be given as a parameter to the
CacheSimulator tool). This framework also enables the
user to plug in new cache simulation functions without
requiring re-instrumentation. The user only needs to
implement the new cache simulation functions in the
shared library used by the CacheSimulator.

In the current version of CacheSimulator, the
simulator takes a list of memory hierarchies as input. Each
memory hierarchy defines the number of levels in the
memory hierarchy and properties of caches in each level.
When collecting results, CacheSimulator does not
differentiate between different memory instructions from
the same block and writes results of cache hit/miss counts
for each basic block and for each cache in the input list of
memory systems.

Similar to the BasicBlockCounter tool, to relate the
sequence numbers to unique hashcodes for the
instrumented basic blocks, CacheSimulator also writes
information about the blocks to an output file during
instrumentation. Again, this information consists of the
hashcode, sequence number, virtual address, function
name, and source file name of the basic block.

3.4 Experimental Results
All experiments were performed on Datastar[10], a
machine at the San Diego Supercomputer Center. The
relevant part of this system is comprised of 171 P655+
SMP nodes, each node consisting of 8 processors that run
at a clock rate of 1.5GHz and share 16GB of main
memory. These nodes are connected with a Federation
interconnect [11].

3.4.1 Instrumentation Time
We first present the total amount of time required to
instrument real applications. The programs we used are
HYCOM, GAMESS, AVUS, and WRF from the
Department of Defense's Technology Insertion 2007[7]
(TI-07) application workload. These applications exhibit
varying static properties in areas such as number of

functions, number of basic blocks and size and complexity
of control flow graphs. For example, in WRF there are
several functions for which the control flow graph for that
function consists of more than 25K basic blocks.

Table 1 presents the amount of time spent to
instrument applications using the BasicBlockCounter
rewriting tool described earlier. It presents the function and
basic block counts in each application. In addition to the
total time spent to instrument executables, the table also
shows the percentages of time spent during different stages
of instrumentation.

Table 1 shows that the time spent to instrument
applications ranges from 2 to 113 seconds. The table also
shows that around 30% of the time is spent to generate
program objects such as CFG and natural loops whereas
around 50% of the time is spend for code injection for the
applications other than WRF. For WRF, more time is spent
generating program objects compared to the other
applications (85%).

Even though the number of basic blocks in WRF is
less than GAMESS, Table 1 shows that it takes
significantly higher time to generate CFG and natural
loops in WRF. This is mainly due to the fact that in WRF,
there are several functions that have a large number of
basic blocks (maximum around 50K) and complex CFGs.
Since our loop generation algorithm [12] involves the use
of dominator information, such complex and large control
flow graphs require significantly higher amounts of time to
generate this information. Overall, Table 1 shows that time
required for instrumentation is proportional to some
combination of the number of basic blocks in the
applications as well as the complexity of the flow graphs.

3.4.2 Instrumentation Overhead
We also measured the slowdown caused by the
BasicBlockCounter and CacheSimulator rewriting tools
(we do not measure the slowdown of BasicBlockTracer
because this depends largely on the efficiency of the I/O
facilities being used) using applications HYCOM,
GAMESS and AVUS from TI-07 application workload.
We ran each application using the standard input sets for
two CPU counts. We use a sampling rate of 10% for the
CacheSimulator (i.e., we simulate only 10% of the

addresses found in the address buffer) and we bound the
maximum number of visits to each basic block to 50,000
visits, after which no samples are taken into consideration
from that block. For the CacheSimulator experiments, we
used the most frequently accessed basic blocks that
correspond to the 95% of program execution for each
application simulating. We simulated 19 different memory
hierarchies containing two or three cache levels each.

Table 2 presents the results of our experiments where
we measured the execution of the applications when
running instrumented with BasicBlockCounter and
CacheSimulator functionality. First and second columns in
this table show the application and CPU count for the
experiment. The third column presents the original
execution times of the applications. The fourth and fifth
columns present the execution time and slowdown ratio
compared to the original execution times for the
application running BasicBlockCounter instrumentation.
Similarly, the sixth and seventh columns present the
execution time and slowdown ratio for the application
running CacheSimulator instrumentation.

Table 2 shows that BasicBlockCounter slows the
applications down by a factor ranging from 1.22 to 1.48
(the average slowdown is 1.33), whereas CacheSimulator
instrumentation simulating 19 cache structures slows down
execution up to 7.29 times (the average slowdown is 5.78).

More importantly, Table 2 shows that both of the
rewriting tools introduce acceptable instrumentation
overhead. Moreover, the instrumentation overhead
introduced by PMaCinst is comparable to the
instrumentation overhead introduced by ATOM and is less
than that of other dynamic instrumentation tools like PIN
and Dyninst [8]. Intuitively, one would expect PMaCinst
to introduce less overhead than PIN and Dyninst because
both of these tools can disrupt the control flow of normal
program execution in addition to any instrumentation code
that is introduced. Like ATOM, PMaCinst performs all
instrumentation prior to runtime. This means that it does
not have some of the advantages that dynamic
instrumentation tools have such as the ability to modify
instrumentation at runtime, but it does have a significant
performance advantage in the cases we have shown here.

Table 1. Time spent for instrumentation for BasicBlockCounter

Percentage Time Spent
Parsing Function

Count

Basic
Block
Count

Instru.
Time
(sec) XCoff

Parsing
CFG
Loop

Code
Injection Other

AVUS 489 31,587 1.9 15.6% 31.8% 46.9% 5.7%
HYCOM 243 28,105 2.1 14.9% 31.3% 50.0% 3.8%
GAMESS 4,435 383,715 27.8 18.8% 30.7% 47.8% 2.7%

WRF 3,383 315,499 113.1 3.4% 85.2% 10.7% 0.7%

Table 2. Slowdown ratios due to instrumentation for BasicBlockCounter and CacheSimulator

BasicBlockCounter CacheSimulator
Application CPU Count

Original
Time
(sec)

Execution
Time Slowdown Execution

Time Slowdown

AVUS 64 2,793 3,625 1.30 20,153 7.22
 128 1,399 1,899 1.36 10.192 7.29

HYCOM 59 2,081 3,081 1.48 9,990 4.80
 124 1,050 1,448 1.38 6,289 5.99

GAMESS 64 4,859 5,925 1.22 23,026 4.74
 128 3,039 3,816 1.26 14,019 4.61

Mean 1.33 5.78

4. Future Work

Currently, for assembly code insertion (i.e., code that is not
wrapped in a function) PMaCinst requires that the user
have some knowledge of the PowerPC instruction set and
assembly code since we do not provide the ability to
generate assembly code from high level C-like statements
on the fly. In addition to this, the C++ API that is provided
to allow for users to create function call stubs and to
extend the DATA section are written in such a way that the
user must perform low-level operations such as counting
the number of instructions in each call stub and putting
function arguments into registers manually. These
operations can be fairly easily automated; call stub
generation can be automatic (as can counting the number
of instructions used in a call stub), and argument passing
can be done in a generic way that does not require user
intervention or that the user have any knowledge of the
function calling conventions of the underlying architecture.

Since code and call stub generation should be
automatic, so should several simple optimizations to make
sure that the instrumentation code remains efficient. For
example, the code in a particular instrumentation function
will often not kill every register. As a result, it is not
necessary for the call stub surrounding the function to save
and restore a register that is not killed by the function.

It has also been shown [8] that there are several
techniques that can be used for optimization within an
instrumentation tool framework, given that the resulting
instrumentation tools require asynchronous access to
program information. One example of such a technique is
to include a mechanism within the instrumentation
framework to buffer any application data that the user
wishes to examine, then to examine the data only when the
buffer is full or nearly full (as is done in the
CacheSimulator tool). This technique reduces the cache
pollution that often occurs when executing large
instrumentation functions frequently during the application
run. There is no reason that this mechanism cannot be built
into an instrumentation tool, which can be used when the

user determines that the instrumentation functions can be
executed asynchronously with respect to data collected
from the application.

Finally, the binary rewriting tools in the current
release of PMaCinst are not safe for multi-threaded
applications because of the method used to save and
restore machine registers. Registers currently get put into
the DATA section of the application, an area of memory
that is shared by every thread in the application. With
multiple threads using the same area of memory for
register storage, one thread could overwrite the stored
register values for another thread resulting in incorrect
execution. To remedy this, each thread should save
registers on its call stack, an area private to each thread.

5. Related Work

ATOM [1] was one of the first and has remained one of
the more popular static binary instrumentation tools
available. ATOM works in a way that is very similar to
PMaCinst; instrumentation is performed on the compiled
binary prior to runtime, meaning that any overhead due to
code analysis and code generation is incurred outside of
the instrumented application’s runtime. Unfortunately,
ATOM is available only for the Alpha platform. Since this
processor is not being produced anymore, ATOM is no
longer viable as a long-term solution for those who wish to
perform static, efficient instrumentation on a RISC-based
platform. Our hope is that PMaCinst will have similar
functionality to ATOM, while maintaining ease of use and
efficiency. We also hope to include several other useful
features such as data flow analysis and tool-aided
buffering for instrumentation.

Pin[3] is a dynamic binary instrumentation tool that
uses a JIT-based (Just In Time compilation) approach to
instrumentation. This approach entails running the
application on top of Pin, while Pin intercepts the
application at a natural control flow interruption in the
program to perform instrumentation on the next part of the
program. For efficiency, Pin does many things including

caching these instrumented sequences of code to allow for
re-use and chaining instrumented sequences of code
together to avoid tool intervention.

Dyninst[2] is another popular dynamic
instrumentation tool that uses a technique called code-
patching to perform instrumentation. Similar in concept to
what is done in PMaCinst, this technique replaces an
instruction from the application with a jump instruction
(which they call a trampoline) to the function call stub and
instrumentation code. The key difference between
PMaCinst and Dyninst is that Dyninst performs all code-
patching at runtime instead of prior to runtime. This has
several advantages, including the ability to insert, remove
and customize instrumentation during runtime. But
performing modification to the program at runtime also
has a significant performance disadvantage, resulting in
inefficient execution of the instrumented application.

6. Conclusions

In the work we introduced a binary instrumentation tool-
building platform called PMaCinst, which allows for the
insertion of arbitrary code into an XCOFF executable
compiled for AIX on a PowerPC processor. The API
provided by PMaCinst allows not only for the insertion of
code, but also to extend the DATA section of an
executable in order to store data that can be used to aid
instrumentation routines.

We then described three example binary rewriting
tools written using PMaCinst. BasicBlockCounter counts
the number of times each basic block is executed during a
program run. BasicBlockTracer prints detailed information
about each basic block that is executed during a program
run, and CacheSimulator simulates how the address stream
of the application would perform on a number of real and
theoretical cache structures.

Our experiments showed that the slowdown
introduced by adding instrumentation through the
PMaCinst API is comparable to the slowdown of similar
instrumentation done by the ATOM toolkit. The current
API still requires some knowledge of the underlying ISA,
which is an issue we plan to address in the near future.

Acknowledgements
This work was supported in part by the DOE Office of
Science through the award entitled HPCS Execution Time
Evaluation, and by the SciDAC award entitled High-End
Computer System Performance: Science and Engineering.

This work was also supported in part by NSF NGS Award
#0406312 entitled Performance Measurement & Modeling
of Deep Hierarchy Systems and by the Department of
Defense High Performance Computing Program via
interagency funds transfer to NSF.

References
[1] A. Srivastava and A. Eustace. ATOM: A Flexible

Interface for Building High Performance Program
Analysis Tools. USENIX Winter Conference, January
1995.

[2] B. Buck and J. Hollingsworth. An API for Runtime
Code Patching. Journal of High Performance
Computing Applications 14 (4), Winter 2000.

[3] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. Reddi and K. Hazelwood.
Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. PLDI, June 2005.

[4] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R.
Badia and A. Purkayastha. A Framework for
Application Performance Modeling and Prediction.
Supercomputing, November 2002.

[5] IBM Corporation, XCOFF Object File Format,
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/
index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/XCOF
F.htm

[6] IBM Corporation, PowerPC User Instruction Set
Architecture,
http://www-
128.ibm.com/developerworks/eserver/library/es-
archguide-v2.html

[7] Department of Defense, High Performance Computing
Modernization Program. Technology Insertion 07.
http://www.hpcmo.hpc.mil/Htdocs/TI/.

[8] X. Gao, M. Laurenzano, B. Simon and A. Snavely.
Reducing Overheads for Acquiring Dynamic Traces.
International Symposium on Workload
Characterization (ISWC), September 2005.

[9] D.H. Bailey and A. Snavely. Performance Modeling:
Understanding the Present and Predicting the Future.
EuroPar, September 2005.

[10] San Diego Supercomputer Center. Datastar User
Guide. System Configuration.
http://www.sdsc.edu/user_services/datastar/getstart.ht
ml#system.

[11] IBM Redbooks. An Introduction to the New IBM
eServer pSeries High Performance Switch.
http://www.redbooks.ibm.com/redbooks/pdfs/sg24697
8.pdf

[12] A.V. Aho, R. Sethi and J.D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley,
1986. ISBN 0-201-10088-6.

[13] T. Lengauer and R.E. Tarjan. A Fast Algorithm for
Finding Dominators in a Flowgraph. Transactions on
Programming Languages and Systems (TOPLAS),
July 1979.

