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Abstract 
The decommissioning of Alpha AXP-based systems 
carrying the ATOM toolkit has left the need for an 
efficient, flexible binary instrumentation tool-building 
framework for another platform. PMaCinst is a binary 
instrumentation toolkit that operates on XCOFF binaries 
on AIX for PowerPC processors. PMaCinst has a C++ 
API that provides the means to inject code and data into a 
binary file In this paper, we first present the mechanisms 
for performing these modifications along with the key 
parts of the API. We then present three example rewriting 
tools that have been built using PMaCinst, which help to 
highlight some of the correctness and efficiency issues that 
can be encountered by tool writers. Finally, we show that 
programs instrumented with PMaCinst slow down at rates 
that are comparable to equivalently instrumented 
programs created with ATOM. 

1. Introduction 

Program instrumentation tools [1-3] provide a unique and 
important source of information for understanding and 
tuning the execution behavior of applications. These tools 
have proven to be effective during every stage of an 
application’s development cycle. They have been 
extensively used to evaluate how a program will perform 
on new systems, to identify performance bottlenecks 
during program execution, to gather information on 
underlying systems for profile-driven optimizations, and to 
identify bugs in programs [9]. 

In the Performance Modeling and Characterization 
(PMaC) Lab at the San Diego Supercomputer Center, we 
focus on developing methods and tools for understanding 
and predicting the performance of scientific applications 
on existing and future HPC systems. One of these tools, 
called the MetaSim Tracer[4], provides the user with a 
detailed summary of the fundamental operations carried 
out by the application. MetaSim Tracer is a binary 
rewriting tool currently implemented on top of the ATOM 
toolkit [1] for Tru64 Unix on Alpha AXP processors. 
However, due to the decommissioning of current Alpha-
based systems, the need has emerged for an efficient, 
flexible instrumentation toolkit that operates on a different 
platform. 

In this paper we introduce PMaCinst, the PMaC 
binary instrumentation library. PMaCinst enables 
instrumentation of XCOFF [5] executables on the AIX 
operating system on PowerPC processors [6]. PMaCinst is 
a tool-building system similar in nature to popular toolkits 
such as Dyninst [2], ATOM and Pin [3]. It is designed to 
provide functionality that is similar to these tools in that it 
allows arbitrary functions to be inserted at arbitrary points 
in executables. Furthermore, it provides the facilities to 
insert hand optimized low-level assembly code, which can 
help keep instrumentation overhead minimal. PMaCinst 
works on any compiled XCOFF binary (both 32 and 64-
bit), independent of the compiler and language system 
used to generate the binary. 

We also present several rewriting tools implemented 
using the PMaCinst library. These tools include a basic 
block tracing tool that prints function name and line 
number information of basic blocks as they are executed, a 
basic block counting tool that counts the number of times 
each basic block is executed during a program run, and a 
cache simulation tool that can simulate multiple memory 
hierarchies with different numbers of cache levels using 
the address stream of the program. The PMaCinst 
instrumentation library source code and the previously 
mentioned rewriting tools are available for download at 
http://www.sdsc.edu/PMaC/PMaCinst/. 

2. PMaCinst API 

PMaCinst library provides an Application Programmer 
Interface (API) in C++ for building program analysis and 
rewriting tools. This API includes functionality to parse an 
XCOFF executable and generate program objects, to inject 
instrumentation code and data into the executable, and to 
generate a modified XCOFF executable that includes 
instrumentation code and the accompanying changes to 
program objects. The general framework for PMaCinst is 
shown in Figure 1. 

2.1 Parsing the Executable 
The PMaCinst API provides class definitions for XCOFF 
file objects such as the file header, section header, symbol 
table, relocation table and line information table, and 
provides class definitions for program objects such as 



instructions, basic blocks, functions, control flow graphs 
(CFG), memory operations, and natural loops.  

The parse method of the XCoffFile class (shown in 
Figure 1) parses an input executable file, creates XCOFF 
objects, and creates program objects for the entire 
executable. The parse method parses every object at 
startup instead of incremental parsing, where program 
objects would be parsed as needed with a potentially 
smaller overhead. Parsing every object at startup allows 
PMaCinst to assign a unique and persistent ID, called a 
hashcode, to each program object encountered in the 
executable. This hashcode is based on a hierarchy of 
container objects (such as instructions in a basic block, 
basic blocks in a function, functions in a code section, 
etc.), and parsing the executable in its entirety at startup 
enables PMaCinst to assign the same hashcode to each 
object every time the executable is parsed. Unlike parsing, 
much of the remaining functionality of PMaCinst is 
invoked on demand, such as constructing loops or 
generating line number information for a particular 
function or for all functions in a code section. 

 

Figure 1. General PMaCinst Framework 
Executable parsing is fairly straightforward as XCOFF 

is a well defined and self contained object file format. 
However, special processing is required in two notable 
cases: identifying the sizes of some functions, and 
generating the CFG for functions with indirect jumps 
resulting from high-level constructs such as switch 
statements (multi-target jumps that use lookup tables).  

PMaCinst does not require that executables contain 
debugging information. The minimal symbol table for an 
XCOFF file, which is generated when the program is 
compiled without the debug flag (e.g. –g), provides 
information about the sizes of all control sections (CSECT 
[5]) in the executable. It also provides size information for 
some functions. However, a CSECT may contain several 
functions for which the symbol table only provides 
information about the containing CSECT. For these 
functions, we use the start address of the function’s 
traceback table to determine where the function ends. On 
AIX, a traceback table for each function is generated by 
the compiler for exception handling and inter-language call 
mechanisms, and is placed the end of the function’s 

address space. Each traceback table starts with a null word 
(with a value of 0 also indicating an invalid instruction), 
which can then be used to mark the end of its 
accompanying function.  

To generate the CFG for a function with indirect 
jumps, we first identify whether the jump instruction is a 
multi-target lookup table jump generated by a high level 
code construct such as a switch statement or whether it is 
simply an indirect call to a function. To identify multi-
target jumps, we search for compiler-specific instruction 
sequence patterns generated for lookup table jumps similar 
to general peephole optimization techniques used in 
compilers. Such patterns contain instruction sequences to 
compare the switch value with the lookup table size as 
well as instruction sequences to calculate the jump 
addresses. Using the information available in these 
instruction sequences, we identify the locations of lookup 
tables in the executable as well as the number of entries in 
them. Later we parse the lookup table to generate the 
potential target addresses for the indirect jump instruction.  

Since we search for instruction sequence patterns to 
identify the multi-target jump instructions, PMaCinst 
requires prior knowledge about all potential patterns that 
may be generated by the available compilers on the 
system. In this early version of the PMaCinst library, we 
handle common patterns for the GNU and native compilers 
for C, C++, and Fortran. We plan to extend these patterns 
in future versions of PMaCinst to include other languages 
and compilers. 

PMaCinst also provides on-demand methods that 
discover and interface to more complex program 
information such as dominator information, natural loops 
and line number information. For loop discovery, we use 
the algorithms presented in [12] along with the linear-
complexity dominator finding method presented by 
Lenguar and Tarjan in [13]. 

Necessary line information can be found in the line 
information and symbol tables of the XCOFF executable 
when debugging information is present, but finding 
relevant information from these sources can involve time-
wasting searches. For example, determining the source file 
from which a particular instruction came from would 
typically involve searching the line information table to 
determine which symbol (function) is associated with that 
instruction then searching backwards from this function in 
the symbol table to find the file symbol that contains the 
function. Such searching is inefficient and can be 
incredibly redundant when many such lookups are being 
done. Instead of working from scratch for each such 
search, the user can invoke the setLineInfoFinder 
method of the XCoffFile class to create data structures 
that maintain intermediate information about how the 
virtual addresses of instructions, line information, function 
names and file names are related to one another. Returning 
to our example, storing a pointer to the parent file symbol 
for each function would save us the time of searching the 

// Step I  : Executable parsing
XCoffFile file(execName); 
file.parse(); 

// Step II : Code/Data Injection
XCoffFileGen fileGen(file); 
fileGen.instrument(); 

// Step III: New Executable 
fileGen.dump(); 



symbol table for the containing symbol each time we 
performed an address to function name lookup. 

2.2 Modifying Program Objects 
To perform actual instrumentation after the executable is 
parsed, the PMaCinst API provides the user with a base 
class called XCoffFileGen (shown in Figure 1). This 
class provides virtual methods which must be implemented 
for every new rewriting tool. It also hides other 
abstractions that are common to all instrumentation 
frameworks. The virtual methods in XCoffFileGen 
include methods to select instrumentation points, print 
information about each point, calculate the size and 
generate the code for the point, query the name of the 
shared library and its functions for which the calls will be 
injected, and extend and initialize the DATA section of the 
program. After implementing these virtual methods, the 
instrument method of XCoffFileGen needs to be 
called by the new tool to apply all of the necessary 
modifications to the affected program objects. Several 
examples of rewriting tools and how this base class is 
extended are provided under the examples/ directory of 
the PMaCinst source distribution. 

PMaCinst provides two different ways of injecting 
instrumentation code at an arbitrary instrumentation point. 
First, a sequence of assembly instructions can be inserted. 
This mainly enables users to insert hand optimized code. 
Second, calls to functions from a shared library can be 
inserted. In order to insert calls to the functions from 
shared libraries, PMaCinst requires that intermediate call 
stubs be generated to handle the saving/restoring of 
registers before/after function calls to preserve machine 
state as well as the passing of parameters to the library 
functions through registers. 

 

Figure 2. Instrumentation in PMaCinst 
In both types of code insertion, instrumentation code 

for each instrumentation point in a text section is placed at 

the end of the text section, meaning that the address space 
for the original code is left unperturbed (except for the 
single replaced instruction at the instrumentation point). 
Alternatively, instrumentation code could be inlined at 
each instrumentation point, but such inlining would require 
updating the offsets of all branch and call instructions 
throughout the executable, making it extremely difficult to 
ensure correctness of the instrumented executable as well 
as potentially mitigating any code layout optimizations 
done by the compiler. 

Control into the instrumentation code is acquired by 
relocating an instruction from the instrumentation point in 
the original code into the instrumentation code, then 
replacing the original instruction with a jump into the 
instrumentation code. This is similar in concept to a base 
trampoline in the Dyninst library [2] and can be seen in 
Figure 2. At the end of each instrumentation code, a jump 
back to the original code is inserted. 

In PowerPC, a relative jump instruction can jump a 
distance of +/- 32MB from the instruction itself. Thus if 
instrumentation for a point requires jumping more than this 
maximum distance, PMaCinst denies the instrumentation. 
However, such cases are rare as typical TEXT sections in 
executables tend to be smaller than the maximum range of 
the relative jump instructions. Alternatively, for such 
cases, indirect jumps based on the control and link 
registers can be used to branch into the instrumentation 
code, which requires determining which registers are live 
at instrumentation points in order to keep the machine state 
unchanged. We plan to include this feature in future 
versions of PMaCinst.  

Since PMaCinst enables insertion of assembly code, 
developers are currently expected to have some knowledge 
of the PowerPC instruction set and assembly code. Unlike 
Dyninst, we do not provide the ability to generate 
assembly code from high level C-like statements. Instead, 
for high level code, PMaCinst enables insertion of calls to 
shared library functions similar to ATOM.  We chose to 
involve developer more because small sequences of hand 
written code are typically more efficient than automatically 
generated code. It allows us to insert manually optimized 
assembly code and to use efficient instrumentation code in 
which only the registers that are used in the 
instrumentation code are saved. However, in future 
versions of PMaCinst, we plan to include a higher level 
interface that will allow the user to generate and insert 
code that is given as C-like statements. 

In addition to allowing insertion of instrumentation 
code, PMaCinst also provides interface to extend the 
initialized data section (DATA) and to initialize the 
extended space. This interface requires the user to define 
the size of the extension in bytes, and the structure of the 
additional space is unknown to PMaCinst. Rather, the user 
is required to know the structure of the additional space 
and how to use this structure during initialization and 
while accessing this space from the instrumentation code.  
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Similar to code insertion, the additional data is 
injected at the end of DATA section. Thus the original data 
in this section is left unperturbed. In XCOFF executables, 
the Table Of Contents (TOC [5]), which is accessed via the 
TOC register, is kept at the end of DATA section. Since 
PMaCinst stores additional data at the end of the DATA 
section, it follows that both the TOC and the extended part 
of the DATA section can be accessed via TOC register in 
the instrumentation code. This allows users to keep track 
only of offsets to their new data with respect to TOC 
register rather than the absolute addresses of the data. 

2.3 Writing the Instrumented Executable 
To generate the instrumented executable file, the 
XCoffFileGen class provides a method called dump 
(shown in Figure 1). This method iterates over all program 
objects and generates XCOFF file objects from them, then 
dumps these newly created XCOFF file objects to an 
executable file that contains the instrumented program. It 
is important to note that the newly created XCOFF 
executable is run in similar fashion to the original 
executable without any additional processes or 
intermediate files to pass information (unless, of course, 
any of the instrumentation code inserted by the user reads 
or writes on files). 

Even though PMaCinst keeps the original data and 
TEXT sections unperturbed except relocating instructions 
at instrumentation points, special handling is required to 
generate a correct XCOFF executable if the data section of 
the original executable has been extended. The un-
initialized data section (BSS [5]) generally follows the 
DATA section in the virtual address space of the program. 
Furthermore, the TOC in the DATA section includes 
pointers to items in the BSS and TEXT section. Thus, for 
program correctness the pointers to BSS objects need to be 
updated when the DATA section (and thus the virtual 
address of the BSS section) is extended. But since the 
TEXT section generally lies before the DATA section, the 
TOC pointers to the TEXT section remain unchanged. 

3. Rewriting Tools and Experimental Results 

We implemented three rewriting tools using the PMaCinst 
instrumentation library. The BasicBlockTracer prints the 
sequence number, the line number, and the function name 
of a basic block as that block is executed. The 
BasicBlockCounter counts the execution frequency of each 
basic block during a program run, printing the execution 
counts of all blocks at the end of execution. The 
CacheSimulator simulates multiple memory hierarchies 
using the address stream of some basic blocks where each 
hierarchy may include varying levels of caches. 

3.1 Example 1: BasicBlockTracer 
The BasicBlockTracer tool selects the entry points of all 
basic blocks in the executable for instrumentation. To be 
able to print information for each basic block, the 
BasicBlockTracer extends the DATA section and 
initializes it with a sequence of records where each record 
contains information about a basic block that will be 
passed to the instrumentation function. Each record 
contains the block sequence number (a unique ID assigned 
at instrumentation point selection), line number, and 
function name of the basic block. 

At the entry point of each block, BasicBlockTracer 
inserts a call to a function in a shared library, which takes a 
pointer to that basic block’s record in the DATA section as 
an argument and prints the information to standard output. 
Since BasicBlockTracer prints the sequence number of 
basic blocks rather than the virtual addresses, it also writes 
information about mapping between sequence numbers 
and virtual addresses of instrumented basic blocks to a file 
while instrumentation is being performed, which may be 
used for post-processing if desired. 

Figure 3 shows a sample output of an executable 
instrumented by BasicBlockTracer. The base printed for 
each basic block is the virtual address of that block’s 
record in the DATA section. Note that for 
BasicBlockTracer to print source line numbers for basic 
blocks, it is required that the program be compiled with 
debug information (e.g. –g).  

 

 

 Figure 3. A sample output from the BasicBlockTracer  

Base 0x11000150c, Block 66 is at line 10 in function .foo 
Base 0x11000153c, Block 69 is at line 17 in function .foo 
Base 0x11000154c, Block 70 is at line 17 in function .foo 
Base 0x11000155c, Block 71 is at line 17 in function .foo 
Base 0x11000156c, Block 72 is at line 22 in function .foo 
Base 0x1100013d4, Block 47 is at line 5 in function .main 
Base 0x1100015a0, Block 75 is at line 1 in function .bar 
Base 0x1100015b0, Block 76 is at line 4 in function .bar 
Base 0x1100015c0, Block 77 is at line 7 in function .bar 
Base 0x1100015d0, Block 78 is at line 8 in function .bar 
Base 0x1100015e0, Block 79 is at line 9 in function .bar 
Base 0x11000158c, Block 74 is at line 1 in function .bar_helper 



 

3.2 Example 2: BasicBlockCounter 
Like, BasicBlockTracer, the BasicBlockCounter selects the 
entry point of every basic block as an instrumentation 
point. To keep track of execution frequencies of basic 
blocks, the BasicBlockCounter extends the DATA section 
with an array of 64-bit counters that are indexed by the 
block’s sequence number and initialized to 0. 

For each basic block, the BasicBlockCounter tool 
inserts assembly code that increments the counter for that 
basic block. In addition, BasicBlockCounter inserts 
instrumentation at the entry point of the exit function of 
the program that writes the collected basic block execution 
frequencies into a file at program termination. The 
instrumentation code at the exit function includes a call to 
a function in a shared library, which is passed a pointer to 
the counter array and the size of the array as arguments. At 
program termination, the tool writes the sequence number 
and execution frequency of each basic block instrumented 
in the program.  

To relate the sequence numbers that are printed to 
unique hashcodes for the instrumented basic blocks, 
BasicBlockCounter also writes information about the 
blocks to an output file during instrumentation, which 
includes the hashcode, sequence number, virtual address, 
function name, and source file name of the basic block. 
Again, users could use this extra information to associate 
all of the statically known information about a basic block 
listed above with the collected runtime execution 
frequencies. 

3.3 Example 3: CacheSimulator 
The CacheSimulator tool selects all of the memory 
instructions from a user-defined list of basic blocks as 
instrumentation points. Suppose that we select the list of 
the most frequently executed basic blocks that correspond 
to 95% of total program execution. This list of basic blocks 
can be obtained by instrumenting the application with the 
BasicBlockCounter tool. 

A simple way for CacheSimulator to instrument a 
memory instruction is to insert a call to a shared library 
function and pass the effective address of the memory 
instruction as an argument so that the function could 
simulate this address being accessed in a series of caches. 
But such instrumentation is computationally expensive, as 
the number of memory operations in a program tends to be 
large and calling the simulation function for each memory 
operation separately will introduce a significant amount of 
function call overhead. Instead, CacheSimulator first 
extends the DATA section with a space that will act as a 
buffer for memory operation records, where each memory 
operation record is composed of the effective address, 
basic block sequence number, and the index of the 
memory instruction within the block. 

The instrumentation code inserted by CacheSimulator 
for each memory instruction stores information about the 
effective address and the location of the instruction itself in 
the first available record in the address buffer and 
increments the buffer size. When the buffer is full, the 
instrumentation code calls the cache simulation function 
from a shared library, passing the start address of the 
buffer as an argument. Like BasicBlockCounter, 
CacheSimulator also inserts instrumentation code at the 
entry of the exit function of the program to write the 
results of the cache simulations, which is a call to another 
function in the shared library. 

By storing the program’s address stream in a buffer 
and calling the cache simulation function when the buffer 
is full, the simulation function is called less frequently 
(every N memory accesses, where N is the size of the 
buffer and can be given as a parameter to the 
CacheSimulator tool). This framework also enables the 
user to plug in new cache simulation functions without 
requiring re-instrumentation. The user only needs to 
implement the new cache simulation functions in the 
shared library used by the CacheSimulator. 

In the current version of CacheSimulator, the 
simulator takes a list of memory hierarchies as input. Each 
memory hierarchy defines the number of levels in the 
memory hierarchy and properties of caches in each level. 
When collecting results, CacheSimulator does not 
differentiate between different memory instructions from 
the same block and writes results of cache hit/miss counts 
for each basic block and for each cache in the input list of 
memory systems. 

Similar to the BasicBlockCounter tool, to relate the 
sequence numbers to unique hashcodes for the 
instrumented basic blocks, CacheSimulator also writes 
information about the blocks to an output file during 
instrumentation. Again, this information consists of the 
hashcode, sequence number, virtual address, function 
name, and source file name of the basic block. 

3.4 Experimental Results 
All experiments were performed on Datastar[10], a 
machine at the San Diego Supercomputer Center. The 
relevant part of this system is comprised of 171 P655+ 
SMP nodes, each node consisting of 8 processors that run 
at a clock rate of 1.5GHz and share 16GB of main 
memory. These nodes are connected with a Federation 
interconnect [11]. 

3.4.1 Instrumentation Time 
We first present the total amount of time required to 
instrument real applications. The programs we used are 
HYCOM, GAMESS, AVUS, and WRF from the 
Department of Defense's Technology Insertion 2007[7] 
(TI-07) application workload. These applications exhibit 
varying static properties in areas such as number of 



functions, number of basic blocks and size and complexity 
of control flow graphs. For example, in WRF there are 
several functions for which the control flow graph for that 
function consists of more than 25K basic blocks. 

Table 1 presents the amount of time spent to 
instrument applications using the BasicBlockCounter 
rewriting tool described earlier. It presents the function and 
basic block counts in each application. In addition to the 
total time spent to instrument executables, the table also 
shows the percentages of time spent during different stages 
of instrumentation.  

Table 1 shows that the time spent to instrument 
applications ranges from 2 to 113 seconds. The table also 
shows that around 30% of the time is spent to generate 
program objects such as CFG and natural loops whereas 
around 50% of the time is spend for code injection for the 
applications other than WRF. For WRF, more time is spent 
generating program objects compared to the other 
applications (85%). 

Even though the number of basic blocks in WRF is 
less than GAMESS, Table 1 shows that it takes 
significantly higher time to generate CFG and natural 
loops in WRF. This is mainly due to the fact that in WRF, 
there are several functions that have a large number of 
basic blocks (maximum around 50K) and complex CFGs. 
Since our loop generation algorithm [12] involves the use 
of dominator information, such complex and large control 
flow graphs require significantly higher amounts of time to 
generate this information. Overall, Table 1 shows that time 
required for instrumentation is proportional to some 
combination of the number of basic blocks in the 
applications as well as the complexity of the flow graphs. 

3.4.2 Instrumentation Overhead 
We also measured the slowdown caused by the 
BasicBlockCounter and CacheSimulator rewriting tools 
(we do not measure the slowdown of BasicBlockTracer 
because this depends largely on the efficiency of the I/O 
facilities being used) using applications HYCOM, 
GAMESS and AVUS from TI-07 application workload. 
We ran each application using the standard input sets for 
two CPU counts. We use a sampling rate of 10% for the 
CacheSimulator (i.e., we simulate only 10% of the 

addresses found in the address buffer) and we bound the 
maximum number of visits to each basic block to 50,000 
visits, after which no samples are taken into consideration 
from that block. For the CacheSimulator experiments, we 
used the most frequently accessed basic blocks that 
correspond to the 95% of program execution for each 
application simulating. We simulated 19 different memory 
hierarchies containing two or three cache levels each. 

Table 2  presents the results of our experiments where 
we measured the execution of the applications when 
running instrumented with BasicBlockCounter and 
CacheSimulator functionality. First and second columns in 
this table show the application and CPU count for the 
experiment. The third column presents the original 
execution times of the applications. The fourth and fifth 
columns present the execution time and slowdown ratio 
compared to the original execution times for the 
application running BasicBlockCounter instrumentation. 
Similarly, the sixth and seventh columns present the 
execution time and slowdown ratio for the application 
running CacheSimulator instrumentation. 

Table 2 shows that BasicBlockCounter slows the 
applications down by a factor ranging from 1.22 to 1.48 
(the average slowdown is 1.33), whereas CacheSimulator 
instrumentation simulating 19 cache structures slows down 
execution up to 7.29 times (the average slowdown is 5.78).  

More importantly, Table 2 shows that both of the 
rewriting tools introduce acceptable instrumentation 
overhead. Moreover, the instrumentation overhead 
introduced by PMaCinst is comparable to the 
instrumentation overhead introduced by ATOM and is less 
than that of other dynamic instrumentation tools like PIN 
and Dyninst [8]. Intuitively, one would expect PMaCinst 
to introduce less overhead than PIN and Dyninst because 
both of these tools can disrupt the control flow of normal 
program execution in addition to any instrumentation code 
that is introduced. Like ATOM, PMaCinst performs all 
instrumentation prior to runtime. This means that it does 
not have some of the advantages that dynamic 
instrumentation tools have such as the ability to modify 
instrumentation at runtime, but it does have a significant 
performance advantage in the cases we have shown here. 

 
 

Table 1. Time spent for instrumentation for BasicBlockCounter 

Percentage Time Spent 
Parsing  Function 

Count 

Basic 
Block 
Count 

Instru.
Time 
(sec) XCoff 

Parsing 
CFG 
Loop 

Code 
Injection Other 

AVUS 489 31,587 1.9 15.6% 31.8% 46.9% 5.7% 
HYCOM 243 28,105 2.1 14.9% 31.3% 50.0% 3.8% 
GAMESS 4,435 383,715 27.8 18.8% 30.7% 47.8% 2.7% 

WRF 3,383 315,499 113.1 3.4% 85.2% 10.7% 0.7% 



 

Table 2. Slowdown ratios due to instrumentation for BasicBlockCounter and CacheSimulator 

BasicBlockCounter CacheSimulator 
Application CPU Count 

Original 
Time 
(sec) 

Execution 
Time Slowdown Execution  

Time Slowdown 

AVUS 64 2,793 3,625 1.30 20,153 7.22 
 128 1,399 1,899 1.36 10.192 7.29 

HYCOM 59 2,081 3,081 1.48 9,990 4.80 
 124 1,050 1,448 1.38 6,289 5.99 

GAMESS 64 4,859 5,925 1.22 23,026 4.74 
 128 3,039 3,816 1.26 14,019 4.61 

Mean    1.33  5.78 
 

4. Future Work 

Currently, for assembly code insertion (i.e., code that is not 
wrapped in a function) PMaCinst requires that the user 
have some knowledge of the PowerPC instruction set and 
assembly code since we do not provide the ability to 
generate assembly code from high level C-like statements 
on the fly. In addition to this, the C++ API that is provided 
to allow for users to create function call stubs and to 
extend the DATA section are written in such a way that the 
user must perform low-level operations such as counting 
the number of instructions in each call stub and putting 
function arguments into registers manually. These 
operations can be fairly easily automated; call stub 
generation can be automatic (as can counting the number 
of instructions used in a call stub), and argument passing 
can be done in a generic way that does not require user 
intervention or that the user have any knowledge of the 
function calling conventions of the underlying architecture. 

Since code and call stub generation should be 
automatic, so should several simple optimizations to make 
sure that the instrumentation code remains efficient. For 
example, the code in a particular instrumentation function 
will often not kill every register. As a result, it is not 
necessary for the call stub surrounding the function to save 
and restore a register that is not killed by the function. 

It has also been shown [8] that there are several 
techniques that can be used for optimization within an 
instrumentation tool framework, given that the resulting 
instrumentation tools require asynchronous access to 
program information. One example of such a technique is 
to include a mechanism within the instrumentation 
framework to buffer any application data that the user 
wishes to examine, then to examine the data only when the 
buffer is full or nearly full (as is done in the 
CacheSimulator tool). This technique reduces the cache 
pollution that often occurs when executing large 
instrumentation functions frequently during the application 
run. There is no reason that this mechanism cannot be built 
into an instrumentation tool, which can be used when the 

user determines that the instrumentation functions can be 
executed asynchronously with respect to data collected 
from the application. 

Finally, the binary rewriting tools in the current 
release of PMaCinst are not safe for multi-threaded 
applications because of the method used to save and 
restore machine registers. Registers currently get put into 
the DATA section of the application, an area of memory 
that is shared by every thread in the application. With 
multiple threads using the same area of memory for 
register storage, one thread could overwrite the stored 
register values for another thread resulting in incorrect 
execution. To remedy this, each thread should save 
registers on its call stack, an area private to each thread. 

5. Related Work 

ATOM [1] was one of the first and has remained one of 
the more popular static binary instrumentation tools 
available. ATOM works in a way that is very similar to 
PMaCinst; instrumentation is performed on the compiled 
binary prior to runtime, meaning that any overhead due to 
code analysis and code generation is incurred outside of 
the instrumented application’s runtime. Unfortunately, 
ATOM is available only for the Alpha platform. Since this 
processor is not being produced anymore, ATOM is no 
longer viable as a long-term solution for those who wish to 
perform static, efficient instrumentation on a RISC-based 
platform. Our hope is that PMaCinst will have similar 
functionality to ATOM, while maintaining ease of use and 
efficiency. We also hope to include several other useful 
features such as data flow analysis and tool-aided 
buffering for instrumentation. 

Pin[3] is a dynamic binary instrumentation tool that 
uses a JIT-based (Just In Time compilation) approach to 
instrumentation. This approach entails running the 
application on top of Pin, while Pin intercepts the 
application at a natural control flow interruption in the 
program to perform instrumentation on the next part of the 
program. For efficiency, Pin does many things including 



caching these instrumented sequences of code to allow for 
re-use and chaining instrumented sequences of code 
together to avoid tool intervention. 

Dyninst[2] is another popular dynamic 
instrumentation tool that uses a technique called code-
patching to perform instrumentation. Similar in concept to 
what is done in PMaCinst, this technique replaces an 
instruction from the application with a jump instruction 
(which they call a trampoline) to the function call stub and 
instrumentation code. The key difference between 
PMaCinst and Dyninst is that Dyninst performs all code-
patching at runtime instead of prior to runtime. This has 
several advantages, including the ability to insert, remove 
and customize instrumentation during runtime. But 
performing modification to the program at runtime also 
has a significant performance disadvantage, resulting in 
inefficient execution of the instrumented application. 

6. Conclusions 

In the work we introduced a binary instrumentation tool-
building platform called PMaCinst, which allows for the 
insertion of arbitrary code into an XCOFF executable 
compiled for AIX on a PowerPC processor. The API 
provided by PMaCinst allows not only for the insertion of 
code, but also to extend the DATA section of an 
executable in order to store data that can be used to aid 
instrumentation routines. 

We then described three example binary rewriting 
tools written using PMaCinst. BasicBlockCounter counts 
the number of times each basic block is executed during a 
program run. BasicBlockTracer prints detailed information 
about each basic block that is executed during a program 
run, and CacheSimulator simulates how the address stream 
of the application would perform on a number of real and 
theoretical cache structures. 

Our experiments showed that the slowdown 
introduced by adding instrumentation through the 
PMaCinst API is comparable to the slowdown of similar 
instrumentation done by the ATOM toolkit. The current 
API still requires some knowledge of the underlying ISA, 
which is an issue we plan to address in the near future.  
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