
 P
R

O
O

F

1

Future Generation Computer Systems xxx (2004) xxx–xxx

A performance prediction framework for scientific applications3

Laura Carrington∗, Allan Snavely, Nicole Wolter4

San Diego Supercomputer Center, University of California, San Diego, CA, USA5

6

Abstract7

This work presents the results of ongoing investigations in the development of a performance modeling framework, developed
by the Performance Modeling and Characterization (PMaC) Lab at the San Diego Supercomputer Center. The framework is faster
than traditional cycle-accurate simulation, more sophisticated than performance estimation based on system peak-performance
metrics, and is shown to be effective on benchmarks and scientific applications. This paper focuses on one such functionality by
investigating sensitivity studies to further understand observed and anticipated effect of both the architecture and the application
in predicted runtime.

8

9

10

11

12

13

© 2004 Published by Elsevier B.V.14

Keywords: Performance modeling; Performance prediction; HPC15

16

117

18

P19

f20

c21

c22

o23

e24

f25

T26

i27

c28

a29

a

om-30

ate31

ap-32

that33

f time34

35

tely36

nce37

on38

gen-39

e of40

ith41

re-42

ther43

on.44

of45

46

nd47

1 0
2 d
C
O

R
R

E
C

TE
D

FUTURE 1297 1–1

. Introduction and motivation

Performance of a parallel application on a High
erformance Computing (HPC) machine is resultant

rom at least factors of algorithm, implementation, the
ompiler, operating system, underlying processor ar-
hitecture, and interconnect technologies. Therefore,
ne might conclude that performance models for sci-
ntific applications on complex systems must account

or all of the above system and application attributes.
his work shows that a framework based on simplic-

ty, including only the major factors in performance,
an predict an application’s performance with useful
ccuracy.

∗ Corresponding author.
E-mail addresses:lnett@sdsc.edu (L. Carrington),

llans@sdsc.edu (A. Snavely), wolter@sdsc.edu (N. Wolter).

This framework is designed to have tools that c
bine simulation and analytical modeling to autom
the entire performance prediction process for an
plication. The design implements easy to use tools
create an accurate model in a reasonable amount o
for users and centers. In previous work[6,7,22,23], this
framework was described and validated to accura
model and improve understanding of the performa
for small parallel scientific kernels and applications
different HPC architectures. In this research, the
eral framework is used to predict the performanc
scientific applications on current HPC platforms w
improved time cost, creating models in hours. The
sults were evaluated using sensitivity studies, to fur
explain the observed performance of the applicati

The paper will progress as follows. A recap
the framework is described in Section2, giving an
overview of the different pieces of the framework a

167-739X/$ – see front matter © 2004 Published by Elsevier B.V.
oi:10.1016/j.future.2004.11.019
U
N

T
 P

R
O

O
F

1

2 L. Carrington et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

how they are used in performance prediction. Section48

3 shows results of performance predictions for three49

different scientific applications. Section4 illustrates50

processor and network investigations enabled by the51

framework on those applications. Section5 describes52

background and related work, some of which this re-53

search is based on.54

2. A performance modeling framework55

In the pursuit of rapid, useful, and accurate perfor-56

mance models that can account for complexities of the57

memory hierarchy and work with all arbitrary applica-58

tions on all arbitrary machines, the Performance Mod-59

eling and Characterization (PMaC) performance mod-60

eling framework’s design is based on principles of iso-61

lation and simplicity. Measuring various performance62

factors in isolation enables independent performance63

investigations of each system feature as exhibited in the64

sensitivity studies of Section4. The simplicity princi-65

ple argues that the framework should be based on as66

few parameters as possible while still retaining accu-67

racy. The framework is designed in such a way that it68

provides the ability to easily add and remove significant69

factors as needed to sufficiently depict a given appli-70

cation or system. The framework is composed of tools71

to automate each of the components and steps in the72

performance prediction of an application. This allows73

anyone to feed an application through the framework74

a tem.75

A detailed description of the framework can be found76

in Snavely et al.[23]. 77

Based on the hypothesis that a parallel application’s78

performance is often dominated by two major factors:79

(1) single processor performance and (2) use of the net-80

work, the framework was developed to model these fac-81

tors along with some of the features of modern, highly82

complex processor. Starting simple and only adding83

complexity when needed to account for observed per-84

formance, the framework consists of a single proces-85

sor model, combined with a communication model (see86

Fig. 1). Clearly, there are other factors that can affect87

performance, but often processor and network perfor-88

mance are sufficient for accurate performance predic-89

tion (∼10% error) while adding more factors only in- 90

creases the complexity of the model with nominal gains91

(∼1–2%) in accuracy[23]. 92

The single-processor and communication models93

both use independentApplication SignaturesandMa- 94

chine Profiles, which are combined usingConvolution 95

Methods. An Application Signature is a summary of the96

operations to be carried out by an application, including97

memory and communication access patterns, indepen-98

dent of any particular machine. Application Signatures99

are collected via traces. For the single-processor model,100

these are memory traces collected via the MetaSim101

Tracer[29]. For the communication model, these are102

MPI traces collected by MPIDtrace[30]. 103

A Machine Profile is measurements of the rates at104

which a machine can perform basic operations, includ-105

i , and106

on fram
U
N

C
O

R
R

E
C

nd arrive at a runtime prediction on any HPC sys

Fig. 1. Performance predicti
E
D

FUTURE 1297 1–1

ng message passing, memory loads and stores

ework for a parallel application.

C
T

 P
R

O
O

F

1

L. Carrington et al. / Future Generation Computer Systems xxx (2004) xxx–xxx 3

floating-point operations, independent of any partic-107

ular application. This data is collected via low level108

benchmarks or probes. To arrive at a performance pre-109

diction for an application, its Application Signature is110

mapped to the corresponding performance of the Ma-111

chine Profile of the machine on which the application112

is being predicted, by the Convolution Methods. These113

mappings are automated using the MetaSim Convolver114

[31] for the single-processor model and Dimemas[30]115

for the communications model. The convolutions of116

the Application Signature and Machine Profile result117

in a predicted runtime, which the application should118

achieve on the target machine. Comparing a predicted119

run time with the actual runtime is the method we use120

for validating the model for that application[1]. Valida-121

tion of models for three different scientific applications122

is presented next in Section3.123

3. HPC applications and model verification124

In Sections3.1–3.3, three scientific applications are125

fed through the framework to predict their performance126

on four different HPC architectures. Only small bench-127

marks were run on the target machines to collect the128

Machine Profiles. These benchmarks only consumed129

a few CPUs of the target machine but were used in130

predicting performance of an application running on131

hundreds of CPUs. The advantage of this is that typ-132

ically in building large (>1000 CPUs) HPC machines133

a full134

s n the135

p re it136

i137

3138

ally139

d com-140

p wide141

v M142

P X1.143

P the144

w ean145

c cean146

c nal147

p un-148

d Spa-149

tial derivatives are computed using finite-difference150

discretizations, formulated to handle any generalized151

orthogonal grid on a sphere, including dipole, and152

tripole grids that shift the North Pole singularity into153

land masses to avoid time step constraints due to grid154

convergence. 155

The x1 dataset used in this study is a coarse res-156

olution configuration that is currently being used in157

coupled climate models. The horizontal resolution is158

one degree (320× 384) and uses a displace-pole grid159

with the pole of the grid shifted into Greenland and160

enhanced resolution in the equatorial regions. The ver-161

tical coordinate uses 40 vertical levels with smaller162

grid spacing near the surface to better resolve the163

surface mixed layer. This configuration does not re-164

solve eddies, and therefore it requires the use of165

computationally–intensive sub grid parameterizations.166

This configuration is setup to be identical to the actual167

production configuration of the Community Climate168

System Model with the exception that the coupling to169

full atmosphere, ice and land models have been re-170

placed by analytic surface forcing. 171

We applied the modeling framework to POP on the172

x1 dataset.Table 1shows real versus model-predicted173

wall-clock execution times for several machines at sev-174

eral processor counts. POP execution times are more175

typically reported in seconds-per-simulation-day. An176

error of around 20% is considered acceptable to our177

user/funding agency for the purpose of getting a gen-178

eral idea of the application’s performance on the target179

m ions180

w nifi-181

c del182

f 183

3 184

ar185

p del186

h for187

s of188

M eas189

a and190

u vity191

w or-192

t D’s193

H ram194

(195
U
N

C
O

R
R

E

small prototype will be available long before the
ystem can be built. The benchmarks can be run o
rototype system and predict the full system befo

s built.

.1. Parallel Ocean Program (POP)

The Parallel Ocean Program (POP) was specific
eveloped to take advantage of high performance
uter architectures. POP has been ported to a
ariety of systems including IBM Power3, and IB
ower4, Compaq Alpha server SC45, and Cray
OP is used for eddy-resolving simulations of
orld oceans and for climate simulations as the oc
omponent of coupled climate models. POP is an o
irculation model that solves the three-dimensio
rimitive equations for fluid motions on the sphere
er hydrostatic and Boussinesq approximations.
E
D

FUTURE 1297 1–1

achine. The table of results shows that all predict
ere below the acceptable limit and some were sig
antly lower. This confirms that the performance mo
or POP is robust on all the machines modeled.

.2. Navy Layered Ocean Model (NLOM)

The Navy’s hydrodynamic (iso-pycnal) non-line
rimitive equation layered ocean circulation mo
as been used at NOARL for more than 10 years
imulations of the ocean circulation in the Gulf
exico, Caribbean, Pacific, Atlantic, and other s
nd oceans. The model retains the free surface
ses semi-implicit time schemes that treat all gra
aves implicitly. NLOM consumes a significant p

ion of all cycles on the supercomputers run by Do
igh Performance Computing Modernization Prog

HPCMP).

U
N

C
O

R
R

E
C

T
 P

R
O

O
F

1

4 L. Carrington et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

Ta
bl

e
1

R
ea

lv
s.

P
re

di
ct

ed
-b

y-
M

od
el

w
al

l-c
lo

ck
tim

es
fo

r
P

O
P

#
of

C
P

U
s

B
lu

e
H

or
iz

on
(I

B
M

P
W

R
38

-w
ay

)
Le

m
ie

ux
(C

om
pa

q
S

C
45

)
Lo

ng
ho

rn
(I

B
M

P
W

R
4)

S
ea

bo
rg

(I
B

M
P

W
R

31
6-

w
ay

)
C

ra
y

X
1

R
ea

l
tim

e
(s

)
P

re
di

ct
ed

tim
e

(s
)

%
E

rr
or

R
ea

l
tim

e
(s

)
P

re
di

ct
ed

tim
e

(s
)

%
E

rr
or

R
ea

l
tim

e
(s

)
P

re
di

ct
ed

tim
e

(s
)

%
E

rr
or

R
ea

l
tim

e
(s

)
P

re
di

ct
ed

tim
e

(s
)

%
E

rr
or

R
ea

l
tim

e
(s

)
P

re
di

ct
ed

tim
e

(s
)

%
E

rr
or

16
20

4.9
2

21
4.2

9
5

12
5.3

5
12

5.7
5

0
93

.9
4

95
.1

5
1

20
4.3

20
0.

07
−2

9.
21

9.
79

6.
3

32
11

5.2
3

11
8.2

5
3

64
.0

2
71

.4
9

11
51

.3
8

53
.3

0
4

10
8.1
6

12
3.1

0
14

64
62

.6
4

63
.0

3
−1

35
.0

4
36

.5
5

4
27

.4
6

24
.4

5
−1

1
54

.0
7

63
.1

9
17

12
8

46
.7

7
40

.6
0

−1
3

22
.7

6
20

.3
5

−1
1

19
.6

5
15

.9
9

−1
6

45
.2

7
42

.3
5

−6
W

he
re

%
E

rr
or

=
(P

re
di

ct
ed−

R
ea

l)/
R

ea
l×

10
0.

A synthetic benchmark called synNLOM was de-196

signed by HPCMP to behave similar to the real NLOM197

application and has been used to evaluate vendors vying198

for DoD TI-02 procurements. Even though synNLOM199

is termed a “benchmark” it is really a representative200

production problem and runs for more than 1 h on 28201

CPUs on an IBM Power3 system. The framework was202

applied to both synNLOM and “real” NLOM, those203

results are shown inTables 2 and 3below. SynNLOM 204

was run with data from the Gulf of Mexico on 28 and205

56 processors NLOM was run with same data on 56206

and 112 CPUs. 207

Tables 2 and 3show that for both applications the208

error was below the acceptable limit except for one209

case where the error was only slightly above the limit.210

Showing that even for large and complex applications211

the framework remains accurate in predicting perfor-212

mance of HPC machines. 213

3.3. Cobalt 60 214

Cobalt 60 is an unstructured Euler/Navier-Stokes215

flow solver that is routinely used to provide quick,216

accurate aerodynamic solutions to complex CFD217

problems. Cobalt 60 handles arbitrary cell types as218

well as hybrid grids that give the user added flex-219

ibility in their design environment. It is a robust220

HPC application that solves the compressible Navier-221

Stokes equations using an unstructured Navier-Stokes222

solver. It uses Detached Eddy Simulation (DES)223

w ier-224

S tion225

(226

dif-227

f 228

T cept-229

a ce230

m 231

per-232

f rror233

w but234

o it.235

O rate,236

o f the237

h ver-238

a one239

o tion240

4

E
D

FUTURE 1297 1–1

hich is a combination of Reynolds-averaged Nav
tokes(RANS) models and Large Eddy Simula

LES).
Cobalt 60 was modeled for two systems on four

erent processor counts; the results are seen inTable 4.
he results show the error remained below the ac
ble limit for all predictions validating the performan
odel for this application.
For all three applications, the accuracy of the

ormance models was confirmed by the fact that e
as below the acceptable limit for all predictions
ne, in which the error was only slightly above the lim
nce a performance model is verified as being accu
ne can investigate different performance factors o
ardware and how they affect the application’s o
ll performance. These sensitivity studies were d
n two of the application and described in Sec
.

N
C

O
R

R
E

C
TE

D
 P

R
O

O
F

FUTURE 1297 1–11

L. Carrington et al. / Future Generation Computer Systems xxx (2004) xxx–xxx 5

Table 2
Performance prediction of NLOM application on two machines

of CPUs Blue Horizon (IBM PWR38-way) Lemieux (Compaq SC45)

Real time (s) Predicted time (s) % Error Real time (s) Predicted time(s) % Error

28 2385.8 2383.0 −0.1 1300.5 1220.3 −6.2
56 1220.4 1211.8 −0.7 809.7 618.7 −23.6

Table 3
Performance prediction of SynNLOM application on two machines

of CPUs Blue Horizon (IBM PWR38-way) Lemieux (Compaq SC45)

Real time (s) Predicted time (s) % Error Real time (s) Predicted time(s) % Error

56 4432 4611 4.0 2066.1 1816.4 −12.1
112 2356.0 2144.7 −9.0 1226.1 1218.6 −0.6

Table 4
Performance prediction of Cobalt 60 application on two machines

of CPUs Blue Horizon (IBM PWR3) Lemieux (Compaq SC45)

Real time (s) Predicted time (s) % Error Real time (s) Predicted time(s) % Error

16 1132.3 1145.5 1.2 766.4 786.3 2.5
32 553.8 568.9 2.7 337.0 284.7 −12.4
64 297.8 313.2 4.9 174.8 215.1 18.7

128 181.9 204.8 12.9 110.4 134.9 18.2

4. Performance sensitivity studies241

Reporting the accuracy of performance models in242

terms of model-predicted time versus observed time243

(as in the Section3) is a validating step for obtaining244

confidence in the model. A more interesting, useful,245

and challenging endeavor is to explain and quantify246

observed performance differences of an application on247

different architectures. The model can also be used to248

play “what if” scenarios, such as “what if the network249

had twice the bandwidth, how would that affect the250

application’s performance”. In this work, the perfor-251

mance difference of POP is investigated between two252

machines, Lemieux (SC45) and Blue Horizon (PWR3).253

For example, it is clear fromTable 1in Section3that254

Lemieux (SC45) is faster across-the-board, for POP255

running the x1 data set, than Blue Horizon (PWR3).256

The question is why? Lemieux has faster processors257

(1000 MHz versus 375 MHz) with theoretical peak258

MFLOPS of 2000 versus 1500 for Blue Horizon.259

Lemieux also has a lower-latency network (measured260

ping-pong latency of about 9�s versus about 20�s)261

but Blue Horizon’s network has the higher bandwidth262

(ping-pong bandwidth measured at about 350 MB/s263

versus 260 MB/s with the PMaC probes). One can con-264

jecture that POP performance is more sensitive to pro-265

cessor performance and network latency than network266

bandwidth, but with sensitivity studies we can go one267

step further and support that conjecture with data. 268

With a model that can accurately predict applica-269

tion performance based on properties of the code and270

the machine, precise modeling experiments can be car-271

ried out, such as those represented inFig. 2with details 272

in Table 5. The model is used to perturb the Power3-273

based, Colony switch Blue Horizon (BH), system into274

the Alpha SC45-based, Quadrics switch (TCS), sys-275

tem by replacing components one by one and doing a276

prediction of the new hypothetical machine with each277

new component. The base system of BH is perturbed278

by changing network bandwidth, network latency, and279

processor “performance”, to finally arrive at a machine280

that represents the SC45. Note that processor “per-281

formance” captures the improved performance of the282

floating-point rate as well as the memory bandwidth.283

Fig. 2represents a series of cases modeling the pertur-284

bation of BH to TCS, going from left to right. The bar285
U

R
E

C
TE

D
 P

R
O

O
F

1

6 L. Carrington et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

Fig. 2. Sensitivity study of POP on 16 CPUs.

for each case represents the performance of POP on 16286

processors normalized to the performance of BH.287

• Case 1is the base case normalized to the perfor-288

mance of BH.289

• Case 2models the effect of reducing the band-290

width of BH’s network to that of a single rail of291

the Quadrics switch. There is no discernable perfor-292

mance effect to the POP application, at this size, in293

changing in peak network bandwidth from 350 MB/s294

to 260 MBs.295

• Case 3models the effect of reducing network la-296

tency of the Colony switch to that of the Quadrics297

switch. There is a significant performance improve-298

ment noted by switching the 20�s latency of the299

Colony switch to 9�s latency of the Quadrics switch.300

This is because the barotropic calculations in POP301

at this size are latency sensitive.302

• Case 4uses Quadrics latency and bandwidth for303

completeness.304

• Case 5models the Colony switch latencies and band-305

widths but replace the Pwr3 processors and local306

memory subsystem with that of the Alpha SC45.307

There is a substantial improvement in performance308

due mainly to the faster memory subsystem of the309

Alpha. The Alpha can load stride-1 data from its L2310

cache at about twice the rate of the Power3 and this311

benefits POP significantly. 312

• Case 6shows the values of TCS performance, pro-313

cessor and memory subsystem speed, network band-314

width and latency, as a ratio to BH’s values. 315

The higher level point from the above exercise is316

that the model can quantify the performance impact of317

each machine hardware component. One can carry out318

this exercise for any size POP problem as well as for319

NLOM, Cobalt 60, or any application modeled via the320

framework. 321

As an abstraction from a specific architecture com-322

parison study such as the above, one can use the model323

to generate a machine-independent performance sen-324

sitivity study. As an example,Fig. 3 indicates the per- 325

formance impact on a 128 CPU POP run for quadru-326

pling the speed of the CPU and memory subsystem327

(lumped together, we call this processor), quadrupling328

network bandwidth, cutting network latency by 4, and329

Table 5
Model parameters for POP used inFig. 2

Case
number

Prediction (s) CPU-memory
subsystem ratio

NW ping–pong
BW (MB/s)

SMP Node
BW (MB/s)

NW ping–pong
latency (�s)

SMP Node
latency (�s)

1 42.07 1.00 350 370 19 19
2 41.71 1.00 269 552 19 19
3
4
5
6

U
N

C
O

R32.46 1.00 269
32.43 1.00 350
30.41 1.69 350
20.35 1.69 269
FUTURE 1297 1–1

552 5 4.6
370 5 4.6
370 19 19
552 5 4.6

R
E

C
TE

D
 P

R
O

O
F

1

L. Carrington et al. / Future Generation Computer Systems xxx (2004) xxx–xxx 7

Fig. 3. POP Performance sensitivity study for 128 CPUs.

various combinations of these four-fold hardware im-330

provements. Case 1 represents the base performance of331

POP run on Blue Horizon. Case 2 illustrates the per-332

formance effects that POP would see if the processor333

on Blue Horizon were to get a performance increase of334

four-fold. Case 3 represents Blue Horizon with a com-335

plete network upgrade with four-fold improvements to336

the network latency and bandwidth. Case 4 shows the337

performance effects of a network improvement local-338

ized to just a four-fold improvement in latency and339

Case 5 shows similar affects for improvements in just340

bandwidth. It is understood that given the gap between341

memory and floating-point performance on a processor342

that increasing both these components by an even fac-343

tor of four is not realistic. But the results of Case 2 can344

show if processor performance is a significant factor345

worthy of further studies to split the individual compo-346

nents of memory and floating-point performance.347

At this size, POP is quite sensitive to processor,348

(faster processor and memory subsystem) seen in the349

Case 2 results, and somewhat sensitive to latency350

(Case 4) because of the communications-bound, small-351

messages, barotropic portion of the calculation and352

fairly insensitive to bandwidth (Case 5). The higher-353

level impact is that performance models enable “what-354

if” examinations for implications of improving the tar- 355

get machine in various dimensions. Thus, purchas-356

ing upgrades or future machines to run this applica-357

tion would benefit the application most by focusing358

resources on better processors and lower latency net-359

works. 360

Fig. 4 illustrates a similar study done on the appli-361

cation synNLOM, but this study provides “zoom in”362

on the processor performance factor for synNLOM. In363

the above results for POP, the processor improvements364

show modeled execution time decreases from having365

ance s
U
N

C
O

R

Fig. 4. synNLOM Perform
FUTURE 1297 1–1

ensitivity study for 28 CPUs.

T
 P

R
O

O
F

1

8 L. Carrington et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

a four-times better processor (Case 2) with respect366

to MHz (implying four-fold improvement to floating-367

point issue rate) but also implicit in “four-times better368

processor” is quadruple bandwidth and 1/4th latency to369

all levels of the memory hierarchy (unfortunately this370

may be hard or expensive to achieve architecturally!).371

Fig. 4shows how much better a processor would per-372

form relative to the Power 3 processor for synNLOM if373

it had Case 2: 2× issue rate; Case 3: 4× issue rate; Case374

4: 2× issue rate and 2× faster L2 cache; Case 5: base is-375

sue rate of 4× 375 MHz but 4× faster L2 cache. From376

the results inFig. 4, it appears that SynLOM at this377

size is compute-bound between communication events378

and would benefit significantly from a faster processor379

clock, even without improving L2 cache. Not shown380

but discoverable via the model is that synNLOM is381

somewhat more network bandwidth sensitive than POP382

because it sends less frequent, larger messages.383

The third example using application Cobalt 60,384

modeled performance sensitivity of 32 CPU Cobalt 60385

to faster network and faster node, shown inFig. 5. This386

study was conducted in a way similar toFig. 4 with387

four-fold increases to processor performance, network388

latency, and network bandwidth. Case 1 represents the389

base performance of Cobalt 60 on Blue Horizon. Case 2390

represents the performance increase of four-fold to the391

processor both floating-point rate and memory band-392

width. Case 3 illustrates the performance increases due393

to both network bandwidth and latency. Case 4 repre-394

sents performance increase due to improved network395

l s due396

t balt397

6 per-398

formance at this size, this remains true at larger pro-399

cessor counts. Cases 3–5 illustrate how network per-400

formance upgrades would not benefit this application.401

Further studies could be performed to determine which402

component of the processor, memory or floating-point403

rate, have the most influence in application perfor-404

mance. 405

5. Background and related work 406

Methods for performance evaluations can be broken407

down into two areas[25]: structural models and func- 408

tional and analytical models. Structural models use de-409

scriptions of individual system components and their410

interactions, such as detailed simulation models. The411

second area, functional and analytical models, sepa-412

rates the performance factors of a system to create a413

mathematical model. 414

The use of detailed or cycle-accurate simulators in415

performance evaluation has been used by many re-416

searchers[2,3,5,17,26]. Detailed simulators are nor- 417

mally built by manufactures during the design stage of418

an architecture to aid in the design. For parallel ma-419

chines, two simulators might be used, one for the pro-420

cessor and one for the network. These simulators have421

the advantage of automating performance prediction422

from the user’s standpoint. The disadvantage is that423

these simulators are proprietary and often not available424

to HPC users and Centers. Also, because they capture425

a take426

o real427

r - 428

ance s
U
N

C
O

R
R

E
C

atency and Case 5 shows performance increase
o improved network bandwidth. Case 2 shows Co
0’s sensitivity to improvements in the processor

Fig. 5. Cobalt 60 Perform
E
D

FUTURE 1297 1–1

ll the behaviors of the processors, simulations can
n an upwards of 1,000,000 times longer, than the
untime of the application[14]. This means, to simu

ensitivity study for 32 CPUs.

C
T

 P
R

O
O

F

1

L. Carrington et al. / Future Generation Computer Systems xxx (2004) xxx–xxx 9

late 1 h of an application it could take approximately429

114 years of CPU time. Direct execution methods are430

commonly used to accelerate architectural simulations431

[9] but they still can have large slowdowns. To avoid432

these large computational costs, cycle-accurate simu-433

lators are usually only used to simulate a few seconds434

of an application. This causes a modeling dilemma,435

for most scientific applications the complete behav-436

ior cannot be captured in a few seconds of a produc-437

tion run. Applications rarely spend all their time in438

one routine and their behavior may change as the ap-439

plication progresses through its simulation (in some440

cases the actual physics of the problem being solved441

changes).442

Cycle-accurate simulators are limited to only work443

in modeling the behavior of the processor for which444

they were developed, so they are not applicable to445

other architectures. In addition, the accuracy of cycle-446

accurate simulation can be questionable. Gibson et al.447

[10] showed that simulators that model many architec-448

tural features have many possible sources for error, re-449

sulting in complex simulators that produce greater than450

50% error. This work suggested that simple simulators451

are sometimes more accurate than complex ones.452

In the second area of performance evaluation, func-453

tional and analytical models, the performance of an454

application on the target machine can be described by455

a complex mathematical equation. When the equation456

is fed with the proper input values to describe the tar-457

get machine, the calculation yields a wall clock time458

f fla-459

v have460

b e of461

t t to462

b463

s464

m OR-465

T ured466

o used467

t ef-468

f alties469

a hese470

s sors471

a 90s.472

T t for473

i s in-474

c rcon-475

n476

For parallel system predictions, Mendes and Reed477

[15,16] proposed a cross-platform approach. Traces478

were used to record the explicit communications479

among nodes and to build a directed graph based on the480

trace. Sub-graph isomorphism was then used to study481

trace stability and to transform the trace for different482

machine specifications. This approach has merit and483

needs to be integrated into a full system for applica-484

tions tracing and modeling of deep memory hierarchies485

in order to be practically useful today. 486

Simon and Wierun[21] proposed to use a Concur-487

rent Task Graph to model applications. A Concurrent488

Task Graph is a directed acyclic graph whose edges489

represent the dependence relationship between nodes.490

In order to predict the execution time, it was proposed491

to have different models to compute the communica-492

tion overhead, (FCFS queue for SMP and Bandwidth493

Latency model for MPI) with models for performance494

between communications events. As above, these sim-495

ple models worked better in the mid 1990s than today.496

Crovella and LeBlanc[8] proposed complete, or- 497

thogonal and meaningful methods to classify all the498

possible overheads in parallel computation environ-499

ments and to predict the algorithm performance based500

on the overhead analysis. Our work adopts their useful501

nomenclature. 502

Xu et al.[27] proposed a semi-empirical multipro-503

cessor performance prediction scheme. For a given504

application and machine specification, the application505

first is instantiated to thread graphs which reveal all506

t ur-507

i y of508

a hine509

t the510

t ment511

i use512

p n to513

p dic-514

t 515

516

p ma-517

c as518

e 519

Los520

A l of521

t ars522

[heir523

p are524
U
N

C
O

R
R

E

or that application on the target machine. Various
ors of these methods for developing these models
een researched. Below is a brief summary of som

his work but due to space limitations it is not mean
e inclusive of all.

Saavedra and Smith[18–20]proposed application
odeling as a collection of independent Abstract F
RAN Machine tasks. Each abstract task was meas
n the target machine and then a linear model was

o predict execution time. In order to include the
ects of memory system, they measured miss pen
nd miss rates to include in the total overhead. T
imple models worked well on the simpler proces
nd shallower memory-hierarchies of the mid 19
he models now need to be improved to accoun

ncreases in the complexity of parallel architecture
luding processors, memory subsystems, and inte
ects.
E
D

FUTURE 1297 1–1

he possible communications (implicit or explicit) d
ng the computation. They then measured the dela
ll the possible communication on the target mac

o compute the elapsed time of communication in
hread graph. For the execution time, of each seg
n the thread graph between communications, they
artial measurement and loop iteration estimatio
redict the execution time. The general idea of pre

ion from partial measurement is adopted here.
Abandah and Davidson[1] and Boyd et al.[4] pro-

osed hierarchical modeling methods for parallel
hines that is kindred in spirit to our work, and w
ffective on machines in the early and mid 1990s.

A group of expert performance modelers at
lamos have been perfecting the analytical mode

wo applications important to their workload for ye
11,12,13,28]. These models are quite accurate in t
redictions, although the methods for creating them

T
 P

R
O

O
F

1

10 L. Carrington et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

time consuming and not necessarily easily done by non-525

expert user[24]. Also, the models require input related526

to the applications data set that is not automated.527

6. Conclusions528

The performance prediction framework has been529

proven effective for creating models of complex sci-530

entific applications. Performance predictions and sen-531

sitivity studies were exhibited and shown to be useful532

in determining which architectural features will best533

benefit a workload. It is reasonable to make procure-534

ment decisions based on the computational demands535

of the target workload. As a trivial example, if one’s536

workload required more resources for the synLOM ap-537

plication and less for POP, one would be willing to538

spend more money to improve network bandwidth. It539

is reasonable to tune current systems and influence the540

implementation of near-future systems informed by the541

computational demands of the target workload with the542

performance information from the application models.543

It is also reasonable to design future systems based on544

the quantified performance implications of hardware545

features for characterized workloads.546

Acknowledgments547

This work was sponsored in part by the Department548

o ard549

“ nce550

a t by551

a for-552

m P)553

a was554

s CI-555

9 y the556

N l In-557

f nter.558

C Su-559

p ting560

C ntific561

C wl-562

e lona,563

T eir564

c ion565

t

References 566

[1] G. Abandah, E.S. Davidson, Modeling the communication per-567

formance of the IBM SP2, in: Proceedings of the International568

Parallel Processing Symposium, April, 1996, pp. 249–257. 569

[2] R.S. Ballansc, J.A. Cocke, H.G. Kolsky, The Lookahead Unit,570

Planning a Computer System, McGraw-Hill, New York, 1962.571

[3] L.T. Boland, G.D. Granito, A.V. Marcotte, B.V. Messina, J.W.572

Smith, The IBM system 360/Model9: storage system, IBM J.573

Res. Dev. 11 (1967) 54–79. 574

[4] E.L. Boyd, W. Azeem, H.H. Lee, T.P. Shih, S.H. Hung, E.S.575

Davidson, A hierarchical approach to modeling and improv-576

ing the performance of scientific applications on the KSR1, in:577

Proceedings of the 1994 International Conference on Parallel578

Processing, vol. 3, 1994, pp. 188–192. 579

[5] D. Burger, T.M. Austin, S. Bennett, Evaluating Future Micro-580

processors: The Simplescalar Tool Set, Technical Report CS-581

TR-1996-1308, University of Wisconsin-Madison, 1996. 582

[6] L. Carrington, A. Snavely, X. Gao, N. Wolter, Performance583

Prediction Framework for Scientific Applications ICCS Per-584

formance Modeling Workshop, Melbourne, June, 2003. 585

[7] L. Carrington, N. Wolter, A. Snavely, A framework for Ap- 586

plication Performance Prediction to enable Scalability under-587

standing, Scaling to New Heights Workshop, Pittsburgh, May,588

2002. 589

[8] M.E. Crovella, T.J. LeBlanc, Parallel Performance Prediction590

using Lost Cycles Analysis, SuperComputing 1994 (1994)591

600–609. 592

[9] B. Falsafi, D.A. Wood, Modeling Cost/Performance of a Parallel593

Computer Simulator, ACM Transact. Model. Comput. Simul. 7594

(1) (1997) 104–130. 595

[10] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, M.596

Heinrich, FLASH vs. (Simulated) FLASH: closing the Simu-597

lation Loop, in: Proceedings of the Ninth International Confer-598

ence on Architectural Support for Programming Languages and599

58.600

[s of601

ys-602

71.603

[lti-604

lus-605

om-606

607

[per-608

rfor-609

610

[on-611

ral-612

m-613

614

[abil-615

616

[tion,617

nce618

619

[16620

621
U
N

C
O

R
R

E
C

f Energy Office of Science through SciDAC aw
High-End Computer System Performance: Scie
nd Engineering”. This work was sponsored in par
grant from the Department of Defense High Per
ance Computing Modernization Program (HPCM
nd the National Security Agency. This research
upported in part by NSF cooperative agreement A
619020 through computing resources provided b
ational Partnership for Advanced Computationa

rastructure at the San Diego Supercomputer Ce
omputer time was provided by the Pittsburgh
ercomputer Center, the Texas Advanced Compu
enter, and the National Energy Research Scie
omputing Center. We would also like to ackno
dge the European Center for Parallelism of Barce
echnical University of Barcelona (CEPBA) for th
ontinued support of their profiling and simulat
ools.
E
D

FUTURE 1297 1–1

Operating Systems (ASPLOS), November, 2000, pp. 49–
11] A. Hosie, L. Olaf, H. Wasserman, Performance analysi

Wavefront Algorithms on Very-Large Scale Distributed S
tems, Springer’s Lect. Notes Control Inf. Sci. 249 (1999) 1

12] A. Hosie, L. Olaf, H. Wasserman, Scalability analysis of Mu
dimensional Wavefront Algorithms on Large-Scale SMP C
ters, in: Proceedings of Frontiers of Massively Parallel C
puting’99, Annapolis, MD, February, 1999.

13] D.J. Kerbyson, A. Hoisie, H.J. Wasserman, Modeling the
formance of Large-Scale Systems, Keynote paper, UK Pe
mance Engineering Workshop (UKPEW03) July, 2003.

14] J. Lo, S. Egger, J. Emer, H. Levy, R. Stamm, D. Tullsen, C
verting Thread-Level Parallelism to Instruction-Level Pa
lelism via Simultaneous Multithreading, ACM Transact. Co
put. Syst. (August 1997).

15] C.L. Mendes, D.A. Reed, Integrated Compilation and Scal
ity Analysis for Parallel Systems, IEEE PACT (1998).

16] C.L. Mendes, D.A. Reed, Performance stability and predic
in: IEEE/USP International Workshop on High Performa
Computing, 1994.

17] J.O. Murphey, R.M. Wade, The IBM 360/195, Datamation
(4) (1970) 72–79.

C
T

 P
R

O
O

F

1

L. Carrington et al. / Future Generation Computer Systems xxx (2004) xxx–xxx 11

[18] R.H. Saavedra, A.J. Smith, Measuring Cache and TLB perfor-622

mance and their effect on Benchmark run times, IEEE Transact.623

Comput. 44 (10) (1995) 1223–1235.624

[19] R.H. Saavedra, A.J. Smith, Analysis of Benchmark characteris-625

tics and Benchmark performance prediction, TOCS14 4 (1996)626

344–384.627

[20] R.H. Saavedra, A.J. Smith, Performance characterization of Op-628

timizing Compilers, TSE21 7 (1995) 615–628.629

[21] J. Simon, J. Wierun, Accurate performance prediction for Mas-630

sively Parallel Systems and its applications, Euro-Par 2 (1996)631

675–688.632

[22] A. Snavely, N. Wolter, L. Carrington, Modeling application per-633

formance by Convolving Machine Signatures with Application634

Profiles, in: IEEE Fourth Annual Workshop on Workload Char-635

acterization, Austin, December, 2001.636

[23] A. Snavely, N. Wolter, L. Carrington, R. Badia, J. Labarta, A.637

Purkasthaya, A framework to enable Performance Modeling638

and Prediction, Supercomputing (2002).639

[24] A. Spooner, D. Kerbyson, Identification of performance char-640

acteristics from Multi-view Trace Analysis, in: Proceedings of641

the International Conference on Computational Science (ICCS),642

Part 3, vol. 2659, 2003, pp. 936–945.643

[25] L. Svobodova, Computer System Performance Measurement644

and Evaluation Methods: Analysis and Applications, Elsevier,645

New York, 1976.646

[26] G.S. Tjaden, M.J. Flynn, Detection, Parallel execution of in-647

dependent instructions, IEEE Trans. Comput. C-19 (1970)648

889–895.649

[27] Z. Xu, X. Zhang, L. Sun, Semi-empirical Multiprocessor Per-650

formance Predictions, JPDC 39 (1996) 14–28.651

[28] L. Yong, L.M. Olaf, H. Wasserman, Development and valida-652

tion of a Hierarchical Memory Model incorporating CPU- and653

Memory-Operation Overlap, in: Proceedings of the First In-654

ternational Workshop on Software and Performance Santa Fe,655

NM, 1996, pp. 152–163.656

[657

[658

[html.659

e660

C)661

en-662

e-663

ce664

r-665

ded666

or-667

ber668

669

Dr. Snavely is an expert in high perfor- 670

mance computing. He has contributed to671

the development of a number of strategies672

for working around the Von Neumann bot- 673

tleneck to deliver fast time-to-solution for 674

scientific applications. These include fun-675

damental studies in modeling to understand676

the factors that effect performance; also677

architectural innovations including multi- 678

threaded computing, and computing with679

field-programmable gate arrays (FPGAs).680

Snavely’s current research involves the design and optimization of681

complex systems (including supercomputers and computing Grids)682

drawing on principles of economics and statistics and leveraging re-683

configurability. Snavely is leader of the Performance Modeling and684

Characterization Laboratory (PMaC) at the San Diego Supercom-685

puting Center (SDSC), charged with understanding and addressing686

factors that affect performance on large supercomputers and Grids.687

Current grants include a DoD effort for developing accurate perfor-688

mance models for applications on HPC systems, one to participate in689

the Performance Evaluation Research Center (PERC) involving DoE690

labs and universities for which he is technical lead for modeling and691

analysis, an NSF STI grant to design Grid Benchmarks, and an NSF692

NGS grant to measure and model the performance of deep memory693

hierarchies. Snavely is a founding member of the Grid Benchmarking694

Research Group in the Global Grid Forum with a charge to develop695

meaningful metrics for Grid performance. 696

Nicole Wolter works for the Performance 697

Modeling and Characterization Lab at the698

San Diego Supercomputer Center. Current699

research involves the performance impact700

of memory access patterns across different701

HPC platforms, and Performance modeling702

of scientific applications on HPC systems.703

ree704

- 705

706
U
N

C
O

R
R

E

29] http://www.sdsc.edu/pmac/MetaSim/Tracer/tracer.html.
30] http://www.cepba.upc.es/.
31] http://www.sdsc.edu/pmac/MetaSim/Convolver/convolver.

Dr. Carrington works in the Performanc
Modeling and Characterization (PMa
Lab at the San Diego Supercomputer C
ter. This work involves developing a fram
work to model and predict the performan
of scientific applications on High Perfo
mance Computing (HPC) systems. Fun
in part by a DoD grant to predict the perf
mance of key DoD applications on a num
of different HPC systems.
E
D

FUTURE 1297 1–1

Nicole has her Bachelor of Science Deg
from San Diego State University in Com
puter Science.

	A performance prediction framework for scientific applications
	Introduction and motivation
	A performance modeling framework
	HPC applications and model verification
	Parallel Ocean Program (POP)
	Navy Layered Ocean Model (NLOM)
	Cobalt 60

	Performance sensitivity studies
	Background and related work
	Conclusions
	Acknowledgments
	References

