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Abstract 
 

This paper applies modeling and simulation to key 
HPCMP systems and applications to determine the 
degree to which fundamental system attributes affect 
application performance.  Synthetic probes are used to 
ascertain target system capabilities, while application 
tracing is used to uncover the memory and 
communication usage characteristics of target codes.  A 
predictive model subsequently melds system and 
application data in order to project a time-to-solution 
for each application and system pair.  System attributes 
are then systematically modified, and the predictive 
model is again applied, to determine the sensitivity of 
application performance to key system attributes.   

Time-to-solution predictions for five application test 
cases (AVUS Standard/Large, HYCOM Standard, 
OVERFLOW2 Standard, and RFCTH2 Standard) from 
the HPCMP TI-05 Benchmarking Suite were validated 
against Government-obtained benchmarking data for 
10 HPCMP systems (ranging from an SGI Origin 3800 
to an IBM Opteron cluster), yielding an average 
absolute error of 18%.  Sensitivity analysis was then 
applied to AVUS Large and OVERFLOW2 Standard 
using the DoD baseline system (a 2832 processor IBM 
p655) as the target system, revealing that both test cases 
have difficulty staying within mid-tier (L2) and outer-
tier cache (L3), and therefore greatly benefit from 
increased L3 and main memory bandwidths.  

  
1. Introduction. 

 
The performance of a parallel application on an HPC 

system is a function of the algorithm(s) used with the 
code, the programming style and prowess of the code 
author(s), the selected compiler(s) and libraries, and a 
host of system attributes pertaining to the CPU, OS, I/O, 
interconnect, and memory.  Therefore, one might 
conclude that performance models for scientific 
applications on such complex systems must account for 

all elements of the target system and application; 
however, this work shows that a predictive framework, 
which considers only the most vital factors, on average 
can predict an application’s performance within 20%. 

This framework uses simple tools to generate 
reasonably accurate performance predictions within a 
relatively short period of time for a large number of 
systems, given a set of codes (representing a target 
workload) and a set of probe results (which are basic 
attributes measured by synthetic tests) for systems that 
are not readily available for applications benchmarking.  
In previous work [25-27], this framework was described, 
validated, and used to accurately model the performance 
of small parallel scientific kernels and applications on 
different HPC architectures.  Only two probes were used: 
MAPS [29] (which measures the memory bandwidth 
versus message size for a single processor) and 
maps_ping [30] (which measures interconnect bandwidth 
and latency via a simple ping-pong test between two 
nodes).  Predictions were blindly conducted without any 
knowledge of observed runtimes, using only probe 
results and basic system data to represent system 
attributes.   Performance insights were further extended 
by employing sensitivity analysis though the variation of 
key system parameters.   

 
2. A Performance Modeling Framework. 
 

Isolation (divide and conquer) and simplicity 
(Occam’s Razor) were incorporated into the framework 
design in order to achieve a rapid, yet accurate, 
performance model that accounts for complexities in the 
memory hierarchy and interconnect, while still being 
applicable to arbitrary applications and systems.  
Isolation facilitates a dynamic framework which can be 
increased and decreased in complexity as necessary by 
simply adding or deleting “terms” within the model.  
Simplicity ensures that only those “terms” that are 
absolutely necessary for a reasonable degree of accuracy 



are retained.  A detailed description of the framework 
can be found in Snavely et al [26]. 

Based on the hypothesis that a parallel application’s 
performance is largely defined by its single processor 
performance and interconnect usage, the framework 
characterizes the code from these two vantage points, 
while taking into consideration only the most paramount 
features of the target system.  Starting simply and adding 
complexity only when necessary to account for observed 
performance, the framework consists of a single 
processor model combined with a communication model 
(Figure 1).  
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Figure 1.  Performance prediction framework for parallel 
applications. 

 
Clearly, other factors can affect performance, but 

often single processor and interconnect performance are 
sufficient for accurate performance prediction (~20% 
error), while adding more factors increases the 
complexity of the model with only nominal gains (~1-
2%) in accuracy [26].  

The single processor and interconnect models both 
use application signatures and system profiles, which are 
combined though a convolution method to yield a 
predicted time-to-solution.  An application signature 
summarizes the operations that will be conducted by the 
target application and includes memory and 
communication access patterns, all attributes being 
irrespective of any particular system.   For the single 
processor model, the application signature is a memory 
trace collected via the MetaSim Tracer, while for the 
communication model, the application signature is an 
MPI trace collected by MPIDtrace (Dimemas).  A system 
profile contains rates at which a target system can 
perform basic operations, including message passing, 
memory loads and stores, and floating-point operations, 
independent of any particular application.  Such rates are 
determined by low-level probes (synthetic benchmarks) 
to minimize the impact of data gathering and maximize 

the isolation between the target application and the 
system profile.  

To achieve a performance prediction for a target 
application on a target system, the operations described 
in the application signature are simulated according to 
the rate and structure information found in the system 
profile via a careful convolution methodology.   
Convolution is automated by the MetaSim Convolver for 
the single processor model and Dimemas for the 
communications model.   

The predictions presented in this paper are a 
byproduct of a recently expanded framework that 
includes two new model terms: 

1. Data Dependency – requiring the loops within a 
target application to be characterized according to the 
presence of any data dependencies as well as probes to 
measure the ability of a target system to execute loops 
containing a notable degree of data dependency 

2. Control Dependency – requiring loops within a 
target application to be characterized according to branch 
intensity as well as probes to measure the ability of a 
target system to perform loops containing a high level of 
branch intensity. 

While investigating the difference in predicted and 
observed performance in a previous work, it was 
discovered that some loops with the same size working 
set (cacheability) and same memory access pattern had 
noticeably different performance in terms of instruction 
execution rate.  This disparity was found to be primarily 
attributable to differences in the data and control 
dependencies in these seemingly similar loops.  

As for data dependency, some loops contain a large 
number of definition-use dependencies, thereby requiring 
that an instruction wait for a value to be produced by a 
previous instruction before the current instruction can be 
executed.  In the meantime, no other independent 
instructions are available for execution, rendering a 
notable portion of the pipeline idle and in turn reducing 
processor efficiency.  Other loops on the other hand may 
have a large number of independent instructions 
available at any given moment, thereby more efficiently 
utilizing the ILP (instruction level parallelism) of the 
target system.  To distinguish between these cases, the 
MetaSim Binary Analyzer was developed to uncover 
register-carried dependencies via static analysis and to 
compute, for each floating-point instruction in a loop, the 
minimum distance to the instructions which generate the 
current floating-point instruction’s data sources.  Each 
loop is subsequently scored by the weighted average of 
these floating-point definition-use distances. (The 
weighting comes from dynamic path information 
acquired by tracing and by giving more weight to more 
frequently executed instructions.) Probes are then 
executed to measure the performance of target systems 
on a range of loops with different Average Definition-
Use Distance scores.  In a final step, the probe data and 



the scored MetaSim Binary Analyzer data are combined 
through an added “term” in the framework’s convolution 
process, thereby incorporating the effects of data 
dependency into the model. 

A very similar approach discovers, via static 
analysis, the ratio of non-branch to branch instructions 
and quantifies via probes the effect of different ratios on 
loop execution for a target system.  An extra “term” is 
again added to the convolution step to meld the 
application and system data to account for branch 
dependencies. 

Predicted and observed times-to-solution are 
compared in the Section 4 as a validation of the current 
model’s predictive abilities. 
 
3. DoD HPCMP TI-05 Application Test 

Cases. 
 
Five application test cases from the DoD HPCMP 

TI-05 Benchmarking Suite were analyzed.  Each test 
case was executed at three different processor counts, 
ranging from 16 to 384 processors. 
 
AVUS STANDARD & LARGE   

 
AVUS was developed by the Air Force Research 

Laboratory (AFRL) to determine the fluid flow and 
turbulence of projectiles and air vehicles.  Its standard 
test case calculates 100 time-steps of fluid flow and 
turbulence for a wing, flap, and end plates using 7 
million cells.  Its large test case calculates 150 time-steps 
of fluid flow and turbulence for an unmanned aerial 
vehicle using 24 million cells. 

 
HYCOM STANDARD   
 

The Naval Research Laboratory (NRL), Los Alamos 
National Laboratory (LANL), and the University of 
Miami developed HYCOM as an upgrade to MICOM 
(both well-known ocean modeling codes) by enhancing 
the vertical layer definitions within the model to better 
capture the underlying science.  HYCOM's standard test 
case models all of the world's oceans as one global body 
of water at a resolution of one-fourth of a degree when 
measured at the Equator. 

 
OVERFLOW2 STANDARD  

 
OVERFLOW-2 was developed by NASA Langley 

and NASA Ames to solve CFD equations on a set of 
overlapping, adaptive grids, such that the grid resolution 
near an obstacle is higher than that of other portions of 
the domain.  This approach allows computation of both 
laminar and turbulent fluid flows over geometrically 
complex, non-stationary boundaries.  The standard test 

case of OVERFLOW-2 models fluid flowing over five 
spheres of equal radius and calculates 600 time-steps 
using 30 million grid points. 

 
RFCTH STANDARD 

 
Sandia National Laboratories (SNL) developed CTH 

to model complex multidimensional, multiple-material 
scenarios involving large deformations or strong shock 
physics.  RFCTH is a non-export-controlled version of 
CTH.  The standard test case of RFCTH models a ten-
material rod impacting an eight-material plate at an 
oblique angle, using adaptive mesh refinement with five 
levels of enhancement. 
 
4. Performance Prediction Results. 
 

Table 1 reveals the average absolute difference 
between predicted and observed performance for five 
application test cases and nine production architectures. 

 
Table 1. Average absolute difference and standard 
deviation for performance predictions as compared to 
observed performance. 

% Difference  
 

Category 
Absolute 

AVG 
 

SD 
Overall 18% 20% 

AVUS_STD 13% 16% 
AVUS_LG 21% 21% 

HYCOM_STD 17% 20% 
OVERFLOW2_STD 13% 19% 

RFCTH2_STD 28% 24% 
SGI_O3800_400MHz_NUMA 22% 27% 
IBM_P3_375MHz_COLONY 13% 16% 
HP_SC45_1GHz_QUADRICS 17% 16% 
IBM_690_1.3GHz_COLONY 17% 28% 

IBM_690_1.7GHz_FEDERATION 22% 8% 
LNX_Xeon_3.06GHz_MYRINET 21% 21% 

SGI_Altix_1.5GHz_NUMA 26% 28% 
IBM_655_1.7GHz_FEDERATION 6% 10% 
IBM_Opteron_2.2GHz_MYRINET 23% 28% 

 
For the majority of the application test cases, the 

framework accuracy ranges from 13% to 21%, with 
RFCTH2 Standard being the only outlier (28%) due to a 
few large differences at 64 processors.  (It is suspected 
that an error may exist in the RFCTH2 Standard traces 
for this processor count.)  For the majority of the system 
architectures, accuracy ranges from 13% to 23%, with 
the IBM p655 (6%) and the SGI Altix (26%) being the 
only outliers.   

Although absolute difference is reported to avoid 
sign canceling, it is worthwhile to also examine signed 
difference (Table 2) to reveal any systematic behavior. 



Table 2. Average signed difference for performance 
predictions as compared to observed performance. 

 
Category 

AVG % 
Difference 

Overall -3% 
AVUS_STD 4% 
AVUS_LG -1% 

HYCOM_STD -12% 
OVERFLOW2_STD 7% 

RFCTH2_STD 1% 
SGI_O3800_400MHz_NUMA 3% 
IBM_P3_375MHz_COLONY 5% 
HP_SC45_1GHz_QUADRICS -12% 
IBM_690_1.3GHz_COLONY -14% 

IBM_690_1.7GHz_FEDERATION 3% 
LNX_Xeon_3.06GHz_MYRINET 18% 

SGI_Altix_1.5GHz_NUMA -3% 
IBM_655_1.7GHz_FEDERATION 3% 
IBM_Opteron_2.2GHz_MYRINET -8% 

 
Only negligible systematic error exists overall, 

meaning that a prediction is equally likely to be too fast 
or too slow.  The HP SC45 and the IBM p690 (with a 
Colony interconnect), however, stand out as being 
consistently under-predicted (i.e., the predicted time is 
often faster than the observed time).  The I/O subsystems 
for these systems are relatively weak compared to other 
architectures, and I/O is not considered in the current 
model, possibly explaining the bias.  Future work will 
investigate the addition of I/O modeling to the 
framework.  The Xeon stands out as being systematically 
over-predicted (i.e., the predicted time is often slower 
than the observed time).  This anomaly is still under 
investigation, although it is thought that the probes to 
characterize the system may not have been executed 
under optimal conditions. 

Nevertheless, even when considering outliers, the 
results strongly support the notion that about 80% of 
observed performance (for arbitrary combinations of 
systems and applications) can be predicted by a simple 
model. 

 
5. Performance Sensitivity Studies. 

 
Having developed confidence in the predictive 

model from the data provided in the previous section, the 
framework is now used to predict the performance 
improvement for a target system given a specific set of 
hardware modifications. 

Using the application signatures for AVUS Large 
and OVERFLOW2 Standard and the system profile for 
the DoD baseline system (a 2832 processor IBM p655), 
sensitivity was analyzed with respect to 10 different 
modified hardware scenarios (Table 3).     

 

Table 3.  Modified hardware scenarios. 
Scenario Description 
Case 1 Reduced interconnect latency by 2 
Case 2 Increased interconnect bandwidth (BW) 

by 2 
Case 3 Increased FLOP rate by 2 
Case 4 Increased L1 BW by 2 
Case 5 Increased L1 and L2 BWs by 2 
Case 6 Increased L1, L2, and L3 BWs by 2 
Case 7a Increased L1, L2, L3, and main memory 

(MM) BWs by 2 
Case 7b Increased L1, L2, L3, MM, and on-node 

BWs by 2 
Case 8a Increased MM BW by 2 
Case 8b Increased MM and on-node BW by 2 

 
Sensitivity results for AVUS Large and 

OVERFLOW Standard are plotted in Figures 2 and 5, 
respectively, in relative performance units (i.e., new 
performance divided by baseline performance).  Since 
the data is not easily discerned in one plot, concentric 
rings are extracted and enlarged in Figures 3-4 for AVUS 
Large and Figures 6-8 for OVERFLOW2 Standard.   

Assuming for the sake of discussion that a notable 
relative increase in performance from one case to another 
is at least 5%, the plots indicate that for both codes the 
interconnect latency and BW, FLOP rate, and L1 BW 
have about the same effect on performance (per code).  
The L1 and L2 BWs combined have a slightly bigger 
impact, which is still not "notable" relative to the first 
four cases.  L1, L2, and L3 BWs combined have a 
"notable" impact relative to the previous five cases.  L1, 
L2, L3, and MM BWs combined provide the largest 
impact of all eight cases, and MM BW alone provides 
the second largest impact of all eight cases.  Therefore, 
both codes are having difficulty staying within the mid-
tier (L2) and outer-tier (L3) cache, as both greatly benefit 
from L3 and MM BW increases. 
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Figure 2.  Sensitivity results for AVUS Large. 
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Figure 3.  Sensitivity results for AVUS Large (1.85-2.3). 
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Figure 4.  Sensitivity results for AVUS Large (1.1-1.16). 
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Figure 5.  Sensitivity results for OVERFLOW2 Standard. 
 
As the processor count increases, AVUS Large 

benefits from hardware modifications increasingly for 
Cases 1-7 and decreasingly for Case 8 (MM BW).  
OVERFLOW Standard on the other hand decreasingly 
benefits from hardware modifications for all cases as the 
processor count increases.  Table 4 summarizes the 
maximum effect of the tested processor count range on 

performance.  Only Cases 6 and 8 (L1/L2/L3 BW and 
MM BW) for AVUS Large and Case 8 (MM BW) for 
OVERFLOW2 Standard are profoundly affected by 
processor count. 
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Figure 6.  Sensitivity results for OVERFLOW2 Standard 
(2-2.15). 
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Figure 7.  Sensitivity results for OVERFLOW2 Standard 
(2.65-2.68). 
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Figure 8.  Sensitivity results for OVERFLOW2 Standard 
(1.33-1.345). 



Figure 9 contains a comparison of the average 
sensitivity results for AVUS Large and OVERLFLOW2 
Standard.  In general, OVERFLOW Standard is more 
sensitive than AVUS Large to all hardware modification 
scenarios except for Case 8 (MM BW), in which case the 
response of both test cases is similar. 
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Figure 9.  Average sensitivity results for AVUS Large 
and  OVERFLOW2 Standard. 
 
Table 4.  Maximum effect of processor count for tested 
range.  

 
Test Case 

 
Case 

% Difference in  
Performance 

AVUS Large 1 3.1% 
 2 3.1% 
 3 3.2% 
 4 3.6% 
 5 3.7% 
 6 11.2% 
 7a 2.8% 
 7b 2.8% 
 8a 10.2% 
 8b 10.2% 
OVERFLOW2 Standard 1 0.5% 

 2 0.5% 
 3 0.6% 
 4 0.6% 
 5 0.5% 
 6 3.2% 
 7a 0.6% 
 7b 0.6% 
 8a 5.7% 
 8b 5.7% 

 
6. Conclusions. 

 
The PMaC framework presented here has been 

refined over time to deliver fast performance prediction 
with a reasonable degree of accuracy (~20%).  Through a 
series of sensitivity studies, this framework revealed that 

AVUS Large and OVERFLOW2 Standard benefit 
greatly from bandwidth increases in outer-tier cache (L3) 
and main memory, thereby providing a focal point for 
code enhancements as well as guidance for hardware 
purchases.  
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