
Profile of AVUS Based on Sampled Memory Tracing of Basic Blocks

Laura C. Carrington, Xiaofeng Gao, &
Allan Snavely

Performance Modeling and Characterization Lab

San Diego Supercomputer Center
University of California
San Diego, CA 92093

{lcarring,xgao,allans}@sdsc.edu

Roy L. Campbell, Jr.

High Performance Computing Division
Army Research Laboratory

Major Shared Resource Center
Aberdeen Proving Ground, MD 21005

rcampbell@arl.army.mil

Abstract

The latest PMaC performance prediction framework
has been augmented to reveal the predicted memory
execution time for each basic block of a target code, so
that “hot spots” for memory-limited applications can be
identified. This paper provides a discussion of the
underlying methodology as well as a memory-based
profile of AVUS. AVUS is a CFD code developed by
the Air Force Research Laboratory to determine the
non-linear response of a structure in a fluid.

1. Introduction.

Processor innovations have outpaced those of

memory subsystems over an extended period of time and
have resulted in an increasing number of codes that are
limited by memory subsystem performance rather than
the floating-point instruction rate of a processor.
Therefore, users and code developers need a new tool to
analyze such codes – a memory-based profiler that ranks
basic blocks according to projected memory execution
time and provides vital details about each basic block’s
use of the memory hierarchy.

To reveal the “hot spots” of a target code, some
profilers rank subroutines in descending order according
to processor-oriented metrics such as CPU cycles
required, wall-clock time, or FLOP count. CPU cycles
and FLOP count can obviously be misleading metrics for
memory-limited codes. Wall-clock time, although it
does indeed reveal those subroutines that consume the
most time, does not reveal a detailed description of
memory usage per subroutine. In fact, profiling at the
subroutine level is often not fine-grained enough to
provide useful information for memory-limited codes,
since memory bottlenecks often arise from small nuances
that comprise only a small fraction of a subroutine’s
code. Profiling at such a fine-grained level, normally
requires hand instrumentation of the source code and can

often prevent the compiler from fully optimizing the
code, resulting in a very misleading profile.

This work uses MetaSim Profiler (a fine-grained
memory-based profiling tool designed by the PMaC Lab)
to profile a key computational fluid dynamics (CFD)
code – AVUS – found in the DoD HPCMP TI-05
Benchmarking Suite. This profiling tool is closely
associated with the PMaC predictive framework used for
performance prediction of HPCMP codes on arbitrary
systems. As a validation of the framework, performance
prediction was previously applied to five TI-05
application test cases and 12 HPCMP systems, yielding
an overall average absolute error of 18% [1]. Therefore,
predicted memory execution time rankings are
considered to be reflective of observed memory
execution time rankings to the extent that the framework
is accurate.

Data is gathered by MetaSim Profiling by tapping
into two of the predictive framework’s gathered traces –
one pertaining to memory operations and the other
pertaining to floating-point operations. The former trace
is directly related to the desired memory profiling, and
the latter is sought for purposes of comparing basic block
rankings (i.e., memory versus floating point). These
traces are fine-grained (i.e., have fundamental units of
basic blocks), and are a result of automated
instrumentation of the target code’s binary, thereby
preventing any impact to compiler optimization.

For this paper, two problem sizes are investigated
(AVUS Standard and Large) for three different metrics:
(1) number of FLOPs, (2) number of memory references,
and (3) predicted memory execution time. The
underlying methodology is described in Section 2, and
results are presented in Section 3.

2. Methodology.

The memory-based profiler presented in this paper is
a modification of the MetaSim Convolver used in the
PMaC performance modeling framework. Details of this

framework can be found in [1], but a short description is
provided below.

As shown in Figure 1, the framework consists of two
main components: a single-processor model and a
communication model. The single-processor model
captures the behavior of a target application during
periods of non-communication, while the communication
model observes and records the specifics of that
application’s communication events. Each model
consists of (1) traces that determine the basic operations
to be performed by an application, irrespective of the
target system (i.e., the application signature) and (2)
corresponding measured rates for basic operations on a
target system (i.e., the system profile). The application
signature and the system profile of the target system are
combined via convolution for both the single-processor
and communication models and the results are then
convolved to produce a performance prediction.

Master
Convolution

Convolution Convolution

Predicted
Performance

System
Profile

Application
Signature

Single-Processor Model

System
Profile

Application
Signature

Communication Model

Figure 1. Diagram of PMaC performance prediction
framework.

Traces for a single-processor model consist of

memory and floating-point operation traces performed
by the MetaSim Tracer. A memory operation trace
contains information about the type of memory
operations (i.e., stride-one or random) performed by the
target application, and is gathered by instrumenting the
application’s binary via an automated binary rewriting
process. To save disk space, MetaSim Tracer performs
cache simulations while gathering memory traces. So
rather than storing the entire memory address stream for
an application execution, the address stream is piped
through a cache simulator to obtain expected cache hit
rates for a predefined set of target systems (i.e., those
systems for which predictions are needed). Therefore,
(per target application and system) a summary per basic-
block of the expected cache hit rates, memory access
patterns, and memory, floating-point, and branch
operation counts is obtained.

The MetaSim Dependency Analyzer uses static
analysis to examine the application binary (previously
augmented by MetaSim Tracer) to determine the
floating-point dependency and branch intensity of each
basic-block. Data from both the MetaSim Dependency
Analyzer and the MetaSim Tracer along with the system
profile of the target system are examined by the MetaSim
Convolver to determine a relative single-processor
performance for the application between communication
events on the target system.

MetaSim Convolver predicts overall performance
based on estimates of memory and floating-point
performance. Since, for the majority of applications, the
CPU is not the dominate performance bottleneck, the
following operational description will focus on the
performance of the memory subsystem. To calculate
memory performance for each basic-block, the convolver
analyzes the trace information obtained by MetaSim
Tracer and creates a table similar to Table 1. (Table 1
contains a small fraction of the information gathered by
MetaSim Tracer.)

Table 1. Sample output for AVUS Large at 384
processors on the IBM P3 using MetaSim Tracer.

BB #1

MEM
REF2

%

RAND3

FPDP4

BDP5

Cache
hit rates
(L1,L2)

MEM
BW6

(MB/s)
7327 5 91,94 332

12963 19 93,97 64
10259 0 100,100 5250
10505 20 99,100 795
1. BB # = basic-block number
2. MEM REF = number of memory references
3. % RAND = percent of memory operations that are random stride
4. FPDP = floating-point dependency factor
5. BDP = branch dependency factor
6. MEM BW = memory bandwidth

The floating-point dependency factor is the average
weighted distance between a value being created and its
use. The branch dependency factor is the ratio of the
number of branch operations to all other instructions in
an inner loop. The memory bandwidth mentioned in the
final column indicates the rate at which the basic-block is
expected to perform based on its location in the memory
subsystem (cache versus main memory) and access
pattern (unit versus random stride). Figure 2
demonstrates how these values are selected from the
system profile of the target system, and Equation 1
illustrates how memory time is calculated for each basic-
block based on memory references, memory bandwidth,
and dependency penalty.

(1)PenaltyDep
BWMem
RefMem#

TimeMemory ×=

Memory Bandwidth versus Message Size
for Habu (IBM P3)

0

1000

2000

3000

4000

5000

6000

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08
Size (8-byte words)

M
em

or
y

B
an

dw
id

th
 (M

B
/s

)

Stride-one access
Random stride access

BB# 7327

BB# 12963

BB# 10259

BB# 10505

Figure 2. Memory bandwidth of IBM P3 at different
message sizes for unit and random-stride access.

The floating-point dependency factor (FPDP) and branch
dependency factor (BDP) are used as cutoff values in
determining whether or not a basic-block’s performance
should be penalized due to its amount of dependency.
The magnitude of the penalty is determined from
benchmark probes that ascertain the target system’s
memory bandwidth for varying message size given the
presence of floating-point and branch dependencies.
Quantitatively, the dependency penalty is the ratio of the
memory bandwidth with and without dependencies in the
inner loop.

MetaSim Profiler is a modification to MetaSim
Convolver, which provides detailed information for each
basic-block to aid in code optimization. Table 2 presents
a sample of the data provided.

Table 2. Sample output for AVUS Large at 384
processors on the IBM P3 using MetaSim Profiler.

BB #

MEM
REF

FP

OPs

Cache
hit rates
(L1,L2)

MMS11

MPC2

MPCD3

10415 1.8E10 2.E10 93,98 433 433 433
6556 1.3E10 0 100,100 315 20 111

10288 4.7E9 3.E9 95,96 112 112 256
10484 3.8E9 3.E9 93,98 91 1588 1588

1. MMS1 = memory time assuming all memory references are
performed in unit stride
2. MPC = memory time accounting for location in memory subsystem
and access pattern
3. MPCD = same as MPC but additionally accounting for dependency

Each row represents one basic block of AVUS, executed
using the large test case and 384 processors, while
simulating the cache structure of the IBM P3. The first
column provides the basic block number that can be
mapped back to a line number and subroutine in the
AVUS source code. The next two columns provide the
total memory references and total floating-point
operations performed. The fourth column provides the
expected cache hit rates determined by the cache

simulator. The fifth column, MMS1, provides a
predicted “peak” memory time (i.e., the memory time
assuming each reference performs at the speed of a unit-
stride access from main memory). Although a system’s
true peak memory performance corresponds to a unit-
stride access from L1 cache (also provided by the
profiler, but not shown), the main memory bound gives
more insight into performance bottlenecks when
comparing it to other calculated memory times. The
sixth column, MPC, provides the calculated memory
time based on stride access and data locality of the basic-
block. More specifically, for basic-blocks possessing an
access pattern with more than 15% random-stride, all
memory references (for that basic-block) are considered
to perform at the random-stride access bandwidth;
otherwise, unit-stride performance is assumed. If hit
rates for the basic block are sufficiently high, either the
unit-stride or random-stride memory performance curve
can be used to determine performance (since the plateaus
of these curves are meant to represent the performance at
different levels of cache). The final column, MPCD,
provides the calculated memory time based on memory
access pattern, data locality, and dependency of the
current basic block. Basic-blocks with a floating-point
dependency or high branch intensity are penalized based
on the system’s ability to accommodate such factors (as
captured by the benchmark probes).

The information provided in Table 2 can aid in the
optimization of a particular basic-block through the
comparison of its calculated memory times. For
example, for BB 10415, MMS1 and MPC have the same
value, indicating that this block performs as a unit-stride
access out of main memory would. Since “peak” time is
based on access to main memory, not cache, one
optimization that could be investigated would be
blocking the loop to allow for more reuse, thereby
pushing the data set into cache. For BB 6556, data is
clearly resident in cache, since MPC and MPCD are
much smaller than MMS1; however, dependency is
prohibiting the full benefit of cache performance, since
MPCD is greater than MPC. For BB 10288, data is not
resident in cache, and performance is affected by
dependency, since MMS1 and MPC are the same and
MPCD is greater than MPC. For BB 10484, data is not
resident in cache and is fairly random in stride (since
MPC is greater than MMS1), while performance is not
affected by dependency (since MPC and MPCD are the
same).

3. Analysis.

In addition to analyzing memory performance for a

particular basic-block, the “hot spots” of an execution
can be determined by ranking all basic-blocks according
to a particular metric. For this paper, the basic blocks for
the standard and large test cases of AVUS for three

processor counts each were ranked according to (1) the
number of floating-point operations, (2) the number of
memory references, and (3) MPCD (the calculated
memory time based on memory access pattern, data
locality, and dependency) for two different simulated
cache structures – that of the IBM P3 and the IBM
p655+. Each case was executed via the MetaSim
Profiler to obtain data similar to that provided in Table 2.
For the performance prediction of all 12 examined cases,
the aggregate average absolute difference was 7%;
therefore, MPCD and observed memory time are
assumed to be interchangeable for the purposes of this
paper.

Tables 3-14 provide comparative rankings for each
case, revealing how the top 10 basic-blocks in terms of
memory time ranked in terms of memory reference count
(MRC) and floating point operation count (FPOC).
Ranking by FPOC is better correlated to ranking by
memory time for AVUS Standard on the p655+, but
provides little to no advantage over ranking by MRC for
the P3. On the other hand, ranking by MRC is better
correlated to ranking by memory time for AVUS Large
on the P3, but provides little to no advantage over
ranking by FPOC for the p655+. In general, neither
ranking by FPOC or ranking by MRC are well correlated
to ranking by memory time, hence the need for a fine-
grained profiling tool based primarily on memory time
for memory-limited codes.

Table 15 (placed at the end of the paper due to its
size) provides the top 10 basic-blocks in terms of
memory time for all 12 cases. The top 10 are similar for
all cases of a particular system, but are noticeably
different between systems (due to the accounting of the
memory hierarchy of each system). An exception would
be AVUS Large at 128 processors in which case the
memory time basic-block rankings for the P3 and the
p655+ are very similar.

Basic blocks 10440, 10484, 19697, 20285, and 6553
are each in the memory time top two for at least one of
the 12 cases. Block 10440 is always in the top two, and
blocks 10440, 10448, and 19697 are always in the top 10
for all cases. Therefore, the performance of some
portions of AVUS are insensitive to test case, processor
count, and system and present consistent performance
bottlenecks, while the performances of other portions are
susceptible to context and may or may not be an issue for
a particular execution.

Future work will associate each of these high-
ranking basic blocks with corresponding code within
AVUS, and will carefully analyze these isolated code
sections to determine the specific aspects of each that
engender a large memory time. Dynamic and static
performance characteristics will also be examined with
respect to execution context to further application
insights.

Table 3. Comparative rankings for AVUS
Standard and the IBM p655+ at 32 processors.

Memory
References

Floating
Point

Operations
Memory

Time
3 3 1
19 16 2
20 20 3
23 22 4
24 21 5
2 2 6
1 1 7
72 61 8
4 6 9
76 53 10

Table 4. Comparative rankings for AVUS
Standard and the IBM p655+ at 64 processors.

Memory
References

Floating
Point

Operations
Memory

Time
3 3 1
19 16 2
20 20 3
23 22 4
24 21 5
2 2 6
1 1 7
74 62 8
83 53 9
86 47 10

Table 5. Comparative rankings for AVUS
Standard and the IBM p655+ at 128 processors.

Memory
References

Floating
Point

Operations
Memory

Time
5 4 1
3 3 2
20 20 3
23 22 4
24 21 5
2 2 6
1 1 7
19 16 8
77 62 9
86 47 10

Table 6. Comparative rankings for AVUS
Large and the IBM p655+ at 128 processors.

Memory
References

Floating
Point

Operations
Memory

Time
1 1 1
15 13 2
16 17 3
17 75 4
20 19 5
21 18 6
2 3 7
75 58 8
3 2 9
82 43 10

Table 7. Comparative rankings for AVUS
Large and the IBM p655+ at 256 processors.

Memory
References

Floating
Point

Operations
Memory

Time
3 4 1
19 16 2
20 20 3
21 62 4
24 22 5
25 21 6
2 2 7
1 1 8
79 59 9
4 6 10

Table 8. Comparative rankings for AVUS
Large and the IBM p655+ at 384 processors.

Memory
References

Floating
Point

Operations
Memory

Time
3 3 1
20 20 2
21 63 3
24 22 4
25 21 5
2 2 6
46 34 7
50 32 8
1 1 9
19 16 10

Table 9. Comparative rankings for AVUS
Standard and the IBM P3 at 32 processors.

Memory
References

Floating
Point

Operations
Memory

Time
3 3 1
1 1 2
19 16 3
20 20 4
2 2 5
23 22 6
24 21 7
4 6 8
5 5 9
6 8 10

Table 10. Comparative rankings for AVUS
Standard and the IBM P3 at 64 processors.

Memory
References

Floating
Point

Operations
Memory

Time
3 3 1
1 1 2
19 16 3
20 20 4
2 2 5
23 22 6
24 21 7
4 6 8
5 5 9
6 8 10

Table 11. Comparative rankings for AVUS
Standard and the IBM P3 at 128 processors.

Memory
References

Floating
Point

Operations
Memory

Time
3 3 1
5 4 2
1 1 3
19 16 4
20 20 5
2 2 6
23 22 7
24 21 8
4 6 9
6 8 10

Table 12. Comparative rankings for AVUS
Large and the IBM P3 at 128 processors.

Memory
References

Floating
Point

Operations
Memory

Time
1 1 1
15 13 2
16 17 3
17 156 4
20 19 5
21 18 6
2 3 7
3 2 8
4 5 9
5 4 10

Table 13. Comparative rankings for AVUS
Large and the IBM P3 at 256 processors.

Memory
References

Floating
Point

Operations
Memory

Time
3 4 1
1 1 2
2 2 3
19 16 4
20 20 5
21 76 6
24 22 7
25 21 8
4 6 9
5 5 10

Table 14. Comparative rankings for AVUS
Large and the IBM P3 at 384 processors.

Memory
References

Floating
Point

Operations
Memory

Time
3 3 1
1 1 2
2 2 3
19 16 4
20 20 5
21 73 6
24 22 7
25 21 8
4 5 9
5 4 10

4. Conclusions.

Fine-grained, memory time-to-solution analysis is

paramount to understanding the performance of memory-
limited codes. Accordingly, MetaSim Profiler was
developed and used to identify key “hot-spots” in AVUS
for different execution scenarios. In future work, code
corresponding to each “hot-spot” will be carefully
examined to determine if general as well as scenario-
specific performance improvements can be achieved.

References

[1] Carrington, Gao, Wolter, Snavely, and Campbell,
“Peformance sensitivity studies for strategic
applications”, Proceedings of the 2005 DoD HPCMP
Users Group Conference, Nashville, TN, 2005.

Table 15. Top 10 basic-blocks in terms of memory time for AVUS Standard and Large using the IBM p655+ and IBM P3.
 AVUS Standard AVUS Large
 p655+ P3 p655+ P3
Memory

Time
Rank 32p 64p 128p 32p 64p 128p 128p 256p 384p 128p 256p 384p

1 10440 10440 20285 10440 10440 10440 10440 10440 10440 10440 10440 10440
2 10484 10484 10440 6553 6553 20285 10484 10484 19697 10484 6553 6553
3 19697 19697 19697 10484 10484 6553 19697 19697 20151 19697 20158 20158
4 18808 18808 18808 19697 19697 10484 20151 20151 18808 20151 10484 10484
5 20324 20324 20324 20155 20155 19697 18808 18808 20324 18808 19697 19697
6 20155 20155 20155 18808 18808 20155 20324 20324 20158 20324 20151 20151
7 6553 6553 6553 20324 20324 18808 20163 20158 15402 20163 18808 18808
8 10504 10504 10484 10415 10415 20324 10504 6553 15393 20153 20324 20324
9 10415 12963 10504 20285 20285 10415 20153 10504 6553 10415 20163 20163
10 12963 20223 20223 20163 20163 20163 20223 20163 10484 20285 20153 20153

