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Abstract 
 

The latest PMaC performance prediction framework 
has been augmented to reveal the predicted memory 
execution time for each basic block of a target code, so 
that “hot spots” for memory-limited applications can be 
identified. This paper provides a discussion of the 
underlying methodology as well as a memory-based 
profile of AVUS.  AVUS is a CFD code developed by 
the Air Force Research Laboratory to determine the 
non-linear response of a structure in a fluid.   

  
1. Introduction. 

 
Processor innovations have outpaced those of 

memory subsystems over an extended period of time and 
have resulted in an increasing number of codes that are 
limited by memory subsystem performance rather than 
the floating-point instruction rate of a processor.  
Therefore, users and code developers need a new tool to 
analyze such codes – a memory-based profiler that ranks 
basic blocks according to projected memory execution 
time and provides vital details about each basic block’s 
use of the memory hierarchy. 

To reveal the “hot spots” of a target code, some 
profilers rank subroutines in descending order according 
to processor-oriented metrics such as CPU cycles 
required, wall-clock time, or FLOP count.  CPU cycles 
and FLOP count can obviously be misleading metrics for 
memory-limited codes.  Wall-clock time, although it 
does indeed reveal those subroutines that consume the 
most time, does not reveal a detailed description of 
memory usage per subroutine.  In fact, profiling at the 
subroutine level is often not fine-grained enough to 
provide useful information for memory-limited codes, 
since memory bottlenecks often arise from small nuances 
that comprise only a small fraction of a subroutine’s 
code.  Profiling at such a fine-grained level, normally 
requires hand instrumentation of the source code and can 

often prevent the compiler from fully optimizing the 
code, resulting in a very misleading profile. 

This work uses MetaSim Profiler (a fine-grained 
memory-based profiling tool designed by the PMaC Lab) 
to profile a key computational fluid dynamics (CFD) 
code – AVUS – found in the DoD HPCMP TI-05 
Benchmarking Suite.  This profiling tool is closely 
associated with the PMaC predictive framework used for 
performance prediction of HPCMP codes on arbitrary 
systems.  As a validation of the framework, performance 
prediction was previously applied to five TI-05 
application test cases and 12 HPCMP systems, yielding 
an overall average absolute error of 18% [1].  Therefore, 
predicted memory execution time rankings are 
considered to be reflective of observed memory 
execution time rankings to the extent that the framework 
is accurate. 

Data is gathered by MetaSim Profiling by tapping 
into two of the predictive framework’s gathered traces – 
one pertaining to memory operations and the other 
pertaining to floating-point operations.  The former trace 
is directly related to the desired memory profiling, and 
the latter is sought for purposes of comparing basic block 
rankings (i.e., memory versus floating point).  These 
traces are fine-grained (i.e., have fundamental units of 
basic blocks), and are a result of automated 
instrumentation of the target code’s binary, thereby 
preventing any impact to compiler optimization.  

For this paper, two problem sizes are investigated 
(AVUS Standard and Large) for three different metrics: 
(1) number of FLOPs, (2) number of memory references, 
and (3) predicted memory execution time.  The 
underlying methodology is described in Section 2, and 
results are presented in Section 3. 

 
2. Methodology. 
 

The memory-based profiler presented in this paper is 
a modification of the MetaSim Convolver used in the 
PMaC performance modeling framework.  Details of this 



framework can be found in [1], but a short description is 
provided below.  

As shown in Figure 1, the framework consists of two 
main components: a single-processor model and a 
communication model. The single-processor model 
captures the behavior of a target application during 
periods of non-communication, while the communication 
model observes and records the specifics of that 
application’s communication events.  Each model 
consists of (1) traces that determine the basic operations 
to be performed by an application, irrespective of the 
target system (i.e., the application signature) and (2) 
corresponding measured rates for basic operations on a 
target system (i.e., the system profile).  The application 
signature and the system profile of the target system are 
combined via convolution for both the single-processor 
and communication models and the results are then 
convolved to produce a performance prediction.  
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Figure 1. Diagram of PMaC performance prediction 
framework. 

 
Traces for a single-processor model consist of 

memory and floating-point operation traces performed 
by the MetaSim Tracer.  A memory operation trace 
contains information about the type of memory 
operations (i.e., stride-one or random) performed by the 
target application, and is gathered by instrumenting the 
application’s binary via an automated binary rewriting 
process.  To save disk space, MetaSim Tracer performs 
cache simulations while gathering memory traces.  So 
rather than storing the entire memory address stream for 
an application execution, the address stream is piped 
through a cache simulator to obtain expected cache hit 
rates for a predefined set of target systems (i.e., those 
systems for which predictions are needed).  Therefore, 
(per target application and system) a summary per basic-
block of the expected cache hit rates, memory access 
patterns, and  memory, floating-point, and branch 
operation counts is obtained.  

The MetaSim Dependency Analyzer uses static 
analysis to examine the application binary (previously 
augmented by MetaSim Tracer) to determine the 
floating-point dependency and branch intensity of each 
basic-block.  Data from both the MetaSim Dependency 
Analyzer and the MetaSim Tracer along with the system 
profile of the target system are examined by the MetaSim 
Convolver to determine a relative single-processor 
performance for the application between communication 
events on the target system.  

MetaSim Convolver predicts overall performance 
based on estimates of memory and floating-point 
performance.  Since, for the majority of applications, the 
CPU is not the dominate performance bottleneck, the 
following operational description will focus on the 
performance of the memory subsystem.  To calculate 
memory performance for each basic-block, the convolver 
analyzes the trace information obtained by MetaSim 
Tracer and creates a table similar to Table 1.  (Table 1 
contains a small fraction of the information gathered by 
MetaSim Tracer.) 

 
Table 1.  Sample output for AVUS Large at 384 
processors on the IBM P3 using MetaSim Tracer. 

 
 

BB #1

 
MEM
REF2

 
% 

RAND3

 
 

FPDP4 

 
 

BDP5 

Cache 
hit rates 
(L1,L2)

MEM 
BW6 

(MB/s)
7327  5   91,94 332 

12963  19   93,97 64 
10259  0   100,100 5250 
10505  20   99,100 795 
1. BB # = basic-block number 
2. MEM REF = number of memory references 
3. % RAND = percent of memory operations that are random stride 
4. FPDP = floating-point dependency factor 
5. BDP = branch dependency factor 
6. MEM BW = memory bandwidth 

 
The floating-point dependency factor is the average 
weighted distance between a value being created and its 
use.  The branch dependency factor is the ratio of the 
number of branch operations to all other instructions in 
an inner loop.  The memory bandwidth mentioned in the 
final column indicates the rate at which the basic-block is 
expected to perform based on its location in the memory 
subsystem (cache versus main memory) and access 
pattern (unit versus random stride).  Figure 2 
demonstrates how these values are selected from the 
system profile of the target system, and Equation 1 
illustrates how memory time is calculated for each basic-
block based on memory references, memory bandwidth, 
and dependency penalty.   
 

(1)PenaltyDep 
BWMem
RefMem#

TimeMemory ×=  
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Figure 2. Memory bandwidth of IBM P3 at different 
message sizes for unit and random-stride access. 
 
The floating-point dependency factor (FPDP) and branch 
dependency factor (BDP) are used as cutoff values in 
determining whether or not a basic-block’s performance 
should be penalized due to its amount of dependency.  
The magnitude of the penalty is determined from 
benchmark probes that ascertain the target system’s 
memory bandwidth for varying message size given the 
presence of floating-point and branch dependencies.  
Quantitatively, the dependency penalty is the ratio of the 
memory bandwidth with and without dependencies in the 
inner loop.  

MetaSim Profiler is a modification to MetaSim 
Convolver, which provides detailed information for each 
basic-block to aid in code optimization.  Table 2 presents 
a sample of the data provided.  

 
Table 2.  Sample output for AVUS Large at 384 
processors on the IBM P3 using MetaSim Profiler. 

 
 

BB # 

 
MEM 
REF 

 
FP 

OPs 

Cache 
hit rates 
(L1,L2) 

 
 

MMS11 

 
 

MPC2 

 
 

MPCD3

10415 1.8E10 2.E10 93,98 433 433 433 
6556 1.3E10 0 100,100 315 20 111 

10288 4.7E9 3.E9 95,96 112 112 256 
10484 3.8E9 3.E9 93,98 91 1588 1588 

1. MMS1 = memory time assuming all memory references are 
performed in unit stride 
2. MPC = memory time accounting for location in memory subsystem 
and access pattern 
3. MPCD = same as MPC but additionally accounting for dependency  

 
Each row represents one basic block of AVUS, executed 
using the large test case and 384 processors, while 
simulating the cache structure of the IBM P3.  The first 
column provides the basic block number that can be 
mapped back to a line number and subroutine in the 
AVUS source code.  The next two columns provide the 
total memory references and total floating-point 
operations performed.  The fourth column provides the 
expected cache hit rates determined by the cache 

simulator.  The fifth column, MMS1, provides a 
predicted “peak” memory time (i.e., the memory time 
assuming each reference performs at the speed of a unit-
stride access from main memory). Although a system’s 
true peak memory performance corresponds to a unit-
stride access from L1 cache (also provided by the 
profiler, but not shown), the main memory bound gives 
more insight into performance bottlenecks when 
comparing it to other calculated memory times.  The 
sixth column, MPC, provides the calculated memory 
time based on stride access and data locality of the basic-
block.  More specifically, for basic-blocks possessing an 
access pattern with more than 15% random-stride, all 
memory references (for that basic-block) are considered 
to perform at the random-stride access bandwidth; 
otherwise, unit-stride performance is assumed.  If hit 
rates for the basic block are sufficiently high, either the 
unit-stride or random-stride memory performance curve 
can be used to determine performance (since the plateaus 
of these curves are meant to represent the performance at 
different levels of cache).  The final column, MPCD, 
provides the calculated memory time based on memory 
access pattern, data locality, and dependency of the 
current basic block.  Basic-blocks with a floating-point 
dependency or high branch intensity are penalized based 
on the system’s ability to accommodate such factors (as 
captured by the benchmark probes). 

The information provided in Table 2 can aid in the 
optimization of a particular basic-block through the 
comparison of its calculated memory times.  For 
example, for BB 10415, MMS1 and MPC have the same 
value, indicating that this block performs as a unit-stride 
access out of main memory would.  Since “peak” time is 
based on access to main memory, not cache, one 
optimization that could be investigated would be 
blocking the loop to allow for more reuse, thereby 
pushing the data set into cache.  For BB 6556, data is 
clearly resident in cache, since MPC and MPCD are 
much smaller than MMS1; however, dependency is 
prohibiting the full benefit of cache performance, since 
MPCD is greater than MPC.  For BB 10288, data is not 
resident in cache, and performance is affected by 
dependency, since MMS1 and MPC are the same and 
MPCD is greater than MPC.  For BB 10484, data is not 
resident in cache and is fairly random in stride (since 
MPC is greater than MMS1), while performance is not 
affected by dependency (since MPC and MPCD are the 
same). 

 
3. Analysis. 

 
In addition to analyzing memory performance for a 

particular basic-block, the “hot spots” of an execution 
can be determined by ranking all basic-blocks according 
to a particular metric.  For this paper, the basic blocks for 
the standard and large test cases of AVUS for three 



processor counts each were ranked according to (1) the 
number of floating-point operations, (2) the number of 
memory references, and (3) MPCD (the calculated 
memory time based on memory access pattern, data 
locality, and dependency) for two different simulated 
cache structures – that of the IBM P3 and the IBM 
p655+.  Each case was executed via the MetaSim 
Profiler to obtain data similar to that provided in Table 2.  
For the performance prediction of all 12 examined cases, 
the aggregate average absolute difference was 7%; 
therefore, MPCD and observed memory time are 
assumed to be interchangeable for the purposes of this 
paper.   

Tables 3-14 provide comparative rankings for each 
case, revealing how the top 10 basic-blocks in terms of 
memory time ranked in terms of memory reference count 
(MRC) and floating point operation count (FPOC).  
Ranking by FPOC is better correlated to ranking by 
memory time for AVUS Standard on the p655+, but 
provides little to no advantage over ranking by MRC for 
the P3.  On the other hand, ranking by MRC is better 
correlated to ranking by memory time for AVUS Large 
on the P3, but provides little to no advantage over 
ranking by FPOC for the p655+.  In general, neither 
ranking by FPOC or ranking by MRC are well correlated 
to ranking by memory time, hence the need for a fine-
grained profiling tool based primarily on memory time 
for memory-limited codes. 

Table 15 (placed at the end of the paper due to its 
size) provides the top 10 basic-blocks in terms of 
memory time for all 12 cases.  The top 10 are similar for 
all cases of a particular system, but are noticeably 
different between systems (due to the accounting of the 
memory hierarchy of each system).  An exception would 
be AVUS Large at 128 processors in which case the 
memory time basic-block rankings for the P3 and the 
p655+ are very similar.   

Basic blocks 10440, 10484, 19697, 20285, and 6553 
are each in the memory time top two for at least one of 
the 12 cases.  Block 10440 is always in the top two, and 
blocks 10440, 10448, and 19697 are always in the top 10 
for all cases.  Therefore, the performance of some 
portions of AVUS are insensitive to test case, processor 
count, and system and present consistent performance 
bottlenecks, while the performances of other portions are 
susceptible to context and may or may not be an issue for 
a particular execution. 

Future work will associate each of these high-
ranking basic blocks with corresponding code within 
AVUS, and will carefully analyze these isolated code 
sections to determine the specific aspects of each that 
engender a large memory time.  Dynamic and static 
performance characteristics will also be examined with 
respect to execution context to further application 
insights. 

 

Table 3.  Comparative rankings for AVUS  
Standard and the IBM p655+ at 32 processors. 

Memory 
References

Floating 
Point 

Operations 
Memory 

Time 
3 3 1 
19 16 2 
20 20 3 
23 22 4 
24 21 5 
2 2 6 
1 1 7 
72 61 8 
4 6 9 
76 53 10 

 
Table 4.  Comparative rankings for AVUS 
Standard and the IBM p655+ at 64 processors. 

Memory 
References

Floating 
Point 

Operations 
Memory 

Time 
3 3 1 
19 16 2 
20 20 3 
23 22 4 
24 21 5 
2 2 6 
1 1 7 
74 62 8 
83 53 9 
86 47 10 

 
Table 5.  Comparative rankings for AVUS 
Standard and the IBM p655+ at 128 processors. 

Memory 
References

Floating 
Point 

Operations 
Memory 

Time 
5 4 1 
3 3 2 
20 20 3 
23 22 4 
24 21 5 
2 2 6 
1 1 7 
19 16 8 
77 62 9 
86 47 10 

 
 
 



Table 6.  Comparative rankings for AVUS  
Large and the IBM p655+ at 128 processors. 

Memory 
References 

Floating 
Point 

Operations 
Memory 

Time 
1 1 1 
15 13 2 
16 17 3 
17 75 4 
20 19 5 
21 18 6 
2 3 7 
75 58 8 
3 2 9 
82 43 10 

 
Table 7.  Comparative rankings for AVUS 
Large and the IBM p655+ at 256 processors. 

Memory 
References 

Floating 
Point 

Operations 
Memory 

Time 
3 4 1 
19 16 2 
20 20 3 
21 62 4 
24 22 5 
25 21 6 
2 2 7 
1 1 8 
79 59 9 
4 6 10 

 
Table 8.  Comparative rankings for AVUS  
Large and the IBM p655+ at 384 processors. 

Memory 
References 

Floating 
Point 

Operations 
Memory 

Time 
3 3 1 
20 20 2 
21 63 3 
24 22 4 
25 21 5 
2 2 6 
46 34 7 
50 32 8 
1 1 9 
19 16 10 

 
 
 

Table 9.  Comparative rankings for AVUS 
Standard and the IBM P3 at 32 processors. 

Memory 
References

Floating 
Point 

Operations 
Memory 

Time 
3 3 1 
1 1 2 
19 16 3 
20 20 4 
2 2 5 
23 22 6 
24 21 7 
4 6 8 
5 5 9 
6 8 10 

 
Table 10.  Comparative rankings for AVUS 
Standard and the IBM P3 at 64 processors. 

Memory 
References

Floating 
Point 

Operations 
Memory 

Time 
3 3 1 
1 1 2 
19 16 3 
20 20 4 
2 2 5 
23 22 6 
24 21 7 
4 6 8 
5 5 9 
6 8 10 

 
Table 11.  Comparative rankings for AVUS  
Standard and the IBM P3 at 128 processors. 

Memory 
References

Floating 
Point 

Operations 
Memory 

Time 
3 3 1 
5 4 2 
1 1 3 
19 16 4 
20 20 5 
2 2 6 
23 22 7 
24 21 8 
4 6 9 
6 8 10 

 
 
 



Table 12.  Comparative rankings for AVUS 
Large and the IBM P3 at 128 processors. 

Memory 
References 

Floating 
Point 

Operations 
Memory 

Time 
1 1 1 
15 13 2 
16 17 3 
17 156 4 
20 19 5 
21 18 6 
2 3 7 
3 2 8 
4 5 9 
5 4 10 

 
Table 13.  Comparative rankings for AVUS 
Large and the IBM P3 at 256 processors. 

Memory 
References 

Floating 
Point 

Operations 
Memory 

Time 
3 4 1 
1 1 2 
2 2 3 
19 16 4 
20 20 5 
21 76 6 
24 22 7 
25 21 8 
4 6 9 
5 5 10 

 
 

Table 14.  Comparative rankings for AVUS 
Large and the IBM P3 at 384 processors. 

Memory 
References

Floating 
Point 

Operations 
Memory 

Time 
3 3 1 
1 1 2 
2 2 3 
19 16 4 
20 20 5 
21 73 6 
24 22 7 
25 21 8 
4 5 9 
5 4 10 

 
4. Conclusions. 

 
Fine-grained, memory time-to-solution analysis is 

paramount to understanding the performance of memory-
limited codes.  Accordingly, MetaSim Profiler was 
developed and used to identify key “hot-spots” in AVUS 
for different execution scenarios.  In future work, code 
corresponding to each “hot-spot” will be carefully 
examined to determine if general as well as scenario-
specific performance improvements can be achieved.   

 
References  

 
[1]  Carrington, Gao, Wolter, Snavely, and Campbell, 
“Peformance sensitivity studies for strategic 
applications”, Proceedings of the 2005 DoD HPCMP 
Users Group Conference, Nashville, TN, 2005. 

Table 15.  Top 10 basic-blocks in terms of memory time for AVUS Standard and Large using the IBM p655+ and IBM P3. 
 AVUS Standard AVUS Large 
 p655+ P3 p655+ P3 
Memory 

Time 
Rank 32p 64p 128p 32p 64p 128p 128p 256p 384p 128p 256p 384p 

1 10440 10440 20285 10440 10440 10440 10440 10440 10440 10440 10440 10440
2 10484 10484 10440 6553 6553 20285 10484 10484 19697 10484 6553 6553 
3 19697 19697 19697 10484 10484 6553 19697 19697 20151 19697 20158 20158
4 18808 18808 18808 19697 19697 10484 20151 20151 18808 20151 10484 10484
5 20324 20324 20324 20155 20155 19697 18808 18808 20324 18808 19697 19697
6 20155 20155 20155 18808 18808 20155 20324 20324 20158 20324 20151 20151
7 6553 6553 6553 20324 20324 18808 20163 20158 15402 20163 18808 18808
8 10504 10504 10484 10415 10415 20324 10504 6553 15393 20153 20324 20324
9 10415 12963 10504 20285 20285 10415 20153 10504 6553 10415 20163 20163
10 12963 20223 20223 20163 20163 20163 20223 20163 10484 20285 20153 20153

 


