
(c) 2005 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-
authored by a contractor or affiliate of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.SC|05
November 12-18, 2005, Seattle, Washington, USA (c) 2005 ACM 1-59593-061-2/05/0011…$5.00

How Well Can Simple Metrics
Represent the Performance of HPC Applications?

Laura C. Carrington,
Michael Laurenzano, &

Allan Snavely

San Diego Supercomputer Center
CSE Dept. University of California

San Diego, CA 92093
{lcarring,michaell,allans}@sdsc.edu

Roy L. Campbell, Jr.

Army Research Laboratory
Major Shared Resource Center

Aberdeen Proving Ground,
MD 21005

rcampbell@arl.army.mil

Larry P. Davis

High Performance Computing
Modernization Program Office

Arlington, VA 22201
larryd@hpcmo.hpc.mil

Abstract

In this paper, a systematic study of the effects of
complexity of prediction methodology on its accuracy for a
set of real applications on a variety of HPC systems is
performed. Results indicate that the use of any single,
simple synthetic metric to predict performance does an
inadequate job, and the use of a linear combination of
these simple metrics with optimized weights also performs
poorly. Better, however, are methodologies that rely on
the convolution of an application “transfer function”
based on tracing information with system performance
data measured by simple benchmarks. This latter
methodology can predict performance with an average
accuracy of 80%, based on the current work.

1. Introduction.

Regardless of the underlying intent, a ranking of HPC

systems has been of keen interest to many, as was
demonstrated by the development of the Top 500 [1] (in
1993) using a simple benchmark (LINPACK) [2]. Now,
with a plethora of tests available and a better understanding
of the factors that impact performance, a strong desire to
develop a new ordered list – one that accounts for all major
system attributes (as well as cross-terms encountered when
multiple attributes are exercised simultaneously) – has been
commonly conveyed. In response, IDC released its
Balanced Ratings [3] in November of 2001, covering three
major categories (processor, memory, and interconnect
performance). Some thought a successor to the Top 500 had
finally been found, but many soon realized that the mapping
of the performance of multiple categories into one score was
highly subjective and workload-dependent. Therefore, the
notion of ranking systems by a single metric outside of the
context of a predefined workload, for the most part, had
been dispelled.

Although this paper will not produce actual rankings,
such rankings could be achieved by comparing the
performance of applications across architectures (e.g.,
system X is 50% faster than system Y for application Z).
This work will explore the extent and implication of ranking
architectures through the estimation of performance for 10
DoD HPC Modernization Program (HPCMP) [4] systems
with respect to a number of synthetic metrics – some
workload-independent and others directly related to portions
of the target workload defined by the DoD HPCMP 2005
Technology Insertion (TI-05). For each of five TI-05
application test cases, the base set of estimates will be
validated against real application runtimes (see Appendix I
tables 5-8) to determine the correlation of each estimator (or
metric) to true performance data.

The 10 target systems span 9 distinct architectures

ranging from a single OS, global-shared memory design to a
multiple OS, distributed memory design. The architectures
in order of their installation within the HPCMP are shown in
Table 1, and a list of actual systems is shown in Table 2.

Table 1. Architectures used in study.

Make

Model

Processor
Speed (GHz)

Interconnect

SGI Origin 3800 0.400 NUMALink
IBM Power 3 0.375 Colony
HP SC45 1.000 Quadrics

IBM p690 1.300 Colony
IBM p690 1.700 Federation
LNX Xeon 3.060 Myrinet
SGI Altix 1.500 NUMALink
IBM p655 1.700 Federation
IBM Opteron 2.200 Myrinet

Table 2. Systems used in study.

HPCMP
Site

Architecture

Compute
Processors

ERDC SGI_O3800_400MHz_NUMA 504
MHPCC IBM_P3_375MHz_COL 736
NAVO IBM_P3_375MHz_COL 928
ASC HP_SC45_1GHz_QUAD 472

MHPCC IBM_690_1.3GHz_COL 320
ARL IBM_690_1.7GHz_FED 128
ARL LNX_Xeon_3.06GHz_MNET 256
ARL SGI_Altix_1.5GHz_NUMA 256

NAVO IBM_655_1.7GHz_FED 2832
ARL IBM_Opteron_2.2GHz_MNET 2304

The target metrics require some general discussion

before they can be identified. Simple benchmarks (such as
High Performance LINPACK (HPL) [2], STREAM [5], the
HPC Challenge Benchmarks [6], the PMaC HPC
Benchmark Suite [7], and the DoD HPCMP TI-XX
Synthetic Probes) are easily executed and their resulting
performance can be readily compared against expected
system performance, as derived from manufacturer
specifications. Their general usefulness, however, is limited
by their weak correlation to the performance of real
applications (since applications identified by careful
workload characterization best represent the computational
demands placed on a production system). For example,
Gustafson et al. [8] showed that HPL was in fact anti-
correlated with the performance of several applications on
several machines. In other words, (ignoring price) if the
system with the highest HPL result were purchased, that
system would not only be a sub-optimal choice based on the
applications data, but it would also be the worst choice. Of
course, such pitfalls can be avoided by simply using
application benchmarking data to make procurement
decisions; however, application execution can be tedious
and costly in terms of both manpower and system execution
time. Therefore, if simple benchmarks could be correlated
to application performance, more streamlined acquisition
strategies could be developed, effecting more economical
submission preparations for vendors and less cumbersome
submission assessments for customers. Unfortunately, it is
unlikely that simple synthetic benchmarks alone will ever
posses sufficiently reliable performance ties to applications.
Therefore, using synthetic benchmarks within a
performance modeling and prediction framework seems to
yield a stronger correlation to application performance.
This framework strategically applies an application-specific
“transfer function” to the test results such that the
performance of multiple applications can be estimated using
one set of synthetic results. The “transfer function” is
deduced via tracing to extract memory and communications
signatures for target applications. The corresponding probes
or predictive synthetics are divided into two major tests –

MEMBENCH MAPS and NETBENCH. MEMBENCH
MAPS determines the memory bandwidth versus message
size for unit and random stride cases, while NETBENCH
determines the interconnect bandwidth and latency. An
enhanced version of MEMBENCH MAPS was also
developed to determine the memory bandwidth effects of
loop data dependencies and branches within a loop.

Using five application test cases from the DoD HPCMP

TI-05 Benchmarking Suite (AVUS-Standard, AVUS-Large,
HYCOM-Standard, OVERFLOW2-Standard, and RFCTH-
Standard), this paper will correlate actual performance to
that of a wide variety of synthetics. These synthetics range
from simple tests to probes tied to a predictive model. The
complexity of the predictive model will be gradually
increased by adding notional terms to its “transfer function.”
More specifically, the results of the tests denoted in Table 3
will be correlated to the performance of five TI-05
application test cases.

Section 2 describes each of the TI-05 application test

cases in greater detail, and Section 3 describes the
underlying framework for the predictive metrics. Section 4
reveals overall results, while Sections 5 and 6 reveal
system-specific and application-specific results,
respectively. Conclusions are provided in Section 7, and
more detailed background and related work is provided in
Section 8.

Table 3. Synthetic metrics used in study.

Type Name or Description
1 Simple HPL
2 Simple STREAM
3 Simple HPC Challenge Random Access

(GUPS)
4 Predictive HPL for floating point work
5 Predictive HPL for floating point work;

STREAM for memory access
6 Predictive HPL for floating point work; STREAM

for stride 1 memory access; GUPS for
random stride memory access

7 Predictive HPL for floating point work;
MEMBENCH MAPS for memory
access

8 Predictive HPL for floating point work;
MEMBENCH MAPS for memory
access; NETBENCH for
communications work

9 Predictive HPL for floating point work;
ENHANCED MEMBENCH MAPS for
memory access; NETBENCH for
communications work

2. DoD HPCMP TI-05 Application Test

Cases.

The five application test cases are described in more

detail below. Each test case was executed at 3 different
processor counts, ranging from 16 to 384 processors.

AVUS STANDARD & LARGE

AVUS was developed by the Air Force Research

Laboratory (AFRL) to determine the fluid flow and
turbulence of projectiles and air vehicles. Its standard test
case calculates 100 time-steps of fluid flow and turbulence
for a wing, flap, and end plates using 7 million cells. Its
large test case calculates 150 time-steps of fluid flow and
turbulence for an unmanned aerial vehicle using 24 million
cells.

HYCOM STANDARD

The Naval Research Laboratory (NRL), Los Alamos
National Laboratory (LANL), and the University of Miami
developed HYCOM as an upgrade to MICOM (both well-
known ocean modeling codes) by enhancing the vertical
layer definitions within the model to better capture the
underlying science. HYCOM's standard test case models all
of the world's oceans as one global body of water at a
resolution of one-fourth of a degree when measured at the
Equator.

OVERFLOW2 STANDARD

OVERFLOW-2 was developed by NASA Langley and

NASA Ames to solve CFD equations on a set of
overlapping, adaptive grids, such that the grid resolution
near an obstacle is higher than that of other portions of the
scene. This approach allows computation of both laminar
and turbulent fluid flows over geometrically complex, non-
stationary boundaries. The standard test case of
OVERFLOW-2 models fluid flowing over five spheres of
equal radius and calculates 600 time-steps using 30 million
grid points.

RFCTH STANDARD

Sandia National Laboratories (SNL) developed CTH to

model complex multidimensional, multiple-material
scenarios involving large deformations or strong shock
physics. RFCTH is a non-export-controlled version of
CTH. The standard test case of RFCTH models a ten-
material rod impacting an eight-material plate at an oblique
angle, using adaptive mesh refinement with five levels of
enhancement.

3. Performance Prediction Methodology.

Two main methodologies of performance prediction are

explored in this work: simple and predictive. For the simple
methodology a single benchmark or metric is used to predict
the performance of the application on the target machine. In
the predictive methodology, trace data from the application
is used along with a set of simple benchmarks to yield a
more application specific prediction. The details of these
methodologies are described below.

For exploring the predictive power of the simple

benchmarks in isolation, a very simple methodology is
adopted. For each application, the predicted wall-clock time
on a target system is calculated according to Equation 1 as a
function of wall-clock time on the base system (namely, the
NAVO p690) and the results for the set of simple synthetics.

)1(),(
)(
)(),(0

0

YXT
XR
XRYXT ⋅=′

where T'(X,Y) is the predicted wall-clock time for
application Y on system X, R(X) is the result of a specific
simple benchmark for system X, X0 denotes the base system,
and T(X,Y) is the measured wall-clock time for application Y
on system X. In other words, the performance for a specific
application is assumed to be faster or slower according to
the ratio of the simple benchmark results for system X and
the base system X0.

Errors reported throughout this paper are calculated
according to Equation 2.

)2(100
),(

),(),(% ⋅
−′

=
YXT

YXTYXTError

Negative error indicates the prediction was faster than the
actual runtime, while positive error indicates the prediction
was slower than the actual runtime. After calculating signed
error for each experiment, absolute error is calculated to
ensure the magnitude of each deviation is considered when
averaging across experiments, preventing error cancellation.

For the predictive metrics, a more sophisticated

framework is used. An operation count per type (e.g.,
floating point, strided memory, and random memory) is
accumulated via MetaSim Tracer [9] through
instrumentation and dynamic tracing on a base system,
while the rates for each operation type are measured via
synthetic probes (simple benchmarks) on a target system.

Instrumentation and dynamic tracing are often quite

expensive in terms of dilated execution time, especially
when the address of each memory reference is the target

attribute, as is the case for Metrics #6-#9. In response,
MetaSim has been carefully streamlined for speed, imposing
approximately a 30x slowdown on an instrumented
application. Unfortunately, the execution time for a TI-05
application test case can require 1-4 hours to execute
without instrumentation, making tracing quite time-
consuming, even with efficient methodology in place.
Therefore, dilated execution time must be a weighed
consideration when evaluating metric accuracy (one should
ask “was the increase in accuracy worth the effort?”),
although tracing does incur a non-recurring and mitigated
cost, as it is only required once per application on the base
system and therefore does not need to be repeated for each
target system.

 Operation counts, once determined by tracing, are

divided by corresponding operation rates using MetaSim
Convolver [10] to yield an execution time for the current
basic block per operation type. Execution time is
subsequently “predicted” by summing the estimated
execution time for all basic blocks and carefully taking into
account the overlap of the different operation types.

For (predictive) Metrics #4 and #5, only floating point

instructions and floating point plus memory load/store
instructions are counted, respectively. Therefore, MetaSim
Trace is not the most efficient means for collecting such
dynamic operation counts, since MetaSim Tracer reviews
each address generated by load/store instructions. For such
a simple task, performance counters provide a more
expeditious result [11]. MetaSim Tracer is, however,
needed for (predictive) Metrics #6, #7, #8, and #9 as each
requires the discrimination of unit and random stride
memory instructions. MetaSim Tracer parses the address
stream with a stride detector [12], thus determining what
portion of memory references are stride-1, non-unit short
strides (up to stride-8), and random stride.

For all predictive metrics (Metrics #4-#9), the floating

point issue rate was assumed to be the per processor Rmax
from HPL. For Metric #5, the memory instruction rate was
defined by the results of STREAM, while, for Metric #6, the
unit and random-stride memory instruction rates were
defined by the results of STREAM and GUPS, respectively.
For Metrics #7-#9, the unit and random-stride memory
instruction rates were assessed as a function of working-set
size (by the MAPS portion of MEMBENCH) to better
reflect the seemingly discrete levels of memory bandwidth
observed in cache-based architectures. The MAPS results
for Metric #9 included memory instruction rates for loop
and control-flow dependency as a function of working-set
size, in addition to the standard MAPS curves for unit and
random-stride.

STREAM and GUPS are typically executed from main

memory; whereas, MAPS measures the rate at which loads

and stores (both strided and random) are performed from
different levels of the memory hierarchy. MAPS is
equivalent to launching multiple instances of both
STREAM and GUPS at various “sizes” in order to span the
various levels of cache (L1, L2, and L3 (if it exists)) and
main memory. To further illustrate, Figure 1 shows unit-
stride MAPS results for three different systems. (A subset
of the 12 target systems was plotted to improve readability.)

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09
Message Size (8-byte words)

M
em

or
y

B
an

dw
id

th
 (M

B
/s

)

IBM p655

SGI Altix

IBM Opteron

Figure 1. Unit-stride memory bandwidth versus message
size for three target systems.

The lower right-hand portion of each unit-stride MAPS
curve (plotted) corresponds to the STREAM score for each
system, while the lower right-hand portion of each random
stride MAPS curve (not plotted) corresponds to the GUPS
score for each system. As shown, the IBM Opteron scored
best for executions from main memory and would therefore
score best for STREAM. However, if the size of STREAM
were reduced to fit into L2 cache and subsequently L1
cache, the SGI Altix and IBM p655 would score best,
respectively. Therefore, in general, the ranking of systems
according to memory performance greatly depends on the
stride signature of the application, since the spacing of
memory references determines what level of cache is being
exercised at any given time during execution.

For (predictive) Metric #8 [13], a notional term was

added to account for interconnect performance, using
MPIDTRACE [14] to count MPI communications events in
applications and NETBENCH to measure the interconnect
latency and bandwidth of the target system. For (predictive)
Metric #9, a second notional term was added to account for
loop and control-flow dependencies. Static analysis was
applied to the binary executable for each application on the
base system, so ILP limited basic blocks could be identified.
Corresponding “dependency” MAPS curves then were
obtained via ENHANCED MAPS (in addition to the
standard MAPS curves) by inducing data and control-flow
dependencies in the inner loop of both STREAM and
GUPS.

4. General Results.

Performance was deduced using the nine synthetic

metrics listed in Table 3 for each of five TI-05 application
test cases at three different processor counts and was then
compared to actual real run times to yield an absolute error
for each metric and test case pair. The resulting absolute
error was subsequently averaged per metric to provide an
error profile for the suite of metrics. Table 4 presents, and
Figure 2 shows graphically, a summary of the average
absolute error for the nine target synthetics.

Table 4. Error assessment: metric results as compared to
application’s real run time.

&
Type

Metric Description

Average
Absolute

Error
(%)

Standard
Deviation

(%)
1-S HPL 63 68
2-S STREAM 43 73
3-S GUPS 33 27
4-P HPL 63 68
5-P HPL+STREAM 50 72
6-P HPL+STREAM+GUPS 22 18
7-P HPL+MAPS 24 21
8-P HPL+MAPS+NET 22 18
9-P HPL+MAPS+NET+DEP 18 18

In general, the correlation of the predictive metrics is

increasingly better than that of the simple metrics, as
notional terms are added to the “transfer function” portion
of the predictive model. A more detailed description of the
results for each metric is warranted.

63

43
33

63
50

22 24 22 18

0

20

40

60

80

100

120

140

#1 #2 #3 #4 #5 #6 #7 #8 #9
Metric

A
ve

ra
ge

 A
bs

ol
ut

e
Er

ro
r (

%
)

Figure 2. Graphical version of error assessment: metric
results as compared to application’s real run time.

#1 – Simple Metric (HPL)

Performance was estimated by taking the ratio of the

per processor Rmax scores for each of 10 systems, yielding

an average absolute error of 63% with a standard deviation
of 68%. The results confirm the common wisdom that,
while HPL is a good measure of peak floating point issue
rate, it is not a good predictor of absolute or even relative
performance for real applications. Applications, to varying
degrees, execute non-floating point operations that are not
typically hidden by execution overlap, and a system’s ability
to execute such operations often weakly correlates with its
floating point performance.

#2 – Simple Metric (STREAM)

Performance was estimated by taking the ratio of each
system’s ability to load unit-stride operations from main
memory as measured by STREAM, yielding results that
were marginally better than those for HPL – an average
absolute error of 43% with a standard deviation of 73%.
This result confirms what many now believe to be true – the
relative performance of memory subsystems is likely a
better indicator of relative application performance than
HPL (or is at least equally as good), since memory access is
increasingly becoming the primary bottleneck for today’s
systems for many applications.

#3 – Simple Metric (GUPS)

Performance was estimated by taking the ratio of each
system’s per processor ability to update values in random
locations of main memory, yielding an average absolute
error of 33% with a standard deviation of 27%. This result
is an improvement to the results of the prior two metrics,
and seems to support the idea that the expense of random
access for today’s systems tends to dominate the memory
response for an application, even if the application performs
only limited random access.

Viewed collectively, the first three assessments seem to

suggest that the relative performance of target applications
on specific systems cannot be reliably correlated with a
single simple metric such as HPL, STREAM, or GUPS,
considering the high percentage of average absolution error
observed for each. In response, some have suggested that a
fixed linear combination of simple metrics might be used.
For example, as [15] explains, IDC’s Balanced Rating
simply combines the results for three metric categories
(processor, memory, and interconnect) by normalizing
performance for each to yield intermediate scores from 0%
to 100% and then weighting each category equally to
produce a composite score from 0% to 100%. Applying this
methodology to predict performance of these applications
using HPL, STREAM, and all_reduce (an MPI test within
NETBENCH), an average absolute error of 35% with a
standard deviation of 25% was observed. Using linear
regression, category weightings which minimize estimation
error were determined to be 5% (HPL), 50% (STREAM),
and 45% (all_reduce), resulting in an average absolute error

of 33% with a standard deviation of 30% – still quite
sizable. This seems to disprove the notion that a single
“balanced rating” can significantly improve on a simple
benchmark given that GUPS alone did this well. Therefore,
to improve matters, the idea of variable weights for simple
metrics is explored, such that the proportion of each metric
is determined by the proportion of operations of each type
found in the target application (as summarized by an
application-specific “transfer function”).

#4 – Predictive Metric (HPL)

As described in the Performance Prediction

Methodology Section, the predictive framework counts
operations of various types for each basic block of an
application via tracing on a base system, and then measures
the various operation rates on a target system. The
convolver divides operation counts by corresponding
operation rates to yield an execution time for the current
basic block per operation type. Applying this technique
using floating point operations only and assuming the
floating point issue rate for a particular target system is the
per processor Rmax (from HPL), the execution time can be
estimated by summing the estimated execution time for all
basic blocks and subsequently assuming that the total
execution time is indirect proportional to the per processor
Rmax in order to estimate the performance of other systems.
As shown in Table 4, the results for this metric were the
same as those for Metric #1, demonstrating that in the
simplest case, the convolver’s execution is identical to that
of a pencil-and-paper calculation using the per processor
Rmax as the floating point issue rate.

#5 – Predictive Metric (HPL+STREAM)

Both floating point and memory operations were

counted, while the floating point issue and memory rates
were assumed to be the per processor Rmax and the
STREAM memory bandwidth, respectively. At this level of
granularity, the predictive model results – an average
absolute error of 50% and a standard deviation of 72% –
were not much better than those for the simple metric using
HPL (Metric #1).

#6 – Predictive Metric (HPL+STREAM+GUPS)

Floating point, strided memory, and random memory

operations were collected, while the corresponding rates
were assumed to be the per processor Rmax, the STREAM
memory bandwidth, and the GUPS memory bandwidth,
respectively. Adding the discrimination between strided
and random memory access seemed to make a substantial
difference, as the average absolute error dropped to 22%
with a standard deviation of 18%.

#7 – Predictive Metric (HPL+MAPS)

The per processor Rmax was again used for the floating

point issue rate, but the STREAM and GUPS memory
bandwidths were replaced with MAPS curves (i.e., curves
for unit and random-stride that describe the memory
bandwidth versus message size, revealing the bandwidth
characteristics for different levels of the memory hierarchy
– L1, L2, L3 (if it exists), and main memory). The results
for this metric, an average absolute error of 24% with a
standard deviation of 21%, were marginally worse than
those for Metric #6, possibly suggesting that the granularity
added by MAPS is unnecessary.

#8 – Predictive Metric (HPL+MAPS+NETBENCH)

The per-processor Rmax was yet again used for the

floating point issue rate. Unit and random-stride MAPS
curves were used to define the throughput for the memory
subsystem at different hierarchical levels, and NETBENCH
results were added to describe the communications signature
of the target system (explained in greater detail in the
Performance Prediction Methodology Section). The results
showed a marginal improvement to those for Metric #7,
yielding an average absolute error of 22% with a standard
deviation of 18%.

#9 – Predictive Metric (HPL+MAPS+NETBENCH+
DEPENDENCY)

Finally, rate and probe assignments for Metric #8 were

retained with the exception that MAPS was replaced with
ENHANCED MAPS as the memory signature for the target
system, noting that ENHANCED MAPS additionally
accounts for the effects of loop data dependencies and
branches within a loop. This addition resulted in a modest
improvement over the results for Metrics #6-#8, yielding an
average absolution error of 18% and a standard deviation of
18%.

Taken as a whole, the results for Metrics #6-#9 suggest

simple synthetics may indeed be able to account for
approximately 80% of relative performance across systems
when viewed through an application-specific framework
(i.e., by counting operations of various types for each
application). Before making a final determination, however,
that Metrics #7-#9 provide only nominal improvements,
system-specific results in the next section are considered.

5. System-Specific Results.

Table 5 contains the average absolute error for each

system and metric pair. Intuitively, one would expect that
adding notional terms to the predictive model would reduce

error, especially for Metrics #6-#9 as granularity can clearly
be said to increase with the number of the metric. The ASC
SC45 and ERDC 03800 did indeed follow this trend;
however, in general, the estimation space is more
complicated than the artificial one described by this
supposed trend, as the additional complexity that
accompanies finer granularity typically leads to additional
sources of error. For example, while Metric #6
distinguishes between strided and random memory access,
Metric #7 adds additional complexity (and likely additional
error sources) to distinguish between (presumed to be) fast
running cache friendly loops and loops that actually fall out
of cache.

Table 5. System-specific average absolute percent error.

System 1 2 3 4 5 6 7 8 9
ERDC_O3800 37 12 83 37 84 35 29 20 22
MHPCC_P3 58 53 19 58 52 14 29 24 25
NAVO_P3 37 77 28 37 75 8 15 10 7
ASC_SC45 167 14 59 167 15 31 28 18 16

MHPCC_690_1.3 122 14 14 122 13 15 17 29 24
ARL_690_1.7 26 21 21 26 21 22 23 34 28

ARL_Xeon 42 37 23 42 37 21 64 39 21
ARL_Altix 193 281 64 193 272 36 25 27 26
NAVO_655 19 12 19 19 12 14 16 14 9

ARL_Opteron 20 29 45 20 27 44 30 32 26
OVERALL 63 43 33 63 50 22 24 22 18

Metric #

Adding a term for predicting loop performance based
on size and expected cache hit rate (as in Metric #7)
performed slightly worse than simply assuming the unit and
random-stride memory instruction rates were single
invariant values obtained from STREAM and GUPS.
Subsequently, adding a network term (as in Metric #8)
improved predictions for 6 of 10 systems, had no net effect
for 2, and worsened predictions for 2, yielding an overall
modest reduction in average error (comparing Metric #8 to
#7). Finally, adding a dependency term (as in Metric #9) to
correct a basic flaw in the term introduced by Metric #7 (by
identifying loops with performance-limiting internal
branches and/or data dependencies) improved predictions as
compared to those for Metric #6 for 7 of 10 systems,
yielding a marginal overall improvement between the two
metrics and suggesting that the addition of the notional
terms associated with Metrics #7 and #8 may have merit
once all new terms for Metrics #7-#9 are combined (as
opposed to introducing the new terms individually).

6. Application-Specific Results.

Figures 3 through 7 provide an error assessment for

Metrics #1-#9 broken down by application test case. As can
be seen from these figures (and Table 5), this study is based

on a substantial amount of data involving real applications
and real systems. To quantify, five application test cases
were executed at three processor counts each on 10 different
systems, resulting in a total of 150 (5x3x10) observed
application executions. In addition, a substantial number of
predictions were made, as 9 metrics were applied to each of
150 execution observations for a total of 1,350 (9x150)
predictions. Therefore, although these metrics have not
been tested across all possible HPC systems and application
domains, this study has thoroughly evaluated the metrics on
a notable portion of the HPC space.

Of the simple metrics, HPL was not an accurate

predictor for any of the 15 (application test case, processor
count) pairings, given that HPL’s best observed average
absolute error was 55% (which occurred for AVUS
Standard at 128 processors). In all but one case
(OVERFLOW2 Standard at 48 processors), HPL was the
worst of all of the predictors, although in a few cases it tied
with HPL+STREAM. STREAM was a better predictor than
HPL in all but one case (OVERFLOW2 Standard at 48
processors), although it never achieved better than 22%
average absolute error. GUPS was a better predictor than
STREAM in 11 out of the 15 possible cases, but never
achieved better than 31% average absolute error. Therefore,
if a simple metric for predicting relative performance were
required to represent application performance, it seems
GUPS would be slightly preferred over STREAM, and
either GUPS or STREAM would be preferred over HPL.

Among the predictive metrics, Metric #4 simply

provided a sanity test for the predictive method. Metric #5
(HPL+STREAM) performed worse than GUPS alone in all
but one case (HYCOM Standard at 59 processor) – being
only 1% better at that point. Metric #6
(HPL+STREAM+GUPS) performed substantially better
than the prior two, since in 4 out 15 cases this metric was
the best predictor for all nine metrics, and in 2 cases it tied
Metric #9 as the best predictor. Therefore, the complexity
added by Metric #6 (i.e., employing tracing to bin memory
references into strided and random access) seems to have
been worthwhile, validating the suspected need for an
application-specific weighting of floating point, strided
memory, and random memory operations.

Metrics #7 (HPL+MAPS) and #8 (HPL+MAPS+

NETBENCH) often performed slightly worse than Metric
#6. The MAPS curve, Figure 1, certainly suggests that it
would be valuable to distinguish memory performance at
different levels of cache; however, without taking control
and data dependencies into account (that may cause
cacheable loops to execute slowly) MAPS appears to
actually introduce error (comparing #7 to #6). Adding a
network term does improve results (comparing #8 to #7),
although not significantly because these application cases
are not communication bound.

Metric #9 (HPL+MAPS+NETBENCH+DEPENDEN-

CY), which retains the features of Metrics #7 and #8 (while
adding data and control flow analysis), however, was the
best of all the predictors for 8 of the 15 cases, and tied for
best in 2 other cases.

65 64

55
48 46

2831
35 31

65 64

5556 55

39

13 15 14
20 19 2020 18 19

14 12 14

0

20

40

60

80

100

120

140

160

32 64 128
Processor Count

A
ve

ra
ge

 A
bs

ol
ut

e
Er

ro
r (

%
)

#1 Simple

#2 Simple

#3 Simple

#4 Predictive

#5 Predictive

#6 Predictive

#7 Predictive

#8 Predictive

#9 Predictive

Figure 3. Graphical error assessment for AVUS Standard.

59 60

69

22
30

3431 34
39

59 60
56

33

43
51

18 15 14
18

25

38
32

21 2221
15

27

0

20

40

60

80

100

120

140

160

128 256 384
Processor Count

A
ve

ra
ge

 A
bs

ol
ut

e
Er

ro
r (

%
)

#1 Simple

#2 Simple

#3 Simple

#4 Predictive

#5 Predictive

#6 Predictive

#7 Predictive

#8 Predictive

#9 Predictive

Figure 4. Graphical error assessment for AVUS Large.

64
69 70

41

55
59

43
39 39

64
69 70

42

57 57

32
28 2929

32
39

26

16 18
23

13 16

0

20

40

60

80

100

120

140

160

59 96 124
Processor Count

A
ve

ra
ge

 A
bs

ol
ut

e
Er

ro
r (

%
)

#1 Simple

#2 Simple

#3 Simple

#4 Predictive

#5 Predictive

#6 Predictive

#7 Predictive

#8 Predictive

#9 Predictive

Figure 5. Graphical error assessment for HYCOM
Standard.

116
103 100

82

134

76

38
48 40

116
103 10097

162

90

29 33 30
18

8
1916 12

26
14

5
21

0

50

100

150

200

250

300

350

400

32 48 64
Processor Count

A
ve

ra
ge

 A
bs

ol
ut

e
Er

ro
r (

%
)

#1 Simple

#2 Simple

#3 Simple

#4 Predictive

#5 Predictive

#6 Predictive

#7 Predictive

#8 Predictive

#9 Predictive

Figure 6. Graphical error assessment for OVERFLOW2
Standard.

77

65

81

32

47

59

44
39

47

77

65

81

34

50

66

35
29

3536 33
41

35
28

40
32 28

40

0

20

40

60

80

100

120

140

160

180

200

16 32 64
Processor Count

A
ve

ra
ge

 A
bs

ol
ut

e
Er

ro
r (

%
)

#1 Simple

#2 Simple

#3 Simple

#4 Predictive

#5 Predictive

#6 Predictive

#7 Predictive

#8 Predictive

#9 Predictive

Figure 7. Graphical error assessment for RFCTH Standard.

Therefore, it seems that Metrics #6 and #9 provided the
most consistent representation of the application test cases
considered, realizing that #6 was less accurate on average
than #9, but that #6 was also less complicated. In both
cases, the expensive step of memory tracing was required,

although it should be noted that once tracing is completed
for any one metric it is readily available for others.

7. Conclusions.

In this paper, several simple and predictive metrics

were evaluated to see how well each could predict
application performance and rank HPC systems. Predictive
metrics combined simple metrics with application-specific
data through a generic “transfer function” (deduced via
tracing) in order to increase the degree of application
representation of the simple metrics.

From the resulting data, the practical use of ranking or

predicting system performance via single metrics such as
HPL, STREAM or GUPS, seems to be quite limited,
although the latter two metrics (which happen to be
memory-oriented) are clearly more representative than the
former (which happens to be floating-point-oriented). If,
however, information about operation types specific to a
target application is acquired (rather painfully through
tracing when discriminating memory access types), then a
few simple metrics can be combined and weighted
appropriately to predict performance and rank with about
80% accuracy, at least in this particular fairly large study of
quite a few HPC architectures and several HPC applications.

8. Related Work.

Several benchmarking suites have been proposed to

represent the general performance of HPC applications.
Besides those mentioned previously, probably the best
known are the NAS Parallel [16] and the SPEC [17]
benchmarking suites, the latter of which is often used to
evaluate micro-architecture features of HPC systems. Both,
however, are composed of “mini-applications”, and are,
therefore, fairly complicated to relate to the performance of
general applications, as opposed to the simple benchmarks
considered here. Gustafson and Todi [8] performed seminal
work relating “mini-application” performance to that of full
applications, but they did not extend their ideas to large-
scale systems and applications, as this paper does.
McCalpin [5] showed improved correlation between simple
benchmarks and application performance, but did not extend
the results to parallel applications. Marin and Mellor-
Crummey [18] show a clever scheme for combining and
weighting the attributes of applications by the results of
simple probes, similar to what is implemented here, but
their application studies were mostly focused on “mini
application” benchmarks, and were not extended to parallel
applications and systems.

Methods for performance evaluations can be broken
down into two areas [19]: structural models and
functional/analytical models. Structural models use
descriptions of individual system components and their
interactions, similar to the process used for detailed
simulations. Functional/analytical models, on the other
hand, separate the performance factors of a system to create
a mathematical model.

The use of detailed or cycle-accurate simulators in

performance evaluation has been used by many researchers
[20-24]. Detailed simulators are normally built by
manufactures during the design stage of an architecture to
aid in the design. For parallel machines, two simulators
might be used, one for the processor and one for the
network. These simulators have the advantage of
automating performance prediction from the user’s
standpoint. The disadvantage is that these simulators are
proprietary and often not available to HPC users and
Centers. Also, because they capture all the behavior of the
processors, simulations can take on an upwards of
1,000,000 times longer, than the real runtime of the
application [25]. This means, to simulate 1 hour of an
application it could take approximately 114 years of CPU
time. Direct execution methods are commonly used to
accelerate architectural simulations [26] but they still can
have large slowdowns. To avoid these large computational
costs, cycle-accurate simulators are usually only used to
simulate a few seconds of an application. This causes a
modeling dilemma, for most scientific applications the
complete behavior cannot be captured in a few seconds of a
production run. Applications rarely spend all their time in
one routine and their behavior may change as the
application progresses through its simulation (in some cases
the actual physics of the problem being solved changes).

Cycle-accurate simulators are limited to only work in

modeling the behavior of the processor for which they were
developed, so they are not applicable to other architectures.
In addition, the accuracy of cycle-accurate simulation can be
questionable. Gibson et al [27] showed that simulators that
model many architectural features have many possible
sources for error, resulting in complex simulators that
produce greater than 50% error. This work suggested that
simple simulators are sometimes more accurate than
complex ones.

In the second area of performance evaluation,

functional and analytical models, the performance of an
application on the target machine can be described by a
complex mathematical equation. When the equation is fed
with the proper input values to describe the target machine,
the calculation yields a wall clock time for that application
on the target machine. Various flavors of these methods for
developing these models have been researched. Below is a

brief summary of some of this work but due to space
limitations it is not meant to be inclusive of all.

Saavedra [28-30] proposed applications modeling as a

collection of independent Abstract FORTRAN Machine
tasks. Each abstract task was measured on the target
machine and then a linear model was used to predict
execution time. In order to include the effects of memory
system, they measured miss penalties and miss rates to
include in the total overhead. These simple models worked
well on the simpler processors and shallower memory-
hierarchies of the mid 90’s. The models now need to be
improved to account for increases in the complexity of
parallel architectures including processors, memory
subsystems, and interconnects.

For parallel system predictions, Mendes [20-21]

proposed a cross platform approach. Traces were used to
record the explicit communications among nodes and to
build a directed graph based on the trace. Sub-graph
isomorphism was then used to study trace stability and to
transform the trace for different machine specifications.
This approach has merit and needs to be integrated into a
full system for applications tracing and modeling of deep
memory hierarchies in order to be practically useful today.

Simon [22] proposed to use a Concurrent Task Graph to

model applications. A Concurrent Task Graph is a directed
acyclic graph whose edges represent the dependence
relationship between nodes. In order to predict the execution
time, it was proposed to have different models to compute
the communication overhead, (FCFS queue for SMP and
Bandwidth Latency model for MPI) with models for
performance between communications events. As above,
these simple models worked better in the mid 1990’s than
today.

Crovella and LeBlanc [23] proposed complete,

orthogonal and meaningful methods to classify all the
possible overheads in parallel computation environments
and to predict the algorithm performance based on the
overhead analysis. Our work adopts their useful
nomenclature.

Xu, Zhang, and Sun [24] proposed a semi-empirical

multiprocessor performance prediction scheme. For a given
application and machine specification, the application first
is instantiated to thread graphs which reveal all the possible
communications (implicit or explicit) during the
computation. They then measured the delay of all the
possible communication on the target machine to compute
the elapsed time of communication in the thread graph. For
the execution time, of each segment in the thread graph
between communications, they use partial measurement and
loop iteration estimation to predict the execution time. The

general idea of prediction from partial measurement is
adopted here.

Abandah and Davidson, [25] and Boyd et al [26]

proposed hierarchical modeling methods for parallel
machines that is kindred in spirit to our work, and was
effective on machines in the early and mid 90’s.

A group of expert performance modelers at Los Alamos
have been perfecting the analytical model of applications
important to their workload for years [38-41]. These models
are quite accurate in their predictions, although the methods
for creating them are time consuming and not necessarily
easily done by non-expert user [42].

9. Acknowledgements.

 The applications benchmarking data used in this study
was obtained by the following cast of many (listed
alphabetically): Mr. Wendell Anderson (NRL), Mr. Robert
W. Alter (ERDC-CSC), Dr. Paul M. Bennett (ERDC-CSC),
Dr. Sam B. Cable (ERDC-CSC), Dr. John E. Cazes
(TACC), Ms. Christine Cuicchi (NAVO), Ms. Carrie L.
Leach (ERDC-CSC), Mr. Mitch Murphy (MHPCC), Dr.
Thomas C. Oppe (ERDC-CSC), Mr. Daniel M. Pressel
(ARL), Mr. Daniel S. Schornak (ASC-CSC), and Dr.
William A. Ward, Jr. (ERDC-CSC). Application traces
were gathered by (besides the authors) Mr. Mike
Timmerman (Instrumental) and Ms. Cynthia Bailey Lee.
Mr. Xiaofeng Gao wrote the binary analyzer used to
determine data and control-flow dependencies. We would
also like to acknowledge the European center for
Parallelism of Barcelona, Technical University of Barcelona
(CEPBA) for their continued support of their profiling and
simulation tools. This work was supported in part by a grant
of computer time from the DoD High Performance
Computing Modernization Program at the ARL, ASC,
ERDC, and NAVO Major Shared Resource Centers, the
MHPCC Allocated Distributed Center, and the NRL
Dedicated Distributed Center. This work was sponsored in
part by the Department of Energy Office of Science through
SciDAC award High-End Computer System Performance:
Science and Engineering. Computer time was also provided
by SDSC. Additional computer time was graciously
provided by the Pittsburgh Supercomputer Center via an
NRAC award.

10. References.

1. Top500, www.top500.org.

2. J. Dongarra, P. Luszczek, & A. Petitet, “The LINPACK

benchmark: past, present and future”, Concurrency and

Computation: Practice and Experience, vol. 15, pp. 1-
18, 2003.

3. E. Joseph, C. G. Willard, M. Swenson, & D. Goldfarb,

“A new HPC technical computing benchmark: the IDC
balanced rating”, IDC Bulletin W.

4. High Performance Computing Modernization Program,

www.hpcmo.hpc.mil.

5. J. McCalpin, “Memory bandwidth and machine balance

in current high performance computers”, IEEE
Technical Committee on Computer Architecture
Newsletter.

6. HPC Challenge Benchmarks, http://icl.cs.utk.edu/hpcc/.

7. PMaC HPC Benchmark Suite, http://www.sdsc.edu/

pmac/.

8. J. Gustafson & R. Todi, “Conventional benchmarks as a

sample of the performance spectrum”, Hawaii
International Conference on System Sciences, 1998.

9. L. Carrington, A. Snavely, N. Wolter, & X. Gao, “A

performance prediction framework for scientific
applications”, Workshop on Performance Modeling and
Analysis-ICCS, Melbourne, 2003.

10. A. Snavely, X. Gao, C. Lee, N. Wolter, & J. Labarta,

“Performance modeling of HPC applications”, Parallel
Computing, Dresden, 2003.

11. S. Browne, J. Dongarra, N. Garner, K. London, & P.

Mucci, “A scalable cross-platform infrastructure for
application performance tuning using hardware
counters”, SC2000, Dallas, 2000.

12. J. Hollingsworth, A. Snavely, & S. Sbaraglia, “EMPS:

an environment for memory performance studies”,
Proceedings of the 19th IEEE International Parallel
and Distributed Systems (IPDPS), Washington D.C.,
2005.

13. A. Snavely, L. Carrington, N. Wolter, J. Labarta, R.

Badia, & A. Purkayastha, “A framework for application
performance modeling and prediction”, SC2002,
Baltimore, 2002.

14. R. Badia, G. Rodriguez, & J. Labarta, “Deriving

analytical models from a limited number of runs”,
Parallel Computing, Dresden, 2003.

15. Ad Emmen, “IDC reports latest supercomputer

rankings based on the IDC balanced rating test”,
Primeur Monthly, May 16, 2002, http://www.hoise.

com/ primeur/02/articles/monthly/AE-PR-06-02-45.
html.

16. D. Bailey, J. Barton, T. Lasinski, H. Simon, “The NAS

parallel benchmarks”, International Journal of
Supercomputer Applications, 1991.

17. SPEC, http://www.spec.org/.

18. G. Marin & J. Mellor-Crummey, “Cross-architecture

performance predictions for scientific applications
using parameterized models”, SIGMETRICS
Performance 04, 2004.

19. L. Svobodova, Computer System Performance

Measurement and Evaluation Methods: Analysis and
Applications (Elsevier, N.Y.1976).

20. R.S., Ballansc, J.A. Cocke, and H.G. Kolsky, The

Lookahead Unit, Planning a Computer System,
(McGraw-Hill, New York, 1962).

21. L.T. Boland, G.D. Granito, A.V. Marcotte, B.V.

Messina, and J.W. Smith, “The IBM system
360/Model9:Storage System”, IBM J. Res. And
Develop.,vol. 11, pp. 54-79, 1967.

22. D. Burger, T.M. Austin, and S. Bennett, “Evaluating

future microprocessors: The simplescalar tool set”,
Tech. Rep. CS-TR-1996-1308, University of Wisconsin-
Madison , 1996.

23. J.O. Murphey and R.M. Wade, “The IBM 360/195”,

Datamation, vol. 16:4, pp. 72-79, 1970.

24. G.S. Tjaden and M.J. Flynn, “Detection and Parallel

Execution of Independent Instructions”, IEEE Trans.
Comptrs., vol. C-19 pp. 889-895, 1970.

25. J. Lo, S. Egger, J. Emer, H. Levy, R. Stamm, and D.

Tullsen, “Converting Thread-Level Parallelism to
Instruction-Level Parallelism via Simultaneous
Multithreading”, ACM Transactions on Computer
Systems, August, 1997.

26. B. Falsafi and D.A. Wood, “Modeling

Cost/Performance of a Parallel Computer Simulator”,
ACM Transactions on Modeling and Computer
Simulation, vol. 7:1, pp. 104-130, 1997.

27. J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J.

Hennessy, and M. Heinrich,” FLASH vs. (Simulated)
FLASH: Closing the Simulation Loop”, Proceedings of
the 9th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), November, pp. 49-58, 2000.

28. R.H. Saavedra and A.J. Smith, “Measuring Cache and

TLB Performance and Their Effect on Benchmark Run
Times”, IEEE Transactions on Computers, vol. 44:10
pp. 1223-1235, 1995.

29. R.H. Saavedra and A.J. Smith, “Analysis of Benchmark

Characteristics and Benchmark Performance
Prediction”, TOCS14, vol. 4, pp. 344-384, 1996.

30. R.H. Saavedra and A.J. Smith, “Performance
Characterization of Optimizing Compilers”, TSE21,
vol. 7, pp. 615-628, 1995.

31. C.L. Mendes and D.A. Reed, ”Integrated Compilation

and Scalability Analysis for Parallel Systems”, IEEE
PACT, 1998.

32. C.L. Mendes and D.A. Reed, “Performance Stability

and Prediction”, IEEE /USP International Workshop on
High Performance Computing, 1994.

33. J. Simon and J. Wierun, “Accurate Performance

Prediction for Massively Parallel Systems and its
Applications”, Euro-Par, vol. 2, pp. 675-688, 1996.

34. M.E. Crovella and T.J. LeBlanc, “Parallel Performance
Prediction Using Lost Cycles Analysis”,
SuperComputing 1994, pp. 600-609, 1994.

35. Z. Xu, X. Zhang, L. Sun, “Semi-empirical

Multiprocessor Performance Predictions”, JPDC, vol.
39, pp. 14-28, 1996.

36. G. Abandah, E.S. Davidson, “Modeling the

Communication Performance of the IBM SP2”,
Proceedings Int'l Parallel Processing Symposium,
April, pp. 249-257, 1996.

37. E.L. Boyd, W. Azeem, H.H. Lee, T.P. Shih, S.H. Hung,

and E.S. Davidson, “A Hierarchical Approach to
Modeling and Improving the Performance of Scientific
Applications on the KSR1”, Proceedings of the 1994
International Conference on Parallel Processing, vol.
3, pp. 188-192, 1994.

38. A. Hosie, L. Olaf, H. Wasserman, “Performance

Analysis of Wavefront Algorithms on Very-Large Scale
Distributed Systems”, Springer’s “Lecture Notes in
Control and Information Sciences”, vol. 249, p. 171,
1999.

39. A. Hosie, L. Olaf, H. Wasserman, “Scalability Analysis

of Multidimensional Wavefront Algorithms on Large-
Scale SMP Clusters”, Proceedings of Frontiers of
Massively Parallel Computing ’99, Annapolis, MD,
February, 1999.

40. D.J. Kerbyson, A. Hoisie, and H.J. Wasserman,
“Modeling the Performance of Large-Scale Systems”,
Keynote paper, UK Performance Engineering
Workshop (UKPEW03), July, 2003.

41. L. Yong, L.M. Olaf, H. Wasserman, “Development and

Validation of a Hierarchical Memory Model
Incorporating CPU- and Memory-Operation Overlap”,
Proceedings of the First International Workshop on
Software and Performance, Santa Fe, NM, pp. 152-163,
1996.

42. A. Spooner and D. Kerbyson, “Identification of

Performance Characteristics from Multi-view Trace
Analysis”, Proc. Of Int. Conf. On Computational
Science (ICCS), part 3 2659, pp. 936-945, 2003.

11. Appendix.

Table 6. AVUS Standard observed times-to-solution.
Run times in seconds

Machine 32-CPUs 64-CPUs 128-CPUs
ERDC O3800 12737 5881 2733
MHPCC P3 15051 8354 3779
NAVO P3 18195 8601 3870
ASC SC45 6993 3334 1617
MHPCC 690 1.3 10286 4932 2368
ARL 690 1.7 8625 4466 1935
ARL Xeon 9115 4686 2422
ARL Altix 5872 2842 ---
NAVO 655 6703 3115 1460
ARL Opteron 5527 2747 1401

Table 7. AVUS Large observed times-to-solution.

Run times in seconds
Machine 128-CPUs 256-CPUs 384-CPUs

ERDC O3800 18103 8577 5736
MHPCC P3 40177 12123 7706
NAVO P3 26362 12379 8042
ASC SC45 10412 5199 3394
MHPCC 690 1.3 14751 7591 ---
ARL 690 1.7 12718 --- ---
ARL Xeon 13654 6890 ---
ARL Altix --- --- ---
NAVO 655 9844 4576 2949
ARL Opteron 8599 4273 2884

Table 8. HYCOM Standard observed times-to-solution.

Run times in seconds
Machine 59-CPUs 96-CPUs 124-CPUs

ERDC O3800 6619 4329 4449
MHPCC P3 10453 3912 2992
NAVO P3 7129 4420 3348
ASC SC45 3594 2469 1949
MHPCC 690 1.3 3532 2939 2661
ARL 690 1.7 2586 1675 1510
ARL Xeon 3705 2504 1991
ARL Altix 2263 1462 1176
NAVO 655 2010 1281 990
ARL Opteron 1936 1268 1031

Table 9. Overflow2 Standard observed times-to-solution.

Run times in seconds
Machine 32-CPUs 48-CPUs 64-CPUs

ERDC O3800 10875 8008 5497
MHPCC P3 14939 --- 7371
NAVO P3 14939 --- 7371
ASC SC45 6329 --- 4109
MHPCC 690 1.3 9156 --- 4701
ARL 690 1.7 --- --- ---
ARL Xeon --- --- ---
ARL Altix 3143 2389 1730
NAVO 655 5454 4031 2908
ARL Opteron --- --- ---

Table 10. RF-CTH2 observed times-to-solution.

Run times in seconds
Machine 16-CPUs 32-CPUs 64-CPUs

ERDC O3800 6182 3268 1793
MHPCC P3 6557 3475 1869
NAVO P3 6557 3475 1869
ASC SC45 3134 2170 1005
MHPCC 690 1.3 2777 1813 1275
ARL 690 1.7 2154 1660 5156
ARL Xeon 4203 2308 1368
ARL Altix --- 1122 614
NAVO 655 1982 1075 607
ARL Opteron 1882 1072 671

