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Abstract 
 

In this paper, a systematic study of the effects of 
complexity of prediction methodology on its accuracy for a 
set of real applications on a variety of HPC systems is 
performed.  Results indicate that the use of any single, 
simple synthetic metric to predict performance does an 
inadequate job, and the use of a linear combination of 
these simple metrics with optimized weights also performs 
poorly.  Better, however, are methodologies that rely on 
the convolution of an application “transfer function” 
based on tracing information with system performance 
data measured by simple benchmarks.  This latter 
methodology can predict performance with an average 
accuracy of 80%, based on the current work. 
 
 

1. Introduction. 
 
Regardless of the underlying intent, a ranking of HPC 

systems has been of keen interest to many, as was 
demonstrated by the development of the Top 500 [1] (in 
1993) using a simple benchmark (LINPACK) [2].  Now, 
with a plethora of tests available and a better understanding 
of the factors that impact performance, a strong desire to 
develop a new ordered list – one that accounts for all major 
system attributes (as well as cross-terms encountered when 
multiple attributes are exercised simultaneously) – has been 
commonly conveyed.  In response, IDC released its 
Balanced Ratings [3] in November of 2001, covering three 
major categories (processor, memory, and interconnect 
performance).  Some thought a successor to the Top 500 had 
finally been found, but many soon realized that the mapping 
of the performance of multiple categories into one score was 
highly subjective and workload-dependent.  Therefore, the 
notion of ranking systems by a single metric outside of the 
context of a predefined workload, for the most part, had 
been dispelled.   

 

Although this paper will not produce actual rankings, 
such rankings could be achieved by comparing the 
performance of applications across architectures (e.g., 
system X is 50% faster than system Y for application Z).  
This work will explore the extent and implication of ranking 
architectures through the estimation of performance for 10 
DoD HPC Modernization Program (HPCMP) [4] systems 
with respect to a number of synthetic metrics – some 
workload-independent and others directly related to portions 
of the target workload defined by the DoD HPCMP 2005 
Technology Insertion (TI-05).  For each of five TI-05 
application test cases, the base set of estimates will be 
validated against real application runtimes (see Appendix I 
tables 5-8) to determine the correlation of each estimator (or 
metric) to true performance data. 

 
The 10 target systems span 9 distinct architectures 

ranging from a single OS, global-shared memory design to a 
multiple OS, distributed memory design.  The architectures 
in order of their installation within the HPCMP are shown in 
Table 1, and a list of actual systems is shown in Table 2. 

 
Table 1.  Architectures used in study. 

 
Make 

 
Model 

Processor 
Speed (GHz) 

 
Interconnect 

SGI Origin 3800 0.400 NUMALink 
IBM Power 3 0.375 Colony 
HP SC45 1.000 Quadrics 

IBM p690 1.300 Colony 
IBM p690 1.700 Federation 
LNX Xeon 3.060 Myrinet 
SGI Altix 1.500 NUMALink 
IBM p655 1.700 Federation 
IBM Opteron 2.200 Myrinet 

 
 
 
 
 



 
Table 2.  Systems used in study. 

HPCMP 
Site 

 
Architecture 

Compute 
Processors 

ERDC SGI_O3800_400MHz_NUMA 504 
MHPCC IBM_P3_375MHz_COL 736 
NAVO IBM_P3_375MHz_COL 928 
ASC HP_SC45_1GHz_QUAD 472 

MHPCC IBM_690_1.3GHz_COL 320 
ARL IBM_690_1.7GHz_FED 128 
ARL LNX_Xeon_3.06GHz_MNET 256 
ARL SGI_Altix_1.5GHz_NUMA 256 

NAVO IBM_655_1.7GHz_FED 2832 
ARL IBM_Opteron_2.2GHz_MNET 2304 
 
The target metrics require some general discussion 

before they can be identified.  Simple benchmarks (such as 
High Performance LINPACK (HPL) [2], STREAM [5], the 
HPC Challenge Benchmarks [6], the PMaC HPC 
Benchmark Suite [7], and the DoD HPCMP TI-XX 
Synthetic Probes) are easily executed and their resulting 
performance can be readily compared against expected 
system performance, as derived from manufacturer 
specifications.  Their general usefulness, however, is limited 
by their weak correlation to the performance of real 
applications (since applications identified by careful 
workload characterization best represent the computational 
demands placed on a production system).  For example, 
Gustafson et al. [8] showed that HPL was in fact anti-
correlated with the performance of several applications on 
several machines.  In other words, (ignoring price) if the 
system with the highest HPL result were purchased, that 
system would not only be a sub-optimal choice based on the 
applications data, but it would also be the worst choice.  Of 
course, such pitfalls can be avoided by simply using 
application benchmarking data to make procurement 
decisions; however, application execution can be tedious 
and costly in terms of both manpower and system execution 
time.  Therefore, if simple benchmarks could be correlated 
to application performance, more streamlined acquisition 
strategies could be developed, effecting more economical 
submission preparations for vendors and less cumbersome 
submission assessments for customers.  Unfortunately, it is 
unlikely that simple synthetic benchmarks alone will ever 
posses sufficiently reliable performance ties to applications.  
Therefore, using synthetic benchmarks within a 
performance modeling and prediction framework seems to 
yield a stronger correlation to application performance.  
This framework strategically applies an application-specific 
“transfer function” to the test results such that the 
performance of multiple applications can be estimated using 
one set of synthetic results.  The “transfer function” is 
deduced via tracing to extract memory and communications 
signatures for target applications.  The corresponding probes 
or predictive synthetics are divided into two major tests – 

MEMBENCH MAPS and NETBENCH.  MEMBENCH 
MAPS determines the memory bandwidth versus message 
size for unit and random stride cases, while NETBENCH 
determines the interconnect bandwidth and latency.  An 
enhanced version of MEMBENCH MAPS was also 
developed to determine the memory bandwidth effects of 
loop data dependencies and branches within a loop. 

 
Using five application test cases from the DoD HPCMP 

TI-05 Benchmarking Suite (AVUS-Standard, AVUS-Large, 
HYCOM-Standard, OVERFLOW2-Standard, and RFCTH-
Standard), this paper will correlate actual performance to 
that of a wide variety of synthetics.  These synthetics range 
from simple tests to probes tied to a predictive model.  The 
complexity of the predictive model will be gradually 
increased by adding notional terms to its “transfer function.”  
More specifically, the results of the tests denoted in Table 3 
will be correlated to the performance of five TI-05 
application test cases.   

 
Section 2 describes each of the TI-05 application test 

cases in greater detail, and Section 3 describes the 
underlying framework for the predictive metrics.  Section 4 
reveals overall results, while Sections 5 and 6 reveal 
system-specific and application-specific results, 
respectively.  Conclusions are provided in Section 7, and 
more detailed background and related work is provided in 
Section 8. 
 
Table 3.  Synthetic metrics used in study. 

# Type Name or Description 
1 Simple HPL 
2 Simple STREAM 
3 Simple HPC Challenge Random Access 

(GUPS) 
4 Predictive HPL for floating point work 
5 Predictive HPL for floating point work;  

STREAM for memory access 
6 Predictive HPL for floating point work; STREAM 

for stride 1 memory access; GUPS for 
random stride memory access 

7 Predictive HPL for floating point work; 
MEMBENCH MAPS for memory 
access 

8 Predictive HPL for floating point work; 
MEMBENCH MAPS for memory 
access; NETBENCH for 
communications work 

9 Predictive HPL for floating point work; 
ENHANCED MEMBENCH MAPS for 
memory access; NETBENCH for 
communications work 

 
 
 



 
2. DoD HPCMP TI-05 Application Test 

Cases. 
 
The five application test cases are described in more 

detail below. Each test case was executed at 3 different 
processor counts, ranging from 16 to 384 processors. 
 
AVUS STANDARD & LARGE   

 
AVUS was developed by the Air Force Research 

Laboratory (AFRL) to determine the fluid flow and 
turbulence of projectiles and air vehicles.  Its standard test 
case calculates 100 time-steps of fluid flow and turbulence 
for a wing, flap, and end plates using 7 million cells.  Its 
large test case calculates 150 time-steps of fluid flow and 
turbulence for an unmanned aerial vehicle using 24 million 
cells. 

 
HYCOM STANDARD   
 

The Naval Research Laboratory (NRL), Los Alamos 
National Laboratory (LANL), and the University of Miami 
developed HYCOM as an upgrade to MICOM (both well-
known ocean modeling codes) by enhancing the vertical 
layer definitions within the model to better capture the 
underlying science.  HYCOM's standard test case models all 
of the world's oceans as one global body of water at a 
resolution of one-fourth of a degree when measured at the 
Equator. 

 
OVERFLOW2 STANDARD  

 
OVERFLOW-2 was developed by NASA Langley and 

NASA Ames to solve CFD equations on a set of 
overlapping, adaptive grids, such that the grid resolution 
near an obstacle is higher than that of other portions of the 
scene.  This approach allows computation of both laminar 
and turbulent fluid flows over geometrically complex, non-
stationary boundaries.  The standard test case of 
OVERFLOW-2 models fluid flowing over five spheres of 
equal radius and calculates 600 time-steps using 30 million 
grid points. 

 
RFCTH STANDARD 

 
Sandia National Laboratories (SNL) developed CTH to 

model complex multidimensional, multiple-material 
scenarios involving large deformations or strong shock 
physics.  RFCTH is a non-export-controlled version of 
CTH.  The standard test case of RFCTH models a ten-
material rod impacting an eight-material plate at an oblique 
angle, using adaptive mesh refinement with five levels of 
enhancement. 
 

 
3. Performance Prediction Methodology. 

 
Two main methodologies of performance prediction are 

explored in this work: simple and predictive. For the simple 
methodology a single benchmark or metric is used to predict 
the performance of the application on the target machine. In 
the predictive methodology, trace data from the application 
is used along with a set of simple benchmarks to yield a 
more application specific prediction. The details of these 
methodologies are described below. 

 
For exploring the predictive power of the simple 

benchmarks in isolation, a very simple methodology is 
adopted.  For each application, the predicted wall-clock time 
on a target system is calculated according to Equation 1 as a 
function of wall-clock time on the base system (namely, the 
NAVO p690) and the results for the set of simple synthetics. 
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where T'(X,Y) is the predicted wall-clock time for 
application Y on system X, R(X) is the result of a specific 
simple benchmark for system X, X0 denotes the base system, 
and T(X,Y) is the measured wall-clock time for application Y 
on system X.  In other words, the performance for a specific 
application is assumed to be faster or slower according to 
the ratio of the simple benchmark results for system X and 
the base system X0. 

Errors reported throughout this paper are calculated 
according to Equation 2. 

 

)2(100
),(

),(),(% ⋅
−′

=
YXT

YXTYXTError  

 
Negative error indicates the prediction was faster than the 
actual runtime, while positive error indicates the prediction 
was slower than the actual runtime.  After calculating signed 
error for each experiment, absolute error is calculated to 
ensure the magnitude of each deviation is considered when 
averaging across experiments, preventing error cancellation. 

 
For the predictive metrics, a more sophisticated 

framework is used.  An operation count per type (e.g., 
floating point, strided memory, and random memory) is 
accumulated via MetaSim Tracer [9] through 
instrumentation and dynamic tracing on a base system, 
while the rates for each operation type are measured via 
synthetic probes (simple benchmarks) on a target system.   

 
Instrumentation and dynamic tracing are often quite 

expensive in terms of dilated execution time, especially 
when the address of each memory reference is the target 



attribute, as is the case for Metrics #6-#9.  In response, 
MetaSim has been carefully streamlined for speed, imposing 
approximately a 30x slowdown on an instrumented 
application.  Unfortunately, the execution time for a TI-05 
application test case can require 1-4 hours to execute 
without instrumentation, making tracing quite time-
consuming, even with efficient methodology in place.  
Therefore, dilated execution time must be a weighed 
consideration when evaluating metric accuracy (one should 
ask “was the increase in accuracy worth the effort?”), 
although tracing does incur a non-recurring and mitigated 
cost, as it is only required once per application on the base 
system and therefore does not need to be repeated for each 
target system. 

  
  Operation counts, once determined by tracing, are 

divided by corresponding operation rates using MetaSim 
Convolver [10] to yield an execution time for the current 
basic block per operation type.  Execution time is 
subsequently “predicted” by summing the estimated 
execution time for all basic blocks and carefully taking into 
account the overlap of the different operation types. 

 
For (predictive) Metrics #4 and #5, only floating point 

instructions and floating point plus memory load/store 
instructions are counted, respectively.  Therefore, MetaSim 
Trace is not the most efficient means for collecting such 
dynamic operation counts, since MetaSim Tracer reviews 
each address generated by load/store instructions.  For such 
a simple task, performance counters provide a more 
expeditious result [11].  MetaSim Tracer is, however, 
needed for (predictive) Metrics #6, #7, #8, and #9 as each 
requires the discrimination of unit and random stride 
memory instructions.  MetaSim Tracer parses the address 
stream with a stride detector [12], thus determining what 
portion of memory references are stride-1, non-unit short 
strides (up to stride-8), and random stride.  

 
For all predictive metrics (Metrics #4-#9), the floating 

point issue rate was assumed to be the per processor Rmax 
from HPL.  For Metric #5, the memory instruction rate was 
defined by the results of STREAM, while, for Metric #6, the 
unit and random-stride memory instruction rates were 
defined by the results of STREAM and GUPS, respectively.  
For Metrics #7-#9, the unit and random-stride memory 
instruction rates were assessed as a function of working-set 
size (by the MAPS portion of MEMBENCH) to better 
reflect the seemingly discrete levels of memory bandwidth 
observed in cache-based architectures.  The MAPS results 
for Metric #9 included memory instruction rates for loop 
and control-flow dependency as a function of working-set 
size, in addition to the standard MAPS curves for unit and 
random-stride. 

 
STREAM and GUPS are typically executed from main 

memory; whereas, MAPS measures the rate at which loads 

and stores (both strided and random) are performed from 
different levels of the memory hierarchy. MAPS is 
equivalent to launching multiple instances of both 
STREAM and GUPS at various “sizes” in order to span the 
various levels of cache (L1, L2, and L3 (if it exists)) and 
main memory.  To further illustrate, Figure 1 shows unit-
stride MAPS results for three different systems.  (A subset 
of the 12 target systems was plotted to improve readability.) 
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Figure 1.  Unit-stride memory bandwidth versus message 
size for three target systems. 
 
The lower right-hand portion of each unit-stride MAPS 
curve (plotted) corresponds to the STREAM score for each 
system, while the lower right-hand portion of each random 
stride MAPS curve (not plotted) corresponds to the GUPS 
score for each system.  As shown, the IBM Opteron scored 
best for executions from main memory and would therefore 
score best for STREAM.  However, if the size of STREAM 
were reduced to fit into L2 cache and subsequently L1 
cache, the SGI Altix and IBM p655 would score best, 
respectively.  Therefore, in general, the ranking of systems 
according to memory performance greatly depends on the 
stride signature of the application, since the spacing of 
memory references determines what level of cache is being 
exercised at any given time during execution.  

 
For (predictive) Metric #8 [13], a notional term was 

added to account for interconnect performance, using 
MPIDTRACE [14] to count MPI communications events in 
applications and NETBENCH to measure the interconnect 
latency and bandwidth of the target system.  For (predictive) 
Metric #9, a second notional term was added to account for 
loop and control-flow dependencies.  Static analysis was 
applied to the binary executable for each application on the 
base system, so ILP limited basic blocks could be identified.  
Corresponding “dependency” MAPS curves then were 
obtained via ENHANCED MAPS (in addition to the 
standard MAPS curves) by inducing data and control-flow 
dependencies in the inner loop of both STREAM and 
GUPS. 



 
4. General Results. 
 
Performance was deduced using the nine synthetic 

metrics listed in Table 3 for each of five TI-05 application 
test cases at three different processor counts and was then 
compared to actual real run times to yield an absolute error 
for each metric and test case pair.  The resulting absolute 
error was subsequently averaged per metric to provide an 
error profile for the suite of metrics.  Table 4 presents, and 
Figure 2 shows graphically, a summary of the average 
absolute error for the nine target synthetics. 

 
Table 4.  Error assessment: metric results as compared to 
application’s real run time. 

 
 

# & 
Type 

 
 
 

Metric Description 

Average 
Absolute 

Error 
(%) 

 
Standard 
Deviation 

(%) 
1-S HPL 63 68 
2-S STREAM 43 73 
3-S GUPS 33 27 
4-P HPL 63 68 
5-P HPL+STREAM 50 72 
6-P  HPL+STREAM+GUPS 22 18 
7-P HPL+MAPS 24 21 
8-P HPL+MAPS+NET 22 18 
9-P HPL+MAPS+NET+DEP 18 18 

 
In general, the correlation of the predictive metrics is 

increasingly better than that of the simple metrics, as 
notional terms are added to the “transfer function” portion 
of the predictive model.  A more detailed description of the 
results for each metric is warranted. 
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Figure 2.  Graphical version of error assessment: metric 
results as compared to application’s real run time. 
 
#1 – Simple Metric (HPL)   

 
Performance was estimated by taking the ratio of the 

per processor Rmax scores for each of 10 systems, yielding 

an average absolute error of 63% with a standard deviation 
of 68%.  The results confirm the common wisdom that, 
while HPL is a good measure of peak floating point issue 
rate, it is not a good predictor of absolute or even relative 
performance for real applications.  Applications, to varying 
degrees, execute non-floating point operations that are not 
typically hidden by execution overlap, and a system’s ability 
to execute such operations often weakly correlates with its 
floating point performance. 
 
#2 – Simple Metric (STREAM)  
 

Performance was estimated by taking the ratio of each 
system’s ability to load unit-stride operations from main 
memory as measured by STREAM, yielding results that 
were marginally better than those for HPL – an average 
absolute error of 43% with a standard deviation of 73%.  
This result confirms what many now believe to be true – the 
relative performance of memory subsystems is likely a 
better indicator of relative application performance than 
HPL (or is at least equally as good), since memory access is 
increasingly becoming the primary bottleneck for today’s 
systems for many applications. 
 
#3 – Simple Metric (GUPS) 
 

Performance was estimated by taking the ratio of each 
system’s per processor ability to update values in random 
locations of main memory, yielding an average absolute 
error of 33% with a standard deviation of 27%.  This result 
is an improvement to the results of the prior two metrics, 
and seems to support the idea that the expense of random 
access for today’s systems tends to dominate the memory 
response for an application, even if the application performs 
only limited random access. 

 
Viewed collectively, the first three assessments seem to 

suggest that the relative performance of target applications 
on specific systems cannot be reliably correlated with a 
single simple metric such as HPL, STREAM, or GUPS, 
considering the high percentage of average absolution error 
observed for each.  In response, some have suggested that a 
fixed linear combination of simple metrics might be used.  
For example, as [15] explains, IDC’s Balanced Rating 
simply combines the results for three metric categories 
(processor, memory, and interconnect) by normalizing 
performance for each to yield intermediate scores from 0% 
to 100% and then weighting each category equally to 
produce a composite score from 0% to 100%.  Applying this 
methodology to predict performance of these applications 
using HPL, STREAM, and all_reduce (an MPI test within 
NETBENCH), an average absolute error of 35% with a 
standard deviation of 25% was observed.  Using linear 
regression, category weightings which minimize estimation 
error were determined to be 5% (HPL), 50% (STREAM), 
and 45% (all_reduce), resulting in an average absolute error 



of 33% with a standard deviation of 30% – still quite 
sizable.  This seems to disprove the notion that a single 
“balanced rating” can significantly improve on a simple 
benchmark given that GUPS alone did this well. Therefore, 
to improve matters, the idea of variable weights for simple 
metrics is explored, such that the proportion of each metric 
is determined by the proportion of operations of each type 
found in the target application (as summarized by an 
application-specific “transfer function”). 

 
#4 – Predictive Metric (HPL)   

 
As described in the Performance Prediction 

Methodology Section, the predictive framework counts 
operations of various types for each basic block of an 
application via tracing on a base system, and then measures 
the various operation rates on a target system.  The 
convolver divides operation counts by corresponding 
operation rates to yield an execution time for the current 
basic block per operation type.  Applying this technique 
using floating point operations only and assuming the 
floating point issue rate for a particular target system is the 
per processor Rmax (from HPL), the execution time can be 
estimated by summing the estimated execution time for all 
basic blocks and subsequently assuming that the total 
execution time is indirect proportional to the per processor 
Rmax in order to estimate the performance of other systems.  
As shown in Table 4, the results for this metric were the 
same as those for Metric #1, demonstrating that in the 
simplest case, the convolver’s execution is identical to that 
of a pencil-and-paper calculation using the per processor 
Rmax as the floating point issue rate. 

 
#5 – Predictive Metric (HPL+STREAM)   

 
Both floating point and memory operations were 

counted, while the floating point issue and memory rates 
were assumed to be the per processor Rmax and the 
STREAM memory bandwidth, respectively.  At this level of 
granularity, the predictive model results – an average 
absolute error of 50% and a standard deviation of 72% – 
were not much better than those for the simple metric using 
HPL (Metric #1). 

 
#6 – Predictive Metric (HPL+STREAM+GUPS)   

 
Floating point, strided memory, and random memory 

operations were collected, while the corresponding rates 
were assumed to be the per processor Rmax, the STREAM 
memory bandwidth, and the GUPS memory bandwidth, 
respectively.  Adding the discrimination between strided 
and random memory access seemed to make a substantial 
difference, as the average absolute error dropped to 22% 
with a standard deviation of 18%. 

 
 

 
#7 – Predictive Metric (HPL+MAPS) 

 
The per processor Rmax was again used for the floating 

point issue rate, but the STREAM and GUPS memory 
bandwidths were replaced with MAPS curves (i.e., curves 
for unit and random-stride that describe the memory 
bandwidth versus message size, revealing the bandwidth 
characteristics for different levels of the memory hierarchy 
– L1, L2, L3 (if it exists), and main memory).  The results 
for this metric, an average absolute error of 24% with a 
standard deviation of 21%, were marginally worse than 
those for Metric #6, possibly suggesting that the granularity 
added by MAPS is unnecessary. 

 
#8 – Predictive Metric (HPL+MAPS+NETBENCH) 

 
The per-processor Rmax was yet again used for the 

floating point issue rate.  Unit and random-stride MAPS 
curves were used to define the throughput for the memory 
subsystem at different hierarchical levels, and NETBENCH 
results were added to describe the communications signature 
of the target system (explained in greater detail in the 
Performance Prediction Methodology Section).  The results 
showed a marginal improvement to those for Metric #7, 
yielding an average absolute error of 22% with a standard 
deviation of 18%. 

 
#9 – Predictive Metric (HPL+MAPS+NETBENCH+ 
DEPENDENCY) 

 
Finally, rate and probe assignments for Metric #8 were 

retained with the exception that MAPS was replaced with 
ENHANCED MAPS as the memory signature for the target 
system, noting that ENHANCED MAPS additionally 
accounts for the effects of loop data dependencies and 
branches within a loop.  This addition resulted in a modest 
improvement over the results for Metrics #6-#8, yielding an 
average absolution error of 18% and a standard deviation of 
18%. 

 
Taken as a whole, the results for Metrics #6-#9 suggest 

simple synthetics may indeed be able to account for 
approximately 80% of relative performance across systems 
when viewed through an application-specific framework 
(i.e., by counting operations of various types for each 
application).  Before making a final determination, however, 
that Metrics #7-#9 provide only nominal improvements, 
system-specific results in the next section are considered.  

 
 
5. System-Specific Results. 
 
Table 5 contains the average absolute error for each 

system and metric pair.  Intuitively, one would expect that 
adding notional terms to the predictive model would reduce 



error, especially for Metrics #6-#9 as granularity can clearly 
be said to increase with the number of the metric.  The ASC 
SC45 and ERDC 03800 did indeed follow this trend; 
however, in general, the estimation space is more 
complicated than the artificial one described by this 
supposed trend, as the additional complexity that 
accompanies finer granularity typically leads to additional 
sources of error.  For example, while Metric #6 
distinguishes between strided and random memory access, 
Metric #7 adds additional complexity (and likely additional 
error sources) to distinguish between (presumed to be) fast 
running cache friendly loops and loops that actually fall out 
of cache.  

 
Table 5.  System-specific average absolute percent error. 

System 1 2 3 4 5 6 7 8 9
ERDC_O3800 37 12 83 37 84 35 29 20 22
MHPCC_P3 58 53 19 58 52 14 29 24 25
NAVO_P3 37 77 28 37 75 8 15 10 7
ASC_SC45 167 14 59 167 15 31 28 18 16

MHPCC_690_1.3 122 14 14 122 13 15 17 29 24
ARL_690_1.7 26 21 21 26 21 22 23 34 28

ARL_Xeon 42 37 23 42 37 21 64 39 21
ARL_Altix 193 281 64 193 272 36 25 27 26
NAVO_655 19 12 19 19 12 14 16 14 9

ARL_Opteron 20 29 45 20 27 44 30 32 26
OVERALL 63 43 33 63 50 22 24 22 18

Metric #

 
 

Adding a term for predicting loop performance based 
on size and expected cache hit rate (as in Metric #7) 
performed slightly worse than simply assuming the unit and 
random-stride memory instruction rates were single 
invariant values obtained from STREAM and GUPS.  
Subsequently, adding a network term (as in Metric #8) 
improved predictions for 6 of 10 systems, had no net effect 
for 2, and worsened predictions for 2, yielding an overall 
modest reduction in average error (comparing Metric #8 to 
#7).  Finally, adding a dependency term (as in Metric #9) to 
correct a basic flaw in the term introduced by Metric #7 (by 
identifying loops with performance-limiting internal 
branches and/or data dependencies) improved predictions as 
compared to those for Metric #6 for 7 of 10 systems, 
yielding a marginal overall improvement between the two 
metrics and suggesting that the addition of the notional 
terms associated with Metrics #7 and #8 may have merit 
once all new terms for Metrics #7-#9 are combined (as 
opposed to introducing the new terms individually). 
 
 

6. Application-Specific Results. 
 
Figures 3 through 7 provide an error assessment for 

Metrics #1-#9 broken down by application test case.  As can 
be seen from these figures (and Table 5), this study is based 

on a substantial amount of data involving real applications 
and real systems.  To quantify, five application test cases 
were executed at three processor counts each on 10 different 
systems, resulting in a total of 150 (5x3x10) observed 
application executions.  In addition, a substantial number of 
predictions were made, as 9 metrics were applied to each of 
150 execution observations for a total of 1,350 (9x150) 
predictions.  Therefore, although these metrics have not 
been tested across all possible HPC systems and application 
domains, this study has thoroughly evaluated the metrics on 
a notable portion of the HPC space. 

 
Of the simple metrics, HPL was not an accurate 

predictor for any of the 15 (application test case, processor 
count) pairings, given that HPL’s best observed average 
absolute error was 55% (which occurred for AVUS 
Standard at 128 processors).  In all but one case 
(OVERFLOW2 Standard at 48 processors), HPL was the 
worst of all of the predictors, although in a few cases it tied 
with HPL+STREAM.  STREAM was a better predictor than 
HPL in all but one case (OVERFLOW2 Standard at 48 
processors), although it never achieved better than 22% 
average absolute error.  GUPS was a better predictor than 
STREAM in 11 out of the 15 possible cases, but never 
achieved better than 31% average absolute error.  Therefore, 
if a simple metric for predicting relative performance were 
required to represent application performance, it seems 
GUPS would be slightly preferred over STREAM, and 
either GUPS or STREAM would be preferred over HPL. 

 
Among the predictive metrics, Metric #4 simply 

provided a sanity test for the predictive method.  Metric #5 
(HPL+STREAM) performed worse than GUPS alone in all 
but one case (HYCOM Standard at 59 processor) – being 
only 1% better at that point.  Metric #6 
(HPL+STREAM+GUPS) performed substantially better 
than the prior two, since in 4 out 15 cases this metric was 
the best predictor for all nine metrics, and in 2 cases it tied 
Metric #9 as the best predictor.  Therefore, the complexity 
added by Metric #6 (i.e., employing tracing to bin memory 
references into strided and random access) seems to have 
been worthwhile, validating the suspected need for an 
application-specific weighting of floating point, strided 
memory, and random memory operations. 

 
Metrics #7 (HPL+MAPS) and #8 (HPL+MAPS+ 

NETBENCH) often performed slightly worse than Metric 
#6.  The MAPS curve, Figure 1, certainly suggests that it 
would be valuable to distinguish memory performance at 
different levels of cache; however, without taking control 
and data dependencies into account (that may cause 
cacheable loops to execute slowly) MAPS appears to 
actually introduce error (comparing #7 to #6).  Adding a 
network term does improve results (comparing #8 to #7), 
although not significantly because these application cases 
are not communication bound. 



 
Metric #9 (HPL+MAPS+NETBENCH+DEPENDEN-

CY), which retains the features of Metrics #7 and #8 (while 
adding data and control flow analysis), however, was the 
best of all the predictors for 8 of the 15 cases, and tied for 
best in 2 other cases. 
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Figure 3.  Graphical error assessment for AVUS Standard.   
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Figure 4.  Graphical error assessment for AVUS Large. 
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Figure 5.  Graphical error assessment for HYCOM 
Standard. 

116
103 100

82

134

76

38
48 40

116
103 10097

162

90

29 33 30
18

8
1916 12

26
14

5
21

0

50

100

150

200

250

300

350

400

32 48 64
Processor Count

A
ve

ra
ge

 A
bs

ol
ut

e 
Er

ro
r (

%
)

#1 Simple

#2 Simple

#3 Simple

#4 Predictive

#5 Predictive

#6 Predictive

#7 Predictive

#8 Predictive

#9 Predictive

Figure 6.  Graphical error assessment for OVERFLOW2 
Standard. 
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Figure 7.  Graphical error assessment for RFCTH Standard. 
 

Therefore, it seems that Metrics #6 and #9 provided the 
most consistent representation of the application test cases 
considered, realizing that #6 was less accurate on average 
than #9, but that #6 was also less complicated.  In both 
cases, the expensive step of memory tracing was required, 



although it should be noted that once tracing is completed 
for any one metric it is readily available for others. 

 
 
7. Conclusions. 

 
In this paper, several simple and predictive metrics 

were evaluated to see how well each could predict 
application performance and rank HPC systems.  Predictive 
metrics combined simple metrics with application-specific 
data through a generic “transfer function” (deduced via 
tracing) in order to increase the degree of application 
representation of the simple metrics.   

 
From the resulting data, the practical use of ranking or 

predicting system performance via single metrics such as 
HPL, STREAM or GUPS, seems to be quite limited, 
although the latter two metrics (which happen to be 
memory-oriented) are clearly more representative than the 
former (which happens to be floating-point-oriented).  If, 
however, information about operation types specific to a  
target application is acquired (rather painfully through 
tracing when discriminating memory access types), then a 
few simple metrics can be combined and weighted 
appropriately to predict performance and rank with about 
80% accuracy, at least in this particular fairly large study of 
quite a few HPC architectures and several HPC applications. 
 

 
8. Related Work. 

 
Several benchmarking suites have been proposed to 

represent the general performance of HPC applications.  
Besides those mentioned previously, probably the best 
known are the NAS Parallel [16] and the SPEC [17] 
benchmarking suites, the latter of which is often used to 
evaluate micro-architecture features of HPC systems.  Both, 
however, are composed of “mini-applications”, and are, 
therefore, fairly complicated to relate to the performance of 
general applications, as opposed to the simple benchmarks 
considered here.  Gustafson and Todi [8] performed seminal 
work relating “mini-application” performance to that of full 
applications, but they did not extend their ideas to large-
scale systems and applications, as this paper does.  
McCalpin [5] showed improved correlation between simple 
benchmarks and application performance, but did not extend 
the results to parallel applications.  Marin and Mellor-
Crummey [18] show a clever scheme for combining and 
weighting the attributes of applications by the results of 
simple probes, similar to what is implemented here, but 
their application studies were mostly focused on “mini 
application” benchmarks, and were not extended to parallel 
applications and systems. 

 

Methods for performance evaluations can be broken 
down into two areas [19]: structural models and 
functional/analytical models. Structural models use 
descriptions of individual system components and their 
interactions, similar to the process used for detailed 
simulations.  Functional/analytical models, on the other 
hand, separate the performance factors of a system to create 
a mathematical model.  

 
The use of detailed or cycle-accurate simulators in 

performance evaluation has been used by many researchers 
[20-24].  Detailed simulators are normally built by 
manufactures during the design stage of an architecture to 
aid in the design. For parallel machines, two simulators 
might be used, one for the processor and one for the 
network. These simulators have the advantage of 
automating performance prediction from the user’s 
standpoint. The disadvantage is that these simulators are 
proprietary and often not available to HPC users and 
Centers. Also, because they capture all the behavior of the 
processors, simulations can take on an upwards of 
1,000,000 times longer, than the real runtime of the 
application [25]. This means, to simulate 1 hour of an 
application it could take approximately 114 years of CPU 
time. Direct execution methods are commonly used to 
accelerate architectural simulations [26] but they still can 
have large slowdowns. To avoid these large computational 
costs, cycle-accurate simulators are usually only used to 
simulate a few seconds of an application. This causes a 
modeling dilemma, for most scientific applications the 
complete behavior cannot be captured in a few seconds of a 
production run.  Applications rarely spend all their time in 
one routine and their behavior may change as the 
application progresses through its simulation (in some cases 
the actual physics of the problem being solved changes).  

 
Cycle-accurate simulators are limited to only work in 

modeling the behavior of the processor for which they were 
developed, so they are not applicable to other architectures. 
In addition, the accuracy of cycle-accurate simulation can be 
questionable. Gibson et al [27] showed that simulators that 
model many architectural features have many possible 
sources for error, resulting in complex simulators that 
produce greater than 50% error. This work suggested that 
simple simulators are sometimes more accurate than 
complex ones.  

 
In the second area of performance evaluation, 

functional and analytical models, the performance of an 
application on the target machine can be described by a 
complex mathematical equation. When the equation is fed 
with the proper input values to describe the target machine, 
the calculation yields a wall clock time for that application 
on the target machine. Various flavors of these methods for 
developing these models have been researched.  Below is a 



brief summary of some of this work but due to space 
limitations it is not meant to be inclusive of all. 

 
Saavedra [28-30] proposed applications modeling as a 

collection of independent Abstract FORTRAN Machine 
tasks. Each abstract task was measured on the target 
machine and then a linear model was used to predict 
execution time. In order to include the effects of memory 
system, they measured miss penalties and miss rates to 
include in the total overhead. These simple models worked 
well on the simpler processors and shallower memory-
hierarchies of the mid 90’s. The models now need to be 
improved to account for increases in the complexity of 
parallel architectures including processors, memory 
subsystems, and interconnects.  

 
For parallel system predictions, Mendes [20-21] 

proposed a cross platform approach. Traces were used to 
record the explicit communications among nodes and to 
build a directed graph based on the trace. Sub-graph 
isomorphism was then used to study trace stability and to 
transform the trace for different machine specifications. 
This approach has merit and needs to be integrated into a 
full system for applications tracing and modeling of deep 
memory hierarchies in order to be practically useful today. 

 
Simon [22] proposed to use a Concurrent Task Graph to 

model applications. A Concurrent Task Graph is a directed 
acyclic graph whose edges represent the dependence 
relationship between nodes. In order to predict the execution 
time, it was proposed to have different models to compute 
the communication overhead, (FCFS queue for SMP and 
Bandwidth Latency model for MPI) with models for 
performance between communications events. As above, 
these simple models worked better in the mid 1990’s than 
today. 

 
Crovella and LeBlanc [23] proposed complete, 

orthogonal and meaningful methods to classify all the 
possible overheads in parallel computation environments 
and to predict the algorithm performance based on the 
overhead analysis. Our work adopts their useful 
nomenclature. 

 
Xu, Zhang, and Sun [24] proposed a semi-empirical 

multiprocessor performance prediction scheme. For a given 
application and machine specification, the application first 
is instantiated to thread graphs which reveal all the possible 
communications (implicit or explicit) during the 
computation. They then measured the delay of all the 
possible communication on the target machine to compute 
the elapsed time of communication in the thread graph. For 
the execution time, of each segment in the thread graph 
between communications, they use partial measurement and 
loop iteration estimation to predict the execution time. The 

general idea of prediction from partial measurement is 
adopted here. 

 
Abandah and Davidson, [25] and Boyd et al [26] 

proposed hierarchical modeling methods for parallel 
machines that is kindred in spirit to our work, and was 
effective on machines in the early and mid 90’s. 

A group of expert performance modelers at Los Alamos 
have been perfecting the analytical model of applications 
important to their workload for years [38-41]. These models 
are quite accurate in their predictions, although the methods 
for creating them are time consuming and not necessarily 
easily done by non-expert user [42].  
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11. Appendix. 
 

Table 6. AVUS Standard observed times-to-solution. 
Run times in seconds  

Machine 32-CPUs 64-CPUs 128-CPUs 
ERDC O3800 12737 5881 2733 
MHPCC P3 15051 8354 3779 
NAVO P3 18195 8601 3870 
ASC SC45 6993 3334 1617 
MHPCC 690 1.3 10286 4932 2368 
ARL 690 1.7 8625 4466 1935 
ARL Xeon 9115 4686 2422 
ARL Altix 5872 2842 --- 
NAVO 655 6703 3115 1460 
ARL Opteron 5527 2747 1401 
 
Table 7. AVUS Large observed times-to-solution. 

Run times in seconds  
Machine 128-CPUs 256-CPUs 384-CPUs 

ERDC O3800 18103 8577 5736 
MHPCC P3 40177 12123 7706 
NAVO P3 26362 12379 8042 
ASC SC45 10412 5199 3394 
MHPCC 690 1.3 14751 7591 --- 
ARL 690 1.7 12718 --- --- 
ARL Xeon 13654 6890 --- 
ARL Altix --- --- --- 
NAVO 655 9844 4576 2949 
ARL Opteron 8599 4273 2884 
 
Table 8. HYCOM Standard observed times-to-solution. 



Run times in seconds  
Machine 59-CPUs 96-CPUs 124-CPUs 

ERDC O3800 6619 4329 4449 
MHPCC P3 10453 3912 2992 
NAVO P3 7129 4420 3348 
ASC SC45 3594 2469 1949 
MHPCC 690 1.3 3532 2939 2661 
ARL 690 1.7 2586 1675 1510 
ARL Xeon 3705 2504 1991 
ARL Altix 2263 1462 1176 
NAVO 655 2010 1281 990 
ARL Opteron 1936 1268 1031 
 
 
 
 
 
 
 
 
 
 
 
Table 9. Overflow2 Standard observed times-to-solution. 

Run times in seconds  
Machine 32-CPUs 48-CPUs 64-CPUs 

ERDC O3800 10875 8008 5497 
MHPCC P3 14939 --- 7371 
NAVO P3 14939 --- 7371 
ASC SC45 6329 --- 4109 
MHPCC 690 1.3 9156 --- 4701 
ARL 690 1.7 --- --- --- 
ARL Xeon --- --- --- 
ARL Altix 3143 2389 1730 
NAVO 655 5454 4031 2908 
ARL Opteron --- --- --- 
 
Table 10. RF-CTH2 observed times-to-solution. 

Run times in seconds  
Machine 16-CPUs 32-CPUs 64-CPUs 

ERDC O3800 6182 3268 1793 
MHPCC P3 6557 3475 1869 
NAVO P3 6557 3475 1869 
ASC SC45 3134 2170 1005 
MHPCC 690 1.3 2777 1813 1275 
ARL 690 1.7 2154 1660 5156 
ARL Xeon 4203 2308 1368 
ARL Altix --- 1122 614 
NAVO 655 1982 1075 607 
ARL Opteron 1882 1072 671 
 
 


