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Abstract:  This work builds on an existing performance modeling framework that has been 
proven effective on a variety of HPC systems.  This paper will illustrate the framework’s power by 
creating blind predictions for three systems as well as establishing sensitivity studies to advance 
understanding of observed and anticipated performance of both architecture and application. The 
predictions are termed blind because the results were completed without any knowledge of the real 
runtime of the applications; the real performance was then ascertained independently by a third-
party. Two applications, Cobalt60 and HYCOM, were predicted to illustrate the frameworks 
accuracy and functionalities.   

Keywords: Performance Modeling; Performance Evaluation; High Performance 
Computing 

1. Introduction  

Performance of a parallel application on a High Performance Computing (HPC) 
machine is resultant from at least factors of algorithm, implementation, the compiler, 
operating system, underlying processor architecture, and interconnect technologies.  
Therefore one might conclude that performance models for scientific applications on 
these complex systems must account for all of the above system and application 
attributes.  This work shows that a framework based on simplicity, including only the 
major factors in performance, can predict an application’s performance. 

 
This framework is designed to have tools that combine simulation and analytical 

modeling to automate the entire performance prediction process for an application. The 
design implements easy to use tools that create an accurate model in a reasonable 
amount of time for users and centers. In previous work [25-27], this framework was 
described and validated to accurately model and improve understanding of the 
performance for small parallel scientific kernels and applications on different HPC 
architectures.  One possible criticism to the work was unlimited access and familiarity 
with the target systems.  In this research we challenged the general methodology to 
predict performance of scientific applications on current HPC platforms, to which access 
was limited to the running of two small benchmark “probes” to capture low-level 
performance attributes of the machines. The probes used were MAPS [30], a probe to 
measure the memory bandwidth of a processor or SMP node, and maps_ping,[31], a 
ping pong benchmark to measure bandwidth and latency across two processors or SMP 
nodes. The applications performance was predicted with only limited benchmark data 
from the target machines. Predictions of the applications were completed without any 
knowledge of the real runtime (blind predictions). The results were evaluated using 
sensitivity studies, to further explain the observed performance of the application.   

 
The paper will briefly review the different pieces of the framework in section 2. 

Section 3 applies the framework to the “real world” challenge, showing blind 
performance predictions for two different large scientific applications. Section 4 will 
illustrate processor and network investigations enabled by the framework on those 



applications.  Section 5 describes the background and related work, some of which this 
is based on. 

2.  A Performance Modeling Framework  

In the pursuit of rapid, useful, and accurate performance models, that account for 
complexities of the memory hierarchy and work with all arbitrary applications on all 
arbitrary machines, the performance modeling framework’s design is based on the 
principles of isolation and simplicity. Measuring the various performance factors in 
isolation enables independent performance investigations of each system feature; 
exhibited in the sensitivity studies of Section 4. This design feature allows for a dynamic 
framework that, when coupled with the simplicity feature which dictates the framework 
be based on as few parameters as possible, retains the ability to easily add and remove 
significant factors as needed to sufficiently depict a given application or system. A 
detailed description of the framework can be found in Snavely et al [26]. 

 
Based on the hypothesis that a parallel application’s performance is often dominated 

by two major factors: 1) single processor performance and 2) use of the network, the 
framework was developed to model these factors along with only some of the features of 
modern, highly complex processor. Starting simple and only adding complexity when 
needed to account for observed performance, the framework consists of a single 
processor model, combined with a communication model (see Figure 1). Clearly, there 
are other factors that can affect performance, but often processor and network 
performance are sufficient for accurate performance prediction (~10% error) while 
adding more factors only increases the complexity of the model with nominal gains (~1-
2%) in accuracy [26].  

Single-Processor Model Communication Model 
(Network)

Combination of both models 
(Convolution Methods)

Performance prediction of Application 

Figure 1. Performance prediction framework for a parallel application. 

  
The single-processor and network models both use independent Application 

Signatures and Machine Profiles, which are combined using Convolution Methods. An 
Application Signature is a summary of the operations to be carried out by an application, 
including memory and communication access patterns, independent of any particular 
machine. Application Signatures are collected via traces. For the single-processor model 
these are memory traces collected via the MetaSim Tracer. For the communication 
model these are MPI traces collected by MPIDtrace.  

 
A Machine Profile is measurements of the rates at which a machine can perform basic 

operations, including message passing, memory loads and stores, and floating-point 
operations, independent of any particular application. This data is collected via low level 
benchmarks or probes. To arrive at a performance prediction for an application, its 
Application Signature is mapped to the corresponding performance in the Machine 
Profile of the machine on which the application is being predicted, by the Convolution 



Methods.  These mappings are automated by the MetaSim Convolver for the single-
processor model and Dimemas for the communications model. The convolutions of the 
Application Signature and Machine Profile result in a runtime, which the application 
should achieve on the target machine. The framework is composed of tools to automate 
each of the components and steps in the performance prediction of an application. This 
allows anyone to feed an application through the framework and arrive at a runtime 
prediction on any HPC system.  

 
Comparing a predicted run time with the actual runtime is the method we use for 

validating the model for that application [18]. Validation of models for two different 
scientific applications is covered in section 3. 

  
 
3. HPC Application Prediction and Model Verification 

 
In sections 3.1-3.2, we apply the framework to two scientific applications to predict 

their performance on multiple HPC architectures.  Cobalt60 and HYCOM predictions 
are all “blind” predictions.  “Blind” predictions imply that the predictions were created 
before the modelers had full access to the machine and the real runtimes of the 
applications were not collected by the modelers and were not shown to the modelers 
until after the predictions were complete.  Only small benchmarks were run on the target 
machines to collect a machine profile. These benchmarks only used a few CPUs of the 
target machine but were used in predicting performance of an application running on 
hundreds of CPUs. The advantage of this is that typically in building large (>1000 
CPUs) HPC machines a small prototype will be available long before the full system can 
be built. The benchmarks can be run on the prototype system and predict the full system 
before it is built. 

  
MetaSim and MPI (mpidtrace) traces were collected on independent machines, PWR3 

system Blue Horizon at the San Diego Super Computer Center (SDSC) and an SC45 
based system, Lemieux, located at Pittsburgh Supercomputing Center (PSC).  Scientists 
local to the target systems were responsible for collecting the real time runs and both 
predicted times and real runtimes were given to a third party to evaluate.  The verdict as 
to the accuracy of the predictions was handed down at a meeting [31] by the funding 
agency.  
 

3.1 HYCOM (HYbrid Coordinate Ocean Model) 

HYCOM is a primitive equation general ocean circulation model using density, 
pressure, and sigma coordinates in the vertical.  It evolved from the Miami Isopycnic-
Coordinate Ocean Model (MICOM) HYCOM was developed to address known 
shortcoming of the MICOM vertical coordinate scheme.  

 
The data sets run for these predictions were a 26-layer 1/12-degree fully global data 

set.   The smaller data set executes HYCOM for 1 model day and requires about 0.75 
GB of memory per processor and approximately 4 GB of globally accessible scratch   
disk.  The larger data set executes HYCOM for 0.3125 model days and requires about 
0.9 GB of memory per processor and about 23 GB of globally accessible scratch disk.   

 
HYCOM was modeled on three systems for three different processor counts.  The 

standard input set was used on 59 and 96 processor counts and the large input was used 
for 234-processor count. The results are seen in table 1. An error of around 20% is 
considered acceptable to our user/funding agency for the purpose of getting a general 
idea of the application’s performance on the target machine. Table 1 show that 
predictions for the PWR3 system are well below the acceptable limit. The predictions for 
the SC45 have 2 of the 3 prediction well below the acceptable limit and the third 
prediction only slightly above the limit. For the PWR4 system 2 of the 3 predictions are 
within the limit with the third prediction being off the limit. The large error from the 
third prediction can be partially attributed to the current framework’s inability to 



accurately predict I/O performance. The PWR4 system has two different file systems, 
NSF and GPFS with very different performances. This combined with the fact that at the 
234 CPU run I/O can contribute to nearly 10% of the run may account for the large error 
for that prediction.  

 
Table 1. Blind Performance prediction of HYCOM application on three machines. 

 

Habu (IBM PWR3) Emerald (Compaq SC45) # of 
CPUs Real 

Time (s) 
Predicted 
Time (s) 

% Error* Real 
Time (s) 

Predicted 
Time(s) 

% Error 

59 4558 4359 4.6 2382 1960 21.5 
96 2605 2624 -0.7 1432 1378 3.9 

234 5612 5311 5.7 3043 3300 -7.8 

 
Marcellus (IBM PWR4) # of 

CPUs Real 
Time (s) 

Predicted 
Time(s) 

% Error 

59 2081 1799 15.7 
96 1205 1210 -0.4 

234 2692 2062 30.6 

 
 
 
 
 
 
 

*% Error = (Real time – Predicted Time)/ (Real Time)*100 

3.2 Cobalt60 

Cobalt60 is an unstructured Euler/Navier-Stokes flow solver that is routinely used to 
provide quick, accurate aerodynamic solutions to complex CFD problems. Cobalt60 
handles arbitrary cell types as well as hybrid grids that give the user added flexibility in 
their design environment. It is a robust HPC application that solves the compressible 
Navier-Stokes equations using an unstructured Navier-Stokes solver. It uses Detached-
Eddy Simulation (DES), which is a combination of Reynolds-averaged Navier-Stokes 
(RANS) models, and Large Eddy Simulation (LES).   

 
The predictions were for the large input data set from Department of Defense’s (DoD) 

TI-04 procurement set. The data set simulated a 3-D model of turbulent viscous flow 
over the geometrics of a wind tunnel with an airplane wing with a flap and endplates that 
has 7,287,723 cells.  

 
Cobalt60 was modeled for three systems on 64 processors.  The results for modeled, 

real time and percent error for a large input are exhibited in table 2. They show that all 
three predictions are under the acceptable limit of error, which in turn validates the 
accuracy of the model. 

 
Table 2. Blind Performance prediction of Cobalt60 application on large input data. 
 

Habu (IBM PWR3) Emerald (Compaq SC45) # of 
CPUs Real Time 

(s) 
Predicted 
Time (s) 

% 
Error 

Real 
Time (s) 

Predicted 
Time(s) 

% Error 

128 3672.07 4092.90 -11.5 2352 1956 20.2 
 Marcellus (IBM PWR4) # of 

CPUs Real Time 
(s) 

Predicted 
Time(s) 

% 
Error 

64 1631 1865 -12.5 

 
 
 
 

 



Based on the results above, the majority of predictions for the two applications were 
within acceptable range of error. This helps in the validation of the methodology applied 
to full-scale HPC applications. We are currently investigating how to improve accuracy. 
Having verified a performance model’s accuracy, one can proceed to investigating 
independent performance factors of the hardware to establish how they effect an 
application’s overall performance. The sensitivity studies that follow were established 
for both applications as they were described in section 3. 

4. Performance Sensitivity Studies 

The usability of a model, that can accurately predict application performance based 
on properties of the code and the machine, can be extended to carry out precise modeling 
experiments. Such research can be used to quantify the performance impact of different 
machine hardware components. This information, for example, would be valuable in 
machine procurement for a workload comprised of these applications. 

 
The following exercises can be applied to any size problem and for any application 

modeled via the framework. As an example, the models created and verified in the 
previous section, were used to explain and quantify observed performance of the 
processor and network.  The study observed the performance effects of the two different 
applications for permutations of a Power3 system architecture via machine-independent 
performance sensitivity studies.   

 
The performance model for Cobalt60 on 64 processors was used to investigate the 

general performance effects of a machine’s network and processor on the application. 
The starting point for the investigation was the performance of the application on Habu, 
which is a 4-way IBM Power3 system with a Colony switch located at Naval 
Oceanographic Office(NAVO). The model was used to investigate the effects of 
improving different hardware components by a factor of four. The data was normalized 
to the original performance on Habu, referred to as the “base” case. The cases were 
broken down as follows: Case 1 represents the performance of Cobalt60 run on the 
“base” machine configuration. Case 2 shows performance of improving peak network 
bandwidth by a factor of 4 and case 3 illustrates performance effect when the network 
latency was reduced by a factor of four. Case 4 depicts Habu with a complete network 
upgrade, four-fold improvements to the network latency and  peak bandwidth. Case 5 
illustrates the performance effects Cobalt60 would see if the Habu “processors” were 
upgraded four-fold, by increasing the floating-point rate of the CPU and memory 
subsystem. Case 5 was included to get a general idea of how processor performance 
affects the application’s performance. It is understood that given the gap between 
memory and float-point performance on a processor that increasing both these 
components by an even factor of four is not realistic. But the results of Case 5 would 
show if processor performance was a significant factor or not and if so further studies 
could be done to split the individual components of memory and floating-point 
performance. 



 
Figure 2. Sensitivity study for Cobalt60 for 64 processors. 

 
 
At this size, Cobalt60 demonstrates sensitivity to the “processor” upgrade, (faster 

processor and memory subsystem) as seen in the case 5, but not the network 
enhancements. The high-level implication of these sensitivity studies directs upgrades 
for future machines, with respect to Cobalt60 performance, to focus on improving the 
processor.  Having identified the principle performance attribute for Cobalt60 run on 64 
CPUs we can dissect the “processor” influences further via a more focused sensitivity 
study.  
 

Figure 3 “zooms in” to study the effects of independent processor attributes on 
performance for Cobalt60. In the above results for Cobalt60, the processor 
improvements show that modeled execution time would decrease by having a four-times 
better “processor” (case 5 figure 2)  “Improving the processor” implies not only an 
improvement in rate with respect to four-fold floating-point issue but also quadrupling 
the bandwidth and quartering the latency to all levels of the memory hierarchy. Figure 3 
breaks down how a better processor would perform relative to the Power 3 processor for 
Cobalt60 if it had these performance improvements. Case 2 represents a four-fold 
improvement in the floating-point rate of the processor. Case 3 shows a two times faster 
L1 cache bandwidth, while case 4 shows a two times faster L1 and L2 cache bandwidth. 
Case 5 represents a two times faster L1 and L2 cache bandwidth as well as a two times 
faster main memory bandwidth.  

 



 
Case 2 in Figure 3 shows that Cobalt60 at this size is sensitive to the floating-point 

rate of the processor. However it would benefit more by improving bandwidth to 
secondary cache and main memory. Cases 4 and 5 imply that since improvements to 
secondary cache and main memory show the most performance benefits, that is probably 
where the application’s data set is residing for most of the runtime. Such information 
may be of use to a code developer for code tuning.  

Figure 3. Cobalt60 Node Performance sensitivity study for 64 CPUs. 

 
Fashioned similarly to the sensitivity studies above, we observed the application 

behavior for a series of HYCOM studies for three CPU counts on two different size data 
sets. Figures 4, 5 and 6 mimic the study conducted in figure 2, in which four-fold 
improvements where made to the processor and network. Figure 4 represents the large 
data set for 234 processors, figure 5, the standard input set on 59 CPUs and figure 6 the 
standard data input set on 96 CPUs.  Broken down: Case 1 represents the base 
performance of HYCOM on HABU. Case 2 the performance increase of four-fold 
network bandwidth enhancement. Case 3 illustrates the performance response to 
improved latency and case 4 performance attributed to both network bandwidth and 
latency improvements. Case 5 shows performance related to the processor upgrades. 



 

Figure 4. HYCOM sensitivity study for 234 CPUs.

Figure 5. HYCOM sensitivity study for 59 CPUs. 



Figure 6. HYCOM sensitivity study for 96 CPUs. 

 
 
In Figures 4-6, case 5 exemplifies HYCOMs sensitivity to the improvements in the 

processor performance; this behavior can be observed across all processor counts.  It can 
also be deduced in cases 2 through 4 that there would be no substantial benefit to 
reducing the network latency or increasing bandwidth.  

 
These sensitivity studies can be used to evaluate application price performance. As 

illustrated in the previous three figures, HYCOM performance is most influenced by 
improving the “processor”. It should be noted that while all three models reveal 
performance boosts, HYCOM running on 96 processors, standard test case, saw the 
biggest performance enhancement with respect to its base performance.  HYCOM on 59 
CPUs standard test case depicted the second-most and 234 CPU large test case the least, 
but why? To investigate the individual features, studies were conducted similar to the 
sensitivity studies in figure 4. Using the HYCOM models at 234, 96 and 59 CPUs, the 
memory bandwidth and floating point operations were improved to exhibit their 
influence.  In the following three figures the same set up as figure 3 is used. Case 1 is the 
base case of HABU. Case 2 shows the performance effects when the MFLOP rate of the 
processor is increased by a factor of four. Case 3 shows the performance effects when 
the L1 cache memory bandwidth is increased by a factor of two. Case 4 illustrates the 
effects when both L1 and L2 cache bandwidth are increased by a factor of two. Case 5 
displays the effects when L1 and L2 cache bandwidths are increase as well as memory 
bandwidth by a factor of two. 

  
 

 
 
 



 
 

Figure 7. HYCOM processor study for 234. 

 
 
 
 
 
 
 
 

 

Figure 8. HYCOM processor study for 59 CPUs. 



 
By scrutinizing the previous three figures, it can be observed that, by improving the 

MFLOPs four fold, performance is improved minimally for all three sizes even on the 
different size data sets.  More interesting however are the observations that can be made 
by modifying the memory structure. Case 5 shows, for all three models, that the overall 
performance is influenced most by increasing the performance of main memory. An 
interesting comparison between figures 8 and 9 shows that even with the same size data 
set and more processors, the 96 CPU run is still affected most by performance 
improvements to main memory. One might think that as the processor count increased 
from 59 to 96 CPUs that the data would move more into cache. Figure 9 illustrates that 
because performance improvements to main memory affect the over all performance the 
most, then the majority of the data is residing in main memory not in cache.  

Figure 9. HYCOM processor study for 96 cpus. 

5. Background and Related Work 

Methods for performance evaluations can be broken down into two areas [1]: 
structural models and functional and analytical models. Structural models use 
descriptions of individual system components and their interactions, such as detailed 
simulation models. The second area, functional and analytical models, separates the 
performance factors of a system to create a mathematical model.  

 
The use of detailed or cycle-accurate simulators in performance evaluation has been 

used by many researchers [2-6].  Detailed simulators are normally built by manufactures 
during the design stage of an architecture to aid in the design. For parallel machines, two 
simulators might be used, one for the processor and one for the network. These 
simulators have the advantage of automating performance prediction from the user’s 
standpoint. The disadvantage is that these simulators are proprietary and often not 
available to HPC users and Centers. Also, because they capture all the behaviors of the 
processors, simulations generally take 1,000,000 times longer, than the real runtime of 
the application [7]. This means, to simulate 1 hour of an application it would take 
approximately 114 years of CPU time. Direct execution methods are commonly used to 
accelerate architectural simulations [8] but they still have large slowdowns. To avoid 
these large computational costs, cycle-accurate simulators are usually only used to 
simulate a few seconds of an application. This causes a modeling dilemma, for most 
scientific applications the complete behavior cannot be captured in a few seconds of a 
production run.  Applications rarely spend all their time in one routine, and their 
behavior may change as the application progresses through its simulation (in some cases 
the actual physics of the problem being solved changes).  

 



Cycle-accurate simulators are limited to only work in modeling the behavior of the 
processor for which they were developed, so they are not applicable to other 
architectures. In addition, the accuracy of cycle-accurate simulation can be questionable. 
Gibson et al [9] showed that simulators that model many architectural features have 
many possible sources for error, resulting in complex simulators that produce greater 
than 50% error. This work suggested that simple simulators are sometimes more 
accurate than complex ones.  

 
In the second area of performance evaluation, functional and analytical models, the 

performance of an application on the target machine can be described by a complex 
mathematical equation. When the equation is fed with the proper input values to describe 
the target machine, the calculation yields a wall clock time for that application on the 
target machine. Various flavors of these methods for developing these models have been 
researched.  Below is a brief summary of some of this work but due to space limitations 
it is not meant to be inclusive of all. 

 
Saavedra [10-12] proposed applications modeling as a collection of independent 

Abstract FORTRAN Machine tasks. Each abstract task was measured on the target 
machine and then a linear model was used to predict execution time. In order to include 
the effects of memory system, they measured miss penalties and miss rates to include in 
the total overhead. These simple models worked well on the simpler processors and 
shallower memory-hierarchies of the mid 90’s. The models now need to be improved to 
account for increases in the complexity of parallel architectures including processors, 
memory subsystems, and interconnects.  

 
For parallel system predictions, Mendes [13-14] proposed a cross platform approach. 

Traces were used to record the explicit communications among nodes and to build a 
directed graph based on the trace. Sub-graph isomorphism was then used to study trace 
stability and to transform the trace for different machine specifications. This approach 
has merit and needs to be integrated into a full system for applications tracing and 
modeling of deep memory hierarchies in order to be practically useful today. 

 
Simon [15] proposed to use a Concurrent Task Graph to model applications. A 

Concurrent Task Graph is a directed acyclic graph whose edges represent the 
dependence relationship between nodes. In order to predict the execution time, it was 
proposed to have different models to compute the communication overhead, (FCFS 
queue for SMP and Bandwidth Latency model for MPI) with models for performance 
between communications events. As above, these simple models worked better in the 
mid 1990’s than today. 

 
Crovella and LeBlanc [16] proposed complete, orthogonal and meaningful methods to 

classify all the possible overheads in parallel computation environments and to predict 
the algorithm performance based on the overhead analysis. Our work adopts their useful 
nomenclature. 

 
Xu, Zhang, and Sun [17] proposed a semi-empirical multiprocessor performance 

prediction scheme. For a given application and machine specification, the application 
first is instantiated to thread graphs which reveal all the possible communications 
(implicit or explicit) during the computation. They then measured the delay of all the 
possible communication on the target machine to compute the elapsed time of 
communication in the thread graph. For the execution time, of each segment in the 
thread graph between communications, they use partial measurement and loop iteration 
estimation to predict the execution time. The general idea of prediction from partial 
measurement is adopted here. 

 
Abandah and Davidson, [18] and Boyd et al [19] proposed hierarchical modeling 

methods for parallel machines that is kindred in spirit to our work, and was effective on 
machines in the early and mid 90’s. 

 



A group of expert performance modelers at Los Alamos have been perfecting the 
analytical model of two applications important to their workload for years [20-23]. 
These models are quite accurate in their predictions, although the methods for creating 
them are time consuming and not necessarily easily done by non-expert user [24]. Also, 
the models require input related to the applications data set that is not automated. 

 
 

6. Conclusion  

The simple framework was proven effective in a challenging scenario whereby a third 
party provided limited benchmark information in advance and then verified the accuracy 
of the performance predictions subsequently. It was shown effective for predicting the 
performance of machines on full applications when only low-level performance features 
of the machines were known in advance.  The framework was rendered useful for price 
performance evaluations via sensitivity studies. The studies can determine beneficial 
architectural features for a workload to create reasonable procurement standards based 
on the computational demands of the target workload. It is reasonable to tune current 
systems and influence the implementation of near-future systems informed by the 
computational demands of the target workload with the performance information from 
application models. It is also reasonable to design future systems based on the quantified 
performance implications of hardware features for characterized workloads.  
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