
1

Performance Modeling of HPC Applications

A. Snavelya, X. Gaoa, C. Leea, L. Carringtonb, N. Wolterb, J. Labartac, J. Gimenezc, P. Jonesd

aUniversity of California, San Diego, CSE Dept. and SDSC, 9300 Gilman Drive, La Jolla, Ca.
92093-0505, USA

bUniversity of California, San Diego, SDSC, 9300 Gilman Drive, La Jolla, Ca. 92093-0505, USA

cCEPBA, Jordi Girona 1-3, Modulo D-6, 08034 Barcelona, Spain

dLos Alamos National Laboratory, T-3 MS B216, Los Alamos, N.M. USA

This paper describes technical advances that have enabled a framework for performance modeling
to become practical for analyzing the performance of HPC applications.

1. Introduction

Performance models of applications enable HPC system designers and centers to gain insight into the
most optimal hardware for their applications, giving them valuable information into the components
of hardware (for example processors or network) that for a certain investment of time/money will
give the most bene�t for the applications slated to run on the new system. The task of developing
accurate performance models for scienti�c application on such complex systems can be di�cult. In
section 2 we briey review a framework we developed [1] that provides an automated means for
carrying out performance modeling investigations. In section 3 we describe ongoing work to lower the
overhead required for obtaining application signatures and also how we increased the level-of-detail of
our convolutions with resulting improvements in modeling accuracy. In section 4 we show how these
technology advances have enabled performance studies to explain why performance of applications
such as POP (Parallel Ocean Program) [2], NLOM (Navy Layered Ocean Model) [3], and Cobalt60
[4] vary on di�erent machines and to quantify the performance e�ect of various components of the
machines. In section 5 we generalize these results to show how these application's performance would
likely improve if the underlying target machines were improved in various dimensions (as for example
on future architectures).

2. Brief Review of a Convolution-based Framework for Performance Modeling

In a nutshell, we map a trace of program events to their expected performance established via
separately measured or extrapolated machine pro�les. We combine single-processor models along with
the parallel communications model, to arrive at a performance model for a whole parallel application.
We emphasize simplicity in the models (leaving out, for example, second order performance factors
such as instruction level parallelism and network packet collisions) while applying these simple models
at high resolution. A user of the framework can input the performance parameters of an arbitrary
machine (either existing and pro�led, or under-design and estimated) along with instruction/memory-
access-pattern signatures and communications signatures for an application to derive a performance
model. The convolver tools calculate the expected performance of the application on the machine
in two steps, �rst by modeling the sections between communications events and then by combining
these models into a parallel model that includes MPI communications. Detailed descriptions of our
performance modeling framework can be found in papers online at the Performance Modeling and
Characterization Laboratory webpages at http://www.sdsc.edu/pmac/Papers/papers.html

2

3. Reducing Tracing Time

For portability and performance reasons we ported our tracing tool, MetaSim Tracer, to be based
on DyninstAPI [5] [6]. Previously it was based on the ATOM toolkit for Alpha processors. This
meant applications could only be traced on Alpha-based systems. A more critical limitation was due
to the fact that ATOM instruments binaries statically prior to execution. This means tracing cannot
be turned on and o� during execution. DyninstAPI is available on IBM Power3, IBM Power4, Sun,
and Intel processors. It allows code instrumentation via runtime patching. The image of the running
program can be modi�ed during execution to add instrumentation. The instrumentation can be
dynamically disabled. The opportunity was to enable a feature whereby MetaSim Tracer can sample
performance counters by adding instrumentation during sample phases. The program can be de-
instrumented between sample phases. Slowdown due just to minimal hooks left in the code to allow
re-instrumentation should be greatly reduced between sample phases. An open question remained
that we wished to answer before proceeding; whether application traces based on sampling could
yield reasonably accurate performance models. Some previous work [7] showed this is possible and in
recent work we also demonstrated it can via experiments with the ATOM based version of MetaSim
Tracer. In these experiments we turned on and o� the processing of instrumented sections (we could
not actually turn o� the instrumentation in the ATOM version, so we just switched o� processing in
the callback routines). In this way we were able to explore the verisimilitude of interpolated traces
based on sampled data, and we showed that these could indeed be usefully accurate [8].
Encouraged by these results we then implemented a DyninstAPI version of MetaSim Tracer so that

the duration and frequency of sampling periods (counted in CPU cycles) is under the control of the
user. The user inputs two parameters: 1) SAMPLE = number of cycles to sample 2) INTERVAL =
number of cycles to turn o� sampling. The behavior of the program when sampling is turned o� is
estimated by interpolation. Thus MetaSim Tracer now enables a tradeo� between time spent tracing
and verisimilitude of the resulting trace obtained via sampling. A regular code may require little
sampling to establish its behavior. A code with very random and dynamic behaviors may be di�cult
to characterize even from high sampling rates. Practically, we have found techniques for generating
approximated traces via sampling can reduce tracing time while preserving reasonable trace �delity.
Also we found that representing traces by a dynamic CFG decorated with instructions (especially
memory instructions) characterized by memory access pattern can reduce the size of stored trace �les
by three orders of magnitude [9]. These improvements in the space and time required for tracing have
now rendered full-application modeling tractable. In some cases it is possible to obtain reasonably
accurate traces and resulting performance models from 10% or even 1% sampling.

4. Modeling Application Performance on HPC Machines

4.1. Parallel Ocean Program (POP)
The Parallel Ocean Program (POP) [2] was speci�cally developed to take advantage of high perfor-

mance computer architectures. POP has been ported to a wide variety of computers for eddy-resolving
simulations of the world oceans and for climate simulations as the ocean component of coupled climate
models. POP has been run on many machines including IBM Power3, and IBM Power4 based systems,
Compaq Alpha server ES45, and Cray X1. POP is an ocean circulation model that solves the three-
dimensional primitive equations for uid motions on the sphere under hydrostatic and Boussinesq
approximations. Spatial derivatives are computed using �nite-di�erence discretizations, formulated
to handle any generalized orthogonal grid on a sphere, including dipole, and tripole grids that shift
the North Pole singularity into land masses to avoid time step constraints due to grid convergence.
The benchmark used in this study is designated `x1' (not to be confused with the Cray X1 machine,
one of the machines where we ran the benchmark); it has coarse resolution that is currently being
used in coupled climate models. The horizontal resolution is one degree (320x384) and uses a displace-
pole grid with the pole of the grid shifted into Greenland and enhanced resolution in the equatorial
regions. The vertical coordinate uses 40 vertical levels with smaller grid spacing near the surface to
better resolve the surface mixed layer. This con�guration does not resolve eddies, and therefore it
requires the use of computationally intensive subgrid parameterizations. This con�guration is set up
to be identical to the actual production con�guration of the Community Climate System Model with

3

the exception that the coupling to full atmosphere, ice and land models has been replaced by analytic
surface forcing. We applied the modeling framework to POP. The benchmark does not run so long
as to require sampling. Table 1 shows real vs. model-predicted wall-clock execution times for several
machines at several processor counts. We only had access to a small 16 CPU Cray X1. The model is
quite robust on all the machines modeled with an average error of only 6.75% where error is calculated
as (Real Time - Predicted Time)/(Real Time) *100.

Table 1
Real versus Predicted-by-Model Wall-clock Times for POP Benchmark

Cray X1 at 16 processors had real time 9.21 seconds, predicted time 9.79 seconds, error 6.3 percent

of CPUs Real Time (sec) Predicted Time (sec) Error%

Blue Horizon Power3 8-way SMP Colony switch

16 204.92 214.29 -5%

32 115.23 118.25 -3%

64 62.64 63.03 1%

128 46.77 40.60 13%

Lemeiux Alpha ES45 4-way SMP Quadrics switch

16 125.35 125.75 0%

32 64.02 71.49 -11%

64 35.04 36.55 -4%

128 22.76 20.35 11%

Longhorn Power4 32-way SMP Colony switch

16 93.94 95.15 -1%

32 51.38 53.30 -4%

64 27.46 24.45 11%

128 19.65 15.99 16%

Seaborg Power3 16-way SMP Colony switch

16 204.3 200.07 2%

32 108.16 123.10 -14%

64 54.07 63.19 -17%

128 45.27 42.35 6%

4.2. Navy Layered Ocean Model (NLOM)
The Navy's hydrodynamic (iso-pycnal) non-linear primitive equation layered ocean circulation

model [3] has been used at NOARL for more than 10 years for simulations of the ocean circula-
tion in the Gulf of Mexico, Carribean, Paci�c, Atlantic, and other seas and oceans. The model retains
the free surface and uses semi-implicit time schemes that treat all gravity waves implicitly. It makes
use of vertically integrated equations of motion, and their �nite di�erence discretizations on a C-grid.
NLOM consumes about 20% of all cycles on the supercomputers run by DoD's High Performance
Computing Modernization Program (HPCMP) including Power3, Power4, and Alpha systems. In
this study we used a synthetic benchmark called synNLOM that is representative of NLOM run with
data from the Gulf of Mexico and has been used in evaluating vendors vying for DoD TI-02 pro-
curements. Even though synLOM is termed a `benchmark' it is really a representative production
problem and runs for more than 1 hour un-instrumented on 28 CPUs (a typical con�guration) on BH.
Thus, in terms of runtime, it is an order-of-magnitude more challenging to trace than POP x1. We
used 1% sampling and the resulting models yielded less than 5% error across all of the same machines

4

Figure 1. Modeled Contributions to Lemeuix.s (TSC) performance improvement over Blue Horizon
on POP x1 at 16 CPUs.

as in the above POP study. We estimate a full trace would take more than a month to obtain on
28 processors! NLOM is reasonably regular and the low error percentages from 1% sampling do do
not seem to justify doing a full trace although the code is important enough to DoD that they would
provide a month of system time for the purpose.

4.3. Cobalt60
Cobalt60 [4] is an unstructured Euler/Navier-Stokes ow solver that is routinely used to provide

quick, accurate aerodynamic solutions to complex CFD problems. Cobalt60 handles arbitrary cell
types as well as hybrid grids that give the user added exibility in their design environment. It is a
robust HPC application that solves the compressible Navier-Stokes equations using an unstructured
Navier-Stokes solver. It uses Detached-Eddy Simulation (DES) which is a combination of Reynolds-
averaged Navier-Stokes(RANS) models and Large Eddy Simulation (LES). We ran 7 iterations of a
tunnel model of an aircraft wing with a ap and endplates with 2,976,066 cells that runs for about
an hour on 4 CPUs of BH. We used a 2-step trace method to ascertain in the �rst phase that 70% of
the time is spent in just one basic block. We then applied 1% sampling to this basic block and 10%
sampling to all the others in the second step of MetaSim tracing. We veri�ed models for 4, 32, 64,
and 128 CPUS on all the machines used in the previous study with average of less than 5% error.

5. Performance Sensitivity Studies

Reporting the accuracy of performance models in terms of model-predicted time vs. observed time
(as in the previous section) is mostly just a validating step for obtaining con�dence in the model.
More interesting and useful is to explain and quantify performance di�erences and to play `what if'
using the model. For example, it is clear from Table 1 above that Lemeiux is faster across-the-board
on POP x1 than is Blue Horizon. The question is why? Lemeuix has faster processors (1GHz vs.
375 MHz), and a lower-latency network (measured ping-pong latency of about 5 ms vs. about 19
ms) but Blue Horizon.s network has the higher bandwidth (ping-pong bandwidth measured at about
350 MB/s vs. 269 MB/s with the PMaC probes). Without a model one is left with a conjecture `I
guess POP performance is more sensitive to processor performance and network latency than network
bandwidth'.
With a model that can accurately predict application performance based on properties of the code

and the machine, we can carry out precise modeling experiments such as that represented in Figure
1. We model perturbing the Power3-based, Colony switch Blue Horizon (BH) system into the Alpha
ES640-based, Quadrics switch system (TCS) by replacing components. Figure 1 represents a series

5

Figure 2. POP Performance Sensitivity for 128 cpu POP x1.

of cases modeling the perturbing from BH to TCS, going from left to right. The four bars for each
case represent the performance of POP x1 on 16 processors, the processor and memory subsystem
performance, the network bandwidth, and the network latency all normalized to that of BH. In Case 1,
we model the e�ect of reducing the bandwidth of BH's network to that of a single rail of the Quadrics
switch. There is no observable performance e�ect as the POP x1 problem at this size is not sensitive
to a change in peak network bandwidth from 350MB/s to 269MB/s. In Case 2 we model the e�ect of
replacing the Colony switch with the Quadrics switch. There is a signi�cant performance improvement
due to the 5 ms latency of the Quadrics switch versus the 20 ms latency of the Colony switch. This
is because the barotropic calculations in POP x1 at this size are latency sensitive. In Case 3 we use
Quadrics latency but Colony bandwidth just for completeness. In Case 4 we model keeping the Colony
switch latencies and bandwidths but replacing the Power3 processors and local memory subsystem
with Alpha ES640 processors and their memory subsystem. There is a substantial improvement in
performance due mainly to the faster memory subsystem of the Alpha. The Alpha can load stride-1
data from its L2 cache at about twice the rate of the Power3 and this bene�ts POP x1 a lot. The last
set of bars show the values of TCS performance, processor and memory subsystem speed, network
bandwidth and latency, as a ratio to BH's values. The higher-level point from the above exercise
is that the model can quantify the performance impact of each machine hardware component. We
carried out similar exercise for several sizes of POP problem and for NLOM, Cobalt60, and could do
so for any application modeled via the framework. Larger CPU count POP x1 problems become more
network latency sensitive and remain not-very bandwidth sensitive.
As an abstraction from a speci�c architecture comparison study such as the above, we can use the

model to generate a machine-independent performance sensitivity study. As an example, Figure 2
indicates the performance impact on a 128 CPU POP x1 run for quadrupling the speed of the CPU
and memory subsystem (lumped together we call this processor), quadrupling network bandwidth,
cutting network latency by 4, and various combinations of these four-fold hardware improvements.
The axis are plotted logscale and normalized to 1, thus the solid black quadrilateral represents the
execution time, network bandwidth, network latency, CPU and memory subsystem speed of BH. At

6

this size POP x1 is quite sensitive to processor (faster processor and memory subsystem), somewhat
sensitive to latency because of the communications-bound with small-messages barotropic portion of
the calculation and fairly insensitive to bandwidth. With similar analysis we can `zoom in' on the pro-
cessor performance factor. In the above results for POP, the processor axis shows modeled execution
time decreases from having a four-times faster CPU with respect to MHz (implying 4X oating-point
issue rate) but also implicit in `4X node' is quadruple bandwidth and 1/4th latency to all levels of
the memory hierarchy (unfortunately this may be hard or expensive to achieve architecturally!). We
explored how much faster a processor would perform relative to the Power3 processor for synNLOM
if it had 1) 2X issue rate 2) 4X issue rate, 3) 2X issue rate and 2X faster L2 cache 4) base issue rate
of 4*375 MHz but 4X faster L2 cache. Space will not allow the �gure here but qualitatively we found
synLOM at this size is compute-bound between communication events and would bene�t a lot just
from a faster processor clock even without improving L2 cache. Not shown but discoverable via the
model is that synNLOM is somewhat more network bandwidth sensitive than POP because it sends
less frequent, larger messages. With similar analysis we found Cobalt60 is most sensitive to improve-
ments in the processor performance at this input size and this remains true at larger processor counts.
The higher-level point is that performance models enable `what-if' examinations of the implications
of improving the target machine in various dimensions.

6. Conclusion

A systematic method for generating performance models of HPC applications has advanced via
e�orts of this team and has begun to make performance modeling systematic, time-tractable, and
thus generally useful for performance investigations. It is reasonable now to make procurement de-
cisions based on the computational demands of the target workload. Members of this team are now
working closely with the Department of Defense High Performance Computing Modernization Pro-
gram Benchmarking Team to e�ect TI-05 procurements by just such criteria. It is reasonable now to
tune current systems and inuence the implementation of near-future systems informed by the com-
putational demands of the target workload; team members are collaborating in the DARPA HPCS
program to inuence the design of future machines.

7. Acknowledgements

This work was sponsored in part by the Department of Energy O�ce of Science through SciDAC
award High-End Computer System Performance: Science and Engineering. This work was sponsored
in part by the Department of Defense High Performance Computing Modernization Program o�ce
through award HPC Benchmarking.

REFERENCES

[1] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia A. Purkayastha, A Framework for
Performance Modeling and Prediction, SC2002.

[2] See http://www.acl.lanl.gov/climate/models/pop/current_release/UsersGuide.pdf
[3] A. J. Wallcraft, The Navy Layered Ocean Model Users Guide, NOARL Report 35, Naval Research

Laboratory, Stennis Space Center, MS, 21 pp, 1991.
[4] See http://www.cobaltcfd.com/
[5] See www.dyninst.org
[6] J. K. Hollingsworth, An API for Runtime Code Patching, IJHPCA, 1994.
[7] J. L., Hennessy, D. Ofelt, .E�cient Performance Prediction For Modern Microprocessors., ACM

SIGMETRICS Performance Evaluation Review, Volume 28, Issue 1, June 2000.
[8] L. Carrington, A. Snavely, N. Wolter, X. Gao, A Performance Prediction Framework for Scienti�c

Applications, Workshop on Performance Modeling and Analysis - ICCS, Melbourne, June 2003.
[9] X. Gao, A. Snavely, Exploiting Stability to Reduce Time-Space Cost for Memory Tracing, Work-

shop on Performance Modeling and Analysis - ICCS, Melbourne, June 2003.

