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Abstract. This work presents a performance modeling framework, developed
by the Performance Modeling and Characterization (PMaC) Lab at the San
Diego Supercomputer Center, that is faster than traditional cycle-accurate
simulation, more sophisticated than performance estimation based on system
peak-performance metrics, and is shown to be effective on the LINPACK
benchmark and a synthetic version of an ocean modeling application (NLOM).
The LINPACK benchmark is further used to investigate methods to reduce the
time required to make accurate performance predictions with the framework.
These methods are applied to the predictions of the synthetic NLOM
application.

1 Introduction
In this work, we report our ongoing progress to develop a general performance
prediction framework to predict and explain the performance of scientific applications
on current and future HPC platforms. The framework is not designed for a specific
application or architecture but is designed to work for an arbitrary application on an
arbitrary machine. In previous work we introduced our convolution method [4-6] that
is a computational mapping of an application’s signature (a representation of an
applications fundamental operations) onto a machine profile (a characterization of a
machine’s ability to perform fundamental operations) to arrive at a performance
prediction. We introduced Memory Access Patter Signature (MAPS), a benchmark
probe tool for collecting machine profiles. We introduced MetaSim Tracer, a tool for
gathering application signatures. See www.sdsc.edu/PMaC for previous papers and
access to these tools. Finally, we showed that the framework could model and
improve understanding of the performance of small parallel scientific kernels and
applications on several different HPC architectures. Here we provide an update on the
ongoing work to make full applications modeling tractable via the convolution
method.

2 The Convolution Method
To create a model for the performance of a parallel application’s serial sections
(between communication events) we map the memory trace component of an
application signature to the corresponding information in a machine profile in order to



model this (presumed to be dominant) factor in performance. Next, we map a
communication trace to its corresponding information in a machine profile to get a
model of the communication events. Then we combine the single-processor model
(possibly supplemented with model terms for floating-point work, and other kinds of
work), along with the communication model, to arrive at a performance model of a
full parallel application.

Details of the convolution method for serial sections involve mapping each basic-
block’s expected dataset location onto the benchmark-probe curves from MAPS. The
process is illustrated in Table 1 and Figure 1. Table 1 is the output of MetaSim Tracer
on a Portable, Extensible Toolkit for Scientific Computation (PETSc) [15] application
convolved with machine memory-hierarchy parameters from Pittsburgh
Supercomputer Center’s TCSini Compaq machine.

Table 1. Application Signature Example via MetaSim Tracer.
Block
#

% Mem.
Ref.

Ratio
Rand

L1 hit
Rate

L2 hit
Rate

Data Set
Location

Memory
Bandwidth

55 0.9198 0.07 93.47 93.48 L1 Cache 4166.0
53 0.0271 0.00 90.33 90.39 Main Memory 1809.2
60 0.0232 0.00 94.81 99.89 L2 Cache 5561.3
5885 0.0125 0.20 77.32 90.00 L1/L2 Cache 1522.6

Block
#

Memory Bandwidth
from MAPS curve

55 4166.0
53 1809.2
60 5561.3
5885 1522.6

Fig. 1. MAPS for TCSini for random and non-random loads



The convolution represented between Figure 1 and Table 1 is carried out
automatically by the MetaSim Convolver [16] and can be written as:
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Equation 1 predicts that the Memory Execution Time for an application between
communication events is the sum, over all the basic-blocks in the application, of the
expected time required to carry out the loads and stores in each basic-block. The
expected execution time depends on the rates at which the machine can carry out
loads and stores based on instruction type, access pattern, and where the references
fall in the memory hierarchy. MemOps BBi is the total number of dynamic memory
references in basic block i. MemRate BBi is the rate at which the machine can sustain
these operations. MemOps BBi subcomponents (random loads to main memory, stride
1 accesses to L2 cache etc.) are determined by the convolver. MemRate BBi has
subcomponent rates taken from the MAPS curves. This simple example illustrates
only predictions involving memory operations, but more complex convolutions can
deal with other kinds of operations, and the interactions and overlap between those
operations. If an application is heavily memory bound, Memory Execution Time may
anyway be a large percentage of total execution time. Otherwise, additional model
terms are added to the convolution to account for cycles spent doing non-overlapped
floating-point work, branches, file I/O, communications etc. Once the convolution for
the single-processor model is complete it is used in conjunction with the
communication model for the performance prediction of parallel applications.

Similar to the single-processor convolutions, for the communication model we map
communication event trace to their corresponding information in the machine profile
(speeds of communications operations) to model the communication events. For the
communication event trace of an application we use MPIDtrace, which contains the
sequence of CPU demands and communication requests launched by the CPU during
an application’s execution. For the convolution step we use the network simulator,
Dimemas [14], which using this trace can model the communication requests of the
application on an arbitrary machine provided a user inputted parameterized network
(machine profile) of that machine. So a modeler inputs the performance parameters of
an arbitrary machine they desire to model along with the communications trace.
Dimemas will then calculate the expected performance of the application’s
communication events on that machine.

Dimemas not only models the communication part of the application but can also
model the CPU demands between communication events of the application. The
MPIDtrace of the application contain CPU demand information about the application
specified in terms of the CPU time consumed on the machine where the trace was
obtained. Dimemas uses a parameter (CPU ratio) to scale the CPU bursts of the trace
for predicting the performance of a machine other than the machine where the trace
was obtained. The ratio being the ratio of processor speeds between a target machine
to predict and the machine where the MPIDtrace was collected. A naïve way of
calculating CPU ratio might be to use the ratio of clock speed or the ratio of peak
floating-point issues between the two processors. Our framework improves upon this



idea by calculating the ratio from the single-processor models we develop using
MetaSim Tracer and MAPS data. This new ratio will be the expected single-processor
performance of the target machine being predicted (taking into account especially the
performance of its memory hierarchy) to the single-processor performance of the
machine where the MPIDtrace was collected. So given the single-processor model of
an application along with the application signature and machine profile parts for the
communication model, Dimemas can predict the performance of a parallel
application.

Using detailed single-processor models with a special emphasis on the memory
hierarchy and the network simulator Dimemas, the framework was shown in [4-6] to
model the performance of NPB kernels, a PETSc kernel, and PETSc small
applications with an error range of 1% to 16%. These performance predictions were
consistent across a range of compute platforms (SDSC Power3 system Blue Horizon,
PSC Compaq Lemiuex, a Cray T3E-600, TACC Power4 Longhorn), and across a
range of processors from 2 to 128 for both weak and strong scaling. Some of the
predictions used more complicated convolutions than Equation 1 and took into
account (in addition to memory work) floating-point work and instruction level
parallelism with overlap of memory and floating-point work.

The collection of an application signature via the MetaSim Tracer is needed only
once per application-prediction series, allowing the convolution to run multiple times
with the same application signature. Unfortunately MetaSim Tracer can require orders
of magnitude slowdown of the instrumented code.

3 Speeding up Tracing
In a quest to supply modelers with a general performance prediction framework that
could work in a relatively short amount of time even on long-running applications,
several methods of reducing trace time were investigated. The LINPACK Benchmark
and the synthetic version of the Navy Land Ocean Model (synNLOM) [8] application
were used in the investigation of trace time reduction and the results of predictions
with these new methods is discussed in section 4. The application synNLOM was of
particular interest because it exhibited many traits of a scientific application plus, the
run time of the application took over an hour, making the reduction of trace time
critical in its prediction.

The idea of trace sampling is to turn the trace collection of an application on and
off at certain intervals while running the application. MetaSim Tracer processes all of
the memory addresses of an application on-the-fly. Sampling would allow the tracer
to process only a percentage of the addresses in an attempt to reduce the trace time. In
our implementation the user can specify the size of the interval and the number of
sequential addresses to process per interval (sample size). If interval size is set for
1,000,000 and sample size is set for 10,000 then as the application runs, every
1,000,000 addresses the first 10,000 will be processed. This would result in a 10%
sampling of the full trace. The idea is that as each basic-block is traversed and
processed the cache-hit rates may not change significantly. So calculating the hit rates
based on traversing and processing the basic-block only 10% of the time may yield



similar hit rates to those based on traversing the basic-block 100% of the time. It is
the hit rate values that are used in the convolution to determine the bandwidth for that
basic-block. This bandwidth is then used in the convolution Equation 1 to determine
the Memory Execution Time.

Another issue with trace sampling is that the total number of memory references
estimated for a basic-block may differ depending on the percent sampled, this is the
MemOps BB value from Equation 1. This can be remedied by collecting two traces.
The first, uses no sampling but only counts (no processing of) memory references,
instructions, and floating-point operations, thus it collects the correct value for
MemOps BB for each basic-block. The second is the detailed trace collection for
memory accesses with sampling. The first trace, because it does no processing, only
takes a minimal amount of time, but is significant in that the data collected in this
trace used in conjunction with the second trace ensures correct values for number of
memory references and floating point operations for each basic-block. The accuracy
of predictions using different sampling sizes and their respective trace times are
discussed in section 4.

Another way to reduce the trace time is to put an upper limit on the number of
times a basic-block is traversed and processed. This means that if the user sets an
upper limit as for example 1,000 then after a basic-block is traversed more than 1,000
times, the tracer no longer processes that information. The reasoning is that each time
a basic-block is traversed it behaves similarly so the hit rates for a basic-block
averaged over 1,000,000 traverses is going to be similar to the hit rates for a basic-
block averaged over 1,000 traverses. This basic-block trace limit along with sampling
can be used together to reduce the total trace time. Results of predictions for a series
of traces using different basic-block limits are discussed in section 4.

Instead of using sampling to reduce trace time, tracing only certain sections of the
application is also an option. The idea is that, in a lot of applications, there are only a
small number of basic-blocks that account for most of the wall-clock time in the
application. The reduction in trace time comes from the fact that instead of tracing all
100,000 basic-block in the application you only trace 100. The trick is determining
which basic-blocks to trace in order to capture most of the applications performance
attributes. This method also requires two traces. The first uses only counts (no
processing of) memory references, instructions, and floating-point operations for the
entire application. Using this trace, one can determine those basic-blocks that are
contributing to the majority of memory references of the application. In the second
trace, only those basic-blocks determined from the first trace are traced and
processed. This results in only a fraction of the total number of basic-blocks from the
application being traced. Section 4 discusses the results of tracing different numbers
of basic-blocks.

Another approach enabled of this tracing method is that the trace of an application
can be collected in phases, where a phase represents a certain number of basic-blocks.
For example, an application containing 100 basic-blocks could be traced in two runs.
The first run would trace basic-blocks 1-50 and the second run would trace basic-
blocks 51-100. The has the advantage of being able to reduce trace time of a phase in
order to fit into the queuing limits of the machine used to collect the traces. Also, this
allows each phase to be collected simultaneously (multiple jobs in the queue). So
although this method does not effect the cumulative trace collection time, it makes



trace collection more parallel and flexible. Results of using this phase collection are
discussed in section 4.

The methods of trace time reduction using sampling, basic-block trace limits and
tracing only a fraction of the basic-blocks can be combined to further reduce tracing
time and enable a more flexible trace collection process. The results of both
prediction accuracy and the trace time reductions of all methods, including
combinations of them are discussed next in section 4.

4 Results and Discussion

The framework was first used to confirm the accuracy of using it in the prediction of
the performance of the LINPACK benchmark. The LINPACK benchmark was
predicted on four different machines at different number of processors. The size of the
problem solved by the code was scaled with the number of processors (i.e. weak
scaling). The results of these predictions are shown in Tables 2-5. Since Blue Horizon
was used to collect the MPIDtraces, eliminating the single-processor ratio, predictions
are for that machine are viewed as an accuracy check of the network simulator rather
than validation of the entire framework. Tables 2-5 have the real run time for each
machine-processor pair, the predicted run time by the framework, and the relative
error. The results show that for varying numbers of processors and different
machines, the framework is accurate in its predictions.

Tables 2-5. Real and predicted time for LINPACK benchmark.

PSC Lemieux1Number
of

Processors
Real

Time (s)
Predicted

Time (s)
%

Error5

4 9.3 8.9 4.3
16 21.9 20.9 4.6
64 23.9 22.8 4.6

256 22.2 21.4 3.6
1 Pittsburgh Supercomputer Center Compaq Alpha-
server ES45 with 1-GHz processors and Quadrics

interconnect.

TACC Longhorn2Number
of
Processors

Real
Time (s)

Predicted
Time (s)

%
Error5

 4 8.5 8.8 -3.5
16 21.1 20.4 3.3
64 25.4 22.8 10.2
256 NA 21.1 NA
2 Texas Advanced Computing Center IBM Regatta-
HPC with an IBM high-speed switch (SP Switch2).



NERSC Seaborg3Number
of
Processors

Real
Time (s)

Predicted
Time (s)

%
Error5

 4 18.8 17.7 5.9
16 41.7 39.0 6.5
64 45.4 44.9 1.1
256 51.7 45.2 12.6

3 National Energy Research Scientific Computing
Center IBM SP RS/6000

SDSC Blue Horizon4Number
of
Processors

Real
Time (s)

Predicted
Time (s)

%
Error5

 4 18.8 19.2 -2.1
16 41.4 40.9 1.2
64 45.4 43.1 5.1
256 43.0 41.3 4.0
4 San Diego Supercomputer Center IBM SP RS/6000

5 Percent relative error: (Real Time – Predicted Time)/(Real Time) *100.

As Tables 2-5 confirm, the framework is an accurate predictor of the LINPACK
benchmark, therefore this code was then used to investigate the viability of using the
trace time reduction methods discussed in section 2.4. The LINPACK Benchmark run
on 64 processors was used to compare the accuracy of using each of the different
trace time reduction methods as well as their overall trace time reduction. Then the
methods were combined to predict the synNLOM application run on 28 processors
(the usual size for the Navy’s production runs). Trace time reduction method was
essential to predict the synNLOM application due to the long runtime of the
application and the queuing limits on the machine used to collect the traces.

The first investigation was into the use of different sampling percentages in
tracing. Sampling percentages of 100% (no sampling), 10%, 5%, and 1% are shown
in tables 6 and 7. Table 6 shows the trace time slowdown for each sampling size on
the application. Remember that a cycle-accurate simulation typically results in a
1,000,000 times slow down so tracing, while slow, is not that bad. Table 6 shows that
initially the full trace slowed down the application by a factor of 859 times, whereas
the sampling trace can reduce this time by a factor of 8. Table 7 shows the results of
predictions using the different sampling size traces. It illustrates that sampling not
only reduces the trace collection time to one ten thousandths of that of a typical cycle-
accurate simulation, but it is able to predict the performance of the application with
only a maximum error of 8.4%.

Table 6. MetaSim Trace collection time comparison using trace sampling.
Sampling size1 Slowdown factor2

NO Sampling 859
10% 152
5% 141
1% 132



1 The sampling size used for the trace, where 100% means no sampling
2 The slowdown factor is the number of times longer the trace takes to collect than the

application

Table 7. Predictions for PSC’s Lemieux results for different sampling sizes.
Sampling size Predicted Time (s) Real Time (s) % Error3

NO Sampling 22.8 23.9 4.6
10% 24.8 23.9 -3.8
5% 25.0 23.9 -4.6
1% 25.9 23.9 -8.4

3 The percent error is calculated: (Real time – Predicted time)/(Real time)*100

The second investigation was into reducing trace time by using the basic-block
trace limit discussed in section 3 with no sampling. Three different limits were
compared to a case with no limit. Table 8 displays the trace slowdown factors for
each case. This table shows that there is a trace time-reduction benefit depending on
the basic-block limit but that the accuracy of the prediction is sacrificed a bit for this
method of trace time reduction.

Table 8.  MetaSim Trace collection time using basic-block trace limits.
Basic-block limit1 Slowdown factor
NO Sampling/limit 859
10,000 134
1,000 130
100 130

1 The basic-block limit is the limit of the number of times a basic-block is traced.

Table 9. Predictions for PSC’s Lemieux for different basic-block trace limits.
Basic-block limit Predicted Time (s) Real Time (s) % Error3

All BB 22.8 23.9 4.6
10,000 28.7 23.9 -20.1
1,000 29.2 23.9 -22.2
100 29.5 23.9 -23.4

The third investigation was into the trace reduction time by tracing only a small
number of basic-blocks as discussed in section 3. Three different basic-block numbers
were compared both in reduction of trace time and accuracy of prediction. Table 10
displays the trace slowdown factors for each case. This table shows that this method
does have trace reduction benefits and Table 11 confirms that the accuracy is still
relatively good.

Table 10. MetaSim Trace collection time tracing only certain basic-blocks.
Num. Basic-block Slowdown factor
All 859
20 154
10 151



Table 11. Predictions for PSC’s Lemieux results for different basic-block groups.
Num. Basic-block Predicted Time (s) Real Time (s) % Error3

All 22.8 23.9 4.6
20 26.8 23.9 -12.1
10 26.2 23.9 -9.6

In the prediction of synNLOM a combination of all the trace reduction methods
were used. This application, run on 28 processors of SDSC’s Blue Horizon takes over
1 hour to complete. To simulate 1 hour of an application on a cycle-accurate simulator
could take around 114 years of CPU time. Using no trace reduction method, the
collection of the MetaSim trace would take around 850 hours. To reduce this to a
more manageable time the trace was collected using 1% sampling, collecting the top
100 basic-blocks of the application, a basic-block limit of 200, and the trace collected
in 10 phases. This allowed each phase to be collected in 2-6 hours, easily fitting into
the queuing limits of most HPC machines. This also allowed 10 different jobs to be
run (simultaneously) on the machine ranging from 2-6 hours, quite a reduction from
the years required for cycle-accurate simulation. Table 12 shows the results of
predicting the synNLOM on PSC’s Lemieux, NERSC’s Seaborg, TACC’s Longhorn,
and SDSC’s Blue Horizon.  The percent error of the prediction, >9%, shows that not
only is the framework accurate in its prediction, but with trace reduction methods it is
capable of predicting the entire scientific application’s run for long periods of time
and doing these predictions in a reasonable amount of time, something not feasible by
cycle-accurate simulation.

Table 12. Prediction of synNLOM for different machines.
Machine Real Time (s) Predicted Time

(s)
% Error

 PSC’s Lemieux 1818 1816 0.1
SDSC’s Blue Horizon 4462 4594 -3.0
NERSC’s Seaborg 4375 4756 -8.7
TACC’s Longhorn 1944 1872 3.7

The results of performance predictions shown in Tables 5 through 12 illustrate the
accuracy of using the performance prediction framework to predict scientific
applications. Such predictions can be completed nearly 10,000 times faster than using
a cycle-accurate simulator. In addition, the framework is flexible enough to be applied
to many different architectures and applications.
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