
A Framework For Application Performance Prediction to Enable
Scalability Understanding

Laura Carrington

San Diego Supercomputer
Center

lnett@sdsc.edu

Nicole Wolter
San Diego Supercomputer

Center
wolter@sdsc.edu

Allan Snavely
San Diego Supercomputer

Center
allans@sdsc.edu

Abstract

This paper presents a performance modeling methodology that is faster than traditional
cycle-accurate simulation, more sophisticated than performance estimation based on
system peak-performance metrics, and is shown to be effective on a class of High
Performance Computing PETSc kernels. The method yields insight into the factors that
affect performance and scalability on parallel computers.

1. Introduction

As high performance computers become larger and more complex, the task of
deciphering code optimizations to enable performance and unlock scaling potential
becomes increasingly difficult. Determining and understanding the factors that affect
scientific application performance is necessary for identifying and ameliorating
bottlenecks that limit scalability, as well as for guiding resource selection, assisting
machine specific application tuning, and helping to meaningfully compare machines for
their performance on the application.

We wish to enable tools and methods for gaining insight into the factors that affect
performance. We want to be able to predict the performance of an application on an
arbitrary machine. This capability can enable scientists to investigate the factors that are
affecting performance and scalability. Given tools that predict the performance of an
application, the computational scientist or programmer should be able to gain insight into
the performance of the application, and also play with “what if” scenarios for upgrading
the machine’s hardware. For example, one would like to know the effect of increasing
network bandwidth and decreasing latency. Predicting how this would affect the
performance of an application on a large number of processors can give insight into the
factors limiting the application’s scalability. If slight performance gains are predicted
with an improved network, then the scientist can infer that there may be limitations in the
algorithm or implementation that are resulting in unsatisfactory scaling. If, on the other
hand, the prediction shows that performance improves, the scientist can recognize that
running the code on different hardware may improve the time to solution.
 We present a framework for performance modeling, prediction and understanding. The
Performance Modeling and Characterization (PMaC, see www.sdsc.edu/PMaC) lab at the
San Diego Supercomputer Center (SDSC) is focused on developing methods and tools
for understanding and predicting the performance of scientific applications on HPC
platforms. We anticipate that these tools will aid computational scientists in
understanding the performance of their scientific applications, and help them to better

understand the bottlenecks that affect their application’s scalability. Our methods are in
the early stages of development, but already show promise for enabling insight into
scaling and other performance issues. In this paper we describe our methodology,
progress to date, and results.

In order to simplify the task of understanding and modeling performance, we began by
developing methods and tools for kernel versions of scientific applications run on current
parallel platforms. Initial work on the performance prediction of two kernels from the
NAS Parallel Benchmarks (NPBs) [1] showed promising results [2]. For this study we
focused on kernels built from the Portable, Extensible Toolkit for Scientific Computation
(PETSc) [3]. PETSc was chosen because it has sets of routines designed for the parallel
solution of partial differential equations that are commonly used in scientific models.
PETSc routines represent tasks that are performed in a wide variety of scientific
applications. By starting with the simpler PETSc routines, we are able to start small
where modeling is tractable and add more routines until the kernels become complex
enough that they are comparable to full scientific applications.

What distinguishes our work from prior research is our framework for providing
useful, accurate performance modeling and performance understanding that is tractable
for a wide variety of machines and applications. Previous work either developed very
detailed models for performance [4-8], concentrated on tool development [9-10], was
very specific to a given application domain [11-13], or focused on integrating
compilation with scalability analysis [14]. Additionally, previous work by Worley [15]
evaluated specific machines via benchmarking.

2. Tools and Techniques for Performance Prediction

The observed performance of a parallel HPC application is complicated; it is a function
of (at least) algorithm, implementation, compiler, operating system, underlying processor
architecture, and interconnect technology. The approach adopted here is to proceed via
principles of simplicity and abstraction.

We have a working assumption that a parallel application’s performance is based on
two major factors: 1. single processor performance and 2. use of the network. Clearly,
there are other factors, but often these dominate. Existing network simulators do a good
job of modeling an application’s use of the interconnect and capture factors related to
scalability [16]. In particular, very reasonable performance estimates have been obtained
with the simple L/B (latency/bandwidth) model for communication [17].

 For a reasonably complete model of an application’s performance, we must also
understand and model single processor performance and combine this information with a
network simulator. In modeling single processor performance, we separate various
performance factors by measuring each in isolation and then combining them to construct
a model for performance prediction. These performance factors are captured in Machine
Profiles and Application Signatures.

A Machine Profile is a characterization of the rates at which a machine can (or is
projected to) carry out fundamental operations abstract from the particular application.
The Memory Access Pattern Signature (MAPS) Benchmark used to collect or project
Machine Profiles is described in more detail in section 2.1.

An Application Signature is a detailed summary of the fundamental operations to be
carried out by the application, independent of any particular machine. We used MetaSim
to collect Application Signatures, see section 2.2 for more detail.

To arrive at the single processor performance of an application, the Machine Profile
and the Application Signature are combined using a Convolution Method. A Convolution
Method is an algebraic mapping of the Application Signature onto the Machine Profile;
this is explained in more detail in section 2.3.

In section 2.4, we show how to combine single-processor performance from a
Convolution Method with the network simulator, DIMEMAS [16], to predict
performance of parallel applications.

For each piece of the model, we begin with simple models and few parameters then
add complexity only as needed to explain observed performance (Occam’s razor). Based
on the idea that the per-processor performance of an application is predominately a
function of how it exercises the memory sub-system, our starting point for the
Application Signature and Machine Profile is focused on the memory hierarchy.

2.1 Machine Profiles via MAPS

MAPS is a benchmark probe used to measure the rate at which a single processor can
sustain rates of loads and stores depending on the size of the problem and the access
pattern. MAPS has been ported to many HPC platforms including IBM Power3, Compaq
Alpha, Intel Itanium, Cray T3E, T90, and SV1, NEC SX-4 and SX-5, Sun HPC 10K, and
Fujitsu VPP700 and VPP5000. Derived from the STREAMS benchmark [18], MAPS
extends STREAMS to various strides and random access patterns. A substantial amount
of MAPS data for various machines is available at www.sdsc.edu/PMaC. We are also
supporting and distributing this benchmark.

Figure 1 below is the MAPS curve for stride-one loads on the Power3 NightHawk II
processor, enhanced with some information about the hardware. It can be seen that the
MAPS curve reveals attributes of the machine, and the likely performance implications at
a glance.

Figure 1. A MAPS generated signature for Blue Horizon (Power3 NightHawk II).

The Power3, like many modern processors with large L2 cache, does not fully map the
L2 cache in the Translation Lookaside Buffer (TLB). Thus, we get a "three stair step"
function for memory access patterns, one that is especially pronounced when pre-fetching
is enabled.

Figure 2 below shows a typical MAPS generated Machine Profile for stride-one and
random loads on Pittsburgh Supercomputer Center’s (PSC) TCSini. It shows that the
sustainable rate of memory loads depends on the size of the problem and the memory
access pattern. A large load-bound problem with a random memory access pattern may
run 10 or even 100 times slower than a small problem that fits in L1 cache and accesses
memory sequentially, or better yet has a small working set yielding significant cache
reuse.

Figure 2. A MAPS generated profile for the PSC TSCini. Random and stride-one curves
are marked with L1 and L2 cache hit rates.

Figure 2 also illustrates that a high hit rate in cache is required on TCSini for the cache
to be useful as a latency hiding tool. A miss rate of 83% in L2 is sufficient to reduce the
speed of random loads to nearly the rate expected for main-memory loads. Similar results
apply to many cache-based architectures we have measured, including the Nighthawk II
processors on Blue Horizon. When modeling the performance of an application, it is
important to map its loops and subroutines to their expected performance on the MAPS
curve. Statistics for this mapping can be gathered with MetaSim.

2.2 Application Signatures via MetaSim

MetaSim is a tool developed by PMaC to generate an Application Signature. MetaSim
is similar to a semi-cycle accurate simulator, and is capable of gathering an abundance of
information about an application. While MetaSim gathers multiple types of data, our
Application Signatures are constructed primarily with the data that describes how an
application uses a processor’s memory hierarchy. Since an accurate performance model
for the microprocessor often results by modeling the memory hierarchy, we may greatly
simplify or even omit modeling functional unit queues, out-of-order issue, branch
prediction, and a number of other microprocessor subtleties that we could model but
decline to in these cases because they do not lie in the critical path for performance.

MetaSim is implemented on top of the ATOM toolkit available only on Alphas. We
have an ongoing effort to implement it on top of DyninstAPI [19], a portable
instrumentation library. While MetaSim only runs on Alphas, it can emulate an arbitrary
machine with less than 100-fold slowdown, so it is much faster than traditional cycle-
accurate simulators. Intuitively, it may seem that a fast, simple simulator such as

MetaSim is an inaccurate simulator. One might reasonably presume that if we modeled
more attributes of the microprocessor, our simulations would be more accurate (though
slower). However, Gibson et. al.[5] showed that simulators that model many architectural
features have more possible sources for error, resulting in complex simulators that
produce greater than 50% error, while simple simulators are sometimes more accurate
than complex ones. We will show some supporting evidence for this in section 3.

MetaSim works by gathering statistics on expected cache hit rates of routines and
loops in an application. It accomplishes this by snooping the memory bus to catch
addresses as they are generated by load and store operations, then calculates memory
access patterns based on the addresses. This calculation is done by statistically binning
the addresses into stride buckets based on comparison with the last N addresses that have
been encountered. It works in a way analogous to the hardware pre-fetching mechanism
on some modern processors where memory access patterns of the program are
dynamically discovered under instrumented execution.

MetaSim, using this memory access pattern information combined with some user-
supplied information, generates the Application Signature. The information supplied by
the user describes the memory hierarchy of a machine (real or hypothetical) for which the
user wishes to predict the performance of the application. MetaSim generates an
Application Signature for the particular machine by processing the application’s address
stream against the memory subsystem of the user-supplied parameterization of the
(hypothetical or real) machine.

MetaSim gathers information, at the basic block level, on how an application might use
the predicted machine’s memory sub-system. It does so by gathering memory access
pattern information and dynamic counts of each instruction type, and associates these
with the basic block that generated them. What emerges is a detailed signature of basic
blocks sorted by their contribution to the dynamic instruction count, and further profiled
by instruction mix, ratio of arithmetic operations (as distinct from control flow
operations) to memory operations, and memory access pattern. Such a signature is orders
of magnitude smaller than an address trace file, yet contains an abundance of information
suitable for careful performance analysis. Table 1 shows an example of the information
generated in a MetaSim simulation of SDSC’s Blue Horizon for a PETSc Matrix-Vector
multiply kernel.

Table 1. MetaSim output for Matrix-vector multiply kernel simulation Blue Horizon.

Basic
Block #

% Cumulative
Memory Ref.

% Memory
Ref.

FLOPS/MOPS Fraction
Random

L1 Hit
Rate

L2 Hit
Rate

919 0.246 0.246 0.485 0.0 100.0 100.0
25 0.443 0.197 0.960 0.0 95.3 95.3
921 0.591 0.148 0.942 0.0 100.0 100.0

As can be seen, three basic blocks account for 60% of the total dynamic memory

references (and total execution time). The summary report lists the basic blocks in the
order of contribution to total dynamic memory references. It provides for each basic
block its percentage of dynamic memory references, its ratio of floating-point operations
to memory operations, the fraction of its memory accesses that are stride-random (the
tool can generate a more detailed analysis of stride patterns), and the hit rates in L1 and

L2 cache. For this kernel, Table 1 shows that the top three basic blocks account for a
large portion of the memory references. However, other kernels may have twenty or
thirty basic blocks that contribute significantly to performance, and real applications may
have several hundred significant basic blocks. Automated gathering and summary of
program properties is therefore essential for performance analysis.

MetaSim does not directly measure cache hit rates on the machine where it runs, but it
can calculate the cache hit rates that would result if the application were run on a
processor of arbitrary (user supplied) configuration with respect to cache sizes, line
lengths, and associativities (i.e. it calculates hit rates for a different machine). In the next
section, we show how to use this information to map each basic block to its expected
performance on the MAPS curve, and weight each basic block appropriately to predict
how a program will perform on the arbitrary processor.

2.3 Combining MAPS and MetaSim via the Convolution Method

The Convolution Method is a way of mapping a Machine Profile to an Application
Signature to arrive at a per-processor or single processor performance prediction.

We determine the predicted sustainable rate of loads and stores by mapping the
MetaSim profile block-by-block onto the MAPS curve points that match profiled cache
hit rates and memory access patterns. As mentioned above, the per-processor
performance of memory bound codes is often determined by the rate at which the
machine can do loads and stores and other architectural and application features may be
“in the noise” with respect to performance prediction.

Figure 3 below shows a Machine Profile (MAPS plot), and an enclosed table (2) of the
MetaSim data. The data generated from MetaSim is convolved with the data measured
by the MAPS curves. Table 2 is an example of such data for those basic blocks with
random-loads from memory.

Figure 3. Blue Horizon Machine Profile with MetaSim data.

Once the bandwidths have been collected from the appropriate MAPS curve for all

basic blocks, Equation 1 (a simple convolution) can be used to sum the weighted
bandwidths of each basic block to calculate its MetaSim number, which is the

application’s expected performance on that machine. The ratio of the predicted machine’s
MetaSim number to the traced machine’s MetaSim number is used as a processor speed
ratio supplied to the DIMEMAS network simulator.

(1) ()∑

=

∗=
n

1i
ii BB RateBB Wt. Number MetaSim

In Equation 1, BBi is a basic block, Wt. BBi is the percentage of total dynamic memory
references in the program contributed by this basic block, and Rate BBi is the MAPS
measured rate at which MetaSim reports the basic block can sustain loads and stores
based on the size of its working set and its access pattern.
 We do not expect, however, that such simple convolutions will yield accurate
performance predictions in all cases. We report the degree of accuracy yielded by such
simple models, and add additional complexity only when required to explain observed
phenomena.

2.4 DIMEMAS, the Network Simulator

DIMEMAS, developed by the European Center for Parallelism of Barcelona [16], is a
network simulator that consumes MPI and/or OpenMP traces and allows modeling of an
interconnect of arbitrary topology and bandwidth-latency characteristics. It does not
attempt to simulate the execution of an application on a number of processors different
from the number of processors the trace was gathered on. However, one can simulate the
execution of an application on a machine (real or hypothetical) other than that on which
the trace was gathered, by specifying a processor ratio for the speed of the simulated
machine relative to the machine where the trace was gathered, as well as network
topology and network bandwidth/latency characteristics of the machine to be simulated.
DIMEMAS does a good job of modeling the network, but provides little guidance for
choosing processor speed ratios. Indeed, the notion of relative processor speed is (we
believe) overly simplistic. The relative speed of two processors depends on the problem,
but is often a function of the rate at which the processors can sustain loads and stores
depending on access patterns and the size of the working set. Furthermore, the relative
speed may vary throughout the program. In this study we address this issue by using
MAPS and MetaSim to model single-processor performance (Convolution Method).
Thus, improving the accuracy and resolution of the processor ratio for DIMEMAS.

3. Results and Conclusions

The tools and methods described in the previous section were used in multiple studies.
The first validated single processor predictions using MAPs and MetaSim by predicting
the performance of serial kernels. The second study predicted parallel PETSc kernels on
two current architectures and a proposed future architecture. The final study used
performance prediction to understand the scalability limitations of the kernels. For both
single processor and parallel processor studies, a PETSc kernel was built using the
PETSc routines required to build matrices and vectors across multiple CPUs and multiply

them. This routine does a Matrix-Vector multiplication in parallel or serial, an operation
common in scientific applications.

3.1 Single processor predictions of serial PETSc.

Figure 4 below shows the results of applying the convolution in Equation 1 to the
serial version of the PETSc kernel for two problem sizes. As can be seen, the method is
accurate for these simple kernels. In this case, the kernels were profiled on the Compaq
Alpha cluster at Pittsburgh Supercomputer Center using MetaSim, and their performance
was predicted on SDSC's Blue Horizon. Predicted results are compared to actual
observed performance. The kernels are predicted well within the accuracy usually
associated with cycle-accurate simulation, this at the cost of less than a sixty-fold
slowdown for profiling with MetaSim, and a roughly equal amount of time spent in
gathering Blue Horizon's MAPS profile. In fact, the performance predictions are within
the variability of observed runtimes on Blue Horizon. This suggests that the high cost of a
cycle-accurate simulation (frequently as high as a 6 orders of magnitude slowdown)
would be overkill for these memory-bound kernels. Furthermore, this shows that it is
properties of the memory hierarchy that determine the performance of these kernels on
these processors.

Figure 4. Single Processor Kernel Predictions vs. Observed Timings for Blue
Horizon with percentage error.

The results of the single processor prediction also help validate the use of MAPS and
MetaSim for single processor performance used in the parallel predictions studies.

3.2 Predictions of PETSc on current and future platforms

Once the single processor predictions were validated, the next study involved
predicting a parallel version of the kernel on different platforms at different sizes and
scaling. All sizes were built so that the local matrix on each processor no longer fit into
cache and was forced to employ the main memory of the processor.

Both ASCI and non-ASCI scaling were investigated. In ASCI scaling, the size of the
local matrix is kept constant as the number of processors increase. In non-ASCI scaling,
the size of the global matrix is kept constant while the number of processors increase.
Along with the different sizes and scaling, two groupings of processor sizes were also
studied. The kernel was predicted on small number of processors (2, 4, and 8), and also
on larger number of processors (64, 96, and 128).

Figures 5 and 6 show the prediction results for the kernel using ASCI scaling for
PSC’s TCSini and SDSC’s Blue Horizon on 2, 4, and 8 processors for MM size. Similar
results are shown in Figures 7 and 8 for non-ASCI scaling. For all the predictions, the
traces used for the network simulator were collected on SDSC’s Blue Horizon.

Figure 5. Predicted and Observed time vs. number of processors for ASCI scaling on
TCSini.

Figure 6. Predicted and Observed time vs. number of processors for ASCI scaling on
Blue Horizon.

Figure 7. Predicted and Observed time vs. number of processors for non-ASCI scaling on
TCSini.

Figure 8. Predicted and Observed time vs. number of processors for non-ASCI scaling on
Blue Horizon.

The prediction errors range from 1-22%, which we consider good for a simple model.

Figures 6 and 8 show the predictions for Blue Horizon. Since traces for all the
predictions were collected on Blue Horizon, we do not use these predictions to validate
our prediction techniques, but rather to confirm that the network simulator, given the
right value for the processor ratio, can simulate an HPC architecture’s network with
reasonable accuracy.

These techniques were also used to predict the kernel at much larger size runs in terms
of processors. The results of these predictions can be seen in Figures 9 -12. These
figures show that for both ASCI and non-ASCI scaling the predictions are within a
reasonable amount of accuracy, especially given that at these size runs, variability in
runtime can be larger than the error of the predictions. This is presumably due to factors
that neither our methods, nor other modeling methods, capture – the impact of other
user’s jobs on shared resources including the interconnect.

Figure 9. Predicted and Observed time vs. number of processors for ASCI scaling on
TCSini.

Figure 10. Predicted and Observed time vs. number of processors for ASCI scaling on
Blue Horizon.

Figure 11. Predicted and Observed time vs. number of processors for non-ASCI scaling
on TCSini.

Figure 12. Predicted and Observed time vs. number of processors for non-ASCI scaling
on Blue Horizon.

3.3 Predictions of Future Architectures

The same techniques used to predict applications on current architectures can be
applied to theoretical architectures. In this study we consider a hypothetical machine,
with three levels of cache, where the first and second level of cache have the same
sustainable bandwidth. Since the machine does not exist the MAPS curve is built by
estimating the curve shape based on the MAPS curve of Blue Horizon. Figure 13 shows
the projected MAPS curve based on reasonably expected improvements in the memory
bandwidth and latency. This along with MetaSim data were used to predict how the
kernel might perform. While these results cannot be validated yet, previous predictions
in figures 5-12 show that the tools and techniques can be quite accurate and give some
legitimacy to this future projection. Figure 14 shows the predicted performance of the
PETSc kernel on the hypothetical machine relative to the predicted performance of Blue
Horizon. Figure 14 also shows how performance predictions can be valuable in the
design and/or purchase of new hardware.

Figure 13. Estimated MAPs curve for Non-random and random loads on the hypothetical
machine.

Figure 14. Predictions for Blue Horizon and the hypothetical machine for PETSc kernel
ASCI scaling.

3.4 Using Performance Prediction to Investigate Scalability

One can also use these techniques to investigate the scalability of an application. In
Figure 15 we take the existing prediction for Blue Horizon on 64, 96, and 128 processors
and modify the network parameters. If significantly improving the network of the
machine has little to no effect on the performance, then it is clear that the limiting factor
for scalability at these sizes is not the hardware, but something inherent in the application
or some other aspects. This application already shows good scalability to these sizes and,
as seen in Figure 16, improving the processor’s capability (but not the network) will
benefit this application. When we improved the network without improving the
processor, almost no performance gains resulted, confirming that scalability is not limited
by this network hardware.

Figure 15. Predictions for Blue Horizon with network and processor improvements to
investigate scalability.

It is this type of information that can help scientists study the performance of their
applications and determine the type of hardware that is best suited for their applications.
Likewise, HPC centers can make better-informed decisions for hardware upgrades and
new purchases based on user workload predictions using these tools and techniques.

Acknowledgements

This work was sponsored the Department of Energy Office of Science through
SciDAC award “High-End Computer System Performance: Science and Engineering”.
This research was supported in part by NSF cooperative agreement ACI-9619020
through computing resources provided by the National Partnership for Advanced
Computational Infrastructure at the San Diego Supercomputer Center. Computer time
was provided by the Pittsburgh Supercomputer Center.

References:
1. See http://science.nas.nasa.gov/Software/NPB.
2. A. Snavely, N. Wolter, and L. Carrington, “Modeling Application Performance

by Convolving Machine Signatures with Application Profiles”, IEEE 4th Annual
Workshop on Workload Characterization, Austin, Dec. 2, 2001.

3. S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, L. C. McInnes, and B. F.

Smith, “PETSc home page”, http://www.mcs.anl.gov/petsc, 2001.
4. J. Lo, S. Egger, J. Emer, H. Levy, R. Stamm, and D. Tullsen, “Converting

Thread-Level Parallelism to Instruction-Level Parallelism via Simultaneous
Multithreading”, ACM Transactions on Computer Systems , August 1997.

5. J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Heinrich.
“FLASH vs. (Simulated) FLASH: Closing the Simulation Loop”, In Proceedings
of the 9th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 49-58, November 2000.

6. S. E. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck., “Exact Analysis of
Cache Misses in Nested Loops,” ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation, June 20-22, 2001,
Snowbird, Utah (to appear).

7. S. Ghosh, M. Martonosi and S. Malik, “Caches Miss Equations: A Compiler
Framework for Analyzing and Tuning Memory Behavior”, ACM Transactions on
Programming Languages and Systems, vol. 21, no. 4, pg. 703-746, July, 1999.

8. D. A. B. Weikle, S.A. McKee, K. Skadron and W.A. Wulf, “Caches as Filters: A
Framework for the Analysis of Caching Systems”, Third Grace Hopper
Celebration of Women in Computing, Sept. 14-16, 2000, Cape Cod,
Massachusetts.

9. L. DeRose, and D. A. Reed, “Pablo: A Multi-language, Architecture-Independent
Performance Analysis System”, International Conference on Parallel Processing,
August 1999.

10. L. DeRose, Y. Zhang, and D. A. Reed, “SvPablo: A Multi-Language
Performance Analysis System,” 10th International Conference on Computer
Performance Evaluation – Modeling Techniques and Tools – Performance
Tools’98, Palma de Mallorca, Spain, September 1998, pp. 352-355.

11. I. T. Foster, B. Toonen and P. H. Worley, “Performance of Parallel Computers
for Spectral Atmospheric Models”, Journal Atmospheric and Oceanic Techology,
vol. 13, no. 5, pg. 1031-1045, 1996.

12. I. T. Foster and P. H. Worley, “Parallel Algorithms for the Spectral Transform
Method”, SIAM Journal on Scientific and Statistical Computing, vol. 18, no. 3,
pg. 806-837, 1997.

13. W. D. Gropp, D.K. Kaushik, D.E. Keyes and B.F. Smith, “Toward Realistic
PerformanceBounds for Implicit CFD Codes”, Proceedings of Parallel CFD’99,
May 23-26, 1999, Williamsburg, Virginia.

14. C. L. Mendes, and D. A. Reed, “Integrated Compilation and Scalability Analysis
for Parallel Systems”, International Conference on Parallel Architectures and
Compilation Techniques (PACT’98), Paris, France, October 1998, pp.385-392.

15. P. H. Worley, “Performance Evaluation of the IBM SP and the Compaq
AlphaServer SC”, ACM International Conference of Supercomputing 2000, Santa
Fe, New Mexico, May 8 - 11, 2000.

16. See http://www.cepba.upc.es/tools_i.html
17. J. Simon, J.-M. Wierum, “Accurate performance prediction for massively parallel

systems and its applications”, proceedings, Proceedings of European Conference
on Parallel Processing EURO-PAR ’96, Lyon, France, 26-29 Aug. 1996. p675-88
vol.2

18. See http://www.cs.virginia.edu/stream/
19. B. Buck, J. Hollingsworth, “An API for Runtime Code Patching’’, The

International Journal of High Performance Computing Applications , 2000

