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Abstract 
 
This paper presents a performance modeling methodology that is faster than traditional 
cycle-accurate simulation, more sophisticated than performance estimation based on 
system peak-performance metrics, and is shown to be effective on a class of High 
Performance Computing PETSc kernels.  The method yields insight into the factors that 
affect performance and scalability on parallel computers. 
 
1. Introduction 
 

As high performance computers become larger and more complex, the task of 
deciphering code optimizations to enable performance and unlock scaling potential 
becomes increasingly difficult.  Determining and understanding the factors that affect 
scientific application performance is necessary for identifying and ameliorating 
bottlenecks that limit scalability, as well as for guiding resource selection, assisting 
machine specific application tuning, and helping to meaningfully compare machines for 
their performance on the application.    

We wish to enable tools and methods for gaining insight into the factors that affect 
performance. We want to be able to predict the performance of an application on an 
arbitrary machine. This capability can enable scientists to investigate the factors that are 
affecting performance and scalability.  Given tools that predict the performance of an 
application, the computational scientist or programmer should be able to gain insight into 
the performance of the application, and also play with “what if” scenarios for upgrading 
the machine’s hardware. For example, one would like to know the effect of increasing 
network bandwidth and decreasing latency. Predicting how this would affect the 
performance of an application on a large number of processors can give insight into the 
factors limiting the application’s scalability.  If slight performance gains are predicted 
with an improved network, then the scientist can infer that there may be limitations in the 
algorithm or implementation that are resulting in unsatisfactory scaling.  If, on the other 
hand, the prediction shows that performance improves, the scientist can recognize that 
running the code on different hardware may improve the time to solution.  
    We present a framework for performance modeling, prediction and understanding. The 
Performance Modeling and Characterization (PMaC, see www.sdsc.edu/PMaC) lab at the 
San Diego Supercomputer Center (SDSC) is focused on developing methods and tools 
for understanding and predicting the performance of scientific applications on HPC 
platforms. We anticipate that these tools will aid computational scientists in 
understanding the performance of their scientific applications, and help them to better 



understand the bottlenecks that affect their application’s scalability. Our methods are in 
the early stages of development, but already show promise for enabling insight into 
scaling and other performance issues.  In this paper we describe our methodology, 
progress to date, and results. 

In order to simplify the task of understanding and modeling performance, we began by 
developing methods and tools for kernel versions of scientific applications run on current 
parallel platforms.  Initial work on the performance prediction of two kernels from the 
NAS Parallel Benchmarks (NPBs) [1] showed promising results [2]. For this study we 
focused on kernels built from the Portable, Extensible Toolkit for Scientific Computation 
(PETSc) [3].  PETSc was chosen because it has sets of routines designed for the parallel 
solution of partial differential equations that are commonly used in scientific models.  
PETSc routines represent tasks that are performed in a wide variety of scientific 
applications.  By starting with the simpler PETSc routines, we are able to start small 
where modeling is tractable and add more routines until the kernels become complex 
enough that they are comparable to full scientific applications.  

What distinguishes our work from prior research is our framework for providing 
useful, accurate performance modeling and performance understanding that is tractable 
for a wide variety of machines and applications. Previous work either developed very 
detailed models for performance [4-8], concentrated on tool development [9-10], was 
very specific to a given application domain [11-13], or focused on integrating 
compilation with scalability analysis [14].  Additionally, previous work by Worley [15] 
evaluated specific machines via benchmarking.  
 
2. Tools and Techniques for Performance Prediction 
 

The observed performance of a parallel HPC application is complicated; it is a function 
of (at least) algorithm, implementation, compiler, operating system, underlying processor 
architecture, and interconnect technology. The approach adopted here is to proceed via 
principles of simplicity and abstraction. 

We have a working assumption that a parallel application’s performance is based on 
two major factors: 1. single processor performance and 2. use of the network. Clearly, 
there are other factors, but often these dominate. Existing network simulators do a good 
job of modeling an application’s use of the interconnect and capture factors related to 
scalability [16].  In particular, very reasonable performance estimates have been obtained 
with the simple L/B (latency/bandwidth) model for communication [17]. 

 For a reasonably complete model of an application’s performance, we must also 
understand and model single processor performance and combine this information with a 
network simulator. In modeling single processor performance, we separate various 
performance factors by measuring each in isolation and then combining them to construct 
a model for performance prediction. These performance factors are captured in Machine 
Profiles and Application Signatures.  

A Machine Profile is a characterization of the rates at which a machine can (or is 
projected to) carry out fundamental operations abstract from the particular application. 
The Memory Access Pattern Signature (MAPS) Benchmark used to collect or project 
Machine Profiles is described in more detail in section 2.1.  



An Application Signature is a detailed summary of the fundamental operations to be 
carried out by the application, independent of any particular machine. We used MetaSim 
to collect Application Signatures, see section 2.2 for more detail. 

To arrive at the single processor performance of an application, the Machine Profile 
and the Application Signature are combined using a Convolution Method. A Convolution 
Method is an algebraic mapping of the Application Signature onto the Machine Profile; 
this is explained in more detail in section 2.3. 

In section 2.4, we show how to combine single-processor performance from a 
Convolution Method with the network simulator, DIMEMAS [16], to predict 
performance of parallel applications. 

For each piece of the model, we begin with simple models and few parameters then 
add complexity only as needed to explain observed performance (Occam’s razor).  Based 
on the idea that the per-processor performance of an application is predominately a 
function of how it exercises the memory sub-system, our starting point for the 
Application Signature and Machine Profile is focused on the memory hierarchy. 
 
2.1 Machine Profiles via MAPS 
 

MAPS is a benchmark probe used to measure the rate at which a single processor can 
sustain rates of loads and stores depending on the size of the problem and the access 
pattern.  MAPS has been ported to many HPC platforms including IBM Power3, Compaq 
Alpha, Intel Itanium, Cray T3E, T90, and SV1, NEC SX-4 and SX-5, Sun HPC 10K, and 
Fujitsu VPP700 and VPP5000. Derived from the STREAMS benchmark [18], MAPS 
extends STREAMS to various strides and random access patterns. A substantial amount 
of MAPS data for various machines is available at www.sdsc.edu/PMaC.  We are also 
supporting and distributing this benchmark.  

Figure 1 below is the MAPS curve for stride-one loads on the Power3 NightHawk II 
processor, enhanced with some information about the hardware. It can be seen that the 
MAPS curve reveals attributes of the machine, and the likely performance implications at 
a glance.  



Figure 1. A MAPS generated signature for Blue Horizon (Power3 NightHawk II). 
 

The Power3, like many modern processors with large L2 cache, does not fully map the 
L2 cache in the Translation Lookaside Buffer (TLB). Thus, we get a "three stair step" 
function for memory access patterns, one that is especially pronounced when pre-fetching 
is enabled. 

Figure 2 below shows a typical MAPS generated Machine Profile for stride-one and 
random loads on Pittsburgh Supercomputer Center’s (PSC) TCSini. It shows that the 
sustainable rate of memory loads depends on the size of the problem and the memory 
access pattern. A large load-bound problem with a random memory access pattern may 
run 10 or even 100 times slower than a small problem that fits in L1 cache and accesses 
memory sequentially, or better yet has a small working set yielding significant cache 
reuse. 
 



 
Figure 2. A MAPS generated profile  for the PSC TSCini. Random and stride-one curves 
are marked with L1 and L2 cache hit rates. 
 
 

Figure 2 also illustrates that a high hit rate in cache is required on TCSini for the cache 
to be useful as a latency hiding tool. A miss rate of 83% in L2 is sufficient to reduce the 
speed of random loads to nearly the rate expected for main-memory loads. Similar results 
apply to many cache-based architectures we have measured, including the Nighthawk II 
processors on Blue Horizon. When modeling the performance of an application, it is 
important to map its loops and subroutines to their expected performance on the MAPS 
curve. Statistics for this mapping can be gathered with MetaSim. 
 
2.2 Application Signatures via MetaSim 
 

MetaSim is a tool developed by PMaC to generate an Application Signature. MetaSim 
is similar to a semi-cycle accurate simulator, and is capable of gathering an abundance of 
information about an application. While MetaSim gathers multiple types of data, our 
Application Signatures are constructed primarily with the data that describes how an 
application uses a processor’s memory hierarchy.  Since an accurate performance model 
for the microprocessor often results by modeling the memory hierarchy, we may greatly 
simplify or even omit modeling functional unit queues, out-of-order issue, branch 
prediction, and a number of other microprocessor subtleties that we could model but 
decline to in these cases because they do not lie in the critical path for performance. 

MetaSim is implemented on top of the ATOM toolkit available only on Alphas. We 
have an ongoing effort to implement it on top of DyninstAPI [19], a portable 
instrumentation library. While MetaSim only runs on Alphas, it can emulate an arbitrary 
machine with less than 100-fold slowdown, so it is much faster than traditional cycle-
accurate simulators. Intuitively, it may seem that a fast, simple simulator such as 



MetaSim is an inaccurate simulator. One might reasonably presume that if we modeled 
more attributes of the microprocessor, our simulations would be more accurate (though 
slower). However, Gibson et. al.[5] showed that simulators that model many architectural 
features have more possible sources for error, resulting in complex simulators that 
produce greater than 50% error, while simple simulators are sometimes more accurate 
than complex ones.  We will show some supporting evidence for this in section 3.  

MetaSim works by gathering statistics on expected cache hit rates of routines and 
loops in an application. It accomplishes this by snooping the memory bus to catch 
addresses as they are generated by load and store operations, then calculates memory 
access patterns based on the addresses. This calculation is done by statistically binning 
the addresses into stride buckets based on comparison with the last N addresses that have 
been encountered. It works in a way analogous to the hardware pre-fetching mechanism 
on some modern processors where memory access patterns of the program are 
dynamically discovered under instrumented execution.  

MetaSim, using this memory access pattern information combined with some user-
supplied information, generates the Application Signature. The information supplied by 
the user describes the memory hierarchy of a machine (real or hypothetical) for which the 
user wishes to predict the performance of the application. MetaSim generates an 
Application Signature for the particular machine by processing the application’s address 
stream against the memory subsystem of the user-supplied parameterization of the 
(hypothetical or real) machine. 

MetaSim gathers information, at the basic block level, on how an application might use 
the predicted machine’s memory sub-system. It does so by gathering memory access 
pattern information and dynamic counts of each instruction type, and associates these 
with the basic block that generated them. What emerges is a detailed signature of basic 
blocks sorted by their contribution to the dynamic instruction count, and further profiled 
by instruction mix, ratio of arithmetic operations (as distinct from control flow 
operations) to memory operations, and memory access pattern. Such a signature is orders 
of magnitude smaller than an address trace file, yet contains an abundance of information 
suitable for careful performance analysis. Table 1 shows an example of the information 
generated in a MetaSim simulation of SDSC’s Blue Horizon for a PETSc Matrix-Vector 
multiply kernel. 

 
Table 1. MetaSim output for Matrix-vector multiply kernel simulation Blue Horizon. 

Basic 
Block # 

% Cumulative
Memory Ref. 

% Memory 
Ref. 

FLOPS/MOPS Fraction 
Random

L1 Hit 
Rate 

L2 Hit 
Rate 

919 0.246 0.246 0.485 0.0 100.0 100.0 
25 0.443 0.197 0.960 0.0 95.3 95.3 
921 0.591 0.148 0.942 0.0 100.0 100.0 

 
As can be seen, three basic blocks account for 60% of the total dynamic memory 

references (and total execution time). The summary report lists the basic blocks in the 
order of contribution to total dynamic memory references. It provides for each basic 
block its percentage of dynamic memory references, its ratio of floating-point operations 
to memory operations, the fraction of its memory accesses that are stride-random (the 
tool can generate a more detailed analysis of stride patterns), and the hit rates in L1 and 



L2 cache. For this kernel, Table 1 shows that the top three basic blocks account for a 
large portion of the memory references. However, other kernels may have twenty or 
thirty basic blocks that contribute significantly to performance, and real applications may 
have several hundred significant basic blocks. Automated gathering and summary of 
program properties is therefore essential for performance analysis.  

MetaSim does not directly measure cache hit rates on the machine where it runs, but it 
can calculate the cache hit rates that would result if the application were run on a 
processor of arbitrary (user supplied) configuration with respect to cache sizes, line 
lengths, and associativities (i.e. it calculates hit rates for a different machine). In the next 
section, we show how to use this information to map each basic block to its expected 
performance on the MAPS curve, and weight each basic block appropriately to predict 
how a program will perform on the arbitrary processor. 
  
2.3 Combining MAPS and MetaSim via the Convolution Method 
 

The Convolution Method is a way of mapping a Machine Profile to an Application 
Signature to arrive at a per-processor or single processor performance prediction.  

We determine the predicted sustainable rate of loads and stores by mapping the 
MetaSim profile block-by-block onto the MAPS curve points that match profiled cache 
hit rates and memory access patterns. As mentioned above, the per-processor 
performance of memory bound codes is often determined by the rate at which the 
machine can do loads and stores and other architectural and application features may be 
“in the noise” with respect to performance prediction.   

Figure 3 below shows a Machine Profile (MAPS plot), and an enclosed table (2) of the 
MetaSim data.  The data generated from MetaSim is convolved with the data measured 
by the MAPS curves. Table 2 is an example of such data for those basic blocks with 
random-loads from memory.  

 

 

Figure 3. Blue Horizon Machine Profile with MetaSim data. 

 
Once the bandwidths have been collected from the appropriate MAPS curve for all 

basic blocks, Equation 1 (a simple convolution) can be used to sum the weighted 
bandwidths of each basic block to calculate its MetaSim number, which is the 



application’s expected performance on that machine. The ratio of the predicted machine’s 
MetaSim number to the traced machine’s MetaSim number is used as a processor speed 
ratio supplied to the DIMEMAS network simulator. 

 
(1)  ( )∑

=

∗=
n
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In Equation 1, BBi is a basic block, Wt. BBi is the percentage of total dynamic memory 
references in the program contributed by this basic block, and Rate BBi is the MAPS 
measured rate at which MetaSim reports the basic block can sustain loads and stores 
based on the size of its working set and its access pattern. 
     We do not expect, however, that such simple convolutions will yield accurate 
performance predictions in all cases. We report the degree of accuracy yielded by such 
simple models, and add additional complexity only when required to explain observed 
phenomena. 
 
2.4 DIMEMAS, the Network Simulator 
 

DIMEMAS, developed by the European Center for Parallelism of Barcelona [16], is a 
network simulator that consumes MPI and/or OpenMP traces and allows modeling of an 
interconnect of arbitrary topology and bandwidth-latency characteristics. It does not 
attempt to simulate the execution of an application on a number of processors different 
from the number of processors the trace was gathered on. However, one can simulate the 
execution of an application on a machine (real or hypothetical) other than that on which 
the trace was gathered, by specifying a processor ratio for the speed of the simulated 
machine relative to the machine where the trace was gathered, as well as network 
topology and network bandwidth/latency characteristics of the machine to be simulated. 
DIMEMAS does a good job of modeling the network, but provides little guidance for 
choosing processor speed ratios. Indeed, the notion of relative processor speed is (we 
believe) overly simplistic.  The relative speed of two processors depends on the problem, 
but is often a function of the rate at which the processors can sustain loads and stores 
depending on access patterns and the size of the working set.  Furthermore, the relative 
speed may vary throughout the program. In this study we address this issue by using 
MAPS and MetaSim to model single-processor performance (Convolution Method). 
Thus, improving the accuracy and resolution of the processor ratio for DIMEMAS. 
 
3. Results and Conclusions 
 

The tools and methods described in the previous section were used in multiple studies.  
The first validated single processor predictions using MAPs and MetaSim by predicting 
the performance of serial kernels.  The second study predicted parallel PETSc kernels on 
two current architectures and a proposed future architecture.  The final study used 
performance prediction to understand the scalability limitations of the kernels.  For both 
single processor and parallel processor studies, a PETSc kernel was built using the 
PETSc routines required to build matrices and vectors across multiple CPUs and multiply 



them.  This routine does a Matrix-Vector multiplication in parallel or serial, an operation 
common in scientific applications.   
 
3.1 Single processor predictions of serial PETSc. 
 

Figure 4 below shows the results of applying the convolution in Equation 1 to the 
serial version of the PETSc kernel for two problem sizes. As can be seen, the method is 
accurate for these simple kernels. In this case, the kernels were profiled on the Compaq 
Alpha cluster at Pittsburgh Supercomputer Center using MetaSim, and their performance 
was predicted on SDSC's Blue Horizon. Predicted results are compared to actual 
observed performance. The kernels are predicted well within the accuracy usually 
associated with cycle-accurate simulation, this at the cost of less than a sixty-fold 
slowdown for profiling with MetaSim, and a roughly equal amount of time spent in 
gathering Blue Horizon's MAPS profile. In fact, the performance predictions are within 
the variability of observed runtimes on Blue Horizon. This suggests that the high cost of a 
cycle-accurate simulation (frequently as high as a 6 orders of magnitude slowdown) 
would be overkill for these memory-bound kernels. Furthermore, this shows that it is 
properties of the memory hierarchy that determine the performance of these kernels on 
these processors. 

 
Figure 4. Single Processor Kernel Predictions vs. Observed Timings for Blue 
Horizon with percentage error. 

 
The results of the single processor prediction also help validate the use of MAPS and 
MetaSim for single processor performance used in the parallel predictions studies.   
 
 
 



3.2 Predictions of PETSc on current and future platforms 
 

Once the single processor predictions were validated, the next study involved 
predicting a parallel version of the kernel on different platforms at different sizes and 
scaling.  All sizes were built so that the local matrix on each processor no longer fit into 
cache and was forced to employ the main memory of the processor. 

Both ASCI and non-ASCI scaling were investigated.  In ASCI scaling, the size of the 
local matrix is kept constant as the number of processors increase.  In non-ASCI scaling, 
the size of the global matrix is kept constant while the number of processors increase. 
Along with the different sizes and scaling, two groupings of processor sizes were also 
studied.  The kernel was predicted on small number of processors (2, 4, and 8), and also 
on larger number of processors (64, 96, and 128). 

Figures 5 and 6 show the prediction results for the kernel using ASCI scaling for 
PSC’s TCSini and SDSC’s Blue Horizon on 2, 4, and 8 processors for MM size. Similar 
results are shown in Figures 7 and 8 for non-ASCI scaling.  For all the predictions, the 
traces used for the network simulator were collected on SDSC’s Blue Horizon. 

 

Figure 5. Predicted and Observed time vs. number of processors for ASCI scaling on 
TCSini. 

 



Figure 6. Predicted and Observed time vs. number of processors for ASCI scaling on 
Blue Horizon. 
 

 
Figure 7. Predicted and Observed time vs. number of processors for non-ASCI scaling on 
TCSini. 
 
 
 



Figure 8. Predicted and Observed time vs. number of processors for non-ASCI scaling on 
Blue Horizon. 

 
The prediction errors range from 1-22%, which we consider good for a simple model. 

Figures 6 and 8 show the predictions for Blue Horizon.  Since traces for all the 
predictions were collected on Blue Horizon, we do not use these predictions to validate 
our prediction techniques, but rather to confirm that the network simulator, given the 
right value for the processor ratio, can simulate an HPC architecture’s network with 
reasonable accuracy. 

These techniques were also used to predict the kernel at much larger size runs in terms 
of processors.  The results of these predictions can be seen in Figures 9 -12.  These 
figures show that for both ASCI and non-ASCI scaling the predictions are within a 
reasonable amount of accuracy, especially given that at these size runs, variability in 
runtime can be larger than the error of the predictions. This is presumably due to factors 
that neither our methods, nor other modeling methods, capture – the impact of other 
user’s jobs on shared resources including the interconnect. 

 



 
Figure 9. Predicted and Observed time vs. number of processors for ASCI scaling on 
TCSini. 
 

Figure 10. Predicted and Observed time vs. number of processors for ASCI scaling on 
Blue Horizon. 
 
 



 
 

 
Figure 11. Predicted and Observed time vs. number of processors for non-ASCI scaling 
on TCSini. 
 

 
 

Figure 12. Predicted and Observed time vs. number of processors for non-ASCI scaling 
on Blue Horizon. 



 
3.3 Predictions of Future Architectures 
 

The same techniques used to predict applications on current architectures can be 
applied to theoretical architectures.  In this study we consider a hypothetical machine, 
with three levels of cache, where the first and second level of cache have the same 
sustainable bandwidth. Since the machine does not exist the MAPS curve is built by 
estimating the curve shape based on the MAPS curve of Blue Horizon.  Figure 13 shows 
the projected MAPS curve based on reasonably expected improvements in the memory 
bandwidth and latency. This along with MetaSim data were used to predict how the 
kernel might perform.  While these results cannot be validated yet, previous predictions 
in figures 5-12 show that the tools and techniques can be quite accurate and give some 
legitimacy to this future projection. Figure 14 shows the predicted performance of the 
PETSc kernel on the hypothetical machine relative to the predicted performance of Blue 
Horizon. Figure 14 also shows how performance predictions can be valuable in the 
design and/or purchase of new hardware. 
 

 
Figure 13. Estimated MAPs curve for Non-random and random loads on the hypothetical 
machine. 
 



 
 
Figure 14. Predictions for Blue Horizon and the hypothetical machine for PETSc kernel 
ASCI scaling. 
 
3.4 Using Performance Prediction to Investigate Scalability 
 

One can also use these techniques to investigate the scalability of an application.  In 
Figure 15 we take the existing prediction for Blue Horizon on 64, 96, and 128 processors 
and modify the network parameters.  If significantly improving the network of the 
machine has little to no effect on the performance, then it is clear that the limiting factor 
for scalability at these sizes is not the hardware, but something inherent in the application 
or some other aspects.  This application already shows good scalability to these sizes and, 
as seen in Figure 16, improving the processor’s capability (but not the network) will 
benefit this application.  When we improved the network without improving the 
processor, almost no performance gains resulted, confirming that scalability is not limited 
by this network hardware. 



 
 
 

 
Figure 15. Predictions for Blue Horizon with network and processor improvements to 
investigate scalability. 
 

It is this type of information that can help scientists study the performance of their 
applications and determine the type of hardware that is best suited for their applications.  
Likewise, HPC centers can make better-informed decisions for hardware upgrades and 
new purchases based on user workload predictions using these tools and techniques. 
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