
 1

A Framework for Performance Modeling and Prediction
Allan Snavely, Laura Carrington, Nicole Wolter of The San Diego Supercomputer Center with

Jesus Labarta, Rosa Badia of The Technical University of Catalonia and
Avi Purkayastha of The Texas Advanced Computing Center

Abstract
Cycle-accurate simulation is far too slow for modeling the expected performance of full parallel
applications on large HPC systems. And just running an application on a system and observing
wallclock time tells you nothing about why the application performs as it does (and is anyway
impossible on yet-to-be-built systems). Here we present a framework for performance modeling
and prediction that is faster than cycle-accurate simulation, more informative than simple
benchmarking, and is shown useful for performance investigations in several dimensions.

1 Introduction

The Performance Evaluation Research Center (PERC) is working to evolve practical
frameworks for understanding the performance of HPC applications. The goal of PERC is to
develop a science for understanding performance of scientific applications on high-end computer
systems and develop engineering strategies for improving performance on these systems. PERC
is a DoE SciDAC Center with several lab and university members and affiliates [1].

In this paper we present an instantiation of a PERC framework carried out by a team from
The San Diego Supercomputer Center (www.sdsc.edu), The European Center for Parallelism of
Barcelona (CEPBA) at the Technical University of Catalonia (UPC) (www.cepba.upc.es), and
The Texas Advanced Computing Center (www.tacc.utexas.edu). This framework combines tools
for gathering machine profiles and application signatures and provides automated convolutions.
Machine profiles are measurements of the rates at which HPC platforms can carry out
fundamental operations (for example, floating-point operations, memory accesses, message
transfers). Application signatures are summaries of the operations to be carried out on behalf of
an application to accomplish its computation. Convolution methods are techniques for mapping
signatures to profiles in reasonable time complexity for predicting and understanding
performance.

The framework is shown to be effective for practical problem solving in the domains of 1)
meaningful machine comparison 2) performance evaluation of architectural upgrades 3) system
tuning, and 4) applications scaling studies.

2 A Framework for Applications Performance Prediction and Understanding

The observed performance of a parallel application on a HPC machine is complicated; it is a
function of (at least) algorithm, implementation, compiler, operating system, underlying
processor architecture, and interconnect technology. Our approach is to disambiguate these many
factors via principles of simplicity and abstraction. For example, we have a simplifying
hypothesis that a parallel application’s performance is often dominated by two major factors: 1)
its single processor performance and 2) its use of the network. Clearly, there are other factors,
but often processor and network performance are sufficient for accurate performance prediction.
Therefore, our initial performance prediction framework consists of a single processor model
combined with a network model.

 0-7695-1524-X/02 $17.00 (c) 2002 IEEE

 2

Existing network simulators can do a good job of modeling an application’s use of
interconnect and capturing factors related to scalability [2]. In particular, rapid and accurate
network performance estimates have been obtained with the simple L/B (latency/bandwidth)
model for communication [3]. Thus, for a relatively complete model of an application’s
performance, we begin by understanding and modeling single-processor performance and then
combine this information with a network simulator.

To model single-processor performance, we separate various performance factors by
measuring each in isolation and then combine them for a model of overall performance. In our
pursuit of rapid, useful and accurate performance modeling, we model only some of the features
of modern, highly complex processors. For example, we have found that the performance of
memory-bound codes (which are common in scientific applications) may be dominated by
memory latencies that can largely obscure subtle performance effects pertaining to super scalar
issues, out-of-order issues, speculations, and other advanced processors features. Therefore, we
begin with simple models and few parameters, adding complexity only as needed to explain
observed performance (Occam’s razor [4]). Based on the idea that the per-processor performance
of a memory-bound application is predominately a function of how it exercises the memory sub-
system, our starting point for single-processor performance focuses on the local memory
hierarchy. We then account for floating-point work and insert our models into a network
simulator to model parallel applications at scale, completing the framework.

For the single-processor model we use a single-processor pseudo cycle-accurate simulator. In
the communication model we use a network simulator. These are then combined in a framework
for performance modeling that is faster than traditional cycle-accurate simulation, more
sophisticated than “back-of-the-envelope” estimation, and is shown effective on a set of
applications kernels run on several large-configuration HPC systems. The kernels are taken from
the SciDAC ISIC application library PETSc, The Portable, Extensible Toolkit for Scientific
Computation [5]. PETSc is chosen for sample applications because it has general capabilities for
solving a variety of sparse-matrix problems common to many scientific problems. However, the
techniques shown here apply to many other scientific applications as well. The method is based
on the idea of convolving application signatures with machine profiles to yield performance
predictions and, more importantly, insight into the factors affecting performance [6-7]. Our
PERC framework is instantiated with:

 MAPS [8] and PMB [9] benchmark data for machine profiles
 MetaSim tracer [10] and MPIDtrace [11] for application signatures
 Dimemas [11] and MetaSim convolver to provide the automated convolving step

Other benchmarks, application tracers, and simulators could be installed in the framework to

work in this coordinated way. We show how to gather and combine memory access-pattern trace
information and MPI communications trace information from an application and then map the
application, basic-block by basic-block, to its expected performance on a machine that has been
characterized using MAPS and PMB benchmarks.

The components of the framework isolate the performance factors of the machine in Machine
Profiles and those of an application in Application Signatures. For the single-processor model,
we isolate only those performance factors that affect the performance of the processor and
application between communication events. These are factors that focus on the local memory

 3

hierarchy. In the communication model, we isolate only those performance factors that affect the
performance of the network and an application’s communication events. Figure 1 displays the
various components of each model and how they are combined for the performance prediction of
a parallel application.

Figure 1 illustrates, the different components of the PERC framework and how they are used

together to arrive at a performance prediction. The three main components are Machine Profiles,
Application Signatures, and Convolution Methods. Next we describe each piece of the
framework and then the role it plays in enabling application performance analysis, prediction,
and insight.

2.1 Machine Profiles - The MAPS and PMB benchmarks

Machine profiles are tables of performance data gathered for existing machines via low-level
benchmarks (sometimes called “probes”) that measure simple performance attributes of
machines. For machines that have yet to be built, machine profiles represent the engineer’s
expectations of the rates at which the machine will perform operations.

For this PERC framework we used two machine profiles in our performance prediction. The
first is the machine profile used in the single-processor model of the framework that contains
information about a machine’s memory performance. The second is the profile used in the
communication model, which contains information about a machine’s interconnect performance.

To obtain a single-processor model’s machine profile, the memory performance of a machine
is collected with the MAPS (Machine Access Pattern Signature) benchmark probe. MAPS [8] is
a benchmark derived from the STREAM benchmark [12] and is designed to measure platform
specific bandwidths. These measurements include bandwidths of different levels of memory,

Figure 1: The Components of our PERC Framework

Performance prediction of
parallel Application B on Machine A

Machine Profile of
Machine A (MAPS)
Characterization of
memory performance
capabilities of
Machine A

Application Signature of
Application B
(MetaSim Tracer)
Characterization of memory
operations needed to be
performed by Application B

Convolution Method
(MetaSim Convolver)

Mapping memory usage needs of
Application B

to the capabilities of Machine A
Application B ⇔ Machine A

Machine Profile of
Machine A (PMB)
Characterization of
network performance
capabilities of
Machine A

Application Signature
of Application B
(MPIDtrace)
Characterization of network
operations needed to be
performed by Application B

Convolution Method
(DIMEMAS)

Mapping network usage needs of
Application B

to the capabilities of Machine A
Application B ⇔ Machine A

Single-Processor Model Communication Model

Performance prediction of
parallel Application B on Machine A

Machine Profile of
Machine A (MAPS)
Characterization of
memory performance
capabilities of
Machine A

Application Signature of
Application B
(MetaSim Tracer)
Characterization of memory
operations needed to be
performed by Application B

Convolution Method
(MetaSim Convolver)

Mapping memory usage needs of
Application B

to the capabilities of Machine A
Application B ⇔ Machine A

Machine Profile of
Machine A (PMB)
Characterization of
network performance
capabilities of
Machine A

Application Signature
of Application B
(MPIDtrace)
Characterization of network
operations needed to be
performed by Application B

Convolution Method
(DIMEMAS)

Mapping network usage needs of
Application B

to the capabilities of Machine A
Application B ⇔ Machine A

Single-Processor Model Communication Model

 4

different size working sets, and access patterns. Practically speaking, applications performance is
often bottlenecked by interaction with the memory hierarchy. Thus, knowing the rates at which
the system can sustain load and stores, depending upon size and locality of the working set and
memory access pattern, can be at least as important as knowing floating-point issue rates. MAPS
gives detailed but neatly summarized information about the memory hierarchy. By way of
example, Figure 2 shows a graph of MAPS data giving sustainable rates of memory loads
depending on access pattern (stride 1 or random), and size of the working set (W) on a 667 MHz
Alpha processor of the TCSini machine at Pittsburgh Supercomputing Center. The memory
hierarchy (L1 and L2 cache) accounts for the stair-step shape of the curves. For every size and
access pattern there is a corresponding L1 and L2 miss rate. MAPS is also capable of making the
same measurements for the processors on a SMP node. For another example, Figure 3 shows the
MAPS curves for 1 and 16 processors on 1 node of a Power 4 16-way node. This illustrates the
performance hit in memory bandwidth when all processors are contending for the same memory
bus on a SMP node.

Figure 2. MAPS curves with L1 and L2 cache hit rates for PSC’s TCSini.

Figure 3. Per-processor MAPS curve of Power 4 SMP node for 1 and
16 processors.

 5

For the communication model’s machine profile, the interconnect performance of a machine
is collected with PMB (Pallas MPI Benchmarks). The PMB benchmarks [9] provide a concise
set of benchmarks for measuring performance of important MPI functions: point-to-point
message passing, global data movement and computation routines, one-sided communications
and file-I/O.

A machine profile combining MAPS and PMB data provides a relatively complete
characterization of the ability of the machine to move data around from local or remote memory
depending on access pattern and type of operation.

2.2 Application Signatures – MetaSim Tracer and MPIDtrace

An application signature is a summary of the operations required by an application to
accomplish its computation. We have found that for some scientific codes, the majority of these
operations are memory usage and communications. For these applications, a useful application
signature must summarize patterns of memory usage and communications.

In order to determine an application’s signature, we need tools that capture how an
application exercises the local memory hierarchy and how it exercises the interconnect fabric.
Capturing both the local memory hierarchy and interconnect data requires a two-part application
signature. The first part is a trace of how each processor uses the memory sub-system. This
memory trace is used to model the single-processor performance of an application between
communication events. The second part of the application signature is an MPI trace, which
gathers information on all communications occurring in the application. The MPI trace also
gathers general information about the amount of CPU time spent between communications. The
memory trace information then augments the CPU time in the MPI trace to give a reasonably
complete Application Signature. While tools for tracing communications patterns are common,
tools for gathering memory access patterns are less common and typically not platform
independent. We use MPIDtrace developed by CEPBA [14] to gather the communication traces
and our own MetaSim tracer to gather the memory traces.

The MetaSim tracer, developed at SDSC, is a prototype tool that generates detailed basic-
block information about floating-point units and load/store unit usage for an application. The
MetaSim tracer captures dynamic memory address information during an instrumented run of the
(serial or parallel) code. The address stream is processed “on-the-fly” to determine memory
access patterns (such as stride N or random). The MetaSim tracer is built upon the ATOM toolkit
for accessing performance counters on Alpha processors (e.g. PSC’s Lemieux). We are working
to port the MetaSim tracer to Dyninst API [13], thus making it available on multiple processors
and systems.

The MetaSim tracer accepts user input for machine memory parameters such as sizes and
associativies of the different levels of cache, for a machine to be performance-predicted. The
MetaSim tracer processes the address stream of an application with the user defined machine
parameters to calculate the location of each address in the predicted machines memory sub-
system. This information is gathered for each basic block. Table 1 shows general application
information gathered from the MetaSim tracer without a user-defined machine. Table 2 shows
the same MetaSim tracer run with a user-defined machine similar to that of the IBM Blue
Horizon and Table 3 shows the same information with a user-defined machine similar to that of a
Cray T3E. Note that the MetaSim tracer, running on an Alpha system, can model an arbitrary,
user-defined system.

 6

Table 1. General Application Signature information for NPB CG class B on 32
C

Table 2. Application Signature for NPB CG class B on 32 CPUs with user
supplied memory parameters for the IBM Blue Horizon.

Table 3. Application Signature for NPB CG class B on 32 CPUs with user
supplied memory parameters for the Cray T3E.

Basic
Block #

Num. Inst. 1 Num. Memory
References 2

% Total.
Mem. Ref. 3

Floating-
Point Inst. 4

%FP
Inst. 5

Random
Ratio 6

Ratio of FP ops/
Mem. ops 7

373 2.06E+09 8.86E+08 0.22 8.15E+08 0.37 0.33 0.92
372 1.68E+09 8.57E+08 0.21 4.90E+08 0.22 0.37 0.57
371 1.30E+09 6.25E+08 0.15 3.57E+08 0.16 0.36 0.57
375 1.36E+09 4.96E+08 0.12 2.48E+08 0.11 0.35 0.50
1 Total number of instructions completed by that basic block
2 Total number of memory references (loads and stores) completed by that basic block
3 The percent of memory references of basic block to the total memory references by the application
4 Total number of floating-point instructions (add, multiply,…) completed by that basic block
5 The percent of floating-point instructions of basic block to the total floating-point instructions by

the application
6 Ratio of random-stride loads to total loads for that basic block
7 Ratio of floating-point operations to memory operations for that basic block

Basic
Block #

% Total.
Mem. Ref.

Random
Ratio

L1 Hit Rate 8 L2 Hit Rate 9 Data Set Location
in Memory 10

373 0.22 0.33 92.16 99.98 L1 Cache
372 0.21 0.37 90.14 99.07 L1/L2 Cache
371 0.15 0.36 88.93 98.67 L1/L2 Cache
375 0.12 0.35 93.02 99.99 L1 Cache
8 The calculated L1 cache hit rate based on memory addresses of the tracer and user supplied

memory parameters for that basic block
9 The calculated L1 cache hit rate based on memory addresses of the tracer and user supplied

memory parameters for that basic block
10 The calculated location of the data set for the basic block based on the cache hit rates

Basic
Block #

% Total.
Mem. Ref.

Random
Ratio

L1 Hit Rate L2 Hit Rate Data Set Location
in Memory

373 0.22 0.33 68.19 96.90 Main Memory
372 0.21 0.37 64.38 93.34 Main Memory
371 0.15 0.36 59.66 91.57 Main Memory
375 0.12 0.35 70.42 97.31 Main Memory

In Tables 2 and 3, the MetaSim tracer generated cache hit rates for each basic block based on
the user-defined cache sizes and associativies. Limited T3E memory caused this application’s
working set to fall out of cache and into memory. The larger Blue Horizon cache however
improved the application’s performance by keeping the working set in cache.

The information shown in Tables 2 and 3 is used in conjunction with Machine Profiles to
model an application’s single-processor performance between communication events via a
convolution method.

 7

2.3 Convolution Methods – DIMEMAS and MetaSim Convolver

Our convolution method is the computational mapping of an application’s signature
(application A) onto a machine profile (machine B) to arrive at a performance prediction
(performance of application A on machine B). We first map the memory trace component of the
application signature to the corresponding information in the machine profile in order to model
single-processor performance of an application between communication events. Next, we map
the MPI trace component to its corresponding information in the machine profile to get a
communication model. Then we take the single-processor performance model, along with the
communication model, to arrive at a complete performance model for the application.

To model the single processor performance of basic blocks in an application between
communication events, we map each basic block’s expected location in memory (determined
from the MetaSim tracer) onto the benchmark-probe curves from MAPS. The process for
mapping is illustrated by Table 4 and Figure 4. Table 4 is the product of the MetaSim tracer on a
PETSc application with the user supplied machine parameters of the PSC’s TCSini machine.
This table is similar to Tables 2 and 3, with the addition of the memory and weighted bandwidth
information. The new bandwidth information is generated from the convolution of the MetaSim
tracer information with the MAPS data. Convolutions such as these are generated automatically
by the MetaSim Convolver.
Table 4. Application Signature example via MetaSim Tracer.

Block

Procedure
Name

% Mem.
Ref.

Ratio
Random

L1 hit
Rate

L2 hit
Rate

Data Set Location in
Memory

Memory
Bandwidth

Weighted
Bandwidth

180155 dgemv_n 0.9198 0.07 93.47 93.48 L1 Cache 4166.0 3831.7
180153 dgemv_n 0.0271 0.00 90.33 90.39 Main Memory 1809.2 49.1
180160 dgemv_n 0.0232 0.00 94.81 99.89 L2 Cache 5561.3 129.3

5885 MatSetValues 0.0125 0.20 77.32 90.00 L1/L2 Cache 1522.6 19.0

Block

Memory
Bandwidth

180155 4166.0
180153 1809.2
180160 5561.3

5885 1522.6

Figure 4. MAPS curves for PSC’s TCSini for random and non-

 8

Convolutions can be arbitrarily complex depending upon how many features of the
application and the machine are being accounted for. The simple convolution represented
between Figure 4 and Table 4 can we written

(1) ()∑

=

=
n

1i
ii BB MemRate/BB MemOps TimeExecution Memory

Equation 1 predicts that the Memory Execution Time for an application is the sum, over all

the basic blocks in the application, of the expected time required to carry out the loads and stores
in each basic block. The expected execution time depends on the rates at which the machine can
carry out loads and stores based on instruction type, access pattern, and where the references fall
in the memory hierarchy. MemOps BBi is the total number of dynamic memory references in
basic block i. MemRate BBi is the rate at which the machine can sustain these operations.
MemOps BBi subcomponents (random loads to main memory, stride 1 accesses to L2 cache etc.)
are determined by the MetaSim convolver. MemRate BBi has subcomponent rates taken from the
MAPS curves. This simple example shows only predictions involving memory operations but a
full convolution can deal with other kinds of operations and the interactions and overlap between
the operations. If an application is heavily memory bound, Memory Execution Time may be a
large percentage of total execution time. Otherwise, additional model terms are added to account
for cycles spent doing non-overlapped floating-point work, branches, file I/O, communications
etc. Once these convolutions are complete the results are used by Dimemas (the network
simulator) to predict the overall performance of an application.

Dimemas consumes MPIDtrace files to model the performance of an application’s
communication pattern on an arbitrary (user parameterized or PMB measured) network.
MPIDtrace obtains the sequence of CPU demands and communication requests launched by the
processor during an application’s execution. The CPU demands from MPIDtrace are specified in
terms of CPU time consumed in the machine where the trace was obtained. Dimemas uses a
parameter (CPU ratio) to scale these CPU bursts for a machine under simulation. A naïve way of
obtaining CPU ratio might be (for example) to use the ratio of clock speed or the ratio of peak
floating-point issues between the processor where the trace was obtained and the processor of the
machine under simulation. We improve upon this idea by focusing on the relative speeds of the
memory subsystem in addition to speeds of the floating-point units; our CPU ratio is calculated
from the single-processor model using MetaSim tracer and MAPS data (Equation 1) for the
intervals that elapse on-processor between communications events. Thus, once an application has
been characterized by memory access patterns (and possibly other operations like floating-point)
by MetaSim tracer, and by communications patterns by MPIDtrace, we have a flexible
framework for varying characteristics of memory subsystem and network to investigate
performance via simulation.

3 PERC Framework Applied to Comparing HPC Platforms

One application of the framework is to explain the observed performance of applications on
existing HPC platforms. If the performance of an application is mostly explained by its memory
access and communications patterns mapped to benchmarked memory subsystem and network
speeds of machines then we know several very useful things: 1) the relative performance of
machines on this application is due to these attributes and we can quantify how much of the
performance differences are due to which memory and/or network attributes, 2) the application’s

 9

expected performance by this simple model matches reality implying the implementation and
tuning of the architecture is approximately correct, 3) the only way to improve the performance
of the application is to change its underlying algorithm, tune the application, or upgrade the
target machine in these dimensions. We neglect issues such as O/S interference, influence of
other jobs, network daemons, and other possible secondary causes of poor performance because
they are manifestly insignificant factors in wall-clock time.

We modeled example applications from the PETSc library on Blue Horizon—the Teraflops
IBM system at SDSC, TCSini—the prototype Compaq/Quadrics system at Pittsburgh
Supercomputing Center (PSC), Lemieux—the production Compaq/Quadrics system at PSC, and
a node of the IBM Power 4 based system Longhorn at Texas Advanced Computing Center
(TACC). We modeled and predicted performance using a convolution method that consumed
MAPS and PMB benchmark data for the machine profiles and MetaSim tracer and MPIDtrace
data for the application signatures. The convolution was carried out by the MetaSim convolver
for on-processor work and by Dimemas for communications work. We modeled weak scaling
(where the problem size was doubled for twice the number of processors) and strong scaling
(where the problem size was held fixed). We used a slightly more complicated convolution than
Equation 1 above for a rough-estimate of the time required to execute floating-point work:

(2) ()∑

=

+=
n

1i
iii)BB MemRate/BB (MemOps FloatRate) / BB FloatOps(TimeExecution Serial

Where FloatOps BBi is the number of dynamic floating-point operations in basic block i and

FloatRate is the peak floating-point issue rate of the processor according to the manufacturer.
This is a crude estimate of the time to execute floating-point instructions excluding, as it does,
issues of dependency and overlap of memory and floating-point work. The question is, “how
well can one predict performance with such a simple statistical model?”

Next we report the difference between predicted performance and actual performance of
various applications. When the prediction is slower than actual performance a negative error is
reported.

Table 5 gives representative results for our framework applied to a kernel from PETSc called
Matrix.F that does a matrix-vector multiply. We report prediction and real runtime results for
four machines: Blue Horizon (BH), Lemieux, TCSini, and a node of a Power4 Regatta system
(Longhorn). The network between nodes on Longhorn was still under construction at the time of
these experiments thus limiting our runs to a single node. We ran on various numbers of
processors and various problems sizes. Table 5 details results for weak scaling for different
number of processors on a size of problem (MM) that falls mostly out of cache on these systems.
Error % is defined as (real runtime – predicted runtime) / (real runtime * 100).

 10

Table 5: Real and Predicted Runtimes of Matrix.F with weak scaling.

Real time is shown as the average of several runs. Blue Horizon results verify the network
simulator and are modeled with a gratifying level of accuracy that is actually within the observed
variability of runtimes of that machine; however since the MPIDtraces were actually taken on
BH a fairer test of the power of the method is to examine what it predicts for machines different
from where the trace was taken. Predictions across Lemieux, TCSini, and Longhorn are on
average a little less than 7% error, with only 15% maximum error for the runs. It is reasonable to
ask whether such an error rate is “good” or “bad”. In this case we are pleased that a simple model
that accounts only for predicted interactions between the application and local-memory, floating-
point units, and interconnect can explain at least 85% of observed performance. This level of
accuracy is sufficient for answering useful questions. For example, we predicted TCSini would
be about 1.17 times faster than BH on this problem due to its faster processors and interconnect.
In fact it was about 1.14 times faster. We predicted Lemieux would be about 1.43 times faster, in
fact it averaged 1.53 times faster. We predicted the PW4 system would be 2.23 times faster and
in fact it is about 2.08 times faster. It is fair to point out that Lemieux and Longhorn have just
recently come on line and their performance may improve from system tuning (see section 6).
Using this framework we ranked machines correctly for this application and, more usefully,
explained those performance factors affecting this difference.

Table 6 contains similar results for performance predictions of the Matrix.F kernel using
strong scaling (keeping problem size fixed). For the small CPU runs (2-8) a different problem
size was used than for the large CPU (64-128) runs. With these problem sizes we can see the
effects of different size caches on the machines. For instance, on the Power 4 system, the scaling
from 2 to 4 CPUs is super-linear resulting from the problem size per-processor decreasing as the
number of processors increases. The prediction framework is able to capture subtle effects of the
memory hierarchy as the local problem size moves from main memory into cache as the number
of processors increase.

Matrixf.F size MM weak scaling
predictions for Blue Horizon
CPU Real time (s) Prediction (s) % Error

2 31.78 31.82 0.13
4 29.07 31.27 7.57
8 36.13 33.72 6.67

64 44.91 43.91 2.23
96 48.87 47.15 3.52
128 52.88 52.46 0.79

Matrixf.F size MM weak scaling
predictions for TCSini
CPU Real time (s) Prediction (s) % Error

2 26.71 27.40 -2.58
4 27.63 26.54 3.94
8 27.97 28.65 -2.43

64 40.15 38.56 3.97
96 43.77 38.82 11.31
128 49.78 44.37 10.86

Matrixf.F size MM weak scaling
predictions for Lemieux
CPU Real time (s) Prediction (s) % Error

2 19.79 22.63 14.33
4 20.36 21.07 3.47
8 20.93 23.66 13.01

64 30.54 31.58 3.38
96 31.84 32.93 3.42
128 34.58 36.81 6.44

Matrixf.F size MM weak scaling
predictions for Longhorn
CPU Real time (s) Prediction (s) % Error

2 14.95 14.16 -7.03
4 14.45 11.27 11.23
8 17.01 14.98 11.10

 11

Table 6: Real and Predicted Runtimes of Matrix.F with strong scaling.

The results of the prediction for the Matrix.F kernel showed relatively good results; accuracy
for strong scaling is somewhat reduced. We think modeling strong scaling is a generally harder
problem than modeling weak scaling.

We also made predictions with a mini-application that more closely approaches the
complexity of a real application. This application is built on top of PETSc and comes from TOPS
[15] and uses a nonlinear solver in a 2D driven cavity code with a velocity-vorticity formulation
and a finite difference discretization on a structured grid. Table 7 shows the results of these
predictions for the same four machines using strong scaling. These predictions had an average
7% error (18% maximum) showing we can predict reasonably well on more complicated codes.

Table 7: Real and Predicted Runtimes of EX19 with strong scaling.

Matrixf.F size MM strong scaling
predictions for Blue Horizon
CPU Real time (s) Prediction (s) % Error

2 99.19 99.53 0.34
4 57.44 55.04 4.18
8 35.70 35.41 0.81

64 114.96 113.60 1.18
96 64.57 64.74 0.26
128 58.50 54.63 4.91

Matrixf.F size MM strong scaling
predictions for TCSini
CPU Real time (s) Prediction (s) % Error

2 103.27 111.88 -8.34
4 53.15 44.84 15.63
8 27.40 29.44 -7.46

64 96.92 90.93 6.18
96 58.97 52.21 11.45
128 56.69 47.01 17.07

Matrixf.F size MM strong scaling
predictions for Lemieux
CPU Real time (s) Prediction (s) % Error

2 76.36 78.60 -2.92
4 39.91 31.83 20.24
8 20.09 20.91 -4.10

64 66.70 56.81 14.82
96 43.42 32.78 24.51
128 39.22 29.52 24.72

Matrixf.F size MM strong scaling
predictions for Longhorn
CPU Real time (s) Prediction (s) % Error

2 46.7 47.17 -1.01
4 21.5 19.34 10.05
8 11.7 13.86 -18.46

EX19 size MM strong scaling
predictions for Blue Horizon
CPU Real time (s) Prediction (s) % Error

2 66.54 66.53 0.03
4 46.44 46.64 0.55
8 32.40 33.16 2.34

EX19 size MM-strong scaling
predictions for TCSini
CPU Real time (s) Prediction (s) % Error

2 45.00 50.10 -11.34
4 35.93 35.12 2.28
8 32.58 28.82 11.55

EX19 size MM strong scaling
predictions for Lemieux
CPU Real time (s) Prediction (s) % Error

2 30.75 32.05 -4.23
4 25.18 22.51 10.61
8 20.83 18.51 11.16

EX19 size MM strong scaling
predictions for Longhorn
CPU Real time (s) Prediction (s) % Error

2 23.83 24.56 -3.07
4 18.90 16.78 11.22
8 16.19 13.24 18.22

 12

We explored different convolutions from Equation 2 above, trying predictions based on
memory operations alone (assuming floating-point operations are “in the noise” for
performance). We tried a flavor of Equation 2 that uses the maximum value instead of adding the
two for the combining operation between floating-point and memory work (this would say that
work in these two categories can overlap on a modern super-scalar processor). Neither was as
accurate as Equation 2 for these problems although the maximum value convolution shows some
promise. Table 8 shows the results of 3 predictions of the Matrix.F kernel on TCSini with weak
scaling. The first prediction is using the convolution involving just memory operations. The
second prediction is a convolution based on Equation 2 and the third convolution is using the
maximum value of contributions from floating-point and memory operations. The predictions
based on Equation 2, Prediction 2, are the most accurate of the three predictions.

Table 8. Predictions using three different convolutions.

CPUs Real time (s) Prediction 1 (s) Prediction 2 (s) Prediction 3 (s)
64 40.15 35.92 38.56 35.84
96 43.77 37.22 38.82 35.43
128 49.78 42.37 44.37 40.63

4 Verifying Framework components – Paraver and Dimemas
While the prediction results in Tables 5-7 verify the accuracy of the entire framework, it is

useful to be able to verify the individual components of the framework. Verification of the
single-processor model built with MetaSim tracer and MAPS is done using Paraver. Paraver,
developed by CEPBA, is a visualization tool and a set of instrumentation mechanisms targeted at
the analysis of message-passing applications via hardware counters, system activity and
Dimemas predictions. In this framework, Paraver can either be used to visualize Paraver traces
(.prv) of Dimemas simulations or to visualize traces obtained from real executions. Paraver’s
analysis features enable it to validate performance predictions obtained with the convolution of
the MetaSim tracer and MAPS data. This is achievable as Paraver, given a program trace file, is
able to perform a detailed quantitative analysis of the program’s performance.

For example Paraver can display performance indices such as L1 miss ratios, L2 miss ratios,
CPU Bandwidth or Main memory bandwidth as a function of time. The analysis modules of
Paraver can compute the average value of one such index as a function of other indices.
Therefore, it is possible to obtain the signature of load/store bandwidths versus L2 miss ratio for
a real run of the program. This can then be compared to the data reported by MetaSim tracer for
validation of simulated results.

Validation of the network simulator Dimemas can be done using the predictions from Blue
Horizon (see Tables 5-7). Blue Horizon results verify the network simulator because the MPI
traces are collected on Blue Horizon and the CPU ratio into the simulator is 1 (we model the
same machine as the one where the trace was collected). Thus the only likely source of error is
the simulator itself. What these predictions say is that given an accurate processor ratio the
simulator is capable of prediction with an average error of 4%. This is actually within the
observed variability of runtimes of that machine.

 13

5 PERC Framework Applied to Understanding Scaling
One can also use this framework to investigate the scalability of an application. In Figure 6

we take the existing prediction for Blue Horizon on 64, 96, and 128 processors and modify the
network parameters. If significantly improving the network of the machine has little to no effect
on the performance, then it is clear that the limiting factor for scalability at these sizes is not the
hardware, but something inherent in the application or some other aspects. This application
(Matrix.F) already shows good scalability to these sizes and, as is seen in Figure 6, improving
the processor’s capability (but not the network) will benefit this application. When we improved
the network without improving the processor, almost no performance gains resulted, confirming
that scalability of this application is not limited by this network hardware.

Figure 6. Predictions for Blue Horizon with network and processor improvements to investigate
scalability.

The application in Figure 6 already shows good scalability, so the prediction framework is

able to predict those hardware upgrades that will benefit that application the most. For those
codes that do not scale as well, the framework is able to identify factors that are limiting the
scalability. Figure 7 shows an application, run using weak scaling, that has poor scaling at 128
processors. The application is run through the framework with two predictions, one with
improved network performance and one with improved processor performance. From the figure
one can see that with an improved network the scalability of the application improves,
confirming that the bottleneck for scalability is not the application but the hardware on which it
is running. Conversely if the predictions with the improve network had not shown scalability
improvements then one could conclude that the poor scalability was due to something inherent in
the application, such as the algorithm or its implementation.

 14

Figure 7. Poor scaling application with an investigation of its bottlenecks.

This sort of information can help scientists study the performance of their applications and
determine the type of hardware that is best suited for their applications. Likewise, HPC centers
can make better-informed decisions for hardware upgrades and new purchases based on user
workload predictions using these tools and techniques.

6 PERC Framework Applied to Machine Tuning

When a performance prediction does not match reality, it may be the fault of the machine.
We initially had dismal error rates on Blue Horizon whereby we predicted the applications
should run 30% or more faster. By investigation we found the MP_INTERDELAY parameter
was set incorrectly on BH. When this was corrected we saw very high agreement between
prediction and observed runtime.

We initially found our predictions overestimated the PWR4 node by about 25%. By
investigation we found the ESSLSMP library was spawning more threads than were requested
thus adversely affecting performance. When this was corrected we got much better agreement
between predicted and observed performance.

When the framework has been confirmed to work for a set of applications, then predictions
for these applications can be useful tests for centers. Performance predictions can be useful to
investigate the setup of new machines or machines after upgrades. When the predictions do not
match the real time runs, centers will have an indication that performance of the machine is not
as expected.

7 PERC Framework Applied to Projecting Impact of Architectural Upgrades

We are using the framework to explore the likely performance of future architectures. As a
validating exercise we predicted Lemieux would be about 1.25 faster than TCSini on the

 15

Matrix.F problem due to faster processors of the same kind and an improved (double-bandwidth)
interconnect. In fact, once we got access to Lemieux, we found it to be about 1.35 faster.

We are exploring several options for building a Tflops system using PW4 and/or McKinley
processors with MyraNet or another future switch fabric. We will report on these investigations
(modulo non-disclosures) in the future. By way of a brief example we tried filling in the 96, and
128 processor points in Table 2 for Longhorn by an extrapolating simulation assuming the Blue
Horizon interconnect. We predict runtimes on the Matrix.F problem of 25.24 seconds on 96
processors and 28.84 on the scaled up problem at 128 processors.

8 Conclusions

It is tempting to make performance models as complicated as possible to capture all of the
features of modern processors, memory subsystems, and interconnects and the ways these can
interact with a program. Taken to the extreme this approach yields cycle-accurate simulators
that, while very useful for many kinds of investigations, are not very useful for modeling the
performance of full applications at scale on large HPC systems due to time limitations. We prefer
an approach that attempts to see how much of the factors that affect performance can be
attributed to few parameters only adding complexity as needed to explain observed phenomena.
We found this PERC framework has attributes of simplicity and abstraction that make it useful
and enlightening for a range of performance investigations.

Acknowledgements

This work was sponsored the Department of Energy Office of Science through SciDAC
award “High-End Computer System Performance: Science and Engineering”. This research was
supported in part by NSF cooperative agreement ACI-9619020 through computing resources
provided by the National Partnership for Advanced Computational Infrastructure at the San
Diego Supercomputer Center. Computer time was provided by the Pittsburgh Supercomputer
Center and the Texas Advanced Computing Center. We would like to thank Dave Carver for
arranging dedicated time on Longhorn.

Cited References

1. see perc.nersc.gov
2. J. Simon, J.-M. Wierum, “Accurate performance prediction for massively parallel

systems and its applications”, proceedings, Proceedings of European Conference on
Parallel Processing EURO-PAR ’96, Lyon, France, 26-29 Aug. 1996. p675-88 vol.2

3. See http://www.cepba.upc.es/tools_i.html
4. W. M. Thorburn, "Occam's razor," Mind, 24, pp. 287-288, 1915.
5. see http://www-fp.mcs.anl.gov/petsc/
6. A. Snavely, N. Wolter, and L. Carrington, “Modeling Application Performance by

Convolving Machine Signatures with Application Profiles”, IEEE 4th Annual Workshop
on Workload Characterization, Austin, Dec. 2001.

7. L. Carrington, N. Wolter, and A. Snavely, “A Framework to For Application
Performance Prediction to Enable Scalability Understanding”,
Scaling to New Heights Workshop, Pittsburgh, May 2002.

8. see http://www.sdsc.edu/PMaC/MAPS/
9. see www.pallas.com/pages/pmb.htm

 16

10. see http://www.sdsc.edu/PMaC/MetaSim/
11. see www.cepba.upc.es/tools_i.html
12. see www.cs.virginia.edu/stream
13. see www.dyninst.org
14. see http://www.cepba.upc.es/
15. see http://www.mcs.anl.gov/performance/TOPS.htm

General References in the area of Performance Modeling

1 L. Carrington, N. Wolter, and A. Snavely, “A Framework for Application Performance Prediction to

Enable Scalability Understanding”, Scaling to New Heights Workshop, Pittsburgh, May 2002
2. A. Snavely, N. Wolter, and L. Carrington, “Modeling Application Performance by Convolving Machine

Signatures with Application Profiles”, IEEE 4th Annual Workshop on Workload Characterization, Austin,
Dec. 2, 2001.

3. S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, L. C. McInnes, and B. F. Smith, “PETSc home
page”, http://www.mcs.anl.gov/petsc, 2001.

4. J. Lo, S. Egger, J. Emer, H. Levy, R. Stamm, and D. Tullsen, “Converting Thread-Level Parallelism to
Instruction-Level Parallelism via Simultaneous Multithreading”, ACM Transactions on Computer Systems
, August 1997.

5. J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Heinrich. “FLASH vs. (Simulated)
FLASH: Closing the Simulation Loop”, In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 49-58,
November 2000.

6. S. E. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck., “Exact Analysis of Cache Misses in Nested
Loops,” ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation, June
20-22, 2001, Snowbird, Utah (to appear).

7. S. Ghosh, M. Martonosi and S. Malik, “Caches Miss Equations: A Compiler Framework for Analyzing
and Tuning Memory Behavior”, ACM Transactions on Programming Languages and Systems, vol. 21, no.
4, pg. 703-746, July, 1999.

8. D. A. B. Weikle, S.A. McKee, K. Skadron and W.A. Wulf, “Caches as Filters: A Framework for the
Analysis of Caching Systems”, Third Grace Hopper Celebration of Women in Computing, Sept. 14-16,
2000, Cape Cod, Massachusetts.

9. L. DeRose, and D. A. Reed, “Pablo: A Multi-language, Architecture-Independent Performance Analysis
System”, International Conference on Parallel Processing, August 1999.

10. L. DeRose, Y. Zhang, and D. A. Reed, “SvPablo: A Multi-Language Performance Analysis System,” 10th

International Conference on Computer Performance Evaluation – Modeling Techniques and Tools –
Performance Tools’98, Palma de Mallorca, Spain, September 1998, pp. 352-355.

11. I. T. Foster, B. Toonen and P. H. Worley, “Performance of Parallel Computers for Spectral Atmospheric
Models”, Journal Atmospheric and Oceanic Techology, vol. 13, no. 5, pg. 1031-1045, 1996.

12. I. T. Foster and P. H. Worley, “Parallel Algorithms for the Spectral Transform Method”, SIAM Journal on
Scientific and Statistical Computing, vol. 18, no. 3, pg. 806-837, 1997.

13. W. D. Gropp, D.K. Kaushik, D.E. Keyes and B.F. Smith, “Toward Realistic PerformanceBounds for
Implicit CFD Codes”, Proceedings of Parallel CFD’99, May 23-26, 1999, Williamsburg, Virginia.

14. C. L. Mendes, and D. A. Reed, “Integrated Compilation and Scalability Analysis for Parallel Systems”,
International Conference on Parallel Architectures and Compilation Techniques (PACT’98), Paris,
France, October 1998, pp.385-392.

15. P. H. Worley, “Performance Evaluation of the IBM SP and the Compaq AlphaServer SC”, ACM
International Conference of Supercomputing 2000, Santa Fe, New Mexico, May 8 - 11, 2000.

16. J. Simon, J.-M. Wierum, “Accurate performance prediction for massively parallel systems and its
applications”, proceedings, Proceedings of European Conference on Parallel Processing EURO-PAR ’96,
Lyon, France, 26-29 Aug. 1996. p675-88 vol.2

17. B. Buck, J. Hollingsworth, “An API for Runtime Code Patching’’, The International Journal of High
Performance Computing Applications , 2000

 17

18. J. Gustafson, R. Todi; “Conventional Benchmarks as a Sample of the Performance Spectrum”, The
Journal of Supercomputing, 13, 321-342, 1999

