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Abstract 
Cycle-accurate simulation is far too slow for modeling the expected performance of full parallel 
applications on large HPC systems. And just running an application on a system and observing 
wallclock time tells you nothing about why the application performs as it does (and is anyway 
impossible on yet-to-be-built systems). Here we present a framework for performance modeling 
and prediction that is faster than cycle-accurate simulation, more informative than simple 
benchmarking, and is shown useful for performance investigations in several dimensions. 
 
1 Introduction  

The Performance Evaluation Research Center (PERC) is working to evolve practical 
frameworks for understanding the performance of HPC applications. The goal of PERC is to 
develop a science for understanding performance of scientific applications on high-end computer 
systems and develop engineering strategies for improving performance on these systems. PERC 
is a DoE SciDAC Center with several lab and university members and affiliates [1]. 

In this paper we present an instantiation of a PERC framework carried out by a team from 
The San Diego Supercomputer Center (www.sdsc.edu), The European Center for Parallelism of 
Barcelona (CEPBA) at the Technical University of Catalonia (UPC) (www.cepba.upc.es), and 
The Texas Advanced Computing Center (www.tacc.utexas.edu). This framework combines tools 
for gathering machine profiles and application signatures and provides automated convolutions. 
Machine profiles are measurements of the rates at which HPC platforms can carry out 
fundamental operations (for example, floating-point operations, memory accesses, message 
transfers). Application signatures are summaries of the operations to be carried out on behalf of 
an application to accomplish its computation. Convolution methods are techniques for mapping 
signatures to profiles in reasonable time complexity for predicting and understanding 
performance. 

The framework is shown to be effective for practical problem solving in the domains of 1) 
meaningful machine comparison 2) performance evaluation of architectural upgrades 3) system 
tuning, and 4) applications scaling studies. 
 
2 A Framework for Applications Performance Prediction and Understanding  

The observed performance of a parallel application on a HPC machine is complicated; it is a  
function of (at least) algorithm, implementation, compiler, operating system, underlying 
processor architecture, and interconnect technology. Our approach is to disambiguate these many 
factors via principles of simplicity and abstraction. For example, we have a simplifying 
hypothesis that a parallel application’s performance is often dominated by two major factors: 1) 
its single processor performance and 2) its use of the network. Clearly, there are other factors, 
but often processor and network performance are sufficient for accurate performance prediction. 
Therefore, our initial performance prediction framework consists of a single processor model 
combined with a network model.  
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Existing network simulators can do a good job of modeling an application’s use of 
interconnect and capturing factors related to scalability [2]. In particular, rapid and accurate 
network performance estimates have been obtained with the simple L/B (latency/bandwidth) 
model for communication [3]. Thus, for a relatively complete model of an application’s 
performance, we begin by understanding and modeling single-processor performance and then 
combine this information with a network simulator.   

To model single-processor performance, we separate various performance factors by 
measuring each in isolation and then combine them for a model of overall performance. In our 
pursuit of rapid, useful and accurate performance modeling, we model only some of the features 
of modern, highly complex processors. For example, we have found that the performance of 
memory-bound codes (which are common in scientific applications) may be dominated by 
memory latencies that can largely obscure subtle performance effects pertaining to super scalar 
issues, out-of-order issues, speculations, and other advanced processors features. Therefore, we 
begin with simple models and few parameters, adding complexity only as needed to explain 
observed performance (Occam’s razor [4]). Based on the idea that the per-processor performance 
of a memory-bound application is predominately a function of how it exercises the memory sub-
system, our starting point for single-processor performance focuses on the local memory 
hierarchy. We then account for floating-point work and insert our models into a network 
simulator to model parallel applications at scale, completing the framework. 

For the single-processor model we use a single-processor pseudo cycle-accurate simulator. In 
the communication model we use a network simulator. These are then combined in a framework 
for performance modeling that is faster than traditional cycle-accurate simulation, more 
sophisticated than “back-of-the-envelope” estimation, and is shown effective on a set of 
applications kernels run on several large-configuration HPC systems. The kernels are taken from 
the SciDAC ISIC application library PETSc, The Portable, Extensible Toolkit for Scientific 
Computation [5]. PETSc is chosen for sample applications because it has general capabilities for 
solving a variety of sparse-matrix problems common to many scientific problems. However, the 
techniques shown here apply to many other scientific applications as well. The method is based 
on the idea of convolving application signatures with machine profiles to yield performance 
predictions and, more importantly, insight into the factors affecting performance [6-7]. Our 
PERC framework is instantiated with:  
 

 MAPS [8] and PMB [9] benchmark data for machine profiles 
 MetaSim tracer [10] and MPIDtrace [11] for application signatures  
 Dimemas [11] and MetaSim convolver to provide the automated convolving step  

 
Other benchmarks, application tracers, and simulators could be installed in the framework to 

work in this coordinated way. We show how to gather and combine memory access-pattern trace 
information and MPI communications trace information from an application and then map the 
application, basic-block by basic-block, to its expected performance on a machine that has been 
characterized using MAPS and PMB benchmarks.  

The components of the framework isolate the performance factors of the machine in Machine 
Profiles and those of an application in Application Signatures. For the single-processor model, 
we isolate only those performance factors that affect the performance of the processor and 
application between communication events. These are factors that focus on the local memory 
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hierarchy. In the communication model, we isolate only those performance factors that affect the 
performance of the network and an application’s communication events. Figure 1 displays the 
various components of each model and how they are combined for the performance prediction of 
a parallel application. 
 

 

 
Figure 1 illustrates, the different components of the PERC framework and how they are used 

together to arrive at a performance prediction.  The three main components are Machine Profiles, 
Application Signatures, and Convolution Methods. Next we describe each piece of the 
framework and then the role it plays in enabling application performance analysis, prediction, 
and insight. 
 
2.1 Machine Profiles - The MAPS and PMB benchmarks  

Machine profiles are tables of performance data gathered for existing machines via low-level 
benchmarks (sometimes called “probes”) that measure simple performance attributes of 
machines. For machines that have yet to be built, machine profiles represent the engineer’s 
expectations of the rates at which the machine will perform operations.  

For this PERC framework we used two machine profiles in our performance prediction. The 
first is the machine profile used in the single-processor model of the framework that contains 
information about a machine’s memory performance. The second is the profile used in the 
communication model, which contains information about a machine’s interconnect performance. 

To obtain a single-processor model’s machine profile, the memory performance of a machine 
is collected with the MAPS (Machine Access Pattern Signature) benchmark probe. MAPS [8] is 
a benchmark derived from the STREAM benchmark [12] and is designed to measure platform 
specific bandwidths. These measurements include bandwidths of different levels of memory, 

Figure 1:  The Components of our PERC Framework 
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different size working sets, and access patterns. Practically speaking, applications performance is 
often bottlenecked by interaction with the memory hierarchy. Thus, knowing the rates at which 
the system can sustain load and stores, depending upon size and locality of the working set and 
memory access pattern, can be at least as important as knowing floating-point issue rates. MAPS 
gives detailed but neatly summarized information about the memory hierarchy. By way of 
example, Figure 2 shows a graph of MAPS data giving sustainable rates of memory loads 
depending on access pattern (stride 1 or random), and size of the working set (W) on a 667 MHz 
Alpha processor of the TCSini machine at Pittsburgh Supercomputing Center. The memory 
hierarchy (L1 and L2 cache) accounts for the stair-step shape of the curves. For every size and 
access pattern there is a corresponding L1 and L2 miss rate. MAPS is also capable of making the 
same measurements for the processors on a SMP node. For another example, Figure 3 shows the 
MAPS curves for 1 and 16 processors on 1 node of a Power 4 16-way node. This illustrates the 
performance hit in memory bandwidth when all processors are contending for the same memory 
bus on a SMP node. 

 
 

Figure 2. MAPS curves with L1 and L2 cache hit rates for PSC’s TCSini. 

Figure 3. Per-processor MAPS curve of Power 4 SMP node for 1 and 
16 processors. 
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For the communication model’s machine profile, the interconnect performance of a machine 
is collected with PMB (Pallas MPI Benchmarks). The PMB benchmarks [9] provide a concise 
set of benchmarks for measuring performance of important MPI functions: point-to-point 
message passing, global data movement and computation routines, one-sided communications 
and file-I/O. 

A machine profile combining MAPS and PMB data provides a relatively complete 
characterization of the ability of the machine to move data around from local or remote memory 
depending on access pattern and type of operation. 
 
2.2 Application Signatures – MetaSim Tracer and MPIDtrace  

An application signature is a summary of the operations required by an application to 
accomplish its computation. We have found that for some scientific codes, the majority of these 
operations are memory usage and communications. For these applications, a useful application 
signature must summarize patterns of memory usage and communications.  

In order to determine an application’s signature, we need tools that capture how an 
application exercises the local memory hierarchy and how it exercises the interconnect fabric. 
Capturing both the local memory hierarchy and interconnect data requires a two-part application 
signature. The first part is a trace of how each processor uses the memory sub-system. This 
memory trace is used to model the single-processor performance of an application between 
communication events. The second part of the application signature is an MPI trace, which 
gathers information on all communications occurring in the application. The MPI trace also 
gathers general information about the amount of CPU time spent between communications. The 
memory trace information then augments the CPU time in the MPI trace to give a reasonably 
complete Application Signature. While tools for tracing communications patterns are common, 
tools for gathering memory access patterns are less common and typically not platform 
independent. We use MPIDtrace developed by CEPBA [14] to gather the communication traces 
and our own MetaSim tracer to gather the memory traces. 

The MetaSim tracer, developed at SDSC, is a prototype tool that generates detailed basic-
block information about floating-point units and load/store unit usage for an application. The 
MetaSim tracer captures dynamic memory address information during an instrumented run of the 
(serial or parallel) code. The address stream is processed “on-the-fly” to determine memory 
access patterns (such as stride N or random). The MetaSim tracer is built upon the ATOM toolkit 
for accessing performance counters on Alpha processors (e.g. PSC’s Lemieux). We are working 
to port the MetaSim tracer to Dyninst API [13], thus making it available on multiple processors 
and systems.  

The MetaSim tracer accepts user input for machine memory parameters such as sizes and 
associativies of the different levels of cache, for a machine to be performance-predicted. The 
MetaSim tracer processes the address stream of an application with the user defined machine 
parameters to calculate the location of each address in the predicted machines memory sub-
system. This information is gathered for each basic block. Table 1 shows general application 
information gathered from the MetaSim tracer without a user-defined machine. Table 2 shows 
the same MetaSim tracer run with a user-defined machine similar to that of the IBM Blue 
Horizon and Table 3 shows the same information with a user-defined machine similar to that of a 
Cray T3E. Note that the MetaSim tracer, running on an Alpha system, can model an arbitrary, 
user-defined system. 
 
 



 6

Table 1. General Application Signature information for NPB CG class B on 32 
C

Table 2. Application Signature for NPB CG class B on 32 CPUs with user 
supplied memory parameters for the IBM Blue Horizon. 

Table 3. Application Signature for NPB CG class B on 32 CPUs with user 
supplied memory parameters for the Cray T3E. 

 
 
 
 
Basic 
Block # 

Num. Inst. 1 Num. Memory 
References 2 

% Total. 
Mem. Ref. 3 

Floating-
Point Inst. 4 

%FP 
Inst. 5 

Random 
Ratio 6 

Ratio of FP ops/ 
Mem. ops 7 

373 2.06E+09 8.86E+08 0.22 8.15E+08 0.37 0.33 0.92 
372 1.68E+09 8.57E+08 0.21 4.90E+08 0.22 0.37 0.57 
371 1.30E+09 6.25E+08 0.15 3.57E+08 0.16 0.36 0.57 
375 1.36E+09 4.96E+08 0.12 2.48E+08 0.11 0.35 0.50 
1 Total number of instructions completed by that basic block 
2 Total number of memory references (loads and stores) completed by that basic block 
3 The percent of memory references of basic block to the total memory references by the application 
4 Total number of floating-point instructions (add, multiply,…) completed by that basic block 
5 The percent of floating-point instructions of basic block to the total floating-point instructions by 

the application 
6 Ratio of random-stride loads to total loads for that basic block 
7 Ratio of floating-point operations to memory operations for that basic block 

 
 
 
Basic 
Block # 

% Total. 
Mem. Ref. 

Random 
Ratio 

L1 Hit Rate 8 L2 Hit Rate 9 Data Set Location 
in Memory 10 

373 0.22 0.33 92.16 99.98 L1 Cache 
372 0.21 0.37 90.14 99.07 L1/L2 Cache 
371 0.15 0.36 88.93 98.67 L1/L2 Cache 
375 0.12 0.35 93.02 99.99 L1 Cache 
8 The calculated L1 cache hit rate based on memory addresses of the tracer and user supplied 

memory parameters for that basic block 
9 The calculated L1 cache hit rate based on memory addresses of the tracer and user supplied 

memory parameters for that basic block 
10 The calculated location of the data set for the basic block based on the cache hit rates 

 
 
 
Basic 
Block # 

% Total. 
Mem. Ref. 

Random 
Ratio 

L1 Hit Rate  L2 Hit Rate  Data Set Location 
in Memory  

373 0.22 0.33 68.19 96.90 Main Memory 
372 0.21 0.37 64.38 93.34 Main Memory 
371 0.15 0.36 59.66 91.57 Main Memory 
375 0.12 0.35 70.42 97.31 Main Memory 
 

In Tables 2 and 3, the MetaSim tracer generated cache hit rates for each basic block based on 
the user-defined cache sizes and associativies. Limited T3E memory caused this application’s 
working set to fall out of cache and into memory. The larger Blue Horizon cache however 
improved the application’s performance by keeping the working set in cache. 

The information shown in Tables 2 and 3 is used in conjunction with Machine Profiles to 
model an application’s single-processor performance between communication events via a 
convolution method.  
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2.3 Convolution Methods – DIMEMAS and MetaSim Convolver  

Our convolution method is the computational mapping of an application’s signature 
(application A) onto a machine profile (machine B) to arrive at a performance prediction 
(performance of application A on machine B). We first map the memory trace component of the 
application signature to the corresponding information in the machine profile in order to model 
single-processor performance of an application between communication events. Next, we map 
the MPI trace component to its corresponding information in the machine profile to get a 
communication model. Then we take the single-processor performance model, along with the 
communication model, to arrive at a complete performance model for the application. 

To model the single processor performance of basic blocks in an application between 
communication events, we map each basic block’s expected location in memory (determined 
from the MetaSim tracer) onto the benchmark-probe curves from MAPS. The process for 
mapping is illustrated by Table 4 and Figure 4. Table 4 is the product of the MetaSim tracer on a 
PETSc application with the user supplied machine parameters of the PSC’s TCSini machine. 
This table is similar to Tables 2 and 3, with the addition of the memory and weighted bandwidth 
information. The new bandwidth information is generated from the convolution of the MetaSim 
tracer information with the MAPS data. Convolutions such as these are generated automatically 
by the MetaSim Convolver. 
Table 4. Application Signature example via MetaSim Tracer. 

Block 
# 

Procedure 
Name 

% Mem. 
Ref. 

Ratio 
Random

L1 hit
Rate 

L2 hit
Rate 

Data Set Location in 
Memory 

Memory 
Bandwidth 

Weighted 
Bandwidth

180155 dgemv_n 0.9198 0.07 93.47 93.48 L1 Cache 4166.0 3831.7 
180153 dgemv_n 0.0271 0.00 90.33 90.39 Main Memory 1809.2 49.1 
180160 dgemv_n 0.0232 0.00 94.81 99.89 L2 Cache 5561.3 129.3 

5885 MatSetValues 0.0125 0.20 77.32 90.00 L1/L2 Cache 1522.6 19.0 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Block 
# 

Memory 
Bandwidth 

180155 4166.0 
180153 1809.2 
180160 5561.3 

5885 1522.6 

Figure 4. MAPS curves for PSC’s TCSini for random and non-
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Convolutions can be arbitrarily complex depending upon how many features of the 
application and the machine are being accounted for. The simple convolution represented 
between Figure 4 and Table 4 can we written 

 
(1)  ( )∑

=

=
n

1i
ii BB MemRate/BB MemOps  TimeExecution Memory   

 
Equation 1 predicts that the Memory Execution Time for an application is the sum, over all 

the basic blocks in the application, of the expected time required to carry out the loads and stores 
in each basic block. The expected execution time depends on the rates at which the machine can 
carry out loads and stores based on instruction type, access pattern, and where the references fall 
in the memory hierarchy. MemOps BBi is the total number of dynamic memory references in 
basic block i. MemRate BBi is the rate at which the machine can sustain these operations. 
MemOps BBi subcomponents (random loads to main memory, stride 1 accesses to L2 cache etc.) 
are determined by the MetaSim convolver. MemRate BBi has subcomponent rates taken from the 
MAPS curves. This simple example shows only predictions involving memory operations but a 
full convolution can deal with other kinds of operations and the interactions and overlap between 
the operations. If an application is heavily memory bound, Memory Execution Time may be a 
large percentage of total execution time. Otherwise, additional model terms are added to account 
for cycles spent doing non-overlapped floating-point work, branches, file I/O, communications 
etc. Once these convolutions are complete the results are used by Dimemas (the network 
simulator) to predict the overall performance of an application. 

Dimemas consumes MPIDtrace files to model the performance of an application’s 
communication pattern on an arbitrary (user parameterized or PMB measured) network. 
MPIDtrace obtains the sequence of CPU demands and communication requests launched by the 
processor during an application’s execution. The CPU demands from MPIDtrace are specified in 
terms of CPU time consumed in the machine where the trace was obtained. Dimemas uses a 
parameter (CPU ratio) to scale these CPU bursts for a machine under simulation. A naïve way of 
obtaining CPU ratio might be (for example) to use the ratio of clock speed or the ratio of peak 
floating-point issues between the processor where the trace was obtained and the processor of the 
machine under simulation. We improve upon this idea by focusing on the relative speeds of the 
memory subsystem in addition to speeds of the floating-point units; our CPU ratio is calculated 
from the single-processor model using MetaSim tracer and MAPS data (Equation 1) for the 
intervals that elapse on-processor between communications events. Thus, once an application has 
been characterized by memory access patterns (and possibly other operations like floating-point) 
by MetaSim tracer, and by communications patterns by MPIDtrace, we have a flexible 
framework for varying characteristics of memory subsystem and network to investigate 
performance via simulation.  
 
3 PERC Framework Applied to Comparing HPC Platforms  

One application of the framework is to explain the observed performance of applications on 
existing HPC platforms. If the performance of an application is mostly explained by its memory 
access and communications patterns mapped to benchmarked memory subsystem and network 
speeds of machines then we know several very useful things: 1) the relative performance of 
machines on this application is due to these attributes and we can quantify how much of the 
performance differences are due to which memory and/or network attributes, 2) the application’s 
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expected performance by this simple model matches reality implying the implementation and 
tuning of the architecture is approximately correct, 3) the only way to improve the performance 
of the application is to change its underlying algorithm, tune the application, or upgrade the 
target machine in these dimensions. We neglect issues such as O/S interference, influence of 
other jobs, network daemons, and other possible secondary causes of poor performance because 
they are manifestly insignificant factors in wall-clock time. 

We modeled example applications from the PETSc library on Blue Horizon—the Teraflops 
IBM system at SDSC, TCSini—the prototype Compaq/Quadrics system at Pittsburgh 
Supercomputing Center (PSC), Lemieux—the production Compaq/Quadrics system at PSC, and 
a node of the IBM Power 4 based system Longhorn at Texas Advanced Computing Center 
(TACC). We modeled and predicted performance using a convolution method that consumed 
MAPS and PMB benchmark data for the machine profiles and MetaSim tracer and MPIDtrace 
data for the application signatures. The convolution was carried out by the MetaSim convolver 
for on-processor work and by Dimemas for communications work. We modeled weak scaling 
(where the problem size was doubled for twice the number of processors) and strong scaling 
(where the problem size was held fixed). We used a slightly more complicated convolution than 
Equation 1 above for a rough-estimate of the time required to execute floating-point work: 
 
(2) ( )∑

=

+=
n

1i
iii )BB MemRate/BB (MemOps  FloatRate) / BB FloatOps(  TimeExecution  Serial  

 
Where FloatOps BBi is the number of dynamic floating-point operations in basic block i and 

FloatRate is the peak floating-point issue rate of the processor according to the manufacturer. 
This is a crude estimate of the time to execute floating-point instructions excluding, as it does, 
issues of dependency and overlap of memory and floating-point work. The question is, “how 
well can one predict performance with such a simple statistical model?” 

Next we report the difference between predicted performance and actual performance of 
various applications. When the prediction is slower than actual performance a negative error is 
reported.  

Table 5 gives representative results for our framework applied to a kernel from PETSc called 
Matrix.F that does a matrix-vector multiply. We report prediction and real runtime results for 
four machines: Blue Horizon (BH), Lemieux, TCSini, and a node of a Power4 Regatta system 
(Longhorn). The network between nodes on Longhorn was still under construction at the time of 
these experiments thus limiting our runs to a single node. We ran on various numbers of 
processors and various problems sizes. Table 5 details results for weak scaling for different 
number of processors on a size of problem (MM) that falls mostly out of cache on these systems. 
Error % is defined as (real runtime – predicted runtime) / (real runtime * 100). 
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Table 5: Real and Predicted Runtimes of Matrix.F with weak scaling. 

 
 
 
 

 

 

 

 

 

 

 

 

 
 

Real time is shown as the average of several runs. Blue Horizon results verify the network 
simulator and are modeled with a gratifying level of accuracy that is actually within the observed 
variability of runtimes of that machine; however since the MPIDtraces were actually taken on 
BH a fairer test of the power of the method is to examine what it predicts for machines different 
from where the trace was taken. Predictions across Lemieux, TCSini, and Longhorn are on 
average a little less than 7% error, with only 15% maximum error for the runs. It is reasonable to 
ask whether such an error rate is “good” or “bad”. In this case we are pleased that a simple model 
that accounts only for predicted interactions between the application and local-memory, floating-
point units, and interconnect can explain at least 85% of observed performance. This level of 
accuracy is sufficient for answering useful questions. For example, we predicted TCSini would 
be about 1.17 times faster than BH on this problem due to its faster processors and interconnect. 
In fact it was about 1.14 times faster. We predicted Lemieux would be about 1.43 times faster, in 
fact it averaged 1.53 times faster. We predicted the PW4 system would be 2.23 times faster and 
in fact it is about 2.08 times faster. It is fair to point out that Lemieux and Longhorn have just 
recently come on line and their performance may improve from system tuning (see section 6). 
Using this framework we ranked machines correctly for this application and, more usefully, 
explained those performance factors affecting this difference. 

Table 6 contains similar results for performance predictions of the Matrix.F kernel using 
strong scaling (keeping problem size fixed). For the small CPU runs (2-8) a different problem 
size was used than for the large CPU (64-128) runs. With these problem sizes we can see the 
effects of different size caches on the machines. For instance, on the Power 4 system, the scaling 
from 2 to 4 CPUs is super-linear resulting from the problem size per-processor decreasing as the 
number of processors increases. The prediction framework is able to capture subtle effects of the 
memory hierarchy as the local problem size moves from main memory into cache as the number 
of processors increase.  

 

Matrixf.F size MM weak scaling 
predictions for Blue Horizon 
CPU Real time (s) Prediction (s) % Error

2 31.78 31.82 0.13 
4 29.07 31.27 7.57 
8 36.13 33.72 6.67 

64 44.91 43.91 2.23 
96 48.87 47.15 3.52 
128 52.88 52.46 0.79 

Matrixf.F size MM weak scaling 
predictions for TCSini 
CPU Real time (s) Prediction (s) % Error 

2 26.71 27.40 -2.58 
4 27.63 26.54 3.94 
8 27.97 28.65 -2.43 

64 40.15 38.56 3.97 
96 43.77 38.82 11.31 
128 49.78 44.37 10.86 

Matrixf.F size MM weak scaling 
predictions for Lemieux 
CPU Real time (s) Prediction (s) % Error

2 19.79 22.63 14.33 
4 20.36 21.07 3.47 
8 20.93 23.66 13.01 

64 30.54 31.58 3.38 
96 31.84 32.93 3.42 
128 34.58 36.81 6.44 

Matrixf.F size MM weak scaling 
predictions for Longhorn 
CPU Real time (s) Prediction (s) % Error 

2 14.95 14.16 -7.03 
4 14.45 11.27 11.23 
8 17.01 14.98 11.10 
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Table 6: Real and Predicted Runtimes of Matrix.F with strong scaling. 

 
 
 
 

 

 

 

 

 

 

 

 

 
 

The results of the prediction for the Matrix.F kernel showed relatively good results; accuracy 
for strong scaling is somewhat reduced. We think modeling strong scaling is a generally harder 
problem than modeling weak scaling.  

We also made predictions with a mini-application that more closely approaches the 
complexity of a real application. This application is built on top of PETSc and comes from TOPS 
[15] and uses a nonlinear solver in a 2D driven cavity code with a velocity-vorticity formulation 
and a finite difference discretization on a structured grid. Table 7 shows the results of these 
predictions for the same four machines using strong scaling. These predictions had an average 
7% error (18% maximum) showing we can predict reasonably well on more complicated codes.  
 
Table 7: Real and Predicted Runtimes of EX19 with strong scaling. 

 
 
 
 

 
 
 
 
 
 
 

 

Matrixf.F size MM strong scaling 
predictions for Blue Horizon 
CPU Real time (s) Prediction (s) % Error

2 99.19 99.53 0.34 
4 57.44 55.04 4.18 
8 35.70 35.41 0.81 

64 114.96 113.60 1.18 
96 64.57 64.74 0.26 
128 58.50 54.63 4.91 

Matrixf.F size MM strong scaling 
predictions for TCSini 
CPU Real time (s) Prediction (s) % Error 

2 103.27 111.88 -8.34 
4 53.15 44.84 15.63 
8 27.40 29.44 -7.46 

64 96.92 90.93 6.18 
96 58.97 52.21 11.45 
128 56.69 47.01 17.07 

Matrixf.F size MM strong scaling 
predictions for Lemieux 
CPU Real time (s) Prediction (s) % Error

2 76.36 78.60 -2.92 
4 39.91 31.83 20.24 
8 20.09 20.91 -4.10 

64 66.70 56.81 14.82 
96 43.42 32.78 24.51 
128 39.22 29.52 24.72 

Matrixf.F size MM strong scaling 
predictions for Longhorn 
CPU Real time (s) Prediction (s) % Error 

2 46.7 47.17 -1.01 
4 21.5 19.34 10.05 
8 11.7 13.86 -18.46 

EX19 size MM strong scaling 
predictions for Blue Horizon 
CPU Real time (s) Prediction (s) % Error

2 66.54 66.53 0.03 
4 46.44 46.64 0.55 
8 32.40 33.16 2.34 

EX19 size MM-strong scaling 
predictions for TCSini 
CPU Real time (s) Prediction (s) % Error 

2 45.00 50.10 -11.34 
4 35.93 35.12 2.28 
8 32.58 28.82 11.55 

EX19 size MM strong scaling 
predictions for Lemieux 
CPU Real time (s) Prediction (s) % Error

2 30.75 32.05 -4.23 
4 25.18 22.51 10.61 
8 20.83 18.51 11.16 

EX19 size MM strong scaling 
predictions for Longhorn 
CPU Real time (s) Prediction (s) % Error 

2 23.83 24.56 -3.07 
4 18.90 16.78 11.22 
8 16.19 13.24 18.22 
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We explored different convolutions from Equation 2 above, trying predictions based on 
memory operations alone (assuming floating-point operations are “in the noise” for 
performance). We tried a flavor of Equation 2 that uses the maximum value instead of adding the 
two for the combining operation between floating-point and memory work (this would say that 
work in these two categories can overlap on a modern super-scalar processor). Neither was as 
accurate as Equation 2 for these problems although the maximum value convolution shows some 
promise. Table 8 shows the results of 3 predictions of the Matrix.F kernel on TCSini with weak 
scaling. The first prediction is using the convolution involving just memory operations. The 
second prediction is a convolution based on Equation 2 and the third convolution is using the 
maximum value of contributions from floating-point and memory operations. The predictions 
based on Equation 2, Prediction 2, are the most accurate of the three predictions. 

   
Table 8. Predictions using three different convolutions. 

# CPUs Real time (s) Prediction 1 (s) Prediction 2 (s) Prediction 3 (s) 
64 40.15 35.92 38.56 35.84 
96 43.77 37.22 38.82 35.43 
128 49.78 42.37 44.37 40.63 

 
 

4 Verifying Framework components – Paraver and Dimemas  
While the prediction results in Tables 5-7 verify the accuracy of the entire framework, it is 

useful to be able to verify the individual components of the framework. Verification of the 
single-processor model built with MetaSim tracer and MAPS is done using Paraver. Paraver, 
developed by CEPBA, is a visualization tool and a set of instrumentation mechanisms targeted at 
the analysis of message-passing applications via hardware counters, system activity and 
Dimemas predictions. In this framework, Paraver can either be used to visualize Paraver traces 
(.prv) of Dimemas simulations or to visualize traces obtained from real executions. Paraver’s 
analysis features enable it to validate performance predictions obtained with the convolution of 
the MetaSim tracer and MAPS data. This is achievable as Paraver, given a program trace file, is 
able to perform a detailed quantitative analysis of the program’s performance.  

For example Paraver can display performance indices such as L1 miss ratios, L2 miss ratios, 
CPU Bandwidth or Main memory bandwidth as a function of time. The analysis modules of 
Paraver can compute the average value of one such index as a function of other indices. 
Therefore, it is possible to obtain the signature of load/store bandwidths versus L2 miss ratio for 
a real run of the program. This can then be compared to the data reported by MetaSim tracer for 
validation of simulated results.  

Validation of the network simulator Dimemas can be done using the predictions from Blue 
Horizon (see Tables 5-7). Blue Horizon results verify the network simulator because the MPI 
traces are collected on Blue Horizon and the CPU ratio into the simulator is 1 (we model the 
same machine as the one where the trace was collected). Thus the only likely source of error is 
the simulator itself. What these predictions say is that given an accurate processor ratio the 
simulator is capable of prediction with an average error of 4%. This is actually within the 
observed variability of runtimes of that machine. 
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5 PERC Framework Applied to Understanding Scaling  
One can also use this framework to investigate the scalability of an application. In Figure 6 

we take the existing prediction for Blue Horizon on 64, 96, and 128 processors and modify the 
network parameters. If significantly improving the network of the machine has little to no effect 
on the performance, then it is clear that the limiting factor for scalability at these sizes is not the 
hardware, but something inherent in the application or some other aspects. This application 
(Matrix.F) already shows good scalability to these sizes and, as is seen in Figure 6, improving 
the processor’s capability (but not the network) will benefit this application. When we improved 
the network without improving the processor, almost no performance gains resulted, confirming 
that scalability of this application is not limited by this network hardware. 

 
Figure 6. Predictions for Blue Horizon with network and processor improvements to investigate 
scalability. 

 
The application in Figure 6 already shows good scalability, so the prediction framework is 

able to predict those hardware upgrades that will benefit that application the most. For those 
codes that do not scale as well, the framework is able to identify factors that are limiting the 
scalability. Figure 7 shows an application, run using weak scaling, that has poor scaling at 128 
processors. The application is run through the framework with two predictions, one with 
improved network performance and one with improved processor performance. From the figure 
one can see that with an improved network the scalability of the application improves, 
confirming that the bottleneck for scalability is not the application but the hardware on which it 
is running. Conversely if the predictions with the improve network had not shown scalability 
improvements then one could conclude that the poor scalability was due to something inherent in 
the application, such as the algorithm or its implementation. 
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Figure 7. Poor scaling application with an investigation of its bottlenecks. 
 
This sort of information can help scientists study the performance of their applications and 
determine the type of hardware that is best suited for their applications. Likewise, HPC centers 
can make better-informed decisions for hardware upgrades and new purchases based on user 
workload predictions using these tools and techniques. 
 
6 PERC Framework Applied to Machine Tuning  

When a performance prediction does not match reality, it may be the fault of the machine. 
We initially had dismal error rates on Blue Horizon whereby we predicted the applications 
should run 30% or more faster. By investigation we found the MP_INTERDELAY parameter 
was set incorrectly on BH. When this was corrected we saw very high agreement between 
prediction and observed runtime.  

We initially found our predictions overestimated the PWR4 node by about 25%. By 
investigation we found the ESSLSMP library was spawning more threads than were requested 
thus adversely affecting performance. When this was corrected we got much better agreement 
between predicted and observed performance.  

When the framework has been confirmed to work for a set of applications, then predictions 
for these applications can be useful tests for centers. Performance predictions can be useful to 
investigate the setup of new machines or machines after upgrades. When the predictions do not 
match the real time runs, centers will have an indication that performance of the machine is not 
as expected. 
 
7 PERC Framework Applied to Projecting Impact of Architectural Upgrades  

We are using the framework to explore the likely performance of future architectures. As a 
validating exercise we predicted Lemieux would be about 1.25 faster than TCSini on the 
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Matrix.F problem due to faster processors of the same kind and an improved (double-bandwidth) 
interconnect. In fact, once we got access to Lemieux, we found it to be about 1.35 faster. 

We are exploring several options for building a Tflops system using PW4 and/or McKinley 
processors with MyraNet or another future switch fabric. We will report on these investigations 
(modulo non-disclosures) in the future. By way of a brief example we tried filling in the 96, and 
128 processor points in Table 2 for Longhorn by an extrapolating simulation assuming the Blue 
Horizon interconnect. We predict runtimes on the Matrix.F problem of 25.24 seconds on 96 
processors and 28.84 on the scaled up problem at 128 processors. 
 
8 Conclusions  

It is tempting to make performance models as complicated as possible to capture all of the 
features of modern processors, memory subsystems, and interconnects and the ways these can 
interact with a program. Taken to the extreme this approach yields cycle-accurate simulators 
that, while very useful for many kinds of investigations, are not very useful for modeling the 
performance of full applications at scale on large HPC systems due to time limitations. We prefer 
an approach that attempts to see how much of the factors that affect performance can be 
attributed to few parameters only adding complexity as needed to explain observed phenomena. 
We found this PERC framework has attributes of simplicity and abstraction that make it useful 
and enlightening for a range of performance investigations. 

 
Acknowledgements  

This work was sponsored the Department of Energy Office of Science through SciDAC 
award “High-End Computer System Performance: Science and Engineering”. This research was 
supported in part by NSF cooperative agreement ACI-9619020 through computing resources 
provided by the National Partnership for Advanced Computational Infrastructure at the San 
Diego Supercomputer Center. Computer time was provided by the Pittsburgh Supercomputer 
Center and the Texas Advanced Computing Center. We would like to thank Dave Carver for 
arranging dedicated time on Longhorn. 
 
Cited References 
 
1.  see perc.nersc.gov 
2.  J. Simon, J.-M. Wierum, “Accurate performance prediction for massively parallel

systems and its applications”, proceedings, Proceedings of European Conference on 
Parallel Processing EURO-PAR ’96, Lyon, France, 26-29 Aug. 1996. p675-88 vol.2 

3.  See http://www.cepba.upc.es/tools_i.html  
4.  W. M. Thorburn, "Occam's razor," Mind, 24, pp. 287-288, 1915. 
5.  see http://www-fp.mcs.anl.gov/petsc/ 
6.  A. Snavely, N. Wolter, and L. Carrington, “Modeling Application Performance by

Convolving Machine Signatures with Application Profiles”, IEEE 4th Annual Workshop 
on Workload Characterization, Austin, Dec. 2001. 

7.  L. Carrington, N. Wolter, and A. Snavely, “A Framework to For Application 
Performance Prediction to Enable Scalability Understanding”,  
Scaling to New Heights Workshop, Pittsburgh, May 2002. 

8.  see http://www.sdsc.edu/PMaC/MAPS/ 
9.  see www.pallas.com/pages/pmb.htm 



 16

10.  see http://www.sdsc.edu/PMaC/MetaSim/ 
11.  see www.cepba.upc.es/tools_i.html 
12.  see www.cs.virginia.edu/stream 
13.  see www.dyninst.org 
14.  see http://www.cepba.upc.es/ 
15.  see http://www.mcs.anl.gov/performance/TOPS.htm 
 
General References in the area of Performance Modeling 
 
1  L. Carrington, N. Wolter, and A. Snavely, “A Framework for Application Performance Prediction to

Enable Scalability Understanding”, Scaling to New Heights Workshop, Pittsburgh, May 2002 
2.  A. Snavely, N. Wolter, and L. Carrington, “Modeling Application Performance by Convolving Machine

Signatures with Application Profiles”, IEEE 4th Annual Workshop on Workload Characterization, Austin, 
Dec. 2, 2001. 

3.  S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, L. C. McInnes, and B. F. Smith, “PETSc home
page”, http://www.mcs.anl.gov/petsc, 2001. 

4.   J. Lo, S. Egger, J. Emer, H. Levy, R. Stamm, and D. Tullsen, “Converting Thread-Level Parallelism to 
Instruction-Level Parallelism via Simultaneous Multithreading”, ACM Transactions on Computer Systems
, August 1997.  

5.   J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Heinrich. “FLASH vs. (Simulated) 
FLASH: Closing the Simulation Loop”, In Proceedings of the 9th International Conference on 
Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 49-58, 
November 2000.  

6.   S. E. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck., “Exact Analysis of Cache Misses in Nested
Loops,” ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation, June 
20-22, 2001, Snowbird, Utah (to appear). 

7.   S. Ghosh, M. Martonosi and S. Malik, “Caches Miss Equations: A Compiler Framework for Analyzing
and Tuning Memory Behavior”, ACM Transactions on Programming Languages and Systems, vol. 21, no. 
4, pg. 703-746, July, 1999. 

8.   D. A. B. Weikle, S.A. McKee, K. Skadron and W.A. Wulf, “Caches as Filters: A Framework for the 
Analysis of Caching Systems”, Third Grace Hopper Celebration of Women in Computing, Sept. 14-16, 
2000, Cape Cod, Massachusetts. 

9.  L. DeRose,  and D. A. Reed, “Pablo: A Multi-language, Architecture-Independent Performance Analysis 
System”, International Conference on Parallel Processing, August 1999. 

10.   L. DeRose,  Y. Zhang, and D. A. Reed, “SvPablo: A Multi-Language Performance Analysis System,” 10th

International Conference on Computer Performance Evaluation – Modeling Techniques and Tools –
Performance Tools’98, Palma de Mallorca, Spain, September 1998, pp. 352-355. 

11.   I. T. Foster, B. Toonen and P. H. Worley, “Performance of Parallel Computers for Spectral Atmospheric
Models”, Journal Atmospheric and Oceanic Techology, vol. 13, no. 5, pg. 1031-1045, 1996. 

12.   I. T. Foster and P. H. Worley, “Parallel Algorithms for the Spectral Transform Method”, SIAM Journal on 
Scientific and Statistical Computing, vol. 18, no. 3, pg. 806-837, 1997. 

13.   W. D. Gropp, D.K. Kaushik, D.E. Keyes and B.F. Smith, “Toward Realistic PerformanceBounds for
Implicit CFD Codes”, Proceedings of Parallel CFD’99, May 23-26, 1999, Williamsburg, Virginia.  

14.   C. L. Mendes, and D. A. Reed, “Integrated Compilation and Scalability Analysis for Parallel Systems”, 
International Conference on Parallel Architectures and Compilation Techniques (PACT’98), Paris, 
France, October 1998, pp.385-392. 

15.  P. H. Worley, “Performance Evaluation of the IBM SP and the Compaq AlphaServer SC”, ACM
International Conference of Supercomputing 2000, Santa Fe, New Mexico, May 8 - 11, 2000. 

16.  J. Simon, J.-M. Wierum, “Accurate performance prediction for massively parallel systems and its
applications”, proceedings, Proceedings of European Conference on Parallel Processing EURO-PAR ’96, 
Lyon, France, 26-29 Aug. 1996. p675-88 vol.2 

17.   B. Buck, J. Hollingsworth, “An API for Runtime Code Patching’’, The International Journal of High 
Performance Computing Applications , 2000  



 17

18.  J. Gustafson, R. Todi; “Conventional Benchmarks as a Sample of the Performance Spectrum”, The 
Journal of Supercomputing, 13, 321-342, 1999 

 


