

Modeling Application Performance by Convolving Machine Signatures with
Application Profiles

Allan Snavely
San Diego Supercomputer

Center
allans@sdsc.edu

Nicole Wolter
San Diego Supercomputer Center

wolter@sdsc.edu

Laura Carrington
San Diego Supercomputer

Center
lnett@sdsc.edu

Abstract

This paper presents a performance modeling methodology
that is faster than traditional cycle-accurate simulation,
more sophisticated than performance estimation based on
system peak-performance metrics, and is shown to be
effective on a class of High Performance Computing
benchmarks. The method yields insight into the factors
that affect performance on single-processor and parallel
computers.

1. Introduction

The Performance Modeling and Characterization

(PMaC, see www.sdsc.edu/PMaC) lab at San Diego
Supercomputer Center (SDSC) is focused on developing
methods and tools for understanding and predicting the
performance of scientific applications on HPC platforms.
If one can determine the factors that affect an
application’s performance, one can determine the best
machine for the application, or tune the application in a
guided fashion on the machine at hand, or meaningfully
compare machines for their performance on applications.
The scientific applications that are of interest to us are
compute intensive parallel applications, which make up
the majority of the applications on National Partnership
for Advanced Computational Infrastructure (NPACI)
allocated systems.

 In order to decrease the complexity of the task of
understanding and modeling performance, we began by
developing methods and tools for benchmark versions of
a class of scientific applications run on current parallel
platforms. These applications are kernels from the NAS
Parallel Benchmarks[4] (NPBs) representing the compute
intensive sections of computational fluid dynamics (CFD)
parallel applications. The NPBs consist of 5 kernels and
3 mini-applications each with 5 different size problems.

The sizes range from small test size (class S), workstation
test size (class W), and three High Performance
Computing (HPC) test sizes (class A, B, and C). Using
the serial (non-parallel) versions of the NPBs, methods
and tools were first perfected for the prediction of single
processor performance. The techniques were then
extended to the per-processor performance of the parallel
versions of two kernels, the Conjugate Gradient (CG)
kernel and the Multigrid (MG) kernel. The per-processor
performance estimates were then fed into a network
simulator called DIMEMAS[1] that can simulate the
performance of a parallel execution. Accurate
performance modeling embodies understanding into the
factors that affect performance; our plan is that these
methods and tools, once perfected, can be applied to the
prediction of larger scientific applications.

2. Other Work

This work diverges from most work by other

researchers in that previous work either developed very
detailed models for performance[6,7,9,15,21], or
concentrated on tool development[10,11], or was very
specific to a given application domain[12,13,14], or
focused on predicting scalability[18]. Also, some
previous work by Worley[23] was in the domain of
traditional evaluation of specific machines via
benchmarking.

What distinguishes this work is that we concentrate
initially on very simple models and add complexity only
as required to obtain greater accuracy. Also, we are in the
process of developing a framework that we believe can be
applicable across many different machines and a range of
applications to provide usefully accurate performance
modeling in reasonably computable time.

3. Modeling via Abstraction

The observed performance of a parallel HPC
application is complicated; it is a function of (at least)
algorithm, implementation, compiler, operating system,
underlying processor architecture, and interconnect
technology. The approach adopted here is to proceed via
principles of simplicity and extraction.

We assume that a parallel application’s performance is
based on two major factors: its single processor
performance and its use of the network. For the second
factor the use of a network simulator can give reasonable
results. For single processor performance we disentangle
the various factors affecting performance by measuring
each in isolation and then combining factors to arrive at
models predictive of performance. Specifically, we
gather:

Machine Signatures: characterizations of the rates at
which a machine can (or is projected to) carry out
fundamental operations abstract from the particular
application.
Application Profiles: detailed summaries of the
fundamental operations to be carried out by the
application independent of any particular machine.
We then apply
Convolution Methods: algebraic mappings of the
Application Profiles on to the Machine Signatures to
arrive at a performance prediction.
Our investigations to date have focused on memory

bound codes, such as the NPB kernels, where the ratio of
memory accesses to floating point operations is no less
than 1/4 and where the fraction of memory references that
are random is at least 10%.

3.1 Methodology and Tools

In the development of methods and tools for
performance prediction we have been guided by two
"rules of thumb" that, while not guaranteed to be true in
all cases, have proved themselves generally true on
numerous scientific applications:

I. the per-processor performance of an application
is predominately a function of how it exercises
the memory subsystem. (The memory-bound
rule.)

II. the scalability of an application is primarily a
function of how it exercises the interconnect.

In order to predict per-processor and/or single
processor performance PMaC developed two tools to
generate Machine Signatures and Application Profiles
based on rule I. These tools are:

MAPS (Memory Access Pattern Signature): a probe
developed for determining the "feeds and speeds" at
which a single-processor or SMP node can sustain
rates of loads and stores depending on size of
problem and access pattern. It thus captures a

Machine Signature with emphasis on memory access
patterns (described further in section 4).
MetaSim: a runtime trace utility, which snoops the
address bus and statistically bins local memory
references during program execution. It thus captures
an Application Profile with emphasis on memory
access patterns (described further in section 5).

Using the per-processor predictions determined from
MAPS and MetaSim, the network simulator DIMEMAS
[1] then uses these results to predict the performance of
the parallel application. DIMEMAS is a network
simulator developed by our collaborators in Europe that
consumes MPI traces and predicts performance of parallel
applications on real or hypothetical machines (see section
6 for more details).

4. MAPS

MAPS is a benchmark probe to measure the rate at

which a single processor can sustain rates of loads and
stores depending on the size of the problem and the access
pattern. MAPS has been ported to many HPC platforms
including IBM Power3, Compaq Alpha, Intel Itanium,
Cray T3E and T90 and SV1, NEC SX-4 and SX-5, Sun
HPC 10K, and Fujitsu VPP700 and VPP5000. It is
derived from the STREAMS benchmark[2] and extends
STREAMS to various strides and random access patterns.
A great deal of MAPS data on various machines is
available at www.sdsc.edu/PMaC.

Figure 1 below is the MAPS curve for stride-one loads
for the Power3 NightHawk II processor enhanced with
some information about the hardware. This shows how a
MAPS curve reveals attributes of the machine, and the
likely performance implications, at a glance.

Figure 1. A MAPS generated signature for Blue
Horizon.

The Power3 (like many modern processors with large L2
cache) does not fully map the L2 cache in the TLB. Thus
we get a "three stair step" function for memory accesses,
one that is especially pronounced when pre-fetching is
enabled.
Figure 2 below shows a typical MAPS generated Machine
Signature for stride-one and random loads on a Cray T3E-
600.

Figure 2. A MAPS generated signature for the T3E
600. The random load curve is marked with the L1
cache miss rate and (lower down) both L1 and L2
miss rates.

Figure 2 shows that the sustainable rate of memory
loads depends on the size of the problem and the memory
access pattern. A large load-bound problem with a
random memory access pattern may run 10 or even 100
times slower than a small problem that fits in L1 cache
and accesses memory sequentially or better yet has a
small working set yielding significant cache reuse.

Figure 2 also illustrates that a high hit rate in cache is
required on the T3E-600 for the cache to be useful as
latency hiding tool. A miss rate of 85% in L2 is sufficient
to reduce the speed of random loads to nearly the rate
expected for random main-memory loads. (Similar results
apply to many cache-based architectures we have
measured). When modeling the performance of an
application, it is important to map its loops and
subroutines to their expected performance on the MAPS
curve. Statistics to enable this mapping can be gathered
with MetaSim.

5. MetaSim

MetaSim is a tool developed by PMaC to generate an

Application Profile based on its use of a processor’s
memory hierarchy. MetaSim works by gathering
statistics on expected cache hit rates of routines and loops
in an application. It accomplishes this by snooping the
memory bus to determine memory access patterns and
catching addresses as they are generated by load and store

operations. It then statistically bins these into stride
buckets based on comparison with the last N addresses it
has seen. It thus works analogous to the hardware pre-
fetching mechanism on some modern processors to
dynamically discover the memory access patterns of the
program under instrumented execution. MetaSim
generates an Application Profile for a particular machine
by processing the application’s address stream against the
memory subsystem of a user-supplied parameterization of
a (hypothetical or real) machine.

MetaSim associates memory access pattern
information along with dynamic counts of instructions
classified by type with the basic block that generated
them. What emerges is a detailed profile of basic blocks
sorted by their contribution to the dynamic instruction
count and further profiled by instruction mix, ratio of
arithmetic operations (as distinct from control flow
operations) to memory operations, and memory access
pattern. Such a profile is orders of magnitude smaller than
an address trace file, yet contains an abundance of
information suitable for careful performance analysis.

MetaSim is implemented on top of the ATOM toolkit
available only on Alphas. We have an ongoing effort to
implement it on top of DyninstAPI[3], a portable
instrumentation library. However, while MetaSim only
runs on Alphas, it can emulate an arbitrary machine with
less than 100-fold slowdown and so is much faster than
traditional cycle-accurate simulators. Intuitively it may
seem that a faster, simpler simulator is a less accurate
simulator. However two factors may work counter to this
intuition; simulators that model many architectural
features have equally many possible sources for error;
also, simple regular programs may be predicted within the
margin of error of a complex simulator by a simple
simulator. Gibson et. al.[7] supply a fairly comprehensive
report on these phenomena and show that cycle-accurate
simulators may have error greater than 50% and that
simple simulators are sometimes more accurate than
complex ones.

An example may serve to elucidate how MetaSim
works: The following is the inner loop of the CG kernel
from NPBs version 2.3.

do j=1,lastrow-firstrow+1
 sum = 0.d0
 do k=rowstr(j),rowstr(j+1)-1
 sum = sum + a(k)*p(colidx(k))
 enddo
 w(j) = sum
 enddo

It is apparent that the inner loop accesses three arrays,
two sequentially and one randomly; the ratio of floating
point operations to memory loads is 2/3. MetaSim
identifies the two stride-one accesses and the one stride-
random access in this basic block. In addition, it generates
a list of basic blocks sorted by contribution to the total

dynamic instruction count. There are in fact several
hundred basic blocks in CG but MetaSim determines that
over 85% of the time is spent in the basic block
containing the above loop. Table 1 shows the first few
entries in a basic block report generated by MetaSim
simulating the execution of NPB Serial CG kernel of size
Class W.

As can be seen, three basic blocks account for 99% of
the total dynamic memory references (and total execution
time). When constructing a performance model for CG, at
least for this size problem, we need only be concerned
with accurately modeling these three basic blocks. The
summary report lists the basic blocks in the order of
contribution to total dynamic memory references, and
provides for each basic block its percentage of dynamic
memory references, its ratio of floating point operations
to memory operations, the fraction of its memory accesses
that are stride-random (the tool can generate a more
detailed analysis of stride patterns), and the hit rates in L1
and L2 cache. For something as simple as CG we could
obtain the information in Table 1 (likely) by a visual
examination of the code. However other kernels from the
NAS benchmarks have twenty or thirty basic blocks that
contribute significantly to performance, and real apps may
have several hundred significant basic blocks. Therefore
automated gathering and summary of program properties
is essential to enable performance analysis.

Table 1.MetaSim output for CG simulating Blue
Horizon.

BB

Cum
Mem
Ref %

Mem
Ref %

FLOPS/
MOPS

Frac
Rand

L1 Hit
Rate

L2 Hit
Rate

308 85.58% 85.58% 0.66 0.33 88.1% 98.61%
309 94.85% 9.27% 0.83 0.44 89.32% 99.97%
311 99.66% 4.81% 0.5 0.37 92.11% 99.98%

MetaSim can directly measure cache hit rates on the
machine where it runs; but MetaSim can also calculate the
cache hit rates that would have resulted if the same
address stream were generated on a processor of arbitrary
configuration with respect to cache sizes, line lengths, and
associativities. In section 7 we show how we use this
information to map each basic block to its expected
performance on the MAPS curve and weight each basic
block appropriately to predict how a program will
perform on an arbitrary processor.

6. DIMEMAS

DIMEMAS, developed by the European Center for

Parallelism of Barcelona [1], is a network simulator that
consumes MPI and/or OpenMP traces to allow modeling
of an interconnect of arbitrary topology, and bandwidth-

latency characteristics. It does not attempt to simulate the
execution of an application on a number of processors
different from the number of processors the trace was
gathered on. However one can simulate the execution of
an application on a machine (real or hypothetical) other
than that where the trace was gathered. One specifies a
processor ratio for the speed of the simulated machine
relative to the machine where the trace is gathered. One
further specifies network topology and characteristics of
the machine to be simulated. DIMEMAS does a good job
of modeling the network but provides little guidance in
picking processor speed ratios. In this study we supply
that deficiency by using MAPS and MetaSim to model
single-processor performance.

7. Convolution Method

A Convolution Method is a way of mapping a Machine

Signature to an Application Profile to arrive at a per-
processor or single processor performance prediction.

We determine the predicted sustainable rate of loads
and stores by mapping the MetaSim profile block-by-
block onto the MAPS curve points that match profiled
cache hit rates and memory access patterns. Often, the
per-processor performance of memory bound codes is
determined by the rate at which the machine can do loads
and stores and other architectural and application features
are in the noise with respect to performance prediction.

Figure 3 below shows a Machine Signature (MAPS
plot) and the enclosed table 2 that is the MetaSim data.

Figure 3. Blue Horizon Machine signature with
MetaSim data.

The data generated from MetaSim is convolved with

the data measured by the MAPS curves. Table 2 is an
example of such data for those basic blocks with random-
loads from memory.

Once the bandwidths have been collected off of the
appropriate MAPS curve for all basic blocks, equation 1
(a simple convolution) is used to sum the weighted
bandwidths of each basic block to calculate its MetaSim
number, which is the applications expected performance
on that machine. The ratio of two such numbers is used as
a processor speed ratio supplied to the DIMEMAS
network simulator.

(1) ()�
=

∗=
n

1i
ii BB RateBB Wt. Number MetaSim

In equation 1 BBi is a basic block, Wt. BBi is the
percentage of total dynamic memory references in the
program contributed by this basic block, and Rate BBi is
the MAPS measured rate at which MetaSim reports the
basic block can sustain loads and stores based on the size
of its working set and its access pattern.

For the prediction of the serial NPB kernels the
calculation of an application’s MFLOPs is needed. The
MetaSim number in equation 1 is modified, see equation
2, in order to calculate a serial applications predicted
MFLOPs.
(2) ()�

=

∗=
n

1i
iii BBIntensity *BB RateBB Wt. MFLOPs

Intensity BBi, in equation 2, is the ratio of floating-point
operations to load-store operations in the basic block.
This is based on the idea that a basic block will achieve
the MFLOPS predicted by multiplying its ratio of floating
point operations by the rate at which it is predicted to
sustain memory loads and stores (the "memory-bound"
rule-of-thumb). We predict that a basic block will
contribute a fraction of the total MFLOPS for the program
equal to its share of the dynamic memory references (an
extension of the "memory-bound" rule-of-thumb).

We do not expect that such simple convolutions can
yield accurate performance predictions in all cases—next
we report the degree of accuracy yielded by such simple
models and add additional complexity only when it
required to explain observed phenomena.

8. Results

The tools and methods described in the previous
sections were used in two performance prediction studies.
The first was the prediction of the serial versions of the
NPB kernels. The convolution method used to map the
Application Profile to the Machine Signature developed
in this study was also used for the per-processor predicted
performance in the second study. The second study was
the prediction of the parallel version of the NPB CG and
MG kernels. This section describes how we use the tools
described in previous sections to arrive at application
specific performance models; and how to use the models
to predict performance.

8.1. Single Processor Experimental Results

Figure 4 below shows the results of applying the
convolution in equation 2 to the serial NPB floating-point
intensive kernels. As can be seen, the method is extremely
accurate for these simple kernels. In this case the kernels
were profiled on the Compaq Alpha cluster at Pittsburgh
Supercomputer Center using MetaSim and their

performance predicted on SDSC's Blue Horizon.
Predicted results are compared to actual observed
performance. The kernels are predicted well within the
accuracy usually associated with cycle-accurate
simulation; this at the cost of a sixty-fold slowdown for
profiling with MetaSim and a roughly equal amount of
time spent in gathering Blue Horizon's MAPS profile. In
fact the performance predictions are within the variability
of observed runtimes on Blue Horizon. This suggests that
high cost of a cycle-accurate simulation (frequently as
high as a 6 orders of magnitude slowdown) would be
overkill for these memory-bound kernels.

Figure 4. Single Processor Kernel Predictions vs.
Observed Timings and Error on Predictions of Blue
Horizon (Power3 node processors).

Our results confirm those indicated by Gustafson[5]

and show that the information contained in a few
scattered data points for the NPB kernels can be thought
of as samples of the performance spectrum provided by
the MAPS profile. In other words, if you have a complete
picture of the "feeds & speeds" of which the machine is
capable, you already have all the information contained in
memory-bound kernels; and the performance of those
kernels is completely predicted by the MAPS profile.
Of course accurately predicting the performance of Blue
Horizon would only be useful if the machine were not
built yet! But understanding why codes perform as they
do, and knowing that in this case the performance is
strictly determined by the performance of the memory
subsystem, is invaluable for guiding tuning, informing
system design, or evaluating architectural design
alternatives.

We do not wish to make the computational complexity
of our simulations greater than that which is needed to
explain observed phenomena. Figure 5 shows that error
increases when using the simple convolution to predict

performance of several serial NPB mini-applications.
(Note: we use the small Class S and Class W sizes
because the supercomputer Class A, B and C all run out
of main memory on most single processors and thus are
slow, easy to predict, and uninteresting). However, the
error is less than 20% in all cases for the applications.
Given a tradeoff between simulation time and accuracy,
and given the 4 orders of magnitude difference between
our time complexity and that of traditional cycle-accurate
simulators such as[6], and further given that cycle
accurate such as[6] and[7] have significant error rates
anyway (often exceeding 20%), it may well be thought
more practical to base performance estimates on simple,
calculable, models of machines and applications such as
this one.

Figure 5. Single Processor Apps Predictions v.s.
Observed Timings on Blue Horizon (Power3 nodes
processors).

8.2 Multi-Processor Experimental Results

It is common to compare parallel machines by their
manufacturer’s specifications for peak processor speed
and peak bandwidth of interconnect. The Top500 list [8],
for example, ranks the 500 largest machines in the world
by their performance on a benchmark that correlates
highly to peak processor performance. In what follows
we show that peak ratings provide little useful insight into
the performance of the NPB kernels. But our methods do
better by using the real capability of the machine to access
data and send messages in the sizes and patterns of the
real applications.

In order to model and predict the performance of
parallel MPI programs, we estimate per-processor
performance using MAPS/MetaSim and the Convolution
Method described in equation 1. As described in section
6, DIMEMAS uses a relative processor speed ratio. The

estimated per-processor performance is used in this ratio
and input into the DIMEMAS trace-based simulation.

Figure 6 shows predictions for the MG kernel class B
on a Cray T3E-600 and the relative errors for those
predictions. In these predictions the theoretical MFLOPs
of the processors was compared with the MAPS/MetaSim
ratio. Traces were gathered on Blue Horizon and then fed
into DIMEMAS, along with a relative processor speed
ratio, to predict runtimes on the T3E-600. Two different
processor speed ratios were evaluated;

• DIMEMAS Flop: the ratio of theoretical peak
MFLOPS of the two different processors (600/1500)

• DIMEMAS MAPS/MetaSim:

 The MAPS/MetaSim predicted ratio for the
 convolved machine signature and application profile
(which presumably is a more accurate ratio of
performance for the machines on the code in question)

It is apparent from Figure 6 that the ratio of peak

MFLOPS is not a useful predictor of the performance of
this memory-bound kernel. Thus, given the performance
of a memory-bound parallel code on a given machine, one
will be unlikely to be able to predict its performance on
another parallel machine by consulting the Top500 [8] list
(for example) to obtain relative peak ratings.

Figure 6. Observed vs. predicted times for MG kernel
class B on the Cray T3E-600.

The capability of the machine to do loads and stores
(MAPS data) and the data reference pattern and working
set size of the application’s basic blocks (MetaSim)
provide enough information to model relative processor
speeds within useful error bounds.
 Figures 7 and 8 display prediction results for CG
kernel class B on the T3E and MG kernel class B on
PSC’s Compaq based TCSini. In this case, it was
necessary to refine the convolution in order to obtain
reasonably accurate results. Above we use peak measured
bandwidth obtained by a simple ping-pong test as the
input to DIMEMAS characterizing the bandwidth

properties of the machine. This is akin to say a naïve
assumption like expecting to get L1 access to main
memory regardless of problem size and access pattern.
Real applications see bandwidths and latencies on the
interconnect that depend on the size of messages
exchanged and the communications pattern. In this case
we added a more refined Machine Signature (with results
shown under CG comm. and MG comm. below) that
included measured results from a MPI benchmark with a
similar communication pattern to each kernel, developed
by PMaC. These new bandwidths were used in the
prediction and show much improved predictions over the
peak MPI bandwidths predictions.

Figure 7. Observed vs. predicted times for CG kernel
class B on the Cray T3E-600.

Figure 8. Observed vs. predicted times for MG kernel
class B on the TCSini.

The average error for the MAPS/MetaSim ratio used
with peak MPI bandwidths is 44%. This was a slight
improvement over the 51% average error for the
predictions involving peak processor MFLOPs and peak

MPI bandwidths. But it required predictions using the
MetaSim ratio and more the complex interconnect
signature to yield in an average error of 23%, significantly
lower than the other two methods of prediction. This
confirms that using peak numbers, even measured ones is
not a useful way to predict the performance of these
applications. A method that takes into account memory
access patterns of the application and sustainable rates of
memory access of the machine, along with
communication size and patterns of the application and
sustainable rates of these on the interconnect, yields
reasonable accurate performance estimates in reasonable
time.

One may ask, is a 20% error reasonably useful? This
depends on the discriminative power needed. In this case
the relative capabilities of the T3E and Compaq based
TCSini for these applications is captured. And the shape
of the performance curve based on number of processors
devoted to the same size problem was captured on both
machines. And the factors that explained around 80% of
the performance of these applications was reduced to 2
factors—the local memory subsystem and the
interconnect. Since both of these machines actually exist
we were able to exactly determine the error in our
predictions. If we extend these methods to simulate
machines that do not exist yet, it is very unclear that
cycle-accurate methods can do much better even with
many more factors modeled and several orders of
magnitude more time spent in simulation.

9. Conclusion

This paper has given an update on our ongoing efforts to
develop performance models that are not as naïve as
extrapolating performance from peak machine
specifications, nor as difficult to compute as cycle-
accurate simulations, and can provide useful insight into
the factors that affect performance on serial and parallel
systems. Future work will include the extension of these
techniques to more and larger applications and the
(judicious) introduction of more modeling factors if they
can be shown to greatly improve accuracy without greatly
increasing the computational complexity of the models.

References

1. See http://www.cepba.upc.es/tools_i.html
2. See http://www.cs.virginia.edu/stream/
3. B. Buck, J. Hollingsworth, “An API for Runtime

Code Patching’’, The International Journal of High
Performance Computing Applications , 2000

4. See http://science.nas.nasa.gov/Software/NPB.
5. J. Gustafson, R. Todi, “Conventional Benchmarks as

a Sample of the Performance Spectrum”,

Proceedings of the 31st Hawaii International
Conference on System Sciences (HICSS'98) , 1998.

6. J. Lo, S. Egger, J. Emer, H. Levy, R. Stamm, and D.
Tullsen, “Converting Thread-Level Parallelism to
Instruction-Level Parallelism via Simultaneous
Multithreading”, ACM Transactions on Computer
Systems , August 1997.

7. J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J.
Hennessy, and M. Heinrich. “FLASH vs.
(Simulated) FLASH: Closing the Simulation Loop”,
In Proceedings of the 9th International Conference
on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
49-58, November 2000.

8. See top500.org
9. S. E. Chatterjee, E. Parker, P. J. Hanlon, and A. R.

Lebeck., “Exact Analysis of Cache Misses in Nested
Loops,” ACM SIGPLAN 2001 Conference on
Programming Language Design and
Implementation, June 20-22, 2001, Snowbird, Utah
(to appear).

10. L. DeRose, and D. A. Reed, “Pablo: A Multi-
language, Architecture-Independent Performance
Analysis System”, International Conference on
Parallel Processing, August 1999.

11. L. DeRose, Y. Zhang, and D. A. Reed, “SvPablo: A
Multi-Language Performance Analysis System,” 10th

International Conference on Computer Performance
Evaluation – Modeling Techniques and Tools –
Performance Tools’98, Palma de Mallorca, Spain,
September 1998, pp. 352-355.

12. I. T. Foster, B. Toonen and P. H. Worley,
“Performance of Parallel Computers for Spectral
Atmospheric Models”, Journal Atmospheric and
Oceanic Techology, vol. 13, no. 5, pg. 1031-1045,
1996.

13 I. T. Foster and P. H. Worley, “Parallel Algorithms
for the Spectral Transform Method”, SIAM Journal
on Scientific and Statistical Computing, vol. 18, no.
3, pg. 806-837, 1997.

14. W. D. Gropp, D.K. Kaushik, D.E. Keyes and B.F.
Smith, “Toward Realistic Performance
Bounds for Implicit CFD Codes”, Proceedings of
Parallel CFD’99, May 23-26, 1999, Williamsburg,
Virginia.

15. S. Ghosh, M. Martonosi and S. Malik, “Caches Miss
Equations: A Compiler Framework for Analyzing
and Tuning Memory Behavior”, ACM Transactions
on Programming Languages and Systems, vol. 21,
no. 4, pg. 703-746, July, 1999.

16. J. K. Hollingsworth and P. J. Keleher, “Prediction
and Adaptation in Active harmony”, The Seventh
International Symposium on High Performance
Distributed Computing, July 1998, pg. 180-188.

17. J. K. Hollingsworth, P. Keleher and K. D. Ryu,
“Resource-Aware Meta-Computing”, in Advances in
Computers, M. V. Zelkowitz, ed., Academic Press,
2000, pg. 109-169.

18. C. L. Mendes, and D. A. Reed, “Integrated
Compilation and Scalability Analysis for Parallel
Systems”, International Conference on Parallel
Architectures and Compilation Techniques
(PACT’98), Paris, France, October 1998, pp.385-
392.

19. S.E. Perl and W.E. Weihl, “Performance Assertion
Checking”, Proc. 14th ACM Symp. Operating
Systems Principles, 1993, pp. 134-45.

20. J.S. Vetter, “Performance Analysis of Distributed
Applications Using Automatic Classification of
Communication Inefficiencies”, Proc. ACM Int'l
Conf. Supercomputing (ICS), 2000.

21. D. A. B. Weikle, S.A. McKee, K. Skadron and W.A.
Wulf, “Caches as Filters: A Framework for the
Analysis of Caching Systems”, Third Grace Hopper
Celebration of Women in Computing, Sept. 14-16,
2000, Cape Cod, Massachusetts.

22. P. H. Worley, “Impact of Communication Protocol
on Performance”, Second International Workshop on
Software Engineering and Code Design in Parallel
Meteorological and Oceanographic Applications,
June 15-18, 1998, Scottsdale, AZ, NASA Conference
Publication 1998-206860, pg. 277-288.

23. P. H. Worley, “Performance Evaluation of the IBM
SP and the Compaq AlphaServer SC”, ACM
International Conference of Supercomputing 2000,
Santa Fe, New Mexico, May 8 - 11, 2000.

