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Abstract 

This paper presents a performance modeling methodology 
that is faster than traditional cycle-accurate simulation, 
more sophisticated than performance estimation based on 
system peak-performance metrics, and is shown to be 
effective on a class of High Performance Computing 
benchmarks.  The method yields insight into the factors 
that affect performance on single-processor and parallel 
computers. 
 
1. Introduction  

 
The Performance Modeling and Characterization 

(PMaC, see www.sdsc.edu/PMaC) lab at San Diego 
Supercomputer Center (SDSC) is focused on developing 
methods and tools for understanding and predicting the 
performance of scientific applications on HPC platforms. 
If one can determine the factors that affect an 
application’s performance, one can determine the best 
machine for the application, or tune the application in a 
guided fashion on the machine at hand, or meaningfully 
compare machines for their performance on applications.   
The scientific applications that are of interest to us are 
compute intensive parallel applications, which make up 
the majority of the applications on National Partnership 
for Advanced Computational Infrastructure (NPACI) 
allocated systems. 

 In order to decrease the complexity of the task of 
understanding and modeling performance, we began by 
developing methods and tools for benchmark versions of 
a class of scientific applications run on current parallel 
platforms.  These applications are kernels from the NAS 
Parallel Benchmarks[4] (NPBs) representing the compute 
intensive sections of computational fluid dynamics (CFD) 
parallel applications. The NPBs consist of 5 kernels  and 
3 mini-applications each with 5 different size problems.  

The sizes range from small test size (class S), workstation 
test size (class W), and three High Performance 
Computing (HPC) test sizes (class A, B, and C). Using 
the serial (non-parallel) versions of the NPBs, methods 
and tools were first perfected for the prediction of single 
processor performance. The techniques were then 
extended to the per-processor performance of the parallel 
versions of two kernels, the Conjugate Gradient (CG) 
kernel and the Multigrid (MG) kernel.  The per-processor 
performance estimates were then fed into a network 
simulator called DIMEMAS[1] that can simulate the 
performance of a parallel execution. Accurate 
performance modeling embodies understanding into the 
factors that affect performance; our plan is that these 
methods and tools, once perfected, can be applied to the 
prediction of larger scientific applications.  

 
2. Other Work 

 
This work diverges from most work by other 

researchers in that previous work either developed very 
detailed models for performance[6,7,9,15,21], or 
concentrated on tool development[10,11], or was very 
specific to a given application domain[12,13,14], or 
focused on predicting scalability[18].  Also, some 
previous work by Worley[23] was in the domain of 
traditional evaluation of specific machines via 
benchmarking.  

What distinguishes this work is that we concentrate 
initially on very simple models and add complexity only 
as required to obtain greater accuracy.  Also, we are in the 
process of developing a framework that we believe can be 
applicable across many different machines and a range of 
applications to provide usefully accurate performance 
modeling in reasonably computable time. 
   
3. Modeling via Abstraction  

 



 

 

The observed performance of a parallel HPC 
application is complicated; it is a function of (at least) 
algorithm, implementation, compiler, operating system, 
underlying processor architecture, and interconnect 
technology. The approach adopted here is to proceed via 
principles of simplicity and extraction.  

We assume that a parallel application’s performance is 
based on two major factors: its single processor 
performance and its use of the network. For the second 
factor the use of a network simulator can give reasonable 
results.  For single processor performance we disentangle 
the various factors affecting performance by measuring 
each in isolation and then combining factors to arrive at 
models predictive of performance. Specifically, we 
gather: 

Machine Signatures: characterizations of the rates at 
which a machine can (or is projected to) carry out 
fundamental operations abstract from the particular 
application.  
Application Profiles: detailed summaries of the 
fundamental operations to be carried out by the 
application independent of any particular machine.  
We then apply  
Convolution Methods: algebraic mappings of the 
Application Profiles on to the Machine Signatures to 
arrive at a performance prediction.  
Our investigations to date have focused on memory 

bound codes, such as the NPB kernels, where the ratio of 
memory accesses to floating point operations is no less 
than 1/4 and where the fraction of memory references that 
are random is at least 10%. 

 
3.1 Methodology and Tools  
 

In the development of methods and tools for 
performance prediction we have been guided by two 
"rules of thumb" that, while not guaranteed to be true in 
all cases, have proved themselves generally true on 
numerous scientific applications:  

I. the per-processor performance of an application 
is predominately a function of how it exercises 
the memory subsystem. (The memory-bound 
rule.)  

II. the scalability of an application is primarily a 
function of how it exercises the interconnect.  

In order to predict per-processor and/or single 
processor performance PMaC developed two tools to 
generate Machine Signatures and Application Profiles 
based on rule I. These tools are:  

MAPS (Memory Access Pattern Signature): a probe 
developed for determining the "feeds and speeds" at 
which a single-processor or SMP node can sustain 
rates of loads and stores depending on size of 
problem and access pattern. It thus captures a 

Machine Signature with emphasis on memory access 
patterns (described further in section 4). 
MetaSim:  a runtime trace utility, which snoops the 
address bus and statistically bins local memory 
references during program execution. It thus captures 
an Application Profile with emphasis on memory 
access patterns (described further in section 5).  

Using the per-processor predictions determined from 
MAPS and MetaSim, the network simulator DIMEMAS 
[1] then uses these results to predict the performance of 
the parallel application. DIMEMAS is a network 
simulator developed by our collaborators in Europe that 
consumes MPI traces and predicts performance of parallel 
applications on real or hypothetical machines (see section 
6 for more details). 
 
4. MAPS  

 
MAPS is a benchmark probe to measure the rate at 

which a single processor can sustain rates of loads and 
stores depending on the size of the problem and the access 
pattern.  MAPS has been ported to many HPC platforms 
including IBM Power3, Compaq Alpha, Intel Itanium, 
Cray T3E and T90 and SV1, NEC SX-4 and SX-5, Sun 
HPC 10K, and Fujitsu VPP700 and VPP5000. It is 
derived from the STREAMS benchmark[2] and extends 
STREAMS to various strides and random access patterns. 
A great deal of MAPS data on various machines is 
available at www.sdsc.edu/PMaC.  

Figure 1 below is the MAPS curve for stride-one loads 
for the Power3 NightHawk II processor enhanced with 
some information about the hardware. This shows how a 
MAPS curve reveals attributes of the machine, and the 
likely performance implications, at a glance.  

 
Figure 1. A MAPS generated signature for Blue 
Horizon. 
 



 

 

The Power3 (like many modern processors with large L2 
cache) does not fully map the L2 cache in the TLB. Thus 
we get a "three stair step" function for memory accesses, 
one that is especially pronounced when pre-fetching is 
enabled. 
Figure 2 below shows a typical MAPS generated Machine 
Signature for stride-one and random loads on a Cray T3E-
600.  

 
 
 
 
 

 
 

 

 

Figure 2. A MAPS generated signature for the T3E 
600. The random load curve is marked with the L1 
cache miss rate and (lower down) both L1 and L2 
miss rates.  
 

Figure 2 shows that the sustainable rate of memory 
loads depends on the size of the problem and the memory 
access pattern. A large load-bound problem with a 
random memory access pattern may run 10 or even 100 
times slower than a small problem that fits in L1 cache 
and accesses memory sequentially or better yet has a 
small working set yielding significant cache reuse.  

Figure 2 also illustrates that a high hit rate in cache is 
required on the T3E-600 for the cache to be useful as 
latency hiding tool. A miss rate of 85% in L2 is sufficient 
to reduce the speed of random loads to nearly the rate 
expected for random main-memory loads. (Similar results 
apply to many cache-based architectures we have 
measured). When modeling the performance of an 
application, it is important to map its loops and 
subroutines to their expected performance on the MAPS 
curve. Statistics to enable this mapping can be gathered 
with MetaSim. 
 
5. MetaSim  

 
MetaSim is a tool developed by PMaC to generate an 

Application Profile based on its use of a processor’s 
memory hierarchy.  MetaSim works by gathering 
statistics on expected cache hit rates of routines and loops 
in an application. It accomplishes this by snooping the 
memory bus to determine memory access patterns and 
catching addresses as they are generated by load and store 

operations. It then statistically bins these into stride 
buckets based on comparison with the last N addresses it 
has seen. It thus works analogous to the hardware pre-
fetching mechanism on some modern processors to 
dynamically discover the memory access patterns of the 
program under instrumented execution. MetaSim 
generates an Application Profile for a particular machine 
by processing the application’s address stream against the 
memory subsystem of a user-supplied parameterization of 
a (hypothetical or real) machine. 

MetaSim associates memory access pattern 
information along with dynamic counts of instructions 
classified by type with the basic block that generated 
them. What emerges is a detailed profile of basic blocks 
sorted by their contribution to the dynamic instruction 
count and further profiled by instruction mix, ratio of 
arithmetic operations (as distinct from control flow 
operations) to memory operations, and memory access 
pattern. Such a profile is orders of magnitude smaller than 
an address trace file, yet contains an abundance of 
information suitable for careful performance analysis.  

MetaSim is implemented on top of the ATOM toolkit 
available only on Alphas. We have an ongoing effort to 
implement it on top of DyninstAPI[3], a portable 
instrumentation library. However, while MetaSim only 
runs on Alphas, it can emulate an arbitrary machine with 
less than 100-fold slowdown and so is much faster than 
traditional cycle-accurate simulators. Intuitively it may 
seem that a faster, simpler simulator is a less accurate 
simulator. However two factors may work counter to this 
intuition; simulators that model many architectural 
features have equally many possible sources for error; 
also, simple regular programs may be predicted within the 
margin of error of a complex simulator by a simple 
simulator. Gibson et. al.[7] supply a fairly comprehensive 
report on these phenomena and show that cycle-accurate 
simulators may have error greater than 50% and that 
simple simulators are sometimes more accurate than 
complex ones.  

An example may serve to elucidate how MetaSim 
works: The following is the inner loop of the CG kernel 
from NPBs version 2.3. 

do j=1,lastrow-firstrow+1  
   sum = 0.d0 
   do k=rowstr(j),rowstr(j+1)-1 
    sum = sum + a(k)*p(colidx(k))
  enddo 
  w(j) = sum 
 enddo  

It is apparent that the inner loop accesses three arrays, 
two sequentially and one randomly; the ratio of floating 
point operations to memory loads is 2/3. MetaSim 
identifies the two stride-one accesses and the one stride-
random access in this basic block. In addition, it generates 
a list of basic blocks sorted by contribution to the total 



 

 

dynamic instruction count. There are in fact several 
hundred basic blocks in CG but MetaSim determines that 
over 85% of the time is spent in the basic block 
containing the above loop. Table 1 shows the first few 
entries in a basic block report generated by MetaSim 
simulating the execution of NPB Serial CG kernel of size 
Class W.  

As can be seen, three basic blocks account for 99% of 
the total dynamic memory references (and total execution 
time). When constructing a performance model for CG, at 
least for this size problem, we need only be concerned 
with accurately modeling these three basic blocks. The 
summary report lists the basic blocks in the order of 
contribution to total dynamic memory references, and 
provides for each basic block its percentage of dynamic 
memory references, its ratio of floating point operations 
to memory operations, the fraction of its memory accesses 
that are stride-random (the tool can generate a more 
detailed analysis of stride patterns), and the hit rates in L1 
and L2 cache. For something as simple as CG we could 
obtain the information in Table 1 (likely) by a visual 
examination of the code. However other kernels from the 
NAS benchmarks have twenty or thirty basic blocks that 
contribute significantly to performance, and real apps may 
have several hundred significant basic blocks. Therefore 
automated gathering and summary of program properties 
is essential to enable performance analysis.  

Table 1.MetaSim output for CG simulating Blue 
Horizon.  

BB  
# 

Cum 
Mem  
Ref % 

Mem 
Ref % 

FLOPS/
MOPS 

Frac  
Rand 

L1 Hit 
Rate 

L2 Hit 
Rate 

308 85.58% 85.58% 0.66 0.33 88.1% 98.61%
309 94.85% 9.27% 0.83 0.44 89.32% 99.97%
311 99.66% 4.81% 0.5 0.37 92.11% 99.98%

MetaSim can directly measure cache hit rates on the 
machine where it runs; but MetaSim can also calculate the 
cache hit rates that would have resulted if the same 
address stream were generated on a processor of arbitrary 
configuration with respect to cache sizes, line lengths, and 
associativities. In section 7 we show how we use this 
information to map each basic block to its expected 
performance on the MAPS curve and weight each basic 
block appropriately to predict how a program will 
perform on an arbitrary processor. 

  
6. DIMEMAS  

 
DIMEMAS, developed by the European Center for 

Parallelism of Barcelona [1], is a network simulator that 
consumes MPI and/or OpenMP traces to allow modeling 
of an interconnect of arbitrary topology, and bandwidth-

latency characteristics. It does not attempt to simulate the 
execution of an application on a number of processors 
different from the number of processors the trace was 
gathered on. However one can simulate the execution of 
an application on a machine (real or hypothetical) other 
than that where the trace was gathered. One specifies a 
processor ratio for the speed of the simulated machine 
relative to the machine where the trace is gathered. One 
further specifies network topology and characteristics of 
the machine to be simulated. DIMEMAS does a good job 
of modeling the network but provides little guidance in 
picking processor speed ratios. In this study we supply 
that deficiency by using MAPS and MetaSim to model 
single-processor performance.  
 
7. Convolution Method 

 
A Convolution Method is a way of mapping a Machine 

Signature to an Application Profile to arrive at a per-
processor or single processor performance prediction.  

We determine the predicted sustainable rate of loads 
and stores by mapping the MetaSim profile block-by- 
block onto the MAPS curve points that match profiled 
cache hit rates and memory access patterns. Often, the 
per-processor performance of memory bound codes is 
determined by the rate at which the machine can do loads 
and stores and other architectural and application features 
are in the noise with respect to performance prediction.   

Figure 3 below shows a Machine Signature (MAPS 
plot) and the enclosed table 2 that is the MetaSim data.   

 
Figure 3. Blue Horizon Machine signature with 
MetaSim data. 

 
The data generated from MetaSim is convolved with 

the data measured by the MAPS curves. Table 2 is an 
example of such data for those basic blocks with random-
loads from memory.  

Once the bandwidths have been collected off of the 
appropriate MAPS curve for all basic blocks, equation 1 
(a simple convolution) is used to sum the weighted 
bandwidths of each basic block to calculate its MetaSim 
number, which is the applications expected performance 
on that machine. The ratio of two such numbers is used as 
a processor speed ratio supplied to the DIMEMAS 
network simulator. 



 

 

(1)  ( )�
=

∗=
n

1i
ii BB RateBB Wt. Number  MetaSim   

In equation 1 BBi is a basic block, Wt. BBi is the 
percentage of total dynamic memory references in the 
program contributed by this basic block, and Rate BBi is 
the MAPS measured rate at which MetaSim reports the 
basic block can sustain loads and stores based on the size 
of its working set and its access pattern.  

For the prediction of the serial NPB kernels the 
calculation of an application’s MFLOPs is needed.  The 
MetaSim number in equation 1 is modified, see equation 
2, in order to calculate a serial applications predicted 
MFLOPs.  
(2)  ( )�

=

∗=
n

1i
iii BBIntensity *BB RateBB Wt. MFLOPs  

Intensity BBi, in equation 2, is the ratio of floating-point 
operations to load-store operations in the basic block. 
This is based on the idea that a basic block will achieve 
the MFLOPS predicted by multiplying its ratio of floating 
point operations by the rate at which it is predicted to 
sustain memory loads and stores (the "memory-bound" 
rule-of-thumb). We predict that a basic block will 
contribute a fraction of the total MFLOPS for the program 
equal to its share of the dynamic memory references (an 
extension of the "memory-bound" rule-of-thumb).  

We do not expect that such simple convolutions can 
yield accurate performance predictions in all cases—next 
we report the degree of accuracy yielded by such simple 
models and add additional complexity only when it 
required to explain observed phenomena.  

 
8. Results  
 

The tools and methods described in the previous 
sections were used in two performance prediction studies.  
The first was the prediction of the serial versions of the 
NPB kernels.  The convolution method used to map the 
Application Profile to the Machine Signature developed 
in this study was also used for the per-processor predicted 
performance in the second study. The second study was 
the prediction of the parallel version of the NPB CG and 
MG kernels. This section describes how we use the tools 
described in previous sections to arrive at application 
specific performance models; and how to use the models 
to predict performance.  
 
8.1. Single Processor Experimental Results  
 

Figure 4 below shows the results of applying the 
convolution in equation 2 to the serial NPB floating-point 
intensive kernels. As can be seen, the method is extremely 
accurate for these simple kernels. In this case the kernels 
were profiled on the Compaq Alpha cluster at Pittsburgh 
Supercomputer Center using MetaSim and their 

performance predicted on SDSC's Blue Horizon. 
Predicted results are compared to actual observed 
performance. The kernels are predicted well within the 
accuracy usually associated with cycle-accurate 
simulation; this at the cost of a sixty-fold slowdown for 
profiling with MetaSim and a roughly equal amount of 
time spent in gathering Blue Horizon's MAPS profile. In 
fact the performance predictions are within the variability 
of observed runtimes on Blue Horizon. This suggests that 
high cost of a cycle-accurate simulation (frequently as 
high as a 6 orders of magnitude slowdown) would be 
overkill for these memory-bound kernels.  

 
Figure 4. Single Processor Kernel Predictions vs. 
Observed Timings and Error on Predictions of Blue 
Horizon (Power3 node processors).  

 
Our results confirm those indicated by Gustafson[5] 

and show that the information contained in a few 
scattered data points for the NPB kernels can be thought 
of as samples of the performance spectrum provided by 
the MAPS profile. In other words, if you have a complete 
picture of the "feeds & speeds" of which the machine is 
capable, you already have all the information contained in 
memory-bound kernels; and the performance of those 
kernels is completely predicted by the MAPS profile. 
Of course accurately predicting the performance of Blue 
Horizon would only be useful  if the machine were not 
built yet!  But understanding why codes perform as they 
do, and knowing that in this case the performance is 
strictly determined by the performance of the memory 
subsystem, is invaluable for guiding tuning, informing 
system design, or evaluating architectural design 
alternatives.  

We do not wish to make the computational complexity 
of our simulations greater than that which is needed to 
explain observed phenomena. Figure 5 shows that error 
increases when using the simple convolution to predict 



 

 

performance of several serial NPB mini-applications. 
(Note: we use the small Class S and Class W sizes 
because the supercomputer Class A, B and C all run out 
of main memory on most single processors and thus are 
slow, easy to predict, and uninteresting). However, the 
error is less than 20% in all cases for the applications. 
Given a tradeoff between simulation time and accuracy, 
and given the 4 orders of magnitude difference between 
our time complexity and that of traditional cycle-accurate 
simulators such as[6], and further given that cycle 
accurate such as[6] and[7] have significant error rates 
anyway (often exceeding 20%), it may well be thought 
more practical to base performance estimates on simple, 
calculable, models of machines and applications such as 
this one.  
 

Figure 5. Single Processor Apps Predictions v.s. 
Observed Timings on Blue Horizon (Power3 nodes 
processors).  
 
8.2 Multi-Processor Experimental Results  
  

It is common to compare parallel machines by their 
manufacturer’s specifications for peak processor speed 
and peak bandwidth of interconnect.  The Top500 list [8], 
for example, ranks the 500 largest machines in the world 
by their performance on a benchmark that correlates 
highly to peak processor performance.  In what follows 
we show that peak ratings provide little useful insight into 
the performance of the NPB kernels.  But our methods do 
better by using the real capability of the machine to access 
data and send messages in the sizes and patterns of the 
real applications. 

In order to model and predict the performance of 
parallel MPI programs, we estimate per-processor 
performance using MAPS/MetaSim and the Convolution 
Method described in equation 1. As described in section 
6, DIMEMAS uses a relative processor speed ratio. The 

estimated per-processor performance is used in this ratio 
and input into the DIMEMAS trace-based simulation.  

Figure 6 shows predictions for the MG kernel class B 
on a Cray T3E-600 and the relative errors for those 
predictions.  In these predictions the theoretical MFLOPs 
of the processors was compared with the MAPS/MetaSim 
ratio. Traces were gathered on Blue Horizon and then fed 
into DIMEMAS, along with a relative processor speed 
ratio, to predict runtimes on the T3E-600. Two different 
processor speed ratios were evaluated;  

• DIMEMAS Flop: the ratio of theoretical peak  
MFLOPS of the two different processors (600/1500)  
 
• DIMEMAS MAPS/MetaSim: 

 The MAPS/MetaSim predicted ratio for the 
 convolved machine signature and application profile 
(which presumably is a more accurate ratio of 
performance for the machines on the code in question) 
 
It is apparent from Figure 6 that the ratio of peak 

MFLOPS is not a useful predictor of the performance of 
this memory-bound kernel. Thus, given the performance 
of a memory-bound parallel code on a given machine, one 
will be unlikely to be able to predict its performance on 
another parallel machine by consulting the Top500 [8] list 
(for example) to obtain relative peak ratings.  

 
Figure 6. Observed vs. predicted times for MG kernel 
class B on the Cray T3E-600.  
 
The capability of the machine to do loads and stores 
(MAPS data) and the data reference pattern and working 
set size of the application’s basic blocks (MetaSim) 
provide enough information to model relative processor 
speeds within useful error bounds. 
  Figures 7 and 8 display prediction results for CG 
kernel class B on the T3E and MG kernel class B on 
PSC’s Compaq based TCSini.  In this case, it was 
necessary to refine the convolution in order to obtain 
reasonably accurate results. Above we use peak measured 
bandwidth obtained by a simple ping-pong test as the 
input to DIMEMAS characterizing the bandwidth  
 



 

 

properties of the machine.  This is akin to say a naïve 
assumption like expecting to get L1 access to main 
memory regardless of problem size and access pattern.  
Real applications see bandwidths and latencies on the 
interconnect that depend on the size of messages 
exchanged and the communications pattern. In this case 
we added a more refined Machine Signature (with results 
shown under CG comm. and MG comm. below) that 
included measured results from a MPI benchmark with a 
similar communication pattern to each kernel, developed 
by PMaC.  These new bandwidths were used in the 
prediction and show much improved predictions over the 
peak MPI bandwidths predictions. 
 

 
 
Figure 7. Observed vs. predicted times for CG kernel 
class B on the Cray T3E-600.  
 

 
Figure 8. Observed vs. predicted times for MG kernel 
class B on the TCSini.  
 

The average error for the MAPS/MetaSim ratio used 
with peak MPI bandwidths is 44%. This was a slight 
improvement over the 51% average error for the 
predictions involving peak processor MFLOPs and peak 

MPI bandwidths. But it required predictions using the 
MetaSim ratio and more the complex interconnect 
signature to yield in an average error of 23%, significantly 
lower than the other two methods of prediction. This 
confirms that using peak numbers, even measured ones is 
not a useful way to predict the performance of these 
applications. A method that takes into account memory 
access patterns of the application and sustainable rates of 
memory access of the machine, along with 
communication size and patterns of the application and 
sustainable rates of these on the interconnect, yields 
reasonable accurate performance estimates in reasonable 
time. 

One may ask, is a 20% error reasonably useful?  This 
depends on the discriminative power needed.  In this case 
the relative capabilities of the T3E and Compaq based 
TCSini for these applications is captured.  And the shape 
of the performance curve based on number of processors 
devoted to the same size problem was captured on both 
machines.  And the factors that explained around 80% of 
the performance of these applications was reduced to 2 
factors—the local memory subsystem and the 
interconnect.  Since both of these machines actually exist 
we were able to exactly determine the error in our 
predictions.  If we extend these methods to simulate 
machines that do not exist yet, it is very unclear that 
cycle-accurate methods can do much better even with 
many more factors modeled and several orders of 
magnitude more time spent in simulation. 

 
9. Conclusion 
 
This paper has given an update on our ongoing efforts to 
develop performance models that are not as naïve as 
extrapolating performance from peak machine 
specifications, nor as difficult to compute as cycle-
accurate simulations, and can provide useful insight into 
the factors that affect performance on serial and parallel 
systems.   Future work will include the extension of these 
techniques to more and larger applications and the 
(judicious) introduction of more modeling factors if they 
can be shown to greatly improve accuracy without greatly 
increasing the computational complexity of the models. 
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